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EPSILON ENTROPY AND DATA COMPRESSION!

EpwARD C. POSNER AND EUGENE R. RODEMICH
Jet Propulsion Laboratory, California Institute of Technology

0. Summary. This article studies efficient data transmission, or ‘“data com-
pression”, from the standpoint of the theory of epsilon entropy. The notion of
the entropy of a “data source” is defined. This quantity gives a precise measure of
the amount of channel capacity necessary to describe a data source to within a
given fidelity, epsilon, with probability one, when each separate “experiment” must
be transmitted without storage from experiment to experiment. We also define the
absolute epsilon entropy of a source, which is the amount of capacity needed when
storage of experiments is allowed before transmission. The absolute epsilon entropy
is shown to be equal to Shannon’s rate distortion function evaluated for zero
distortion, when suitable identifications are made. The main result is that the
absolute epsilon entropy and the epsilon entropy have ratio close to one if either
is large. Thus, very little can be saved by storing the results of independent experi-
ments before transmission.

1. Introduction. An area of information theory that is becoming more and more
important is now known as “Data Compression”. This is the theory of efficient
handhng of data for transmission or storage. As the space program goes to more
and more distant missions, such as those to the outer planets, the importance of
using the spacecraft-to-Earth communication link efficiently becomes more and
more important. And here on Earth, as our technology gets more and more com-
puter based, more and more data is being transmitted between different locations,
so that the economic importance of data compression is increasing rapidly.

A need has been felt by workers in data compression to have a mathematical
theory of what they are trying to do. It is the purpose of this paper to provide such
a theory. Thus, we start off by abstracting the notion of the source of the data to
be transmitted as a probabilistic metric space. Such a space is a triple (X, d, p) with
the following two properties:

(1) (X, d)is a complete separable metric space, of points of the set X under the
metric d.

(2) (X, B, p) is a probability space, where B is the Borel field generated by the
open sets of X; i.e., B is the field of Borel sets of X. (However, we will speak of
subsets of X as measurable if they belong to the completion of B under p.)
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The points of X represent the possible experimental outcomes, i.e., the data;
the metric d is a “fidelity criterion”, such that d(x, y) is the loss of fidelity when one
outcome x occurs, but another outcome y is thought to have occurred.

We were given an ¢ = 0, as the allowed loss of fidelity. But we are also given a
0 = 0, such that the loss of fidelity can exceed &, but only with probability é or
less. Any physical data transmission system has a probability § > 0 associated
with it, such that, with probability J, the system does not work as specified. For
example, an “analog-to-digital converter” has as its J the “off-scale” probability.

Given a probabilistic metric space (X, 4, 1), which we abbreviate as X, we wish
to transmit outcomes within ¢ or less with probability 1 —5 or more. What can this
mean ? One reasonable interpretation is the following. If, given a received message,
we know the actual outcome within &, then we know that the actual outcome falls
within an e-set, i.e., within a (measurable) set of diameter at most &. However, with
probability 6 or less, there is no transmission and no such set of diameter at most e.
We shall sometimes also use a definition involving spheres of radius &/2 or less.

Now it might appear that “mixed strategies” should be considered, in which the
set of diameter ¢ depends on other “things”, or random variables, not depending
on past or future samples from X, in addition to depending on the actual outcome.
However, it turns out, and is not hard to show, that there is a ““pure strategy” at
least as good as any mixed strategy, insofar as reducing the load on the communica-
tion channel. A “pure strategy” assigns a given outcome to a fixed e-set. Thus, in a
pure strategy, these e-sets are to be disjoint. That is, we have a collection of disjoint
e-sets, such that with probability 1 —3 or more, a point of the space X lies in one of
the e-sets. This leads to the definition of &;0 partition.

DerFINITION. Given ¢ = 0, § = 0, an ¢;6 partition of the probabilistic metric
space X is a finite or denumerably infinite partition of part of X by (disjoint)
e-sets, such that the union of the sets in the partition has probability 1 — & or more.

A data compression system based on a given g;0 partition U of X works as
follows: observe an outcome, see into which set of the partition U the outcome
falls, and merely transmit information which uniquely determines that set. In fact,
any (“pure strategic”’) data transmission system which yields fidelities of ¢ or
better with probability 1—3J or more is of this type.

(Other authors [10, 4] usually consider restricting some average distance to be &
or better, instead of the actual distance between actual outcome and transmitted
outcome. The actual distance is felt to be the appropriate criterion in judging most
data systems.)

So we now have an ¢;d partition U of X; how much of a load does this imply for
our communication system ? A measure of the load is the entropy of the partition,
H(U). This entropy is the number of bits necessary to transmit information as to
which set of U the outcome fell, given that the outcome was in some set of U.
Thus, using Shannon’s formula [11], we define H(U) as follows.

Let U = {U;}, with p(U) = p;, Yps = p=1-6.
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Let ¢q; = % so that {q;} is a probability distribution.

Then the entropy H(U) is defined as the entropy of {g;}:

1
1 H(U) = Ya;log ..

Thus, H(U) is nonnegative, and can be equal to + co.

The interpretation of H(U) is the number of bits per sample (we use base e
logarithms, even though we speak of bits instead of “nats’) necessary to describe
into which set of U the outcome falls, when minimum expected-length binary
encoding is used for this purpose, but storage between experiments is not allowed.

However, the partition U may not have been especially well chosen with a view
to minimizing H(U). Thus, let U,,; denote the class of ¢;§ partitions of X (when

¢ > 0, this class is non-empty). Then we define H, ,(X), the epsilon;delta entropy
of X, as

(2) Hs;& (X) = infUE Ugis H(U)
(When é = 0, we write H(X), the e-entropy of X. If e = 0 <nd U, is empty,
H, 5(X) is infinite.)

Thus, the &;8 entropy of X, which may equal + co even when & > 0, provided
that § = 0, measures the minimum number of bits necessary to describe at least
1 —3 of X within accuracy e. When § = 0, we can say that the e-entropy of X is the
number of bits necessary to describe elements of X within ¢ (without storage, but
we will say more about this later), with probability 1. We are mainly concerned
in this paper with g-entropy; ¢;6 entropy enters chiefly as a device in proving
theorems.

We have chosen to use sets of diameter ¢ in our definition of epsilon entropy to
agree with the definition used in the theory of the epsilon entropy of compact
metric spaces [13]. However, other workers in information theory use in effect
sets of radius &/2 in the definition. We will treat both cases; when it is necessary to
distinguish the two definitions, we will use the terms “diametric entropy” and
“radial entropy”, respectively. The original paper on the subject of data compres-
sion and epsilon entropy [7] used diametric entropy, although Kolmogorov [2]
uses radial entropy.

The purpose of the remainder of this paper is to make the statements of this
section more precise. Various techniques will be given for obtaining upper and
lower bounds for e-entropy. The ¢-entropy defined here will be related to the epsilon
entropy of compact metric spaces and to Shannon’s rate distortion theory. Finally,
a very precise “channel coding theorem” and its converse will be stated and proved
for g-entropy, which makes the relevance of s-entropy to data compression clear.

2. Connection with ¢-entropy for compact metric spaces. A definition for the
e-entropy of a compact metric space finds wide use in various kinds of approxima-
tion theory; see [13] for a good expository treatment and many references.
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DEFINITION. An g-partition (¢ > 0) of a compact metric space X with metric d
is a partition of all of X by disjoint Borel sets of diameters at most & (caution:
other workers use 2¢ instead of g).

DEerINITION. The g-entropy K, (X) of a compact metric space X is the logarithm
of the minimum number of sets in any g-partition of X (since X is compact, K,(X)
is finite).

An information-theoretic interpretation of K,(X) can be given as follows.
Suppose data is generated as elements of a compact metric space X. We wish to
transmit outcomes of X, not allowing storage from one experiment to the next,
outputting binary words of fixed length, using as short a length as possible. What is
this shortest length ? The e-entropy K, (X) is the answer, except for round-off in the
logarithm. If, however, any probabilistic information is known about X, that is, if
the data is selected according to a Borel distribution it on X, the average word
length may be able to be shortened by taking advantage of u in assigning word
lengths. That s,

H(X) = K(X)

since the entropy of an e-partition of X by 7 sets is bounded from above by log .
In general, one does not consider K(X) for non-compact metric spaces, since this
number can be infinite. (In fact, if K,(X) < o0, alle > 0, then X is totally bounded.)
In the general (non-compact) case, then, words of fixed length cannot be used if
one wishes to communicate with probability 1.

Examples can be given (a pentagon with center not connected to one vertex) of
a complete separable metric space in which K,(X) is not the supremum of H,(X)
taken over all Borel probability measures y on X, although equality is often
obtained.

We remark that the construction of g-entropy for certain product spaces, done in
the next section for probabilistic metric spaces, can also be done for compact
metric spaces. Thus, we can speak of the absolute epsilon entropy of a compact
metric space, which is essentially the infimum of the number of bits necessary to
describe all of X to within &, when words of fixed length are used, but when a large
number # of experiments from X are performed before transmission. We shall not
go into this matter further in this paper, but will elsewhere [3].

3. Epsilon entropy of product spaces. In this section, we begin the main subject
of this paper, which is the relation of g-entropy to channel coding theorems and
their converse. We first define the kind of finite products of probabilistic metric
spaces we consider. This definition is motivated by the desire to know each outcome
of a sequence of experiments to within e.

DerFINITION. Let X = (X, d, ) and Y = (7, ¢, v) be probabilistic metric spaces.
Then the product (probabilistic metric) space XX Y = (X x Y, max (d, ), u Xv) is
the probabilistic metric space whose point set is the Cartesian product X x Y of
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X and Y, whose metric fis defined by f[(x, »), (x', ¥)] = max [d(x, x), &'(y, ¥)],
and whose measure is the product measure of g and v.

DEFINITION. Let X be a probabilistic metric space. Define XV = X, X¢*V =
X™ x X, n = 1. Thus X is the n-fold product of X with itself.

Since each X is a probabilistic metric space, we can study the sequence H,(X ).
We have the following lemma.

LEMMA 1. The sequence {H (X ™)} is subadditive in n. That is,
(3) H(X™*) £ H(X™)+H(X™).

FiG. 1. §-partition of X x X.

PRrOOF. By [8a], Lemma 8, if we have an e-partition U of X and U’ of X,
then the partition Ux U’ of X™*", defined as the partition consisting of all pro-
ducts of sets in U with sets in U’, has the property that

o H(U xU’) = H(U)+H(U").
By the definition of the metric on X™*", Ux U’ is an e-partition of X"*",

Since we can demand H(U) = H(X™), H(U') = H(X"™) ([7], Theorem 2), we
have an ¢ partition ¥ of X" with

&) H(V) = H(X™)+H(X™).

The lemma follows.

We observe that H,(X™*™) can be less than H(X™)+ H(X™). For example,
let m = n = 1, and let X be the unit interval with Lebesgue measure and linear
metric; let ¢ = 3. Then 2H,(X) = 2((3) log (H) + @) log 4), whereas H (X x X) =
%) log (32) + (%) log (32) +2(%) log 16 < 2H,(X); in fact, it can be proved that
the # partition of X x X in Figure 1 achieves H,(X X X); diametric entropy or radial
entropy can be used here.
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Another inequality which will be useful is
(6 H(X™) < H(X™*™),
This is a special case of the following lemma:

LEMMA 2. Let X and Y be separable metric spaces with metrics d, and d,, and let
Z = X XY have the metric ds, such that if z; = (x;, y;), then

dy(zy, z5) Z max [di(xy, X,), d2(y1, ¥2)]-

Let X, Y, Z be probabilistic metric spaces under some Borel probability distribution
on Z and under the induced marginal distributions on X and Y. Thus H(X) £ H/Z).

ProoOF. Let p; be measure on Z and y; measure on X. Take an e-partition
U = {U;} of Z for which
H(Z) =}, py(Up1 :
(Z) = ) log ——.
7 #al g,us(Uj)

Let the {U;} be arranged in order of decreasing probability. If V; is the closure of
the projection of U; on X, V; is a Borel set of diameter < ¢, by hypothesis, and

w1 (V) 2 us(Up, since U; = V;x Y. Similarly,
w(V,UV,U - UV ) z (U UULU - UU).
Hence, if we define W, = V,, and
W, =V,-(V,uv,u.-UV;_p), Jj22,
W = {W} is an e-partition of X with
ZI{=1 wm(W) 2 Zi=1 p3(Ug)-
It follows [7, Lemma 2] that H(W) < H(U). Therefore H(X) < H(Z). The lemma
follows.

We define the absolute ¢-entropy I(X) as
1
(7) L(X) = lim,_,,, —H(X®).

After Lemma 1, a well-known result on subadditive sequences [3] implies that this
limit exists if the H,(X™) are all finite, and
8) L(X) £ H(X), n=12,--.
Furthermore, Lemma 1 and equation (6) ensure that if any H(X™) is finite, they
are all finite. If these entropies are all infinite, we interpret (7) to mean J(X) = 0.
I(X) is clearly nonnegative, and the following result holds.
LemMA 3. I(X) is zero if and only if H(X) is zero, and infinite if and only if H(X)
is itself infinite.
Proor. After (8) and the remarks above, the only thing to show is that if
H(X) > 0, then I(X) > 0.
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When H/(X) > 0, there is a number p < 1 such that any e-set in X has
measure < p [7, Theorem 3]. Any e-set in X lies in the product of # g-sets of the
component spaces (its n projections), hence has measure at most p". It follows that
if U = {U}} is any e-partition of X,

HU) =Y u™(U,) log L = Y u"™U) lo E =n logl.
R ) 7" P

Thus 1/n H(X™) = log 1/p for all n, which implies I,(X) = log 1/p. Lemma 3 is

proved.
The following definition and lemma are needed before we can get down to

channel coding theorems.
DEFINITION. I, ;1(X) = lim,, ,, inf n™" H,(X®™).
Lemma 4. If H(X) < oo, I(X) = lim; o+ L;5(X).

Proor. The existence of an e-partition U = {U;} of X with finite entropy will be
used to estimate the difference between H, ,(X™) and H(X™).

Let ¥ be an ¢;6 partition of X™ with H(V) = H,,(X"™), and let B be the part
of X™ not covered by V. Let W = {W} be the restriction to B of the product
partition U® = {Uyn)} of X™. If B has measure uj, the partition WUV of X" has

entropy
1 1
HWuV) = ugH(W)+(1 —pug)HV)+py log ;13+(1 —ug)log — .

We have
(n)
wr(W;) Uy
HW) = log —+ .
) Z KB gﬂ( )(Wj)

J

Hence
9)  HX™) £ (1—pp)H (X)) +(1— ) log
We group the W, into two classes:
® HOW ) < S4(U L),
i WOW,) 2 85(U ).

If n is sufficiently large, every U, has measure less than 1/e. Then

1
-+ "W ) log <o
1'—113 ; u ( 1) g‘u( )(Wj)

1 1
10 (W ) log ~mrmy £ Y 82u™(U ™) log i
( ) %H ( 1) gu( )(WJ)_(ZI; U ( J ) gézu( )(Uj( ))
1
< 6t Iog3%+n5%H(U),

since H(U™) = nH(U). For the second class we have

1 1
(W) log s < (U ) log ~==c.
(%‘,) w™(W;) gﬂ( )(Wj) = (%) w”(U;) log i )(Uj( Y
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Each U;™ is the product of a certain n sets of U:
Uj(n) = UleUkZX e XUkn,
so we have
5 U ) log - € 30 T u(Uy) - (U o8 =7
:) 10 —n'—— = ces 0og —.
(11)# §) 108 p )(Wj) l=1(ll)u i Mk gH(Uk,)

Since
Z(u) Il(")(Wj) Sppg = 5%,

Z(Il) #(n)(Uj(")) < 6%

we must have

Also,
ka fixed :u(")(Uj(n)) = ,U(Uk;).
Hence
1 n . 1
WOWHlog —ro= = min [6%, w(U,)] log ———,
(%‘,) wm(W;) gﬂ( )(Wj) = 1241%: 6%, u( k,)] gu(Uh)
or

1 1
(W ) log e~ < min [6%, p(UY] log —=.
(;) u ( _1) Og ,Lt( )(Wj) =n ; [ ,L(( k)] g .u'(Uk)

Combining the last inequality with (9) and (10), and replacing the first terms on
the right in (10) by upper bounds,

1 1 1 1
- "y < = )y 4 5% -
= H(X®) £ 5 Ho X )+ o+ Y, min [8% (U] log 7

. L, 1
z - —_—
+0 H(U)+n 0% log 5T
Take the lower limit as n — 00
1 1 4
1(X) £ LX)+ min [6%, u(U,)] log —— +6*H(U).
% wUy)
The series on the right approaches zero as é — 0, for it is bounded, term by term,
by the series for H(U), and each term approaches zero. Hence
lim infy_, o+ I5(X) 2 1(X).

On the other hand, it follows directly from the definitions and the inequality
H, (X™) < H(X™) that L;5(X) = L(X). Hence, Lys(X) > I(X) as 6 = 0.

Lemma 4 is proved.
Because of needs in the last section, we have the following slight strengthening of

Lemma 4.

LEMMA 5. Let H(X) < co. Then

1
(11) L,(X) = infys g lim inf, .., = Hes, (X®).
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PROOF. Let {6} — 0, and é > 0 be given. Then for » sufficiently large, §, < 6.

Thus,
Hs;&(X(n)) é Ha;é,.(X(n))s

if n is sufficiently large. Hence, for the given 9§,

o 1 . 1

lim inf,_, - H,(X™) < lim inf, - H,; (X™),
so, by Lemma 4, we conclude

1
I(X) < lim inf, ., ~ H 15, (X®).

Consequently

1
(12) I(X) = infj5,150 lim inf,Hw—n H,; (X™).
On the other hand,
(13) Hs;é,.(X(n)) é HE(X("))9

so that
. 1 o 1
(14) lim inf, , - H,; (X™) £ liminf, , I H(X™),
(7) then implies
1
lim inf, , - H,; (X™) < I(X)
for any sequence {6,} of nonnegative numbers. In particular,
1
(15) inf4,1-0 lim inf,,_,w;l- H,. s (X™) < I(X).
Equations (15) and (12) taken together complete the proof of Lemma 5.

4. Noisy channel coding theorems. We can now relate our concept of epsilon
entropy to channel coding. First note that (11) states that if H,(X) is finite, then
I(X) is the number of bits per sample necessary to describe X to within ¢ over a
noiseless channel with probability approaching 1 when arbitrarily long storage is
allowed.

The careful reader will at this juncture observe that storage is necessary, however,
to achieve even H,(X). For the “single-use” number of bits necessary is actually
not H(X), but can be arbitrarily close to log 2 less [1, page 71]. However, since we
are interested chiefly in the case H,(X) large, we shall ignore this difference, and
refer to H(X) itself as the number of bits necessary when storage between experi-
ments is not allowed.
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A noisy channel coding theorem for I(X) can be stated and proved as in
Shannon [12]. Before we can think of stating a precise result, we must review some
definitions {5, Chapter 2]. Let X and Y be probability spaces with measures y and
v, and let p be a probability distribution on X x ¥ defined on the product o-field
of p and v. Further, let

pPAXY) = u(A),
for 4 p-measurable, and let
p(X xB) = v(B) (or sometimes v,(B))

for B v-measurable. Then the mutual information of p (more precisely, of u and v
with respect to p), I(p), is defined as follows. Let

dp
dudv

denote the Radon-Nikodym derivative of p with respect to product measure
uxv. Then

I(p) =

if p is not absolutely continuous with respect to y X v, that is, if dp/dpdv is infinite
on a set of positive u X v-measure. If, on the other hand, p is absolutely continuous
with respect to u Xv, then

1 log 22 log 2 4
(6) 1(p) =Ep Og dudv - YxY Ogd,udv P
dp dp
= J;ﬂ (log d_——ydv)(m) dudv,

which may still be infinite. However, since we have

1
an -3 < tlogt, for t =0,

I(p) is well defined as a real number or + co. And since the function #log ¢ is
convex in ¢t = 0, we have, from (16),

o o ) . )

ijde = 13

Since

we conclude
(18) I(p) 2 0.
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It turns out to be easier to first consider the case of radial entropy. The diametric
case will be done afterwards with a more complicated definition which will be
related to the radial definition. Let R, (X) be defined as that class of probability
distributions p on X X X such that:

(@) p(AxX)= u(A) for A a Borel set in X;
(i) p(x, p)/d(x,p) < g2}) = 1.

Then the noisy channel coding theorem in question turns out to be the statement
that

(19) I(X) = infpeRs(X) I(p) = I/(X) say.

This result will now be shown to follow from Shannon’s proofin [12], coupled with
our definitions and results. We will now explain what is, going on, under the added
restriction that H,(X) be finite. This restriction will be removed in the next section.

In his Rate Distortion paper [12], Shannon studies coding for a source X with a
fidelity criterion F which, for our purposes, is a nonnegative Borel function of the
distance d between two points of X, which is a non-decreasing function of distance.
He then asks the question of how much channel capacity is needed to send
independent outcomes of X over a given noisy channel, if it is desired to keep the
average distortion D between the actual outcome x and the decoded outcome y
bounded by the constant 4. The distortion D is defined as the expectation of
F(x, y), the expected loss of fidelity between actual outcome and decoded value.
In our case,

(20) F(x’ y) =0, d(xa y) < 8/2;
F(x,y) =1, d(x, y) > ¢/2.

It is desired to know if there is a value Cy of channel capacity such that, over any
channel with capacity C > C,, outcomes of X can be transmitted over the channel
in such a way that the distortion is zero, with probability approaching 1, whereas,
if C < C,, outcomes cannot be transmitted over the channel in such a way that
the distortion is zero, with probability approaching 1, as the block length becomes
infinite. Shannon’s Theorems I and 2 of [12] show that this result is indeed true,
where

(21) Co = inf, . g,xy I(P)-

We state the desired result in a lemma. We mention that although the proof is
adapted from Shannon’s Theorem 1, the result does not follow from Shannon’s
statement.

LEMMA 6. Let H(X) < oo. Then
I/(X) = I(X).

In any case,
L'(X) £ I(X).
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ProoF. First we shall prove that [,(X) £ I(X). Suppose that I,'(X) < oo. Let
8, n be positive numbers. We shall show that (39) is valid for # sufficiently large
(so that (24), (31), (35) are (37) are satisfied) and use this to show I(X) £ I,(X).

By the definition of I,'(X), we can choose p,R(X) such that

(22) I(p) = 1,(X)+1.

Let v = v, be the second marginal distribution of p on X x X. For a positive n,
we consider the space Z, which is the product of » independent copies of X x X,

Z, = (X xX)™
with measure p®, the product of the measure p on each X X X. Z, can also be
written as
(23) Z, = X®xX®
where the first factor has product measure p™ = pxux--- Xy, and the second
factor has product measure v™. Also, u™ and v are the marginal distributions of
p™ in this factorization.

Let X = (xq, -+, X,), ¥ = (¥1, -++» V) be the coordinates of a point of Z, in the
representation (23). Consider the function

L 1 n dp(xi9 yi)
JE5) =~ i; log du(x)dv(y))

By the weak law of large numbers, for the given J there is an n, such that

(24) n 2 ng
implies that on a set I' in Z, of probability = 16 we have
(25) J(%, §) £ I(p)+n.

Because of condition (ii) in the definition of R,(X), we can demand that
AV, 7) <62, (%) el
From (25), we have

do™ X, 7
(26) ﬁ% <exp[(l(p)+n],  (x el

For any X € X™, define
L={y|(yel}

d (n) X,
@) p(Ls) = fﬁ% ()

The quantity

is the probability of L; given X, and
(28) Fxon pPIDAUM(R) = p™(I) z 1-0%
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Let A4 be the set of X such that

(29) p"(Ls) 2 1-8, XeA.
1t follows easily from (28) that
(30) p(4) =z 1-4.

Using (26) to estimate the integral in (27) we get
p="(Ls) < v?(Lg) exp [n(I(p)+m)].
Combining with (29)
V(L) = (1-8) exp [—n(I(p)+n)], Te4.
Suppose that #z is so large that

(31) eM(1—58) = 1.
Then
(32) VO(Lg) z exp [—n(I(p)+2n)], XeA

Let N be a positive integer. Choose N independent points y,, -+, Jy in X®
according to the distribution v. Let Py be the expected u™-probability of the
part of X™ not covered by the union of the spheres S,,(7;), j = 1, ---, N. We have

Py = Ej, ... sn { jx(ro [1—x= (Uliv=1 Sa/z(yi))]dﬂ(")(f)}

= jxo.) Es,,... 55 {Hliv=1 [1 _Xx(Sa/z(J_’i))]}dﬂ(")(f)-
By the independence, the integrand is equal to

£v=1 E;, [1 _Xy,-(Sa/z(f))] = év=1 [1 —V(")(Sa/z(f))]-
Thus,

Py = jx(m [1_V(")(Sa/z(f))]Ndﬂ(")(f)-
Since Lz € S,/5(X), (30) and (32) imply
Py £ 3+(1=8){1—exp [—n(I(p)+2n)]}".

Applying the inequality 1—z < e7(0 £ # £ 1), we get

(33) Py < é+exp {—N exp [—n(I(p)+2n)]}.
Let n be the integer for which
34 N—1 < exp [n(I(p)+39)] £ N.

Then from (33) we have Py £ d+exp (—e™).
For n sufficiently large,

(35) exp (—e") < 4.
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Then

(36) Py < 26.
Suppose that

(37) nn > log 2.

Then by virtue of the inequality
log(1+¢€") = t+log(1+e7%) < t+log2, t=0,
(34) implies
(38) log N < n[I(p)+4n].
From the definition of Py, it follows that y,, -+, 5 can be selected so that the set
B =K1 S, ‘

has u™-measure at least 1—Py. The set B can be partitioned into N sets of radius
¢/2 (constructed from the S,/,(7,)). Hence, by (36) and (38)

H,55(X™) £ n[1(X)+4q],
where p™-measure is understood, or, from (22),
(39) Ho(X™) < n[1/(X)+51].
From the definition of I;;,(X) and Lemma 4, (39) implies that if H,(X) < oo,
I(X) 2 I (X)+5n.
Now let # — 0. This shows that
I(X) = I)(X),

as promised.
The reverse inequality is easier: given a partition U of X™ by sets U,, of radius

¢/2 and centers j,;, of entropy H(U), we proceed as follows. The partition U induces
a joint distribution ¢ on (X x X)™ by associating n-tuples ¥ with the centers y of
the sets U, containing X. In the obvious notation, we have measures p;, p,, ***, P»
on X X X where p; corresponds to the ith coordinate, and each p; is in R(X). We

have, by a simple calculation,
I(%, y) = H(U).
We can demand, given > 0, that
L H) 5 100+,
so that
(40) %I(f, 7) = L(X)+n.
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On the other hand, simple properties of I yield
I(%, §) = Y71 I(x;, ) (since the {x;} are independent [5, Section 2.2])
2 Z?=1 I(x;, y) = Z?=1 I(p,) (since I(A, (B, C)) = I(4, B)).

We conclude that for some i, 1 < i £ n, we have

1
1p) < - I(5, ),

and recall p; € R,(X). (37) then yields

I(p) £ 1(X)+n.
Definition (23) yields

I'(X) = I(X)+n,
for all # > 0. We finally conclude
(41) I)(X) = 1(X)

which completes the proof of Lemma 6.

The restriction that H,(X) < oo will be removed when we prove that H,(X) is
finite if 7'(X) is finite.

To prove the channel coding result from Lemma 6, first we show that if K is
a memoryless channel of capacity C, with

C > I(X),

then we can communicate over K keeping the distance between every received
outcome and its corresponding transmitted outcome at most ¢/2 with probability
approaching 1 as the block length increases. To do this, merely take a partition

U of X™ with
C > H(U) = I(X).

Use the centers of the U; as a new source of entropy H(U) and transmit over K
with probability of (word) error approaching zero.

To prove the converse, suppose, as in [12], Theorem 1, that we have a block
code which encodes all of the n-tuples X into m-tuples W, and suppose that w is
received as say the m-tuple Z. Suppose also that we have a decoding procedure
which decodes m-tuples Z into n-tuples ¥, such that d™(x, ) < /2 with prob-
ability at least 1 —». Shannon’s result uses the condition

& f‘
d(xi, yl) § i (1+’1), Wlth n > 0,

SN
1=

i=1
but we want the stronger condition with # = 0. Simple properties of I yield

Iw, 2) 2 I(%, ).
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Also, if Wy, z; denote the first £ components of W, Z respectively, we have
ALI(w, 2)) = I(W, Z,41)—I(W, Z,)
= I(W, (2, zx+ 1)) —1(W, %)
= I(zi4 1, (B, 2))—L(Zges 1> Z0)-
Since the channel K is memoryless,
Lz 41, P, 2) = (24415 Wier1)-
Thus
A (W, 2) = 2y 1, Wi 1) —1(Zg4 15 Z1)
S Hzir 15 Wir 1) = I(Wier 15 Zir1)-

But the channel capacity C per channel letter is defined as sup I(w, v) over all
encodings w, decodings v. Hence

Akl(ws 2) é Cls 1 é k é m,

where C' is the capacity of K per coded letter. Therefore
1 m
I(w,2) = mC', BI(J_C, = ;C' = C,

where C is the capacity per source letter.

Finally, by Lemma 5, since # is arbitrary > 0, C = I,(X), as promised. We
shall not go into further detail.

To do the diametric case involves a slight complication in the definition of R,(X).
This happens because we can no longer choose a point y to send when we observe
x, but instead must send an ¢-set ¥ containing x when x occurs.

So we define matters as follows. Consider the complete separable metric space
Y(X) of closed subsets of X under the Hausdorff metric [9, Section 1.4}, or rather
its closed subspace Y,(X) of sets of diameters at most ¢. Then the diametric R(X)
is the class of Borel probability distributions p on X x Y,(X) such that

(i) p(WxY,(X)) = w(W) for Borel W < X;

() p(x, Y}|xeY)=1
In other words, p sends points of X into closed &-sets containing the point, with
v,-probability 1.

We then define
I'(X) = infps RE(X)I(p)a

and the proof goes through as before, with
v,(B) = p(X xB) for Borel B < Y, (X).

The question can be raised as to what happens in the radial case if we define
R,(X) as above, using the closed subset Z,(X) of Y,(X) of closed sets of radius /2.
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The answer is that I,'(X) is unchanged. The main point is that unique centers of the
g/2 spheres called out in the definition can be chosen in a measurable fashion. We
omit details.

5. Inequalities for I, and H,. This section gives some inequalities on 7, and H,,
and, in particular, proves that H,(X) < oo if I(X) < o, closing a gap in the last
section. We remark that all previous lower bounds for H,(X) were lower bounds
for I(X), and, conversely, all previous upper bounds for I,(X) were actually upper
bounds for H,(X) ([7], [8b]). The reason it is so hard to get bounds for one and not
the other is that, as we shall see, H,(X) and I,(X) are close in ratio if either is large.
We shall have to distinguish between radial and diametric entropy some of the time;
when necessary, we use pI(X), pH(X) for the diametric case, and gI,(X), RH(X)
for the radial case. Observe the trivial inequalities

(42) RHZB(X) é DHE(X) é RHB(X),
RIZE(X) é IB(X) é RIB(X)'

When a result is true for either definition, we shall omit the presubscript. Our next
lemma is quite useful, but will be strengthened later. It provides an upper bound
onI(X), but not on H,(X).

LemMmA 7.

1
1(X) = Eul:log m]

PRrOOF. It is enough to prove the result for zI,'(X), in view of (42). We shall find
a p € R(X) such that

1
(43) I(p) £ E,,[log m]

to prove the lemma. This p is, roughly speaking, the measure which takes an
outcome x in X, and spreads its probability throughout S,,,(x) according to p
restricted to S,;,(x). That is, for A a Borel subset of X' X X,

(8.2 0 4,)
(44) p(A) - J‘ #(Ss/z(x)) dll(x),
where

A, ={y|(x, y)ed}
The definition makes sense, since
ﬂ({x |.U(Se/2(x)) = 0}) =0
Note that for B Borel in X,

S B
45) 1(B) = p(X XB) = j H D2 duto.
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= (o) .
= ol g )

We now evaluate

Observe that

dv,(y) J du(x)
46 —£ —_— = )
(46) 30) = Jsua MS a0 40k s
A simple calculation shows
dp(x, 1 xS,
1) o(x, ¥) X:(S:2(0)

(v, () ~ a0 WS 2())
Now the support of p is contained in
{(x9 J’) | Xx(Ss/Z(y)) = 1}'

Hence, continuing from (47), we have

. 1
I(p) = fXxxlog PRED) dp(x, y)+j log 0 )dp(x, y)

1 1
= L log M__(SE/Z(X)) du(x)+d . logé(—y) dv,(y).

So, from (46), we have

)

1
(43) I(p)+ Eu[log m] + ; q(y) log — ( %) du(y).

Now from (46) again

Xx( e/Z(y))
fq(y)du(y) H u(S x ))d u(x)du(y)

J 1S o12(%)) va<ss/z(x))du<y)] du(x),
so that

(49) fa()du(y) = 1.
Convexity of ¢ log 1/t then shows

1
50 log ——d <0.
(50) Jq(y) &) u(y) =
This, coupled with (48), proves the lemma.

The prime on L'(X) will be removed after the main theorem. The next lemma is
sometimes a useful lower bound on I(X), and, of course, on H(X).
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LEMMA 8. Let
O = SUPg an e-set /l(S),
B = supxx ﬂ(Ss/z(x)),

so that B < o (by [7], Theorem 3, these sup’s are max’s). Then

1
(51) pl(X) = log o

(52) rl(X) = log %

ProoF. We shall do the ,/(X) case, the other being similar. If ,I(X) = oo,
there is nothing to prove. If ,H,(X) < oo, let n be a positive integer, and let U
be an e-partition of X™, Every set U, in U has probability

u(U) < o,

by hypothesis. Hence

1
H(U) = log —,
o
1
H(X™) z log ot

1H X™y > 1 L
. « ) z log .

Reference to (7) completes the proof of the lemma.

The next lemma is useful to bound the entropy of a union of spaces; it was
implicitly used in Lemma 4. By abuse of language, we shall speak of the epsilon
entropy of subsets of X even if they are merely measurable and not closed. The
interpretation is quite natural: to send X say whether you are in Y or Z, then send

YorZ.

LemMA 9. Let X = |J; Yy, Y, disjoint and measurable. Regard each Y, as a
probabilistic metric space in its own right, with measure and metric inherited from X.
The renormalised probability measure on Y, is p, = p,~'n, where u(Y,) = p;.
Define

1
P ={p}. H(@) =) plog o

the entropy of 2. Then
(53) H(X) £ ), pH (YY) +H(2),
I)(X) £ ). pd/(Y)+H(P).
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Furthermore, these inequalities become equalities if, for each k, [ with k # 1,

(54) infyk eYi,yieY; d(yk, ,V,) > &.

Proor. If V, = {V} is an ¢-partition of Y, with H(V,) = H(Y)), let U be the
g-partition of X given by

(55) { iks all l k}
Then
1
Hy(X) = Z 1(Vi) logu(—V—)

)
ik
_Zpkz Px

= Z,:, pHLY)+H(P),

14 t
—— log —
log w(Vi) ; P g DPx

as required. When (54) is satisfied, every ¢-partition of X is of the form (55), and so

the assertion about equality holds.
To prove the result for 1,'(X), let p, € R(Y,) with

I(p) = L'(Y)+n/2,
n arbitrary > 0. Let p be the measure on X X X such that
(56) p(A) = kZpkpk(A N (Y, xYy).
Then p € R(X). Also,
v(B) = p(X xB) = ¥ pup( Y X(B 0 %)
=3 pv, (B Y.

Thus,
(57) 4 =—1- ! on Y, xY, k=1,2,-
dudv, — p dmdy, e e
=0 outside (J(Y, %Y.
So

dp 1 dp
1) = E”<log dudy > 5 ”k[log< <dukdkv ):‘
P

= Zk, pl . (Y)+H(P)+n.

Since 7 is arbitrary, the result follows. When (54) holds, every p in R,(X) is of the
form (56). This proves the lemma.

REMARK. The primes will be removed from I,'(X) in (53) after we prove the main
theorem.
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6. Packings of sets. This section prepares for the main theorem by introducing
a new kind of random coding argument and using it to prove a result on “asymp-
totic close packing’. The argument was first used in Lemma 6.

LemMA 10. Let V be the random e-partition of X defined in the following way.
Choose a sequence {x;} of points of X randomly du and independently. Define

I/Vi = S£/2(xi)3 l ; 1
Define the e-partition V = {V,} by
Vo=W,-UiZiW, nzLl

Then
(58) (U V) =1 with probability 1.
Also,
1
(59) H(X) < E(H(V)) = E<10g m)
1 . 1- M(SS/Z(x))>
+E<‘°g1—u<se,2(x))> E ( WS )
and
(60) E(u(V,)) = § (S 2001 — (S, 2(x))" ™ dpu(x).
PROOF. We have
61 EH(V)) = E( V)l -L>
(61) (H(V)) _,.; W) 8 7))
by convexity,
1
(62) EH(V)) = n; E((V,)) log GOy
But

2im1 Eu(V)) = EQi=y p(V)) = Ep(Ji=1 W)
E(J[1= [Tt A —x(W))] dp(x)))
which, by the independence of the x;, can be written as
f [1 —HL e _Ex.-(Xx(Se/Z(xi)))] du(x)
= J[1=TT=1 (1 = Eq(te(Se2(0)] dis(x)
= JI1=TTi=1 (A= p(Sy2(x))] dp(x).
That is,
(63) E@(Ui=1 W) = Yi=1 E(V) = 1= [ (1—p(S,5(x)))"du(x).
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Observe that the random variable 1—u(S,,,(x)) takes the value 1 with probability
zero; therefore

(64) J A= p(So(x)))'du(x) > 0 as n— oo,

SO
Eu(U: V) = 1,

H(U;:O=1 V) =1

with probability 1, which proves (58). So we do indeed have a random family of
e-partitions V of X, whose entropies have expectation E(H(V)). Then there is at
least one ¥ with entropy at most E(H(V)), which proves the first inequality of (59).

Finally, (63) shows that (60) holds. The entropy H({E(u(V,))}) of the sequence of
probabilities {E(u(V,))} is therefore given by

H{EuV.)})
= an L j .u(Sa/z(x))(l —,u(SE/Z(x)))"_ldu(x)] log
1
* U 0NA — S o)+
By convexity of the function log (1/¢), we conclude
(65)  H{Eu(V)})
< n; [ J (S 2Dt — S 12NN~ Hdp(x)]

and hence

1 §
' j log S A — S,y -
(65) yields

1
(66) H{EWV,)}) = U log K52 dﬂ]f ; HU(S 2 (YL = (S o2 ()"

1
+U o8 I 8.:00) ""‘}

X (n=D)p(S 2 (N1 — (S 2 (x)))" ™ .

Evaluating the sums in (66) and using (62) completes the proof of (59). Lemma 10

is proved.
As a consequence of Lemma 10, we have the following result. Note that Lemma 7

yields
1
I(X) = logo—( <

if u(S,2(x)) = « > 0 with probability 1.
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LemMA 11. Let
WS, 2(x)) =2 « > 0 with probability 1.
Then H(X) < o0. In fact,

67 HAX < log 24 =% log —— < log~41
(67) {X) = log >+ — log —— < log~+1.

ProoF. (63) yields
(68) P EW) 2 1-0-a,

so that [7, Lemma 2] the entropy of the {E(u(V,))} sequence is bounded by the
entropy of the sequence (1 —a)" ™. Consequently,

1
(69) HX)< Y ao(l—a)"? logomm,

nz=1

which yields (67) and proves the lemma.
We are now ready for the asymptotic close packing result.

THEOREM 1. Let X be a probabilistic metric space such that

(70) H(S2(x)) = o

with probability 1. Then

(1) rl(X) = logi

and

(72) 0 = pH(X)—pl(X) < L
If in addition

(73) W4) = «

for every measurable set A of diameter at most ¢, then
(74) o (X) = log >

and

(75) 0 < H(X)—pl(X) < 1.

REMARK. The probability « must be positive since u(X) = 1, so that H(X) < oo
by Lemma 11. The assumption that u(S,;,(x)) = a with probability 1 and that no
measurable set of diameter at most ¢ has probability exceeding « is satisfied by
spheres, toruses, etc., under the natural measure given by surface hyper-area

normalized to 1.
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Proor oF THEOREM. First assume only (70). By Lemma 8§,

1
RIa(X) g lOg&
By Lemma 7,
1
RIS(X) é IOg &'

Hence (71) holds. Lemma 11 then implies that (72) holds.
Now let both (70) and (73) hold. Lemma 8 gives

1
DIe(X) g log&
(42) coupled with (71) gives

1
DIs(X) é log &'

Hence (74) holds. (42), coupled with (71), (74), and (72), yields (75). Theorem 1 is
proved.

REMARK. We have seen that H(X)—I(X) < 1 if u(S,,(x)) is constant with
probability 1. It is not known whether this difference can be arbitrarily large, but
we shall prove in the next section

Ha(X) _IS(X) = O(HS(X))7
for H,(X) large.

Discussion of Theorem 1. Theorem 1 is called an “asymptotic close packing”
result for the class of spaces to which it applies, for it says that the space can be
partitioned by e-sets in such a way that the resulting partition has entropy less than
one more than the entropy of a partition consisting of 1/« sets each of probability a.
When « — 0, then, the space can be partitioned by a partition practically as
“nice” as a close-packing one. Such nice partitions use up “most” of the prob-
ability with sets of probability “almost™ equal to a. One can use Theorem 1 to
state and prove apparently otherwise difficult theorems about partitions of
n-spheres, regular graphs, etc. ([6]).

7. The main theorem. In order to get the strongest possible form of the main
theorem, we first need the following lemma, a strengthening of the known result
({71, page 54) that if {a,} is a nonnegative sequence summing to 1, such that

Ya,logn < o,
then

1
'Zanloga— <

also (the converse is true, as well, but we do not need it here).
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LemMA 12. For o, B > 0, consider all nonnegative sequences.a,, a,, --- with

(76) ;:0=1 a, é 1’
an Y1 aa+logn) < B.
Let
@ 1
(78) M(B). = sup ). a,log =
n=1 n

over all such sequences.
Let A be the unique solution on (1, ) of the equation

(79) e™ M [~ {'(A)+af()] = Be,

where {(s) is the Riemann Zeta-function. For B > o, let o be the unique solution on

(1, ) of

(30) —{'(0)/{(0) = B—o.
Let B, be the value of B at which e”**{(3) = e. Then
M(B) = AB+e™'™((J), B < B,
= ¢(B—a)+log {(0), B > B,.
As B — o0,
M(B) = B+log B+0(1);
as B— 0,

B o
M(B) = '&log 'B+0(B).

Proor. For N a positive integer, define

N 1
(78) My(B) = sup 3. a,log~,

n=1 n
under the conditions (76) and (77). Clearly

Muy(B) < My.4(B) S M(B), Nz1
For any ¢ > 0, if {a,} is a sequence for which the sum in (78) is greater than
M(B)—¢, then for N sufficiently large
N

1
MyB)z Y a, loga— > M(B)-—2e.

n=1
Hence
M(B) = limy_, , My(B).

The region of admissible values of (ay, ---, ay) in N-space is a compact region.
Hence there is a maximizing sequence for the sum in (78'):

N 1
My(B) = max ), a, logz.
n=1 n
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Under the single condition

(76") 18, 51,

this sum has a unique local maximum, ata, = N~',n = 1, ---, N. Here
Y- aa+logn) > B,

if &V is sufficiently large. Considering only such large values of &, we see that the
maximizing sequence for My(B) must have

am) YN_i aa+logn) = B.

Suppose first that Y a-; @, < 1 for the maximizing sequence. Then My(B) is a
local maximum of the series in (78') when ay, ---, ay vary over the region in the
hyperplane (77') where a, = 0, n = 1, ---, N. This maximum clearly does not occur
on the boundary of the region, since the function x log (1/x) has an infinite
derivative at 0+. Hence, by the method of Lagrange multipliers, at the maximum
we have

1
log;—l =/?.,,(ot+logn), n = 1927"'7N’
or
(81) a, = e 17 =N,

Define
{n(s) = Zf:l n—’.
Then if {a,} is given by (81), the condition (76") is

(82) e™* y(Ay) S e,

and (77') becomes

(83) e aly(Ay) =Ly (Ay)] = Be.

In this case, the value of My(B) is

(84) My (B) = YN 717 p ™A [ - ady + Ay log n]

= AyB+e™ ' T [y(Ay).

Now suppose that equality holds in (76"). Then M,(B) is the local maximum of
the series in (78’), when a,, ---, ay vary over a region in an (N —2)-dimensional
hyperplane. Again this maximum cannot occur at a boundary point. Hence, at the
maximum,

1
log;;_l = H'N+O-N(a+10g n)’ n = 1, 2a "ty N,

or
a, = exp (—1—uy—aoy)n=",
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From (76") and (77)
exp (—1—py—aoy)ly(oy) = 1.
Eliminating uy, we get

exp (—1—py—aoy)[aly(oy) — Ly (6x)] = B.

(85) —{y'(on)/{n(oy) = B—qa,

and

(86) a, = n~"[{y(oy).

Now the value of My(B) is

87) My,(B) = {y(oy) ™" ZnN:1 n~’~[ay log n+log{y(oy)]

= oy(B—a)+log {x(ow)-

The functions of Ay, oy in (83) and (85) are strictly decreasing on (— oo, o) for
N = 2, taking all positive values. Thus there is a unique solution Ay of (83) for any
B > 0, and a unique oy satisfying (85) for any B > a.

If (82) is violated, we must have My(B) = My,(B). We shall show that
My(B) = My, when (82) is satisfied. Let By be the value of B for which

e_MN EN(AN) = e.
Then for B < By, (82) is satisfied, and (83) gives us
e~ [“CN(AN)—CN/()“N)] > Be M {n(An)s

—CN’(AN)/CN(lN) = B—u.
If B > a, then oy is defined by (85), and we see that
(88) oy Z Ay,

with equality for B = By.
Expressing My,(B) and My,(B) by (84) and (87), and differentiating, one has

or

d d
5 [My(B)—My,(B)] = Ay—oy+[—B+a—{y'(on)/{n(on)] -d%v

. da
F[B+e™ T (L () —oln ()] -
Applying (83) and (85), this reduces to
d
'd_B[Mm(B)—szz(B)] = Ay—0y,

and by (88), this is nonpositive for « < B < By. We have My,(By) = My,(By),
since at B = By, oy = Ay and

e M {N(Ay) = e {y(ow) = e
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Hence My,(B) = My,(B) for o < B < By.
Now we know that

My(B) = My(B), B < By,
= My,(B), B > By.

As N — oo, the functions aly(s)—{y'(s) and {y'(s)/{x(s) tend monotonically to
the corresponding non-subscripted functions on (1, c0), while for s £ 1 they
approach + oo uniformly. Since the limit functions are strictly decreasing on
(1, ), we must have 1y — 1 and oy — o, the solutions of (79) and (80). Also

By — By.
If B < B,, or B > B,, then for N sufficiently large the same inequality is valid

with B, replaced by By. Hence
M(B) = lim,_, , My,(B) = AB+e™ ' 7" [(4), B < By,
= lim,_, , My,(B) = o(B—a)+log {(o), B > B,.

The value of M(B,) is forced by the obvious monotonicity of the function M(B).
For the asymptotic form of M(B) as B — oo, note that ¢ » 1+ as B — o0;

hence
{(o) = ;-i—1+0(1), —{'(o) = (0—_1—1)3+0(1)-

From (80)

1

pr i B+0(1), o =1+B"'+0(B?).
Then we have {(¢) = B+0O(1), and
M(B) = (B=a)[1+B~'+0(B~*]+log B+0(B™1)
= B+log B+0(1).

As B— 0, A = oo. Then
L) = 1+0(27%, —{'(A) =2 *log 24+0(37%),

and by (79),
e *[a+0(2""] = Be,

Be
e M = o [1+0(2"‘)],

11 - oQ™*
—aOgBe+( )-
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Hence

: 1 o .| B -
M(B) = Bl:& log B—e+0(2 ):I+;[1+0(2 )]

B1 o
= > log §+0(B).

This completes the proof of Lemma 12.
The next lemma gives a lower bound to I(p) for every p in R (X).

LEMMA 13. Let p € gR(X). Then

1
(39) I(p) z E,,<10g m) = rK(p) say.
Let p € )R,(X). Then
1
60 I(p) 2 E,,(log v_(;i—)> = pK(p) say,
where

A, ={YeY,(X)|xeY}
ProOF. Let p € gR(X). We have

dp dp
91) I(p) = log (dudv,, m dvp] du.
Note that
Klo dp(x, y) \ dp(x, y) vy} — f <IO dp(x, y) )
& dut)dv,0) ) duoydn, ) ) = | & du(x)dv,(y)

dp(x, y)
C——
au)dv,(5) V)
by property (ii) of xR, (X).
Hence, by convexity of ¢ log ¢

dp(x, y) dp(x, y)
©2) f (l"g d#(x)dvp(y)) Ay, () o)

> 3 (8.0 Io f dp(x,y)  dv,(y) ] dp(x,y)  dv,(y)
= EI 8 Jak D, 0) VS o2 s ey GG, V(802

But if
dp(x’ )’) _ dp(x, y) B
me auGoydv, () o) = Ldu(x)dvp(y) dv, ) = f(x),
then

§efC)du(x) = { fpx dp(x, y) = u(B),
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so that f(x) = 1 with u-probability 1. Thus, (92) yields

dp(x, y) > dp(x, y) 1
93 1 dv, = log———,
®3) K B du(x)dv,()) dux)dv,(y) 70 = O3 (S,.(0)

with p-probability 1. (91) then proves (89). The proof of (90) is similar and omitted.
The next lemma upper bounds H,(X) in terms of the right-hand side of (89) or

(90).
LEMMA 14. Let p € g R(X). Then there exists an absolute constant C such that

(94) rH(X) < rK(p)+log*rK(p)+C.
Let p € yR(X). Then, for the same absolute constant C,
95) pH(X) £ pK(p)+log " pK(p)+C€.

PrROOF. As in Lemma 10, let V' be the random e-partition of X defined by
choosing a sequence {X;} of points of X randomly dv,, defining

W, = Ss/Z(xi), iz,
and then
V,=W,~\iiw, nzL
The expected (dp™) p-probability not covered by | Ji-; V; is given by
(96) E[fTT-1 A =x(S,2(x)dp(x)] = [ (1=v,(S,2(x))" du(x),
as in Lemma 10. Let the set E be defined by

E = {x l vp(Se/Z(xi)) = 0}'
We claim
WE) =0.
For

d
f —Ldvpdu =0,
S,

E) = p(ExX) =
ﬂ( ) p( ) j e/2(x) d“dvﬂ

E

since if dp is not absolutely continuous dudv,, there is nothing to prove.
We conclude that with dv,-probability 1, ¥ is an e-partition of X under
u-measure, as in Lemma 10. As in (62),

1
7 EHV)) = n; E(u(V,)) log GOy
And, from (96),
(98) Yi-1t E(V)) = 1= [ (1=v,(Sy2(x)))"dp.
Define

G(s) = p{x | 1—v,(S,2(x)) < s},
and define

(99) my = [ (1=9,(Se2(x)))"dp = fo s"dG(s),
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the nth moment of s distributed dG(s). As in Lemma 10, (97) yields, since
(I-my) log 1/(1—m,) < 1fe,

A

1
(my—y ) log ———+(1—m,) log

P18

100 H(X) <
( ) R ( )—n=1 n n+1 l_ml
© 1 1
< Z (m,—m,,) log -

n=1

On the other hand

1 ! 1
K(p) = Eu[log m] J log1 dG(s).

Expanding
| 1 st 8
I R
and then integrating, we conclude
(101) «K(p) = 3 =

Let us sum the right-hand side of (101) by parts to obtain, since n, — 0,

o o0 i-11
>, (my_y—m) = .;2 (m;—y—my) ;1;

i=n+1

M8
=|§
]
P18
:l)—‘

X
1]
o
X
]
-

(m m; .1 )(log i+y),

v
IIMg

where y is Euler’s constant. Hence
(102) rK(p) Z Y21 (my—my . )(log i+y).

Now
Zfil (mi~m; ) =my; < 1:

Lemma 12 then gives

© 1
(103) Y. (my—m;, ) log < rK(p)+log* K(p)+C',
iS1 m;—m;yy

for some universal constant C’. (100) next yields
(104) rH(X) £ zK(p)+log® zxK(p)+C'+1]e.

Define C’'+1/e = C to prove (94) from (104). The proof of (95) is similar and

omitted. This proves Lemma 14,
The next lemma is not really needed for our main purposes, but is inserted to

show that H,(X) must approach 0 if I,(X) does.
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LEMMA 15. There exists a universal constant D such that, if K(p) £ 2(1—1/e)?,
H/(X) £ D(K(p))*.
ProOF. We shall improve the inequality (100) by getting an upper bound for

(1—my) log —m,

in terms of K(p). From definition (89), we find

1
p{x | log ) < K(p)*} 2 1-K(p)?,

or
lu'{x | l—vp(se/l(x)) = l—exp [_K(p)%]‘} = K(p)%
From (99)
m; < 1—exp [-K(p)*]+K(p)* < 2K(p)* = 1—e7!
and
1—-m; = 1-2K(p)t = e L.
Hence
. 1 .
(1—my)log ;— e < [1-2K(p)*] log T2k = 2K(p)?.

Thus, (102) and Lemma 12 yield a universal constant D, such that -

K(p) Y

- log N D, K(p)+2(K(p))?,

H(X) =

which proves the lemma.
Note that D can be made arbitrarily close to 2 as K(p) — 0.
We are now ready to state and prove Theorem 2, the main result of this paper.

THEOREM 2. There exist universal constants C and D such that
(105) H(X) £ I(X)+log" I (X)+C,

and, for
1(X) £ §(1-1/e)%,

(106) H(X) < DU (X))*.
Furthermore, I(X) = L'(X).

PROOF.
Choose, given > 0,
(107) peR(X), withI/(X) = I(p) = L/(X)+n.

Then, by Lemma 13,
(108) K(p) = I'(X) +n.
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By Lemma 14, on the other hand, we found

H(X) < K(p)+log"K(p)+C,
SO

H/(X) £ I/(X)+1log " [1,(X)+n]+C+n,

for every # > 0. This proves (105) for 7,'(X) instead of I(X). By Lemma 6 and
Lemma 3, if 1,'(X) is infinite, there is nothing to prove. If I(X) is finite, however,
(109) forces H,(X) to be finite. By Lemma 6, then,

(110) I(X) = I(X),
and (105) is proved in the desired form (if 7,'(X) is infinite, equality certainly holds).

Now let us prove (106). Let 1,'(X) < §(1—1/e)*, and choose p by (107), with
n < §(1—1/e)%. (108) holds, so that, by Lemma 15,

(111) H/(X) = DU,/ (X)+n)*.

Since (111) holds for all sufficiently small # > 0, and since (110) holds, (106) is
true. This completes the proof of the main theorem.
The rest of the paper is devoted to consequences of the main theorem.

8. Consequences of the main theorem. This final section gives various consequences
of Theorem 2. The first resultis of independent interest and also needed for the
second result. We recall [7, page 1008] that Hy(X) is defined as the infimum of the
entropies of all partitions of X less a set of measure zero by atoms; when there is
no such partition, H,(X) is infinite. With this definition, H,(X) is continuous from
above in ¢, even at ¢ = 0, as was shown in the above cited reference.

CoROLLARY 1. I(X) is continuous from above in ¢ on ¢ = 0.

Proor. Fix n a positive integer, and consider,

(112) H (X") £ I(X")+1log* I (X™)+C.
First let H(X) < o0. We can then choose an ¢ > ¢ so that
(113) H(X™) < H (X™)+1,
since H(X™) is continuous from above in &.
Now
I(X™) = nl (X)
from (7), so
nl(X) £ H(X™) < Hy(X™)+1
< nl (X)+log*I(X)+logn+C+1.
We then find

(114) I(X) < IE,(X)+’1-1 log*I(X)+(log n+ C+1)/n.
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Since
Is'(X) é Is(X) < 0,

given n > 0, we can by (114) choose an # so large that
(115) I(X) < I1AX)+n,

which proves continuity from above in ¢ in case H,(X) is finite.
Now let H,(X), and so I,(X), be infinite. Given a large N > 0, we are to find an
&y > ¢ such that

(116) I.(X) > N when e<é& <eg.
We can assume that
(117) H.(X) < o, g =e

By the continuity of H,(X) from above in ¢, we can find an ¢y(n) > ¢ such that
(118) H (X™) > n? if &<é £ eyn).
Thus (112) becomes

n? < H (X™) < nl (X)+log"I(X)+logn+C,

or

1 1
(119) n< IS,(X)+;110g+I£,(X)+-n(Iog n+C) for & <é& £ gy(n).

But
1
-}'-l 10g+18'(X) é log+Ia’(X) § Ia’(X)a

s0 (119) can be written in the following form if n = n,, where (log ng+ C)/ny < 1:
(120) I.(X)zin—1 for e < ¢ =< gy(n).
Then (116) is proved by taking

n > max (ny, 2N+2).

Corollary 1 is proved.

The proof of Corollary 1 can be modified to prove continuity of I,(X) in & from
below for certain cases in which it is known that H,(X) is continuous in ¢ from
below. One case is that of mean-continuous Gaussian processes on the unit
interval, by a modification of [8b], Theorem 1, to prove that H,(X) is continuous
from below in g, n = 2, Details are omitted.

COROLLARY 2. For any probabilistic metric space X, one has

(121) H(X) ~I(X) as &—0.
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PROOF. Since
LX) £ H(X) < LO+log* I (X)+C

by Theorem 2, the result is true in case H(X) — oo as ¢ — 0. So suppose H(X)
remains bounded as ¢ — 0. Then by the continuity of H,(X) from above in ¢ even
at ¢ = 0 ([7], page 1008), we conclude that Hy(X) is finite.

Now we always have

(122) Ho(X) = 14(X)
as (7) shows. By Corollary 1,
(123) [o(X) = lim,_q+T(X).

If I,(X) = 0, then Hy(X) = 0, and, in fact, .
H,(X) =I(X) =0, all >0,

and there is nothing to prove. If I(X) > 0, then Hy(X) > 0, and, by the con-
tinuity in & from above of H(X)

(124) Hy(X) = lim,_¢+H (X).
Equations (123) and (124) taken in conjunction with (122) give

H(X)

(125) lim,-or Ty = b

which proves (121) and Corollary 2.

The next batch of corollaries picks up some loose ends involving 7,'(X), defined
in (19) as the inf of I(p) for p in R(X). We restate the following, although it was
proved in Theorem 2.

COROLLARY 3. [/(X) = I(X).
COROLLARY 4. Equation (53) holds for I(X) in place of I.'(X).

ProoF. Substitute Z,(X) for I,/(X) in (53) to prove this corollary. We know of no
other proof.
Now definefor0 £ 5 =1

(126) Ie;&(X) = ian measurable; u(4)=<é Ie(X_A)J
which is always finite for > 0. Notice that

Ie;O(X) = IE(X)
Also,

(127) I_a;a(X) é Ha;é(X)'

The next lemma is needed in the proof of Corollary 5.
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Lemma 16. Let X be a probabilistic metric space with H(X) finite. Then for every
o > O there exists a finite f such that, if Y is a measurable subset of X,

wWY) za
implies
H(Y) = B.

Proor. Let U = {U;} be an g-partition of X with {u(U;)} non-increasing and

1

Let
V={V}={UnY}

an g-partition of Y. Its entropy can be bounded as follows:

wvy HY)
w(Y) vy

H(V) =%
1 1 1
= > u(V) log S0y log M)
1 11
< - Y (V) log T

Now u(U) £ 1/e,i = 2, s0

1/2 1 1
H(V) < ;<;+ Y. WUy log m)Jr;

i>2

IA

1/2 1
{Eemon)ed
o\e e
Thus, if we define § by

1/2 1
B = S <;+HE(X)>+E,
then
H(Y) < H(V) £ B,
and Lemma 16 is proved.
We then have the following result, proved for H(X) in [7], Theorem 5.

COROLLARY 5. I(X) = lim;_o4 I,.5(X), and, in fact, 1,.,(X) is continuous from
aboveind, 1 > & = 0. Also, given n > 0, there isa 0y > 0 such that, for A measur-
able of measure at most 6,

(128) |L(X — A~ I(X)| <1,
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if I(X) is finite. If I(X) is infinite, then, given N > 0, there is a o > 0 such that,
Jfor A measurable of measure at most d,,

(129) I(X—A4) > N.
Finally, if 6 > 0, 1,.5(X) is continuous from below in 8 if X is nonatomic.

ProOOF. We first prove (128). Let n be so large that

1 1
(130) ;HE(X(”))—-IE(X) <3
Let 6 be so small that 6 < % and
1 1 i
- m_RBy_= (n) =
(131) ln H(X®-B)—~ H(X®) <3,

provided u™(B) < 5. Then

2
3’

1
;l HE(X(n)_B)_Is(X)l é

whenever u™(B) < 6.
Define 6, such that

(132) (1-6,)" =1-6:
09 < 4. If A is measurable with p(4) £ §,, then

pP(X—A™) 2 1-6,  p"X®P—(X-A)™) <6,
and

1 27,
(133) I;, H(X—-A)™)—TI e(X)‘ =3

Now by Theorem 2,

|H (X — A)™) = L(X = A)| < log* (X~ 4))+C,
or

(134) ‘i H((X ——A)("))—Ie((X—A)' < :—l log I (X —A)+ —:1 (log n+C).

By Lemma 16,
(135) SUp,ay<y H(X —A4) S E say.

Choose n in advance so large that

136 L ot B4 (1 C) <+
(136) - log" E+~ (logn-+C) < 3
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Then (134) becomes

1 n
(137 - H((X —A)MN I (X -A)| < 3
and (133) then yields (128).
Now to prove (129). In this case, (131) becomes

1
(138) - H(X®—B) > 2N
whenever

1"(B) < .

Define 8, by (132), so that (133) becomes

. .
(139) - H(X-4™)> 2N
if u(4) = .

For H(X — A) finite, the only case of interest, (134) becomes

1 1 1
(140) = H(X—A)") S I(X —A)+~log* [(X = A)+~ (log n+C).

If
! log"I(X—4) = ! log N
n og a( - ) =4 og iV,
then (129) holds. So assume
1 1
(141) ;log+IE(X—A) < ;Iog N.
Given N in advance, we choose n in advance so that
1
- (log N+logn+C) < N,
which makes (140) and (139) imply
1
2N < ;le((X—A)(")) < I(X—A)+N,
which proves (129).
To prove the continuity of I,,;(X) in é from above, we can assume é > 0; the

case & = 0 is done by (128) and (129). Given I,,;(X), finite since 6 > 0, and 5 > 0,
we are to prove that there is a 4, > 0 with

(143) I(X—-4)z I.4X)—n
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whenever u(4) < d+4y. And if u(A4) £ 8, there is nothing to prove, since then
(143) is satisfied even with n = 0.

Let us digress to prove the following result:
Given & > 0, there is a 2 > 0 such that if 4 satisfies u(4) = 9, then, for some x in
A?

(144) H(Sya() A 4) 2 I

Here is a proof of that fact. Let B be such that u(B) = 1—9/2 and H(B) < 0.
Consider B n A, which has

wB N A) z 2.
By Lemma 16,

H(BNA) <E

for some constant E. By Lemma 8, there is an x in B n A4 with
2 -E
Su(S,2() VB A) 2z eE,

and so, for some x in 4, (144) holds, with

é
- ,-E
l—ze .

To prove (143), let
0 < u(d) £ 6+4

Write W = S,/,(x) where u(W n 4) = A. As in [7], Theorem 1, we can reduce to
the case X nonatomic, in which case, given 1y < 4, thereis a subset of Vof W n 4
with @(V) = A,. Consider the set (X—A4) n V, where

p(X=ADHurV)y=1-4.
This forces

(145) I(X—=A4) v V) 21.X).

On the other hand, Corollary 4 gives
(146) I(X—=4) v V) £ pl(X-A)+(1-pl(V)+H(p),
with

p = (X =A)/(X - AD+uV);

1
H(p) plogp+(1 p) logl_p-
Since
V < D, (x),
however,
(V) =0,
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and (146) becomes

(147) I(X—A) L V) £ pI(X—A)+H(p).
Together with (145), (147) gives

1. 1 1—
(148) I(X~4) S ~1,(X)— log=——2 log (1 p).
p p p
Now
149 1<t <y %o
(149) <p= +—5
If we choose 4, so small that
tog (142 %o L
og +1—5 +1_5 og (1_5)<11,
H ——
Ao

(143), and hence continuity from above, follows. To prove continuity from below
when X is nonatomic is similar and omitted. This completes the proof of Corollary
5. .
To get a stronger ““strong converse” define, as in Lemma 3,

1
(150) I./(X) = infps,50 lim inf, , - H, ; (X ),
so that
(151) LX) = 1(X)

if H(X) < oo. Asin Lemma 5, I."(X) is the amount of capacity needed to transmit
outcomes of X when it is desired that an arbitrarily large fraction of a block of
outcomes be known to within g, with probability approaching 1. Alternatively,
I"(X) is the Rate Distortion Function for zero distortion. The stronger converse
is really just that I(X) = L"(X). This means that if K is a memoryless channel of
capacity C < I(X), we cannot transmit outcomes of X over K such that, with
probability approaching 1, an arbitrarily large fraction of a long block of outcomes
is known to within &.
First recall

1
I 5(X) = liminf,, , - H (X™)

for 0 < 6 < 1. We then have the following corollary.

COROLLARY 6.

1.
Ia;[a](X) = lim infn_,00 n 15;6(X(n)).
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Proor. If
H (X™) >0 as n- oo,
then (105) shows
Ha;B(X(n)) ~ Ie;&(X(n))'
If, on the other hand,

(152) Ha;ﬁ(X(n)) é F: say,
for all n > 0, then we show that H(X) = 0, and so
Ie(X) = ie;&(X) = Ha;ﬁ(X(n)) = Ia;é(X(n)) = 0,

and the result follows. So suppose (152) holds. Then, by Lemma 8, there is a
constant E > 0 such that, for each n = 1, there is an e-set 4, in X® with

u(4,) 2 E.
On the other hand,
Il'(n)(An) é [maxS an e-set #(S)]n,
SO
MaXg ap guset IL(S) =1,

and H,(X) = 0, which proves Corollary 6.

In order to prove the stronger converse, and strengthen Lemmas 4 and 5 by
removing the requirement from them that H,(X) be finite, we need a lemma. We
first need to define the class R,,,(X) of probability distributions for 0 < #; note
that

Re;O(X) = Re(X)'

DEFINITION. pR,.(X) is that class of Borel measures p on X X X whose marginal
distribution on the first coordinate is u, and such that
p({(x, y |d(x, y) S ef2}) 2 1—-n.

The class ,R,,,(X) is defined similarly for the diametric case.
Then define
]a;n(X) = infpsRsm (X)I(P):

so that I, ,(X) is the Rate Distortion function evaluated for distortion . Therefore,

- 1

I(X) £ 1,(X)+n log v

and
Ia;O(X) = s(X)

Finally, define

1"(X) = lim, +1,,(X).

We have been unable to determine, except when either is 0 or co, in which case

the answer is affirmative, whether

1"(X) = I(X).
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The next lemma shows that the two are however asymptotic when either is large.
A strengthening of Theorem 2, it is enough for the stronger converse. The result
for n > 0 gives a result on the relation between H,,1(X) and I,,(X).

LemMA 17. Let O £ n < 1/e*. Define

1 2 1
Le;,,(X) = E:’ (Ia;n(X)+;>+10g i——_i—1

Then, for C the same constant as in Theorem 2,
(153) H, (X < (1+6nH){L,(X)+1log" L, (X)+C}+3n*:
(154) H (X) £ I"(X)+log"I,"(X)+ C+%.
Proor. Given A > 0, choose p in R, (X) with
(155) I(p) £ 1.(X)+A.
Let S be that subset of X X X on which, in the notation of Lemma 14,

Ax < Sa/2(x),
so that
p(S) 21—n.

Define p, to be the probability measure on X X X given by
pu(T) = p(S 0 T)/p(S),

with marginals u; and v, respectively. We observe, but do not use, that

dp(x) 1 dp(x, y) ()
du(x) ~ p(S) Js. du(xydv, () “ 7PV
dvi(y) 1 dp(x, y)

dv(y) ~ p(S) Js, du(x)dv,(») du(x).

More important for our purpose is

dpy(x, y)
156 ——==0, (x,y)eS"
(156) dp(x,7) )
: (x, €S
=TV H € o.
oSy Y
As a consequence of (156), we have
dp(x, y)
157 — =0, (x,y)eS°
S PREFENG! ()

_dp(x,y) 1 dux) dvy(y)
— dp(x)dv,(y) p(S) dpy(x) dvy(y)’

(x, y)eS.
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From (157), we can conclude

dp 1 du
(158) I(py) = (S)J log<d N )dp+log (S) ~[log(d )dm

dav,
IOg d dpl
Continuing from (158), we have the inequality
(py) < 1J dp+1 1+f<1 )d’“d
£ — 0g — 0 u
) P8 o) T I\ iy )
i dv, dvld
Ogd dv, Y
which yields

2 1

The first term in (159) arises from the fact that the function zlog? = —1/e in
t = 0; there is no other term because —¢ log ¢ is convex in ¢ = 0, and

duy dv,
d_,u du =fEdvp =1.

Now form the random partition of Lemma 14, using the measure p,, instead of
p. Introduce the notation

1 dp
°8 dudv,

H(U; 1)
for U an g-partition of X and p a Borel probability measure on X to denote the

entropy of U when the measure in question is g. From Lemma 14, we conclude
that there is an g-partition U of a set of p,-measure 1 in X such that

(160) H(U; ;) £ I(p;)+log™ 1(p})+C,

for the C of Theorem 2. However, there are several obstacles to translating (160)
into an inequality that will lead to (153).

The first of these is that U is an e-partition of X with respect to u,. What can be
left uncovered by U? If Z denotes the set of X not covered by U, then observe that

ZxX < S°
Now let
U={U}, il
we have
w((JiU) =42 p(S) =2 1—-n.
Let F be the set of indices i such that

(161) p(U; x X)[p(U; xX) N S) 2 14277
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for i in F. If we define

VF = UieF Ui:
then we observe that ¥ and Z are disjoint. Furthermore, we claim that
(162) p(VexX) = u(Vy) < n* —u(2).

For if not, then, since

p(VexX)[p(Ve X X) NS) 2 14213,

we have
p((VExX) nS) < p(Vpx X)/(1+21%),
or
2t
PV eXX)=p((Ve X X) 0 8) 2503 (Ve X X).
Consequently,

2y 2n*
PV X X)—p(ViXX)NS) 2 —3 73 M2 =2 n—w2),
142 1429

since < 4, we would therefore have

p((VExX) nS)+p((Z%xX) NS°) > 1,
and so

p(S9) > 1,
a contradiction. We conclude
(Ve Z) < i

Now let U’ be the ¢;n%-partition of X with respect to u consisting of those sets U,
of U with i not in F. The second obstacle to overcome is to estimate H(U';p) in
terms of H(U; ).

We have
, WUy i—ﬂ(VF)
B = 2 1=V 8 a0y
(163) < — L Y WU log—— !
S A-uVe) i T WU
1
=mT, say.
From the convexity of the function ¢ log (1/¢) in ¢ = 0, however, we can conclude
t
T = (A—pu(Vp) log l—ltl((V;F)')ﬁ;F w(Uy) log PG
and so
—u1(Vp) 1

(16) T < (= (V) log il ? Ty T PUx X log ST

i¢F
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(164), coupled with the definition (161) of F, yields

#1(VF)

1
+(1424) a%:i p((U; xX) n S)log m,

and finally
(165) T < (A= p(V ) log === (V |+ (120 DH(U: ).
(163) coupled with (165) now gives
(166) (X) <1 l L TN
< D),

Hent 8T WV T A—u(vy

and finally

(167) Ho,3(X) < 30 +(1+6n1)H(U: ).

Combining (167) with (160), (159), and (155) proves

1 2 1
(168) H_ (X) < 3t +(1+6n?) {'1—_—"1 (IE;,,(X) +z>+10g T

n
log™ ! I,.(X 2 1 ! C
+Og 1_71 s;r]( )+€ +0g1__’7 + s

which thus proves (153). To prove (154), let n » 0% in (168). We know from [5],
Theorem 4, that

lim6—>0+H£;5(X) = Hs(X)7
and
lim; o +1;5(X) = 1,"(X),

by definition. The simple inequality

| 1_{_2 2 4
08 —é+e<3

completes the proof of (154) and hence of Lemma 17.
Now comes the stronger converse; define as in Lemma 5

1
I,/(X) = infys, 5.0 lim 1nf,,_,°0 = H 5 (X™).

Lemma 5 proved Corollary 7 when H,(X) is finite.
CoROLLARY 7. ["(X) = I(X).



2124 EDWARD C. POSNER AND EUGENE R. RODEMICH
PROOF. Since
1(X) £ I(X),

there is nothing to prove if ,"(X) is infinite. So let ,"(X) be finite. Then, as in
Lemma 6, given an ¢;5, partition U of X™, such that

1
;H(U) < 1L"(X)+n, say, with# > 0,

we can obtain a p in R, ; (X) with

1 1
I(p)=( —5,,)[1 ¢ (X)+n+log 1*_—5-]+5n log =

That is,

1 1
IL;(X)=( —5,,)[18"(X)+11+10g ]‘_—g]+5n log <.
By the definition of 1,"(X), then,
1"(X) £ I'(X)+1.
Hence 1,”(X) is finite, and by Lemma 17, so is H,(X). By Lemma 5, then,
Ia”(X) = Ie(X)’

as promised. Corollary 7 is proved, and the restriction that H,(X) be finite is re-
moved from Lemma 5.

We can likewise show the following, which removes the assumption from
Lemma 4 that H(X) be finite.

COROLLARY 8. I(X) = lim,.,o+ Ip155(X).

PROOF. As in Corollary 7, we construct for every > 0, n > 0, a p in R, ;(X)
such that

1 1
I(p) = (1 —5)[15;[,51(X)+n+10g m}a log 3

Let the limit in the statement of the corollary be finite and equal to I say. Then we
find that 7,”(X) is also bounded by I. That is, I,”(X), and so H/(X), are finite,
whenever

(169) limy LX)

is finite. By Lemma 4, then, we can assume (169) infinite. But since the limit in
(169) is at most I(X), I(X) is infinite if (160) is infinite. This proves Corollary 8.

We now summarize a combination of our principal results. If X is a memoryless
channel with capacity I" less than H(X)—log™ H,(X)—C, C a universal constant
(or of finite capacity if H,(X)is infinite) then it is not possible to transmit outcomes
of X over K such that, with probability approaching 1, an arbitrarily large fraction
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of a sequence of outcomes are known within ¢ or even a little more than &. On the
other hand, if I" exceeds H,(X), then outcomes of X can be transmitted over K such
that, with probability approaching 1, all of a sequence of outcomes are known
within ¢, and such that block coding of outcomes need not be done before the channel
encoder. In other words, the ““one-shot™ epsilon entropy tells whether the maximum
error in a long block can be kept as little more than ¢ as we please, with probability
approaching 1.

We close the paper with the outstanding open problem in this theory. Can
H(X)—1(X)
be arbitrarily large when either is finite ? More generally, determine the function
Sx) = SupHa(X)§x[Ha(X) —1,(X)],

which is finite-valued if x is finite. It is clear that f(xj is strictly increasing as x
increases, that f(0) = 0, and that f(x) is continuous in x = 0. The main problem is
whether f(x) is bounded in x = 0.
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