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EPS biofouling in membrane filtration: An analytic modeling study
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Abstract

Biofouling is theoretically investigated by modeling solute transport within a biofilm, defined in this study as a swarm of solid biocolloids
surrounded by liquid-like exopolymeric substances (EPS). A mathematical approach is employed to map the biofilm to an equivalent, simple
spherical cell using a self-consistent method. It is found that the physical presence of EPS and their reaction with solute ions reduce the mass
transfer coefficient, which significantly contributes to permeate flux decline in reverse osmosis and nanofiltration membrane processes.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Biofouling in pressure-driven membrane filtration has re-
ceived close attention in past decades because the fouling
causes severe performance loss, modifies membrane surface
properties, and requires costly periodic cleaning or mem-
brane replacement. Of concern are biological species that ex-
crete a protective mass of polysaccharides known as EPS—
extracellular polysaccharides or exopolymeric substances [1].
EPS that cover bacteria cells serve to entrap nutrient species
and, more important, to impede transport of biocides that would
efficiently kill bacteria in the planktonic state [2].

Conventional colloidal (solid) cakes formed on reverse os-
mosis (RO) and nanofiltration (NF) membrane surfaces do not
provide a noticeable increase in hydraulic cake resistance but
significantly promote concentration polarization (CP) of solutes
by hindering their back-diffusion. Therefore, a second-step flux
decline occurs due to enhanced osmotic pressure [3,4], and
this phenomenon is well explained by employing a diffusive
tortuosity factor of porous medium [5] (i.e., cake layer with
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different structures [6]). High solute concentration of the feed
water of RO/NF processes suppresses electrostatic repulsion
between particles, leaving the Van der Waals attraction as the
dominant interparticle interaction. If the colloidal concentra-
tion of the feed stream is relatively high, colloidal aggregation
may occur in the bulk phase, and the formed cake layer will
have higher porosity and hence lower hydraulic resistance due
to the sparse structure of aggregates. Therefore, flux decline
stemming from the colloidal aggregation is less in comparison
to that of the conventional cake layer composed of individual
particles. While solid cakes provide only physical obstruction
with solute back-diffusion, a soft cake (i.e., biofilm) composed
of EPS-covered biocolloids (such as bacteria) causes physical
as well as chemical hindrance on solute diffusion. Colonies of
EPS-covered bacteria not only generate flow channeling fol-
lowed by increased brine concentration but also enhance the os-
motic pressure by entrapping solutes within EPS layers and so
hinder their diffusion away from the membrane surface. There-
fore, biofouling in RO/NF processes must be investigated in
both biological and physical aspects: rapid proliferation of EPS-
producing bacteria on the membrane surfaces (i.e., increasing
biofilm thickness) and solute penetration into the biofilm (i.e.,
partitioning of solutes in the bulk and EPS phases).

A plethora of researchers have investigated diffusion phe-
nomena within biofilms using various experimental techniques
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such as microelectrodes [7,8], fiberoptic microsensors [9], nu-
clear magnetic resonance spectroscopy [10,11], infrared spec-
troscopy combined with Raman microscopy [12], and confocal
laser scanning microscopy [13–15]. Although some of the ex-
perimental results were well explained using the hindered dif-
fusion concept, effects of physical and chemical hindrances are
somewhat ambiguously combined into a single quantity, i.e.,
diffusive tortuosity factor. The experimental techniques listed
above cannot measure separately the effects of the physical
presence of EPS (generated on biocolloid surfaces) and their
partitioning of salt ions rejected by the membrane and retained
within the deposit layer. Moreover, it is not feasible to imple-
ment such experimental techniques into the dynamic operations
of RO/NF processes to monitor the degree of biofouling. In this
light, a conceptual model that can reflect the presence and re-
action of EPS into filtration performance is of great necessity
to specifically understand the effects of hindered solute back-
diffusion on flux decline in RO/NF processes due to EPS.

2. Theory

For a complete description of mass transport through the
biofilm layer, a full convection–diffusion–reaction (CDR) equa-
tion should be solved using the material properties of biofilms
and solutes. The three (separate) transport mechanisms (of
CDR) are, in general, incorporated into the governing equa-
tion using the linear superposition principle. In other words,
the overall mass transport is described as the linear sum of the
three CDR contributions. In this light, this study focuses only
on diffusive solute flux through the biofilm layer composed of
EPS-covered bacteria and investigates mean (phenomenologi-
cal) effects on permeate flux decline.

Experimental visualization shows that EPS-producing bac-
teria usually have helical or rod-like shapes [16]. When the
helical-shaped bacteria are sufficiently long, a cylindrical
model can be developed, assuming that the thickness is neg-
ligible relative to the length. (Related mathematical approaches
for permeability of cylinder-packed porous media are fully de-
scribed elsewhere [17].) On the other hand, rod-shaped bacteria
are relatively short, having oval shapes with small eccentric-
ities close to zero. For mathematical simplicity, the current
model employs spherical-shaped bacteria, mapping the short
rod-shaped ones to volume-equivalent spheres.

Fig. 1 shows a three-dimensional image of a swarm of
monodispersed composite spheres. Each composite sphere con-
sists of a solid biocolloid of radius a (shown as a dark sphere),
covered with an EPS layer of thickness δ (shown as a semi-
transparent sphere). The EPS layer, produced by biocolloids,
is a gel-like, liquid-state polymeric material into which solutes
can diffuse but water cannot freely penetrate.

Fig. 2 depicts the swarm of composite spheres in a diffu-
sive cell model. Any composite sphere embedded in the swarm
sees all the other spheres as an exterior porous body in a self-
consistent manner. The porous body is then regarded as a uni-
form, isotropic continuum medium with void spaces into which
solutes can diffuse.
Fig. 1. Schematic of biocolloids covered with EPS.

Fig. 2. Descriptive diagram of the diffusive cell model.

2.1. Governing equations

In the void space (R < r < S), solute diffusion is represented
by Fick’s law, given as

(1)�J = −D0∇C

and time-invariance of the solute concentration simplifies the
continuity equation to

(2)∇ · �J = 0.

Substitution of Eq. (1) into Eq. (2) with a constant diffusivity
D0 yields

(3)∇2C = 0.

By using azimuthal symmetry, one can write general solutions
for concentrations in regions of porous medium, void space, and
EPS as

(4)C†(S � r < ∞, θ) =
∞∑

n=0

[
Anr

n + Bnr
−(n+1)

]
Pn(cos θ),

(5)C(R � r � S, θ) =
∞∑

n=0

[
Enr

n + Fnr
−(n+1)

]
Pn(cos θ),
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and

(6)C̃(a < r � R,θ) =
∞∑

n=0

[
Gnr

n + Hnr
−(n+1)

]
Pn(cos θ),

respectively, where Pn(θ) is the Legendre polynomial such as

P0(cos θ) = 1,

P1(cos θ) = cos θ,

(7)P2(cos θ) = 1

2

(
3 cos2 θ − 1

)
,

. . . .

Then, radial and tangential components of the diffusive flux in
each region are as follows:

(8)

J †
r = −D† ∂C†

∂r

= −D†
∞∑

n=0

[
nAnr

n−1 − (n + 1)Bnr
−(n+2)

]
Pn(cos θ),

(9)

J
†
θ = −D†

r

∂C†

∂θ

= D†
∞∑

n=0

[
Anr

n−1 + Bnr
−(n+2)

]
P ′

n(cos θ) sin θ,

(10)

Jr = −D0
∂C

∂r

= −D0

∞∑
n=0

[
nEnr

n−1 − (n + 1)Fnr
−(n+2)

]
Pn(cos θ),

(11)

Jθ = −D0

r

∂C

∂θ

= D0

∞∑
n=0

[
Enr

n−1 + Fnr
−(n+2)

]
P ′

n(cos θ) sin θ,

(12)

J̃r = −D̃
∂C̃

∂r

= −D̃

∞∑
n=0

[
nGnr

n−1 − (n + 1)Hnr
−(n+2)

]
Pn(cos θ),

(13)

J̃θ = − D̃

r

∂C̃

∂θ

= D̃

∞∑
n=0

[
Gnr

n−1 + Hnr
−(n+2)

]
P ′

n(cos θ) sin θ,

where

(14)P ′
n(cos θ) = dPn(x)

dx

∣∣∣∣
x=cos θ

.

The EPS layer, often negatively charged, is where biodegrada-
tion may occur when the feed contains certain organic matters.
In this study, however, we employ a simple model by consid-
ering only inorganic solutes and assume that the chemical and
biological properties of the EPS layer are effectively reflected
in the solute diffusivity, D̃.
2.2. Boundary conditions

Boundary conditions employed in this study are

(15)

�J †(S, θ) = Qẑ = −Q cos θ r̂ + Q sin θ θ̂

= J †
r (S, θ)r̂ + J

†
θ (S, θ)θ̂ ,

(16)C(S, θ) = C†(S, θ),

(17)Jr(S, θ) = J †
r (S, θ),

(18)C̃(R, θ) = σC(R, θ),

(19)J̃r (R, θ) = Jr(R, θ),

(20)J̃r (a, θ) = −U,

where Q is a constant flux throughout the entire porous
medium, and r̂ and θ̂ are the unit vectors in the radial and tan-
gential directions, respectively. Equations (16) and (17) indicate
continuities of the concentration and radial flux at r = S, i.e.,
the interface between the void space and porous medium. Equa-
tion (18) is used to introduce partitioning of solutes between the
EPS and bulk phases, characterized by the partitioning coeffi-
cient σ at r = R, where the radial fluxes are continuous from
Eq. (19). Equation (20) describes the flux of solutes from the
EPS zone due to bacteria, which maintain (specific) solute con-
centrations within the cell by controlling the direction of the
uptake flux. Bacteria use solutes as food if U is positive, but
solutes are released with a negative value of U . This uptake
flux, however, is assumed to be negligible in comparison with
actual solute flux within the RO/NF membrane channel. More-
over, in a dormant state U disappears. Therefore, the uptake
flux U is set to zero, and the proliferation of bacteria contributes
to an increase in biofilm thickness. The porosity of the entire
porous medium is then calculated as

(21)ε = 1 − φR,

where

(22)φR =
(

R

S

)3

,

which indicates the fraction of biofilm volume from which wa-
ter is excluded.

2.3. Solutions

The orthogonality of the Legendre polynomial indicates that
unknown coefficients (An to Hn) are related to each other for
a given polynomial order n. Because the ambient solute flux
of Eq. (15) only contains P1(cos θ) = cos θ and dP1(cos θ)

dθ
=

− sin θ terms, all the coefficients of the second and higher or-
ders should be zero in all three regions, that is

(23)An = Bn = En = Fn = Gn = Hn = 0 for n � 2.

In addition, A0 is a reference concentration of an arbitrary con-
stant so that setting A0 = 0 does not change any results because
the current study focuses on the concentration gradient. There-
fore, all the coefficients of the zeroth order are also zero:

(24)A0 = B0 = E0 = F0 = G0 = H0 = 0.
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Meaningful solutions that satisfy Eqs. (15)–(20) then have the
following forms:

(25)A1 = Q

D†
,

(26)B1 = 0,

(27)E1 =
(

Q

3D0

)(
2

dPM
+ 1

)
,

(28)F1 =
(

Q

3D0

)(
1

dPM
− 1

)
S3,

(29)G1 = σ
E1 + F1R

−3

1 + 1
2φa

,

(30)H1 = 1

2
a3G1,

where

(31)dPM = D†

D0

and

(32)φa =
(

a

R

)3

.

Here, φa indicates the fraction of the solid core within the com-
posite sphere. The explicit functional form of dPM, the ratio of
the effective diffusivity in the porous media to the bulk dif-
fusivity in free space, is obtained by equating two different
expressions for H1 (or G1) from Eqs. (18) and (19):

(33)dPM = (1 + 1
2φa)(1 − φR) + 1

2σdEPS(1 − φa)(1 + 2φR)

(1 + 1
2φa)(1 + 1

2φR) + 1
2σdEPS(1 − φa)(1 − φR)

,

where

(34)dEPS = D̃

D0
,

which is the diffusivity ratio in the EPS layer and void space.
Therefore, the effective solute diffusivity within the biofilm, D†

(=dPMD0), can be analytically represented as a function of D0,
φa , φR , σ , and dEPS.

2.4. Confirmation of solution: Absence of the EPS layer

The dimensionless effective diffusivity within a porous
medium composed of monodispersed spheres of radius a, in
the absence of EPS, can be obtained by taking the limits of
dEPS = 0 and/or R → a:

(35)dPM = 1 − φ

1 + 1
2φ

,

where

(36)φ =
(

a

S

)3

.

Here, σdEPS = 0 indicates zero solute concentration within the
EPS layer or the forbidden diffusive flux into the EPS zone that
becomes a part of the solid core, and R → a implies the physi-
cal absence of the EPS layer with a zero EPS-thickness.
Fig. 3. Dimensionless effective diffusivity in the porous medium with φR = 1.0.

Anther way to represent the absence of the EPS layer is to
change the EPS to the solvent, equivalently, dEPS = 1, with
the continuity of concentration at the EPS–bulk interface (i.e.,
σ = 1). Within this limit, Eq. (33) again becomes

(37)dPM = 1 − φ

1 + 1
2φ

.

Equations (35) and (37), having the same mathematical form,
are identical to the analytic expression from Maxwell’s [18] and
Neale and Nader’s works [19], which is plotted as the top solid
line in Fig. 3. The denominators of Eqs. (35) and (37), termed
the diffusive tortuosity factor, were extensively studied with
several model structures of sphere-packed porous medium [6].

3. Results and discussion

3.1. Effects of EPS on solute diffusivity

The dimensionless effective diffusivity dPM of Eq. (33) indi-
cates roles of partitioning and diffusion of solutes within the
EPS layer, characterized by σ and dEPS, respectively. While
both are insignificant, i.e., σdEPS � 1, dPM becomes similar
to the conventional hindered diffusion case [18,19]. For the op-
posite case, higher diffusivity within the EPS layer effectively
enhances overall diffusion through the biofilm, which is physi-
cally equivalent to accommodating more effective void spaces
within the biofilm. The effects of partitioning and diffusion are
discussed below.

Fig. 3 shows the effective diffusivity with different values of
σdEPS when the void spaces are completely filled with EPS,
i.e., φR = 1. Water permeation through the porous medium
becomes practically negligible, and the diffusive transport is
mainly through the EPS region in which solutes diffuse with D̃.
The solid line for σdEPS = 1.0 indicates that EPS act like wa-
ter, and the corresponding dPM is identical to the previous work
[18,19]. As σdEPS decreases from 1.0 to zero, the effective dif-
fusivity has a similar decreasing trend. Note that values of dPM
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Fig. 4. Dimensionless effective diffusivity in the porous medium with σdEPS =
0.5 (hollow symbols) and 0.05 (solid symbols).

with φa = 0 in Fig. 3 are equal to corresponding values of
σdEPS. When φR = 1, φa becomes equivalent to the fraction
of solid region from which solutes are excluded. As the solute
diffusivity within the EPS layer decreases (but does not reach
zero), solutes stay longer within the EPS layers, and in extreme
cases they are (almost entirely) trapped within the layer.

Fig. 4 shows variations of the effective diffusivity with re-
spect to φa , given σdEPS and φR . Knowing that the maximum
random packing ratio is about 0.6 for monodispersed solid
spheres [20–22], we select two σdEPS values and span φR from
0.1 to 0.6 with an interval of 0.1. Within EPS layers, σdEPS =
0.5 and 0.05 imply half and negligible solute diffusivity in com-
parison to the bulk diffusivity D0 if σ = 1. Decreasing trends
of dPM with respect to φa remain apparent for σdEPS = 0.5 but
obscure for σdEPS = 0.05: these effects stem from the second
terms in the numerator and the denominator of Eq. (33). As φa

reaches 1.0, dPM values with σdEPS = 0.5 and 0.05 converge to
the same value with a given φR , which indicates the absence of
the EPS layer. Note that dPM values with φa = 1 in Fig. 4 are
equal to those of Fig. 3 with σdEPS = 1 after φa of Fig. 3 is re-
placed by φR of Fig. 4. As φR increases, dPM decreases, which
implies that as void spaces decrease, solutes should take more
convoluted routes within less void spaces while some of them
stay within EPS layers.

When EPS layers are absent, the numerator 1−φ of Eq. (35)
becomes equivalent to the fraction of void spaces (i.e., poros-
ity) in which solutes can diffuse. The denominator of Eq. (35)
is termed the diffusive tortuosity factor, which quantifies the
tortuousness of porous media as a function of solid volume
fraction [6]. In the same light, it can be interpreted that the nu-
merator of Eq. (33) corresponds to effective fractional space
in which solutes can undergo diffusive transport, and the de-
nominator represents effective tortuousness of the biofilm in
the presence of EPS. However, individual analyses of the nu-
merator and denominator of Eq. (33) do not provide indepen-
dent physical meanings so that only the ratio should be treated
as the dimensionless effective diffusivity of solutes within the
biofilm.

3.2. Implication on biofouling

Structural heterogeneity of the biofilm often generates a
unique flow field, which reduces physical stresses on bacteria in
the interstitial flow field. A certain portion of water and solute
mass is transported through the void network of the biofilm due
to the transmembrane pressure. The concepts of structural het-
erogeneity and void network are, however, highly dependent on
the interaction of bacteria with the flow field under the high
pressure of RO/NF processes. In this light, to provide a simple
phenomenological understanding of EPS effects on the perme-
ate flux decline, we follow Hoek et al.’s work [3] by employing
film theory as a basic flux analysis method:

(38)vw = k∗ ln

(
Cm − Cp

Cb − Cp

)
= k∗ ln

(
�Cm

�Cb

)
,

where vw is the permeate velocity, and Cm, Cb, and Cp are
solute concentrations (molarity) on the membrane surface, in
the bulk phase, and in the permeate stream, respectively. Here,
k∗ is the mass transfer coefficient defined as [3]

(39)
1

k∗ = δc

D†
+ δp

D0
= 1

D0

(
δc

dPM
+ δp

)
,

where δc and δp are thicknesses of the biofilm layer and solute
CP (above the biofilm), respectively, in this study. The fil-
tration equation for RO/NF, based on the solution–diffusion
model [23], is represented as

(40)vw = �P − �π

μ(Rm + Rc)
,

where �P is the transmembrane pressure, Rm is the intrinsic
membrane resistance, and Rc is the hydraulic resistance of the
biofilm. Note that 1 − φR should be used as volume fraction
of solvent flow to theoretically estimate Rc using the Carman–
Kozeny equation [24] or Happel’s cell model [25]. Here, �π is
the osmotic pressure difference between the membrane surface
and permeate stream, represented by Van’t Hoff’s equation:

(41)�π = RgT �Cm,

where Rg is the universal gas constant and T is the absolute
temperature. Using Eqs. (38) and (41), Eq. (40) can be rewritten
as

(42)RgT �Cbe
J + μRT k∗J = �P,

where RT (=Rm + Rc) is the total resistance and J (=vw/k∗)
is the dimensionless permeate flux. Equation (38) indicates that
if the CP modulus, Cm/Cb , does not exceed e1 (=2.718), then
J is less than 1.0. In this case, eJ can be expanded, using the
Taylor series, as eJ 	 1 + J + 1

2!J
2 + · · ·, so J can be approx-

imately represented as

(43)J = (1 + R̂T )

(
−1 +

√
1 + 2(�P̂ − 1)

(1 + R̂T )2

)
,
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where

(44)R̂T = μRT k∗

�πb

,

(45)�P̂ = �P

�πb

,

(46)�πb = RgT �Cb.

When the pressure is high enough to easily overcome the bulk
osmotic pressure �πb as well as (μRT k∗)2/�πb , Eq. (43) is
further simplified to

(47)vw = k∗
√

2�P

�πb

,

implying that the permeate flux is proportional to the square
root of the applied pressure. If the feed concentration is very
low, providing a negligible osmotic pressure, Eq. (47) seems to
diverge. This is because the transmembrane pressure does not
exceed (μRT k∗)2/�πb . Taking a limit of zero, feed concen-
tration in Eq. (43) returns to Eq. (40) with vanishing osmotic
pressure. On the other hand, if the bulk osmotic pressure is less
than but close to the applied pressure, Eq. (43) can be approxi-
mated as

(48)vw = k∗ �P − �πb

μRT k∗ + �πb

,

indicating a linear relationship between the permeate flux
and applied pressure. In conjunction with Eq. (39), Eqs. (47)
and (48) point out that the permeate flux does decline with
respect to decreasing k∗, e.g., decreasing the effective solute
diffusivity D† (=D0dPM) within the biofilm.

For a lower solute diffusivity D̃ within the EPS layer, solutes
can stay longer in a steady state while slowly diffusing within
the layer and forming a certain concentration profile. This sce-
nario effectively reduces the overall solute diffusivity D† within
the entire biofilm. Mathematically, reduced mass transfer coef-
ficient k∗ with decreasing D† explains the corresponding flux
decline in Eqs. (47) and (48). A physical interpretation is as fol-
lows. The partitioning of concentration at the EPS–void inter-
face (Eq. (18)) implies that higher solute concentration within
the biofilm due to the lower D† enhances the concentration
within void spaces of the biofilm and also the wall concentra-
tion Cm. We would like to call it EPS-enhanced concentration
polarization, which can further increase the osmotic pressure.
A relationship between k∗ and �π can be obtained by equating
Eqs. (38) and (40) with Eq. (41):

(49)k∗ = �P − �π

μRT ln(�π/�πb)
,

which elucidates that solvent mass transfer from the bulk phase
to permeate stream is hindered by enhanced osmotic pressure.
In the same light, the permeate flux can decline with increas-
ing φa and/or φR (or thicker δ) or decreasing dEPS, which all
effectively hinder solute back-diffusion away from the vicinity
of the membrane surface towards the top of the CP layer.

Particulate fouling in RO/NF membrane processes can be
categorized into two cases: colloidal fouling and biofouling.
Colloidal particles in the solid cake layer physically hinder
the solute back-diffusion by playing roles as geometrical ob-
stacles. Osmotic pressure enhancement by the solid cake layer
has therefore only a physical aspect along the membrane chan-
nel. On the other hand, a few bacteria alive in the membrane
channel due to imperfect disinfection and/or pretreatment can
generate colonies composed of a tremendous number of mul-
tiplicated bacteria. Excreted materials from the bacteria form
liquid-like EPS, and hence the biofilm has physical softness
(i.e., deformability) and chemical reactiveness through the ef-
fective diffusivity. The soft EPS layer provides additional hy-
draulic resistance by decreasing void spaces for permeate flow
as well as solute diffusion. The reactiveness of EPS hinders the
solute back-diffusion by providing local nesting spaces with
diffusing solutes. Partitioning of solutes in the void and EPS
regions enhances the wall concentration and osmotic pressure
in a sequential way. Therefore, it is sufficient to say that bio-
fouling is more deleterious than colloidal fouling from both the
physical and chemical point of view. Property changes of mem-
brane materials due to attachment and growth of bacteria can
cause further (remarkable) performance loss in RO/NF mem-
brane filtration.

4. Conclusions

The spherical, diffusive cell model (as an extension of Neale
and Nader’s work [19]) is developed to investigate the hindered
solute diffusion within the biofilm formed on the membrane
surface. The diffusive tortuosity of the biofilm is analytically
calculated as a function of solute diffusivity within EPS lay-
ers, thickness of EPS layer, solute partitioning coefficient, and
porosity of the biofilm. The presence of EPS on surfaces of
biocolloids reduces void fraction for water permeation, and the
reactivity of EPS holds solutes within the EPS layer so that their
back-diffusion (from the membrane surface to the bulk phase
across the biofilm) is effectively hindered. A small solute dif-
fusivity within the EPS layer (less than that in the bulk phase)
produces higher concentration within the EPS layer as well as at
the boundary of EPS–voids. The continuity of solute concentra-
tion at the boundary induces higher solute concentration within
the entire biofilm. Therefore, hindered back-diffusion gener-
ates EPS-enhanced concentration polarization and, accordingly,
enhanced osmotic pressure on the membrane surface. The dif-
fusive tortuosity of the biofilm influences the permeate flux via
the mass transfer coefficient of film theory.
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