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Abstract

Exploiting the increasingly wide use of Light-emitting

Diode (LED) lighting, in this paper, we study the prob-

lem of using visible LED lights for accurate localization.

The basic idea is to leverage the existing lighting infra-

structure and apply trilateration to localize any devices

with light sensing capability (e.g., a smartphone), using

LED lamps as anchors. Through the design of Epsilon,

we identify and tackle several technique challenges. In

particular, we establish and experimentally verify the op-

tical channel model for localization. We adopt BFSK

and channel hopping to enable reliable location beacon-

ing from multiple, uncoordinated light sources over the

shared optical medium. We handle realistic situations

towards robust localization, for example, we exploit us-

er involvement to resolve the ambiguity in case of in-

sufficient LED anchors. We have implemented the Ep-

silon system and evaluated it with a small scale hardware

testbed as well as moderate-size simulations. Experi-

mental results confirmed the effectiveness of Epsilon: the

90th percentile accuracies are 0.4m, 0.7m and 0.8m for

three typical office environments. Even in the extreme

situation with a single light, the 90th percentile accuracy

is 1.1m. We believe that visible light based localization

is promising to significantly improve the positioning ac-

curacy, despite few open problems in practice.

1 Introduction

We have been witnessing ever increasing roll-out of

location-based services, for which accurate location pro-

visioning is a key. GPS has largely solved the prob-

lem for outdoor scenarios. However, accurate localiza-

tion remains a grand challenge for indoor environments.

WiFi-based indoor localization has attracted lots of re-

search attentions, for the advantage of ease-use and low

deployment cost by leveraging existing WiFi infrastruc-

ture [3,6,23]. However, they usually deliver an accuracy

of up to few meters (refer to §8.4), suffering from wire-

less channel dynamics, fading, interference and environ-

mental noises.

In this paper, we propose Epsilon, a novel sub-meter

localization system exploiting visible Light-emitting

Diode (LED) lighting infrastructure. Such work is in-

spired by two observations. The first is the ever increas-

ingly widespread of LED lighting [14]. LED offers a new

and revolutionary lighting technology with the potential

for longer lifetime, energy saving, quality improvement,

and environment preservation. The second is its unique

dual-paradigm feature, i.e., illumination as well as com-

munication. It is attributed to the LED’s ability of in-

stantaneous on/off, which allows LEDs to be dimmed via

Pulse Width Modulation (PWM) and thus to carry digital

information in the visible light carrier, i.e., visible light

communication (VLC) [9, 11, 16].

Inspired by these favorable facts, Epsilon is designed

to provide high-accuracy positioning in a low(zero)-cost

and easy-to-use fashion. It has three-fold implications.

First, it reuses the existing lighting system for the lo-

calization purpose and can be gradually enabled. Sec-

ond, Epsilon does not rely on any centralized localiza-

tion service (e.g., a localization database in the WiFi-

based solutions). Ideally, the system would be capable

of “plug-and-play”. It facilitates receiver-side localiza-

tion so that a device (e.g., a smartphone) can infer its po-

sition at a minimum interaction (passive listening, here)

with the lighting infrastructure. Last but not least, Ep-

silon is able to yield high accuracy (sub-meter) localiza-

tion. In fact, it is promising to achieve unprecedented ac-

curacy by leveraging two advantages of the lighting sys-

tem rather than other infrastructure-based systems (e.g.,

WiFi-based). (1) The deployment of illumination lights

is much (over one order of magnitude) denser than that

of WiFi access points (APs). For example, in our of-

fice floor, there are about 21 APs whereas over 300 light

sources are deployed to cover the same space. (2) Light

sources, unlike WiFi radio signals, are always visible. It
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Figure 1: Conceptual design of Epsilon.

exposes a unique opportunity to involve the user in loop

for some challenging scenarios.

We design Epsilon to exploit illumination infrastruc-

ture for localization purpose. The basic idea is trilatera-

tion1 using visible LED light sources as anchors. In Ep-

silon (as shown in Figure 1), each bulb, in addition to its

major lighting role, also serves as a location landmark. It

broadcasts, via the light carrier, location beacons carry-

ing information, i.e., the position of the bulb and its duty

cycle, to facilitate receiver side localization. A receiver

(e.g., a mobile phone) employs a light sensor to retrieve

the beacon information, and measures the received signal

strengths (RSSs) from multiple bulbs and computes the

distances to each bulb through the optical channel mod-

el. Finally, it estimates its location based on the received

beacon information and distance measurements from all

light sources. Note that the beacons are transmitted via a

certain optical channel which is thus free from interfer-

ences from ambient light such as sunlight and fluorescent

light (more details in §4.2).

Though the basic idea sounds straightforward, it is

non-trivial to realize a fast and highly accurate light-

based localization system, due to the following three

technical challenges. Along with them, we briefly de-

scribe the Epsilon solution and our contributions accord-

ingly.

• It is nontrivial to accurately measure the distances be-

tween a receiver and surrounding light sources. Many

factors such as irradiation angles, phone orientation

and light emission power, affect the measurement ac-

curacy. To this end, We establish and experimentally

verify a precise optical channel model for localization

purpose. We identify all the factors that affect the mea-

surement and their extents, so that we can precisely

relate the distance to the RSS (§4).

• It is challenging to obtain a reliable information of

each LED bulb (e.g., ID, location, and optical channel

parameters), especially among multiple, uncoordinat-

ed light sources via the shared optical medium. Re-

liable information transmission over the shared medi-

um, in general, belongs to the VLC paradigm that is

yet to come. Therefore, we must design a scheme that

1The key difference between trilateration and triangulation is the

way of determining the location. The former uses the distances to a

few anchors while the latter uses the corresponding relative angles.

does not depend on the existence of a deployed VL-

C network. Our focus is more on avoiding interfer-

ences among a large amount of ad-hoc deployed light

sources without any explicit coordination, rather than

achieving high throughput. Specifically, we adop-

t binary frequency shift keying (BFSK) modulation

scheme, and mitigate possible collisions through chan-

nelization and hopping (§5).

• There are practical challenges to provide robust local-

ization in real situations. In some cases of dense light

deployment, given too many observations, how can we

precisely localize the receiver by making a full use of

all distance measurements which might even interferes

or conflicts with each other? In the contrary situations

with sparse light deployment, how can a receiver work

with few measurements that are even insufficient to

uniquely locate the receiver. To this end, we devel-

op precise localization through multilateration tech-

niques, as well as handling practical challenges with

the help of simple user interactions (§6).

Though Epsilon is based on existing techniques like

BFSK, channel hopping, and intensity modelling, inte-

grating them effectively is non-trivial, and has never been

examined before. We have implemented the Epsilon sys-

tem. To preliminarily evaluate the performance of Ep-

silon, we build a small hardware testbed by designing

and assembling five LED bulbs. We also made a light

sensor board that connects to mobile phone through the

audio jack. We evaluated Epsilon in typical office envi-

ronments, including a conference room, a cubicle area,

and a corridor, representing various environmental com-

plexities and light layouts. The experimental results con-

firmed that using visible light yields high localization ac-

curacy: the 90th percentile accuracy reaches 0.4m, 0.7m,

and 0.8m for the three environments, respectively. Even

in scenarios with a single light source, the 90th percentile

accuracy is 1.1m. Although recent work has investigated

the idea that exploits LED lighting for indoor localiza-

tion [13, 15, 22, 24], this is the first piece of work from

academia that actually designed, implemented and eval-

uated a real working system, to the best of our knowl-

edge.

2 LED Background

Light Emitting Diode: LED is a simple semiconduct-

ing device. We envision that LED lighting will become

the mainstream lighting technology in the near future for

its several advantages. First, LED bulbs are much more

energy efficient (2×) in comparison with the convention-

al compact fluorescent light (CFL) bulbs. Its lighting ef-

ficiency is almost constant (drop by less than 10% after

70,000 working hours [14]) throughout the whole lifes-
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pan. Second, the lifetime is also much longer lifespan

(6×). Third, LED bulbs are free of mercury and thus

more environmentally friendly. One drawback of cur-

rent commodity LED bulbs is its higher production cost,

which however is still a win considering the savings on

the energy expense.

Instantaneous On/Off: As a semiconductor device,

LED possesses a feature – instantaneous on and off. In

other words, a LED bulb can be toggled within few mi-

croseconds. Our measurements using an oscilloscope

show that the rising and falling edges of an ordinary LED

are about 4µs. Due to such property, Pulse Width Mod-

ulation (PWM) is the most widely used approach to dim

a LED bulb, i.e., frequently turning on/off the LED. In

PWM, the brightness is determined by the duty cycle.

Figure 2 shows two examples with 60% and 20% duty

cycles, respectively.

T1 T2

60%  Duty Cycle

20%  Duty Cycle

Figure 2: Illustration of pulse width modulation.

Visible Light Communication (VLC): The instanta-

neous On/Off feature turns a LED lamp into an effective

transmitter for VLC. LED bulbs can use various modu-

lation schemes, such as on-off keying (OOK), variable

pulse-position modulation (VPPM), and color shift key-

ing (CSK), to embed digital information in its light. VLC

has been studied for years [9, 11] and was recently stan-

dardized in IEEE 802.15.7 [16]. One special mandatory

requirement of VLC is to avoid the flickering problem,

which is caused by the periodic changes in the instanta-

neous brightness. It is reported that low-frequency (less

than 120Hz [17] or 160Hz [9]) flickers make people feel

uncomfortable or even sick. Although there is no wide-

ly accepted criterion for the safe flicker frequency, it is

generally thought that a frequency higher than 200 Hz is

safe.

3 Epsilon Overview

We present Epsilon – a visible light based localization

system. Figure 3 plots the overall system architecture of

Epsilon. It consists of two parts, one on the LED bulb

and the other on the receiving device such as a smart-

phone. Each part consists of several functional modules

that collaboratively fulfil the three key technical compo-

nents of Epsilon, as briefly described below.

Light Beaconing: Each LED bulb broadcasts location

Figure 3: The system architecture of Epsilon.

beacons to the receiver. This is jointly achieved by the

modulation module at the LED side and the demodula-

tion module at the receiver side. We adopt binary fre-

quency shift keying (BFSK) modulation to encode the

messages. In precaution of possible collisions when mul-

tiple, uncoordinated light sources co-exist, we channel-

ize the overall usable spectrum and design a distributed

channel hopping logic at the LED bulb. Each beacon is

transmitted at a certain optical channel, and thus is in-

terference free from ambient light such as sunlight and

fluorescent light.

Distance Estimation: We need to estimate the distances

from the receiver to observed light sources, in order for

trilateration. The receiver decodes light beacons from

multiple light sources, and measure their RSSs, simulta-

neously. The RSS as well as the information embedded

in the light beacon are used to infer the distance from the

receiver to a particular light source.

Localization: We design different approaches to local-

ize the receiver, depending on the number of perceived

light sources. If over three light sources are perceived,

we locate the receiver via trilateration/multilateration

which involves an optimization process that maximally

respects all distance constraints. Otherwise, we involve

the user in loop, and design a process to locate the receiv-

er by fusing the measurements of light and IMU sensors

(accelerometer, magnetometer, and gyroscope).

These three design components echo the aforemen-

tioned challenges, respectively. Next we will elaborate

the details for each of them in the following sections.

We start with distance estimation because it is a critical

enabler to accurate localization of Epsilon.

4 RSS vs. Distance

To achieve high accuracy trilateration, we need to pre-

cisely measure the distances from the receiver to ob-

served LEDs. To this end, we establish a model that can

precisely relate the received light signal strength to the

distance of a light source.
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phone coordinates

light source

incidence angle

irradiation angle

d θ 

φ

Figure 4: The irradiation angle φ ; the distance between

the light source and the sensor d; and the incidence angle

θ . Note that the incidence angle is between the ray and

the z axis of the phone coordinate system.

4.1 Optical Channel Model

For an optical wireless link, the received energy over one

channel can be described as

Pr = Pt ·H(d) ·Gr, (1)

where Pt is the transmission power over a certain chan-

nel of the light source. H(d) is the channel gain that is

related to the actual sender-receiver distance d. Gr is the

receiver gain which can be calibrated once for good. In

fact, the channel gain H is not merely a function of the

distance, but also depends on the irradiation angle φ and

the incidence angle θ , as depicted in Figure 4. Intuitive-

ly, the longer the distance, or the larger the incidence or

the irradiation angle, the lower the received energy.

The radiant intensity of a LED chip is usually assumed

to follow a Lambertian radiation pattern [4]. Then, the

channel gain can be generally modelled by Eq. (2)2

H(0) = A ·g(φ) ·

[

m+1

2π

]

· cosm φ ·
cosθ

d2
(2)

where A is the area of the sensor detector and g(φ) is

called the optical concentrator which is a constant if the

incidence angle falls in the field of view (FoV) of the

sensor detector [11]. m is called the Lambertian order

which equals 0 for an ideal point light source. For typical

LED bulbs with limited illumination range like ±60◦, we

have m = 1 [4]. The accuracy of distance inference is

directly affected by the way of RSS measurement and

the precision of the channel gain model. We verify them

through a sender-receiver pair, where the sender is a LED

bulb and the receiver is a light sensor.

Incidence angle and irradiation angle: We first exam-

ine the received energy versus the incidence angle θ and

the irradiation angle φ . According to the channel model

in Eq. (2), the received energy follows the cosine of θ

and φ , which is shown in black solid curve (Theoretical)

in Figure 5(a) and 5(b). We measure the observed chan-

nel response for θ ∈ [−60◦,60◦] and φ ∈ [−60◦,60◦], at

2The parameter ’0’ in H(0) is an abbreviation, referring to all af-

fecting parameters.
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(b) Channel response of φ
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(d) Relative error of φ

Figure 5: Normalized channel responses and relative er-

rors of the incidence angle θ and irradiation angle φ mea-

sured at 1m and 5m distances.

distances of 1m and 5m from a LED bulb, respectively.

The normalized measurement results are also plotted in

Figure 5(a) and 5(b) in red dashed and blue dotted curves,

respectively. To quantify the relative error between our

model-based estimation and actual measurement, we de-

fine the error ratio (denoted as r) as

r =
|rssmeasured − rssmodel |

rssmodel

(3)

where rssmeasured and rssmodel are the RSSs from mea-

surements and model-based derivations. The error ratios

regarding to both angles are shown in Figure 5(c) and

5(d), respectively. In Figure 5, we can see that the real

measurements fit the model very well. The error ratio is

mostly below 5% when the angles (θ and φ ) are within

±60◦. Once they exceed ±60◦, the error ratio grows sig-

nificantly, though the absolute error still stays relatively

low. It is caused by the physical limitations in the FoV

of ordinary LED chipsets and the light sensor.

LED-receiver distance: According to Eq. (2), the re-

ceived energy falls off against the the distance d, follow-

ing an inverse-square law. We verify this by fixing the

incidence and irradiation angles to 0◦ and vary the dis-

tance from 1m to 5m with the step length of 0.25m. The

measured channel responses are shown with scatters in

Figure 6. We then fit the scatters with function C/d2

where C accounts for the constant coefficients in Eq. (2).

From Figure 6, we could see the overall fitting error is

very small, with root-mean-square error (RMSE) being

1.85e-4 and C = 0.0018. Therefore, the inverse square

model accurately characterizes the relation between dis-

tance and RSS.

In our experiments, we found that the constant C will

be different when using the same light sensor with differ-
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Figure 6: The received energy versus the distance from

1m to 5m with step length 0.25m. Both θ and φ are fixed

to 0◦. The duty cycle of the PWM is 50%.

ent light sources. We thus conducted additional experi-

ments using a cross-validation approach, that is, trying

different combinations of LEDs and light sensors. We

found the coefficient C can be factored into CL and Cs

(i.e., C =CL ·Cs), where CL is per-LED constant and re-

lates only to its maximum power, and Cs is a per-sensor

constant and related to its receiver gain. Both CL and Cs

are constant and can be measured once for good, e.g.,

preferably by the manufacturer, and stored in the LED

and the sensor device. Since we are exploiting multiple

light sources to locate a device, thus for sake of clear p-

resentation, we will leave out Cs and use C to indicate CL

in formulations throughout the rest of the paper.

Putting all insights we gain so far together, with known

C, θ and φ , the distance can then be precisely derived

with the measured RSS.

4.2 Emission Power from a LED

We now address how to model the emission power from

a LED light source. The light signal from a LED is a 0-1

pulse wave as shown in Figure 2. Suppose the period is

T with pulse time τ . The Fourier series expansion for

this pulse wave is

f (t) =
τ

T
+

∞

∑
n=1

2

nπ
sin

(πnτ

T

)

cos

(

2πn

T
t

)

(4)

The equation above indicates that the emission power of

the LED spreads over the baseband (the first AC compo-

nent) and all the harmonics. Thus, it is infeasible to mea-

sure the overall received energy. Fortunately, for sake of

localization, we only measure the portion of energy over

the baseband optical channel which already validates the

channel model in Eq. (2).

The RSS hereafter is thus defined as the magnitude of

the baseband frequency component. Actually, the trans-

mitted energy at the light source is proportional to the

coefficient of the first AC component in Eq. (4), i.e.,

Pt ∝ 2
π

sin(πτ/T ). Note that Pt is not affected by the actu-

al baseband frequency, but interestingly, it is a function

of duty cycle τ/T of the PWM. This insight indicates

that the light source also needs to convey the duty cy-

cle information in its beacon for the receiver to correctly

model the transmission power. In conclusion, the RSS

measured at a receiver is calculated as follows:

Pr =C · sin(
τ

T
π) ·

cosθ · cosφ

d2
(5)

where C and τ/T are the per-LED constant related to its

maximum emission power and the current duty cycle of

the LED, both included in its beacon.

Interference from ambient light: Note that the mea-

sured power from a LED is the portion within a certain

frequency range. Most ambient lights are with only DC

component (e.g., sunlight) or energy at a fixed frequen-

cy (e.g., incandescent and fluorescent bulbs at 100 Hz or

120 Hz). Therefore, the RSS at a receiver in our sys-

tem will not be affected by these ambient light sources,

by simply avoiding these colliding frequencies. In § 8,

we actually evaluate our system with the co-existence of

various kinds of ambient light sources.

5 Beaconing Over Visible Light

The PMW-based dimming mechanism of LED enables

communication with visible light. We now present our

design to achieve reliable location beaconing.

5.1 Communication with BFSK

Many modulation schemes were proposed in the VL-

C field, such as OOK, VPPM, and CSK. They all can

be adopted to carry location beacons in the light carri-

er. However, they require either sophisticated decoding

logic or special hardware, and also special mechanisms

to avoid the flickering problem. In Epsilon, we use the

binary frequency shift keying (BFSK) for its simplicity

and the natural prevention of flicker – there is no flicker

issue for the carrier frequencies over 200 Hz.

In BFSK, symbol 0 and 1 are represented by two fre-

quencies f0 and f1, each frequency lasting for a certain

duration (termed symbol length). The receiver demodu-

lates the incoming BFSK signal by transforming (FFT)

the sensed light signals in a decoding window, whose

length equals to the symbol length, to the frequency do-

main, and performing a binary decision on the major

frequency component. The transform is carried out in

a sliding fashion: each time the window advances by a

fraction of the symbol length. More details on modula-

tion/demodulation could be found in our previous work

[10], which is omitted here due to the space limitation.
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5.2 Channelization and Hopping

The major challenge of reliable beaconing is the collision

problem caused by multiple, uncoordinated, and unsyn-

chronized light sources over shared light medium. It is

extremely difficult to coordinate among the light sources.

First, no light lamps are equipped with extra sensors to

find their neighbors. Moreover, the actual deployment of

light sources (e.g., usually attached to ceiling) makes it

difficult for the light sources to see/sense each other. This

is different from most wireless radios where each trans-

mitter also serves as the receiver. Consequently, time di-

vision multiple access is not feasible in our scenario as

they require synchronization or a carrier sensing mecha-

nism among senders.

We choose to channelize the whole available spectrum

into multiple disjoint and even spaced sub-carriers. In

Epsilon, each LED bulb is configurable, thus it tends to

think of manually assign a static channel for each LED.

Unfortunately, this is infeasible due to the unknown cov-

erage of each light source and how multiple sources’ cov-

erages may intersect with each other. Even though we

can see the coverage, it is unlikely to adjust the power

to avoid interference, as the power control should serve

primary lighting function. Therefore, we adopt random

channel hopping to avoid persistent collision among light

sources. The timeline is divided into slots (called a hop-

ping period) with equal length. Each light source ran-

domly picks one channel in each hopping period, trans-

mits a beacon, and then hops to another channel. As long

as the number of channels is large enough in compari-

son with the number of contending LEDs, random hop-

ping actually handles the problem of collision effectively.

We formulate and analyse the random channel hopping

scheme in the next section.

Another unsolved problem is to select the communi-

cation band. Intuitively, the overall usable spectrum is

jointly determined by a few factors such as the minimum

frequency to prevent flicker and the On/Off speed of the

LED bulb. We will discuss more about spectrum selec-

tion in § 7.

5.3 Minimizing the Waiting Time

Collisions may still occur under random channel hop-

ping. Note that when a collision happens, the receiver

needs to wait for additional hopping periods to correctly

receive the beacon.3 Regarding to good indoor localiza-

tion user experience, short waiting time is highly desired,

which is directly related to the time to correctly receive

all beacons from all sources.

3Sometimes, the receiver can still decode one beacon from the col-

lided signals due to the capture effect [19]. However, it will affect the

RSS measurement and hence adverse to distance estimation.

Suppose one light sensor observes M light sources and

the number of channels is N. The waiting time tw can be

formulated as

tw(M) = k(M) · τ (6)

where k is the number of hopping periods and τ is the

length of each hopping period. Note that both the tw and

k are functions of M. Given the fixed overall spectrum,

we have τ ∝ N as increasing the number of channels im-

plies narrower channels, hence lower data rates (i.e., τ ↑).

Nonetheless, increasing N reduces the collision proba-

bility, and less hopping periods will be waited (i.e., k ↓).

Based on this formulation, we discuss how to obtain the

optimal N below.

Note that, without clock synchronization among light

sources, the hopping periods of different light sources

are likely misaligned. Thus, one light source may par-

tially collide with another, leading to corrupted beacons

from the two colliding sources. Assume the channel se-

lection during each period is independent and uniformly

distributed in [1,N]. The probability that, in k consec-

utive hopping periods, one light source does not collide

with any other light sources for at least one hopping pe-

riod (which guarantees correct decoding at the receiver)

is

p = 1−

[

1−

(

1−
1

N

)2(M−1)
]k

(7)

In Eq. (7), M is a constant which is determined by the en-

vironment. Once N is given, we can derive the minimum

k so that p ≥ P0, where P0 is the success rate the system

desires:

k(M) = argmin
k

p ≥ P0 (8)

Once M and P0 are given, we can find the optimal N that

minimizes the waiting time by combining Eq. (6), (7),

and (8). For instance, the optimal number of channels

for M = 3 is 7, and the corresponding number of hopping

periods is 3.

In practice, the density of light sources varies from

place to place. Therefore, it is unable to find a globally

optimal N for all situations. Empirically, we may select

the N which minimizes the maximum waiting time for

typical settings such that M ∈ Mtypical , i.e.,

N = argmin
k

max
M∈Mtypical

tw(M) (9)

where Mtypical represents typical numbers of light

sources that are observed by the receiver. In our sys-

tem, P0 and Mtypical are set to 90% and [3,10] respec-

tively, where correspondingly N = 30 and k = 3, i.e., the

communication band is divided into 30 channels and the
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receiver waits for 3 hopping periods. During the wait-

ing time, the receiver obtains multiple beacons from the

same light source. We select the one with the lowest sig-

nal strength for further processing, which is less likely

corrupted by other beacons. The actually waiting time

depends on the bandwidth of each channel which is fur-

ther discussed in §7.

6 The Localization Algorithm

The localization core is to use trilateration to calculate

the receiver’s position from distance measurements to

multiple light sources. We first address the normal cas-

es with sufficient light sources and then the challenging

cases with insufficient sources.

6.1 Localization with Trilateration

Given n light sources, we can apply Eq. (5) to establish

a series of constraints on measured RSSs and distances,

as well as the angles. Those are,























Pr1 =C1 · sin(α1π) · cosθ1·cosφ1

d2
1

Pr2 =C2 · sin(α2π) · cosθ2·cosφ2

d2
2

...

Prn =Cn · sin(αnπ) · cosθn·cosφn

d2
n

, (10)

where αi and Ci are obtained from the ith beacon.

Let the 3D coordinates of the receiver and the light

source are 〈x0,y0,z0〉 and 〈x,y,z〉, respectively. Their dis-

tance is d =
√

(x0 − x)2 +(y0 − y)2 +(z0 − z)2. For simplic-

ity, we assume all the light sources facing downward (it

is usually the most common case with lights on the ceil-

ing), we further have cosφ = |z− z0|/d. In case that the

receiver’s light sensor faces squarely upward toward the

ceiling, we have θ = φ . Therefore, only three unknowns

remain, namely x0, y0, z0. Later, we discuss the general

case with arbitrary light deployment or phone orienta-

tion, which only requires extra calibration, local angle

detection, or more distance measurements.

With four or more light sources, we may uniquely de-

termine all unknowns. The localization is an optimiza-

tion process trying to minimize the linear mean square

(LMS) error, which is actually a well-studied topic [18].

Here, we use Newton’s Method for the optimization. The

goal is to minimize the sum of absolute error between the

left and right side of each equation in Eq. (10). In our im-

plementation, we generate the initial values for each un-

known randomly and ran the optimization process multi-

ple times to avoid local minima. Note that if only three

light exist, the optimization may end up with two opti-

mums, one of which is actually fake (above the ceiling

due to even symmetry property of the cosine function in
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Figure 7: Localization with only one light source. (a)

keep the phone in the horizontal plane and rotate it for an

angle of α1 until pointing to the light source (top view);

(b) pitch the phone for an angle of α2 where α2 ≥ the

incidence/irradiation angle (side view).

the model). In practice, light sources may deployed at

similar height and hence such ambiguous solutions can

be filtered out by common sense (e.g., the device is un-

likely higher than the ceiling). As a result, three light

sources are typically the minimum required number in

our system.

In real usage, the receiver (hence the light sensor) may

be in arbitrary orientation. This will complicate the prob-

lem. Intuitively, we can leverage the equipped orienta-

tion sensors (e.g., inertial measurement unit (IMU) on

the phone) to measure the device’s attitude and transfor-

m back to the horizontal attitude. In case not all the light

sources face downward, their angles can be pre-obtained

via calibration and delivered to the receiver via beacons.

More measurements can help to solve the general local-

ization problem by introducing more constraints. Even

the light source and the receiver is not perfectly facing

down or up, slight imperfection actually has little impact

to the location accuracy, as their impact to the distance

estimation is via a cosine function that changes slowly

near 0. We evaluate this in §8.3.

6.2 Involving the User

In real situations, we may end up with insufficient num-

ber (e.g., one or two) of light sources that cannot unique-

ly locate the device. For instance, there might be only

a single lamp in a room; in a long corridor or tunnel, a

serial of lamps are usually deployed with a long distance

between neighboring lamps, where the device can sense

only one (or two) light sources in most of the time. While

using the lamp position (coverage-based method) already

fulfils rough position estimation, we discuss the option

of involving the user if a higher location accuracy is de-

sired. Note that this is an advantage of visible light than

RF signals (e.g., WiFi, FM, and Geomagnetism) which

are not perceptible by human.

Figure 7 illustrates the procedure of the user gestures.

It contains two steps. The first step is exactly the same as

we use compass to find direction. That is, the user holds

the phone horizontally and rotates the phone (around de-

vice’s Z-axis) as shown in Figure 7(a), until the phone is

7



oriented to one light source. The second step is to grad-

ually pitch the phone. In the meantime, a continuous

measurement is performed to record the RSSs from the

light source at different phone pitch angles (Figure 7(b)).

The procedure above basically uses inertial sensors to

measure the irradiation and the incidence angles. In the

first step, it measures the orientation angle, α1, between a

virtual line connecting the phone and the light source and

the North from the compass. We also record the RSS, as

Pr1, at the point when the phone is pointing to the light

source. The user then continues with the second step

by pitching the phone from the horizontal attitude to the

roughly vertical attitude for an angle of α2 while keep-

ing the phone screen facing the light source. Note that α2

should be larger than the incidence/irradiation angle and

it can be easily fulfiled as long as it passes the point at

which the phone screen faces squarely towards the light.

The system logs the reading of the light sensor as well

as the instantaneous pitching angle (around device’s X-

axis) that is captured by the gyroscope. An instance of

the logged light sensor trace is given in Figure 7. We can

see that the sensor readings increase until a peak point

and then decrease. This is caused by the changing in-

cidence angle. Thus, the peak point is the instant that

the device faces squarely to the light. The correspond-

ing pitched angle from the beginning to the peak point is

the desired incidence angle θ when the phone was placed

horizontally.

After the two steps, we obtain the incidence angle θ ,

RSS Pr1, and the angle α1. With the model in Eq. (5), the

former two measured parameters ensure all the possible

device positions are in a 2-D horizontal circle around the

light source. Then, we can use α1 to finally determine

only one location in the circle.

7 System Implementation

Hardware Design: Note that Epsilon is still a pio-

neer work exploiting LED for localization, there is thus

no off-the-shelf product that supports programming and

VLC. We designed a small LED lamp, as shown in Fig-

ure 8, with a commercial LED (Model: Cree T6) [8] with

10W marked power and peripheral control circuit to ad-

just the beaconing content. The modifications to the LED

is easily met in practice. As the commodity LED bulb-

s already employ PWM for dimming purpose, we only

need to add the capability of varying the frequency for

BFSK. For the receiver design, modern mobile phones

ship with light sensors. However, it turns out that the OS

restricts the sampling rate (e.g., Motorola XT910 ∼ 5Hz,

Samsung Galaxy SIII ∼ 100 Hz). While we envision that

we can modify the driver in the future, we currently de-

sign a small light sensor board, that merely consists of a

Figure 8: The hardware design of Epsilon.

<Lat, Lon>
Duty 

cycle

16 bit 64 bit 8 bit

96 bit

CRC

8 bit

Preamble

Figure 9: Beacon frame used in Epsilon.

light sensor, an amplifier, and a small battery. We con-

nect the board to the phone through the audio jack. The

sampling of light sensor is performed using the ADC for

microphone. As will be shown later, the audio ADC im-

poses certain design constraints regarding to the usable

communication band.

Configuration and Frame Design: In our system, we

embed the coordinates of each light source in its bea-

con. Having a back-end service for mapping the ID of

each LED to its physic location is an alternative solu-

tion, which however relies on the network connection.

Therefore, we insist on making each LED bulb self-

contained. Another practical issue is that we need to con-

figure the location for each LED. We rely on the profile

(e.g., blueprint map) from building management to con-

figure the position of each bulb. Each beacon payload

consists three parts: preamble, location information, and

the duty cycle, as shown in Figure 9. The preamble con-

sists of 2 bits of zeros to facilitate RSS measurement.

The location information is a 64-bit latitude and longi-

tude tuple. We use a 8-bit number to represent the du-

ty cycle, which corresponds to ∼ 0.4% dimming adjust-

ment granularity. We also adopted a 8-bit CRC to check

the integrity of the contents.

Communication Band Selection: As discussed in §5.3,

we desire wider communication band for less waiting

time. Suppose the band used for communication is

[ fl , fh] where fl and fh represent the lower and upper

boundaries, respectively. There are actually several con-

strains in determining the two boundaries.

1. fl should be high enough to avoid the flickering

problem, i.e., fl ≥ 200Hz. fh cannot exceed the

minimum of the LED On/Off speed and the light

sensor response speed as discussed in §5.2, which

is 118.2 kHz.

2. fh < 2 fl . Based on Eq. (4), the pulse wave carri-

er results in harmonics while the transmitted energy

spreads across all harmonic frequencies f = 2πn/T .
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Figure 11: Frequency re-

sponse of audio ADC.

Figure 10 plots one such example, where the light

carrier frequency is 10kHz. Energy peaks can be

observed at 10kHz and 20kHz (30kHz, 40kHz, etc.

are omitted in the plot). To avoid harmonic interfer-

ence, fh should be lower than 2× fl .

3. Constrained by the sampling rate (up to 44.1 kHz)

by audio ADC, fh should not exceed 22.05 kHz, ac-

cording to the Nyquist theorem.

With above constraints, we choose to use the band

from 10 kHz to 19 kHz in our implementation. We di-

vide the band into 30 channels, each with 300Hz band-

width and the corresponding data rate at each channel is

120 bps. For each beacon, one hopping period is about

0.7s. The overall waiting time is thus around 2.1s.

Frequency Response of Audio ADC: The sensed light

signal is affected by the audio ADC circuit of the mo-

bile phone (we disabled the auto gain control). Figure

11 shows the frequency response we measured using a

high end sound card (AVID M-Audio C600 [2]) and a

smartphone (Samsung Galaxy S III). The frequency re-

sponse of the sound card is perfectly flat from 10 kHz to

20 kHz, so that the receiver gain in Eq. (1) can be viewed

as a constant. For the phone, there are small fluctuation-

s near 10.5 kHz and 14.5 kHz due to hardware issues.

The fluctuations are all below 1 dB which is thus small

enough to tolerate.

8 System Evaluation

We first evaluate Epsilon with a small-scale hardware-

based testbed, and then moderate-scale model-based

simulations. Our hardware-based evaluations focus on

the localization accuracy, while the simulations cover-

ing other performance aspects such as robustness with

respect to light source selection and imperfect incidence

angles. We designed and assembled 5 LED lamps, and e-

valuated Epsilon under three typical office environments:

a conference room, a cubicle area, and a corridor. The

environments and the deployed LEDs are shown in Fig-

ure 12. They represent different environmental com-

plexities and reflection characteristics. The areas are

5m×8m, 2m×12m, and 3.5m×6.5m, respectively. For

each area, we place the phone at 60 positions and run

multiple tests at each position.

Methods for Comparison: We compare Epsilon with

two intuitive methods in our experiments:

• Coverage Method: it locates a receiver to the position

of the light source that the receiver sees the highest

RSS.

• Weighted Average: it locates a receiver as the weight-

ed average of the locations of the sensed light sources,

using their RSSs as weights.

It is difficult to compare Epsilon with existing localiza-

tion algorithms based on other signals (e.g., WiFi) side

by side. We thus empirically elaborate some numeric re-

sults from our evaluation as well as those reported by the

state-of-art in §8.4.

8.1 Localization with Multiple LEDs

Figure 13 plots the localization errors in three scenarios

where the sensor is put at various locations in the inter-

ested area. It shows that Epsilon yields high accuracy for

all the three environments. The medium error is about

0.3m and the 90th percentile errors are 0.45m, 0.7m, and

0.8m in the conference room, the cubicle area, and the

corridor, respectively. Among the three scenarios, the

conference room is the simplest as it is mostly empty;

the cubicle environment is actually the most complicat-

ed. However, thanks to the better layout of the LEDs, the

performance in the cubicle area is actually better than

that in the corridor. The corridor is also empty, but the

LEDs are placed almost in a straight line.

We also examine the localization accuracy for each po-

sition in detail. We find that center area (i.e., the area

surrounded by lamps) positions tends to have smaller er-

rors than outer positions. The reason is that center area

positions have a better chance to observe light sources

with small incidence angles which are thus more robust

to measurement noise. For the corridor environment,

we find those positions with the largest errors are exact-

ly the positions at the two edges of the corridor. The

result suggests that we should evenly deploy the LEDs

for better accuracy. Fortunately, typical deployment of

light sources already follows this natural rule to deliv-

er even illumination conditions. One should note that

all the evaluations above are performed with various am-

bient light sources (e.g., sunlight or fluorescent lamps).

We also run experiments at night with all other lights off

and there is no visible difference with or without ambient

lights.

Epsilon always outperforms the Weighted Average

method and pure Coverage method. By exploiting the

characteristics of optical channels, Epsilon improves the

9



(a) Conference Room (b) Cubicle Area (c) Corridor

Figure 12: Deployments of Epsilon in a conference room, a corridor and a cubicle area, each with five LEDs.
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Figure 13: Localization accuracy with multiple LEDs under the three experimental environments.

90th percentile accuracy by 1× (than Weighted Average)

or 2× (than Coverage). Nevertheless, the accuracy of the

latter two methods is still high. The 90th percentile accu-

racy is always smaller than 2 meters. Given their simple

designs, these results clearly demonstrate the advantage

of using visible light.

8.2 Localization with a Single LED

We evaluate our single LED based localization method

using one LED in the corridor case. Each measurement

follows the process described in §6.2. Note that the key is

to measure the angles using the IMU sensors, which are

the main error source. We first examine the sensor errors

shown in Figure 14. All the data is measured in our of-

fice building at various locations. The left figure shows

the distribution of compass sensing errors, while the right

one shows the distribution of the errors between the mea-

sured incidence angles versus the groundtruth. Figure 14

reveals that both errors distribute normally within a cer-

tain range: the compass errors fall in ±26◦ while the gyro

errors in ±7◦ in 95% credible interval.

Figure 15 shows the resulting location error of both

Epsilon and Coverage. We can see that Epsilon signifi-

cantly outperforms Coverage: the accuracy is improved

by 5×. In most cases (∼ 95%), the errors of Epsilon fall

below one meter. It demonstrates that with simple user

involvement, we are able to achieve quite high localiza-

tion accuracy even with only one light source.

The experiment above demonstrates the advantage of

using perceptible signals under the user’s help for local-

ization. Note that, in practice, the user often walks under

a LED lamp, which naturally imports the user involve-

ment into Epsilon.

8.3 Model based Simulation

We perform model-based simulation for two reasons.

First, our results on the real testbed results have demon-

strated that the optical channel model fits our measure-

ments quite well. Hence, using model based simulation

does make sense. Second, our testbed with only 5 LED

lamps limits us to explore robustness and performance

of Epsilon under more light sources or with imperfect

incidence angles. In fact, abundant light sources raise an

interesting question: does Epsilon perform better as it us-

es all the measurements from more sources? If not, how

should it smartly use the observed light sources for lo-

calization? To answer these questions, we propose a new

scheme called Epsilon-s, which performs a light source

selection procedure before localization. Specifically, we

select the top four sources with the highest RSSs among

all observed light sources. The heuristics is that light

sources with higher RSSs tend to be closer and with s-

maller incidence/irradiation angles.

Regarding the error of the incidence angle ∆θ , we

want to evaluate its impact on the localization accuracy.

In Epsilon, the LED-receiver distance depends on three
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surement errors caused by compass

and gyroscope sensors.
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tion with a single LED.
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Figure 16: Impact of imperfect inci-

dence angles.

parameters, namely the RSS, irradiation angle φ of LED,

and the incidence angle θ of the light sensor. The RSS

is directly measured by the device, and φ is determined

by the relative position of the receiver to the LED. The

only uncertain variable is θ , as we ask the user to hold

the phone horizontally, which is error prone due to var-

ious reasons. Therefore, it is necessary to evaluate the

impact of imperfect incidence angles to the localization

accuracy.

The simulation is done in a 20m× 20m× 3m space.

We place light sources uniformly on the ceiling (height

= 3m), each at 〈4i,4 j,3〉 where i, j ∈ [1,4], and thus we

have a total of 16 light sources. We put receiver at 〈x,y,0〉
where x,y∈ [0,20]. For each receiver location, we set the

error of the incidence angle, denoted as ∆θ , to an angle

randomly within ±20◦. We then measure the localization

error under different schemes.

Figure 16 plots the simulation results. It shows that

Epsilon outperforms both the Coverage and Weighted

Average. The Coverage method performs comparably

to the Weighted Average. In contrast, Epsilon-s per-

forms significantly better than the other three. Recall

that the incidence angle θ relates to the distance via a

cosine function, which changes slowly at small angles

but very quickly at large angles. Epsilon uses all sensed

light sources, which would include faraway ones. Their

θs (and φs as well) are usually large. Thus small ∆θ

can make a big impact to the distance estimation, which

impairs the localization accuracy. In contrast, Epsilon-

s uses only high RSSs lights that have small θs, and is

thus more tolerant to ∆θ . Note that, the tolerance of Ep-

silon to small ∆θ implies less restriction to the actual use,

which allows the user to place their phone more casually.

8.4 Comparison with WiFi-based Methods

Current mainstream indoor localization systems are

WiFi-based, which basically achieve meter level accu-

racy. Recently, ArrayTrack [21] achieves sub-meter ac-

curacy using multi-antenna technique. However, it relies

on multiple APs to work collaboratively to measure the

angle of arrival (AoA), which is non-trivial. In practice,

the APs are typically deployed by different parties. Al-

so, the main purpose of APs is for networking, and thus

the number of antennas is less than required (16 anten-

nas for each AP) in [21]. We thus only summarize the

basic properties of representative WiFi localization sys-

tems. Note that it is difficult to fairly compare them with

Epsilon due to the impact of infrastructure deploymen-

t and database density. We therefore only excerpt their

performances from the original paper. We see that Ep-

silon yields the best accuracy. Even with simple Cover-

age method, visible light based localization is already as

good as the best WiFi localization system.

Name EZ [6] Radar [3] Horus [23] Coverage Epsilon

Accuracy 2 - 7m 3 - 5m ∼ 1m ∼1m ∼0.4m

Method Model FP FP FP Model

Database Yes Yes Yes No No

Overhead Minimum WD WD DC DC

Table 1: Comparisons with representative WiFi-based lo-

calization systems and coverage-based lighting localiza-

tion. In the table, FP, WD and DC mean fingerprinting,

war-driving and device configuration, respectively.

9 Discussions

Epsilon is still in its infancy. In this section, we briefly

discuss potential issues and open questions in real usage.

Applicability: To leverage the visible light, the device

needs to be exposed to the light. This may limit its appli-

cability, e.g., it is not possible with the phone in pocket.

Thus, Epsilon targets at localization with explicit needs

(user awareness), rather than passive tracking scenarios.

The light has to stay on, which might be an issue for the

sake of energy efficiency. Favourably, for most indoor

environments (e.g., offices or shopping malls) where lo-

calization is desired, lights (at least a small portion) are

mostly, if not always on.
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Device Diversity: Different LEDs and light sensors

may have different emission power and receiving sen-

sitivity, which would directly affect the distance mea-

surement. Fortunately, as solid-state devices, the intrin-

sic characteristics of LEDs and light sensors are highly

stable over time [14]. Therefore, for each LED and each

light sensor, one time calibration is enough. Considering

their long lifetime (say 5 years), this cost is still reason-

ably small. For practical use, we may reduce calibra-

tion efforts, for example by automatically calculating the

LED parameters as done for WiFi in [6].

Shadow and Reflection: Similar to the multipath is-

sue in WiFi-based localization, using visible light for lo-

calization may suffer from shadowing and reflection of

the light. For instance, when holding a phone in fron-

t of body, body reflection, especially in white shirt, will

bring noise to localization. Sometimes, his/her body is a

big obstacle, blocking the phone from lighting. For these

issues, Epsilon counts on the user’s involvement. We ad-

mit that involving the user’s help is burdensome. Howev-

er, on the other side, we argue this is also an opportunity.

The light is visible which naturally offers a feedback to

the user and makes the case to easily obtain the user’s

help to improve the localization accuracy, unlike other

invisible RF signals.

Modeling vs. Fingerprinting: The model-based ap-

proach in Epsilon achieves good results only when the

LED and the light sensor are within each other’s FoV.

This limits the application scope and we may have to fall

back to coverage-based coarse-grained localization. Fin-

gerprinting method will not have such constraints. How-

ever, a fingerprint is highly affected by a variety of fac-

tors such as the device attitude, body blocking of light,

and etc.. In addition, similar to any fingerprinting-based

system, it requires to construct a database, which is a

challenging task.

10 Related Work

Most existing localization work leverages signals such

as WiFi [3, 6, 20, 21, 23], FM [5], magnetism [7]. WiFi

based approaches [3, 23] leveraging existing infrastruc-

ture typically achieves meter level accuracy. Recen-

t work [21] exploiting multi-antenna achieves sub-meter

accuracy with non-trivial modifications to the hardware.

Our work is a radical deviation from these efforts. Here,

we only review the closely related work, i.e., those deal-

ing with visible lights.

Visible Light based Indoor localization: A few recen-

t works also explore the idea of using visible light for

localization [13, 15, 22, 24], all purely based on simula-

tion. In [15,22], image sensors are used to locate the sur-

rounding light sources based on the ray projection model.

In [24] distances to multiple light sources are estimated

by varying the transmitting power, which leads to unsta-

ble illumination. In [13], the authors infer TDOA from

the peak-to-peak value of the interference signals from

two LED lights. In contrast, in Epsilon, we build ac-

curate optical channel model applicable to localization

with practical considerations like dimming and flicker-

ing avoidance, and working with multiple light sources.

Compared with our previous work [10], we address more

practical challenges, such as enabling reliable commu-

nication and robust localization even with insufficien-

t sources or imperfect orientation. To our best knowl-

edge, ByteLight [1] is the only existing commercial LED

based solution for indoor localization. However, there is

no publicly available information on how their system

works.

Visible Light Communication: VLC aims to leverage

visible lights as communication carriers. The recent stan-

dard IEEE 802.15.7 specifies the hardware, modulation,

channel coding, and the MAC protocol for various appli-

cations [16]. A number of studies discuss optical chan-

nels for VLC such as [9, 11, 12]. While VLC research

mainly focus on wideband high-speed communication,

we aim at low system complexity and robust broadcast

for localization purpose.

11 Conclusion

In this paper, we present the design, implementation and

evaluation of Epsilon, a visible light based localization

system that exploit LED lamps. The system has no de-

pendency on network access and can be used immediate-

ly after proper configuring and calibrating the LED bulb-

s. We have identified and overcome key technical chal-

lenges for accurate distance measurement using light, re-

liable location beaconing, and robust localization where

the number of light sources can be excessive or insuffi-

cient. Our evaluation in typical office environment con-

firmed the effectiveness of the system, which achieve

sub-meter accuracy. Our work confirms the potential of

visual light for high accuracy indoor localization. In ad-

dition, our work also reveals several insights that deserve

further exploration.
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