BPSILON, GENERALIZATION, AND PROBABILITY IN SPATIAL DATA BASES

 byDale M. Honeycutt

A RESEARCH PAPBR

submitted to DEPARTMENT OF GBOGRAPHY
in partial fulfillment of the requirements for the degree of

MASTER OP SCIBNCE
May, 1985
Directed by
Dr. A. Jon Kimerling

After struggling with this degree for 7-odd years, it amazes me that it still comes down to an all-nighter. But this part should be fun, a departure from all the cut and dried stuff that follows. In no particular order:

I'd first like to thank my parents for supporting me and deciding to have me in the first place.

A gracious bow to two colleagues at Woodward-Clyde Consultants, Dennis Smith and Gary Smith, who were kind enough to listen and encourage during those nights when we closed the bar.

To my wife, Jane, who suffered through weeks of long distance phone calls (and paid for them all, too). We are on our way to a long deserved vacation.

And last, but not least, to Dr. A. Jon Kimerling, who never gave up hope, even after $41 / 2$ years, I offer my eternal gratitude. His guidance, enthusiasm, input, suggestions, and uncanny ability to spell everything right made this paper possible.

Yes -- and thanks to the late night entertainment committee of Bruce Springsteen, Doc Watson, Hendrix (I'm showing my age), and Leo Kottke.

LIST OF FIGURES

Pigure Page
2 6 7
3a 93b10
4 12
5 15616
7 19
8 21
9 22

LIST OF TABLES

Table	$\frac{\text { Page }}{1}$
2	18

BPSILON, GENERALIZATION, AND PROBABILITY
in SPatial data bases

Abstract

Cartographic generalization results in locational inaccuracies of the generalized feature. The cartographer expresses the amount of generalization and the locational inaccuracy of the feature through map design and choice of map scale. This information is often lost when the map is digitized. In the environment of geographic information systems, the locational accuracy of the data can play an important role in decision making. In this study, locational inaccuracies due to generalization are measured and applied to a hypothetical situation to demonstrate the effect generalization could have in an automated decision making environment.

INTRODUCTION

The synergy between map scale and cartographic generalization is well known. This interrelationship of scale and generalization plays a vital role in map interpretation and compilation. In compiling a map, the cartographer selects information from a variety of sources at differing scales, projections, validity, and accuracy. The visual clues inherent in the design of these maps, such as line weights, symbol size and placement, lettering sizes and fonts, all impart the degree of generalization. For instance, it should be obvious to the map interpreter that a line drawn on a map of $1: 250,000$ is more generalized and therefore, positionally less accurate then a line drawn on a map of $1: 24,000$. This knowledge would affect the final design or interpretation of the map. The choice of map zymbols, the communicator of generalization, is an important one, for it imparts the degree of generalization that is warranted by the data and desired by the cartographer. If the communication is clear, then the map reader will understand the limitations of the map. This communication of generalization can work both ways, for, by using good symbolization, a cartographer can "impart an incorrect visual impression of precision and accuracy to poorly simplified or classified data" (Robinson et al., 1978, p. 153).

This study deals with cartographic line generalization in computer-assisted cartography. In computer-assisted cartography (CAC) and geographic information systems (GISs), the locational information of symbols, and by inference, the degree of generalization, is typically captured as finite points and lines. We do not digitize the symbol, we digitize a point where the symbol ought to be placed. A line representing a road, for instance, becomes a series of points, not a line of some thickness (e.g., 0.5 mm). The symbols are transformed into the realm of the mathematician where lines do not have a thickness and discrete points do not have areal extent. This is one of the overwhelming attractions of CAC/GIS: that map data can be handled in the language of mathematics, not only in the language of graphics.

In the CAC/GIS environment, changing map scale can be as simple as responding to a question from an interactive program. All the forethought concerning the choice of symbols based upon the scale and resolution of the input data is all to often conveniently disregarded and, consequently, the map output belies the quality of the data. The visual clues the symbols imparted are out of sight and out of mind. Cartographers are now just beginning to realize the need for knowledge-based systems where the knowledge of cartographic conventions that the cartographer brings to the compilation and interpretation process is programmed into the system, so that symbol and scale choice follows cartographic theory and practice. It is important, then, that we understand the transformations of cartographic data that occur with scale change in a digital environment. This study is an attempt to define and measure the effects of one such transformation; that due to scale generalization.

BPSILON DISTANCE

This section discusses the idea of epsilon distance about a symbol and the effect it may have on spatial data bases. The concept of epsilon distance is traced to Perkal (Blakemore, 1984; and Chrisman, 1982), and this concept is central to the experiments performed here.

Overview

Many factors contribute to positional error on maps. Data acquisition methods, map compilation procedures, data quality and timeliness, and the experience of the cartographer are fust a few of the factors contributing to the final quality and accuracy of a map. Brrors can propagate from one mapping task to another, such as from photographic registration to scribing. If these errors are systematic and could be accurately measured, a composite error could be calculated that represented the deviation a particular map symbol had from true ground location. If the symbol was linear, such as a river, road, or administrative boundary, this deviation would take the form of a band of error, termed the epsilon band, about the line. This epsilon band is defined as a constant distance, or tolerance, from either side of the line and from its two end-points, and can be described as the "area occupied by rolling a ball along the line" (Chrisman, 1982, p. 160). A simple example serves to illustrate the calculation of epsilon distance. In many industry requests for digitizing services, there is usually a contract clause stating that the final product (the digitized line) cannot vary more that one-half line width from the drafted line on the manuscript. If the line was 0.5 mm , this means the digitized line cannot vary by more than $+/-0.25 \mathrm{~mm}$ from the edges of the line. The digitized line will fall somewhere within a band $1.0 \mathrm{~mm}(.5+.25+.25)$. This, then, is twice the epsilon distance. If the map scale of the manuscript was $1: 24,000$, this 1.0 mm line would be 24 ground meters (78 feet).

Factors contributing to error

Many errors can occur in the map compilation process and the transformation to digital files. These may be categorized as follows:

1) resolution of the line;
2) surveying accuracy of the line;
3) errors in initial compilation;
4) errors in subsequent compilation; and
5) errors in digitizing.

Resolution of the line. In order for a line to be drawn, it must first be identified. Geographic data have varying degrees of resolution. Property
boundaries, road intersections, surveying monuments, and other cadastral data can have a fine degree of resolution, but the boundary between many natural phenomena, such as vegetation cover, is just a transitional zone that cannot be identified with a high degree of precision.

Surveying accuracy of the line. Surveying instrumentation is becoming increasingly sophisticated and precise. However, as alluded to above, their use is limited to identifiable, locatable features on the ground, not to the boundary zones common to land-use and land-cover data. The benefit of high precision of location has to be weighed against the cost of such endeavors, especially where the gain in precision can be lost to drafting and compilation errors.

Errors in initial compilation. While the fields of photogrammetry and remote sensing are rapidly advancing and our planimetric accuracy is increasing, the information gathered must still be placed on paper or plastic drafting materials by a draftsman. Human errors occur in this transfer, particularly in line tracing and registration of images. These errors are generally within a drafted line width since, in order for the eye to recognize error, there has to be a gap between lines (or other symbols) that can only occur when the lines are more than a line width apart (Chrisman, 1982, p. 162). It is also recognized that the medium on which the map is drafted can introduce errors, as in the case of paper stretch.

Errors in subsequent compilation. Maps go through many generations of reinterpretation for the purpose of compiling a new map for a specific purpose. In this sense, the new map is a 'value-added' product. Bach new compilation is subject to tracing, registration, and generalization error. Brrors introduced at one phase of the re-compilation carry over to the next generation of compilation.

Brrors in digitizing. Brrors occurring in digitizing are well documented. Perhaps the most thorough treatments to date are by Traylor (1979) and Jenks (1981). Semi-automated digitizing, where the human guides the cursor (as opposed to scanning devices), is essentially a retracing of the line, except that the feed-back loop of seeing the line disappear beneath the ink of a pen is absent. Traylor found that there is a definite correlation between digitizer error and direction of cursor movement, and that there is a tendency to 'overshoot' or 'undercut' curves in a line depending on direction of cursor travel.

Recent studies

Chrisman (1982) has studied systematic errors contributing to an epsilon band on the USGS GIRAS digital land use/land cover series. After examining the various processes used in producing these files, he calculated an epsilon band width of 15.2 meters. Testing a 100,000 hectare data base of Pittsburg, Pennsylvania, with an epsilon of 20 meters, which Chrisman considered conservative, about 7 percent of the total area fell within the epsilon band. The area in the epsilon band represents possible change of the area falling within each land use/land cover class. Chrisman was able to calculate minimum and maximum areas for each class based upon the area displaced by the epsilon band. His recommendations were to include this information as part of the dataset.

Blakemore (1984) performed asimilar study with administrative units in Great Britain. In this study, point-in-polygon checks were performed (figure 1a) to determine if a point fell within an epsilon value of 0.7071 km based upon 1 km resolution of the sample data points. He categorized a point falling within an epsilon band as being possibly in, possibly out, and ambiguously defined if it fell exactly on the digitized line. His results were not encouraging as approximately 40 percent of the sample points tested fell within the epsilon band and could not be assigned to a definite polygon. This was largely due to the wide epsilon band and data collection methods.

OBJECTIVES AND RESEARCH DESIGN

This study was prompted by a major concern of the author: that in the environment of GIS, maps compiled at different scales are often digitized and merged with map files of another scale, and analyses are performed as if the files were all of one scale and of all the same quality. This merging is typically known as overlay, or polygon overlay for lines that bound areas. The results of a polygon overlay could be polygons bounded by lines with different epsilons, as shown in figure lb. This technique of spatial correlation (the polygon overlay) can often yield significant statistics to a researcher, and is such a valuable utility of a GIS that it often forms the major design criteria of GIS software and data bases.

Figure 1. The shaded area about the polygon line in the top figure (a) represents epsilon, an error tolerance about the line due to various map compilation procedures. The labeled points are as defined by Blakemore (1984). The bottom figure (b) shows two polygons with two different epsilon bands intersecting to form a third polygon. This third polygon might be a 'sliver' polygon -- a small polygon that may or may not be significant to the cartographer. This sliver polygon may very well enclose nothing but epsilon error.

The application of this technique without any regard for the inaccuracies of the data sets should make cartographers wince, for, as shown in figure 1 b , the polygon resulting from an overlay could be completely filled with the epsilons of its neighbors, resulting in an area that has very low probability of actually existing due to locational inaccuracies. These polygons are known as 'sliver' polygons in CAC/GIS jargon. They have been viewed mainly as a computational problem since they decrease algorithm efficiency and unnecessarily increase the size of our data bases.

The objectives of this study are to measure the locational error due to generalization, construct a statistical model of this error based on probability, and finally, examine hypothetical sliver polygons for their probability of existing, in the sense of enclosing an area of some attribute. In short, this analysis is an attempt to resolve the question of when a sliver polygon is not a sliver polygon based upon a probability model of generalization.

MBASURING GENERALIZATION

Overview

Generalization can be measured by calculating the deviation of a line from its true ground position. True ground position is rarely known, except for benchmarks. A surrogate for ground-truth would be a very accurate larger scale map, relative to a generalized smaller scale map (figure 2). To carry out the task of measuring generalization error, identical stream reaches depicted on the four

Figure 2. Two lines, each representing the same thing, but drawn at different scales. The error in placement between the two lines could be measured by the area (shaded portion of the figure) created between the two.
standard USGS scales ($1: 24,000,1: 62,500,1: 100,000$, and $1: 250,000$) were used to measure the amount of deviation among the four representatives of the stream reach.

Data collection

Streams were chosen for analysis for a variety of reasons. They are a natural feature, as opposed cultural, and one assumption is that a large number of GIS data bases are of the land-management type comprised mainly of natural features. Streams are often used as state, county, province, and other administrative boundaries. As a land/water interface, streams are often used as a reference point for data collection. Because streams are sinuous with many kinks and bends, compared to roads and some other linear symbols, they are subject to a higher degree of generalization. Since the data were to be digitized, other linear features, such as roads or administrative boundaries, could not be used since they are often drawn with dashed or broken lines, hardly conducive to accurate digitizing.

Collection of stream reaches turned out to be a more difficult task than originally anticipated. The reaches had to be represented at all of the four scales as a single line and isolated from other features that might warrant positional shifts between features as scale became smaller. The maps also had to be temporally consistent so that stream courses did not change, and, of course, could not be so dated that nonphotogrammetric techniques were used in compilation. There had to be some common registration points, such as a grid line or another stream intersection, for all scales.

As it turned out, one of the best areas for finding such streams was close to home in the Oregon Coast Range. This region is tectonically stable with deeply incised streams whose courses are unlikely to change during the century of USGS map construction. This range has a consistently wet climate so the stream flow is likewise consistent (Rosenfeld, pc). These factors combined to provide a large number of permanent streams.

Out of the entire mapped Coast Range, a surprisingly low total of eight stream reaches, approximately 1500 meters long each, were found suitable for examination. More could probably be found through more intensive effort. These eight reaches are shown in figures sa and sb .

c

DC 4

Figure 3a. Stream reaches digitized for analysis. The dotted line represents the reach at $1: 24,000$ (the base line) and the solid lines represent the reach at one of the three compare scales: $1: 62,500$ (a), $1: 100,000(b)$, and $1: 250,000$ (c). Line DC2a was not used in the analysis because it is a probable temporal change and line DC3a was not used because it failed to overlay properly.

b

c

BC 3

Figure 3b. Stream reaches digitized for analysis, continued.

The end-points of the eight stream reaches, each represented at the four scales, were carefully registered to each other using a Zoom Transfer Scope, and then digitized using a semi-automated free-moving cursor digitizing tablet (. 001 inch resolution) in point mode. The data were transformed to UTM meters using an affine transformation.

Measurement

A program was written to take each stream reach and overlay it with the $1: 24,000$ representation. When overlain, the stream reaches produced polygons where the compare line (the stream reach at small scale) deviated from the base line (the $1: 24,000$ reach). The resultant polygon verticies were calculated and written to a computer file for further analysis. The end-points of the base and compare lines of each reach were closed to form polygons as if the reaches continued on indefinitely.

The captured polygons represented the amount of deviation between the base ($1: 24,000$) line and the compare line ($1: 62,500,1: 100,000$, or $1: 250,000$). At this juncture, a decision had to be made about how best to measure the deviation the polygons represented. A simple approach would be to calculate, by coordinate method, the area of each of these polygons (figure 2) and divide this area by the length of the base or compare line. This would yield an average deviation, but it is a gross measure, for it tells us nothing about the distribution of the error. The approach taken was to sample deviations at 10 meter intervals. Another program, conceptually similar to a polygon shading routine, was written to calculate these deviations.

In this program, each individual polygon was first rotated so that the two intersections of the base and compare line were vertical and orthogonal with the y-axis. Transects were calculated at 10 meter intervals and the difference between the intersection of the transect with the base and compare line was calculated (figure 4). These differences were summed, divided by the total number of transects, and then multiplied by area to attain an area weighted average. The weighted average was necessary to give importance to large versus small polygons. A second pass was made to calculate the deviation each transect had from the unweighted mean to yield the variance of each sample. The variance was also weighted by area. The weighted means and variances were used to calculate

Figure 4. How error was calculated. These polygons are from the overlay shown on line BClb in figure 3a. Bach polygon is rotated so that the intersections of the base and compare line are vertical. The transects (shade lines) are 10 meters apart. The length of each transect for each polygon was used to obtain an average length and variance.
weighted standard deviations for each stream reach. The statistics from this analysis are presented in table 1.

In all cases, the absolute value of the transect distance was used. The compare line could deviate to the left or right of the base line, yielding positive or negative averages. It was assumed that overall, the sum of these positive and negative deviations would be zero.

Error distribution about a cartographic line

The result of this analysis shows that there is a bi-modal distribution of location error due to generalization and, in part, digitizing error (figure 5). The two modes of the distribution (the weighted averages) are placed on either side of the mathematical center of the line. This center-line falls in the 'saddle' between the two modes. If the error were a single-mode distribution, the result of the overlay of the base and compare line would most often yield parallel lines, where the lines were exactly or nearly coincident. The results do not bear this out, for there were no parallel lines. The polygons were mainly long 'cigar' shapes (see figure 4), where most of the transect samples were some distance away from the base line.

TABLE 1. Results of error analysis

		1:62,500				1:100,000				1:250,000			
ID	Cl_{b}	mean	SD	$\mathrm{E}_{1 \mathbf{W}}$	CI	mean	SD	$\mathrm{E}_{1 \mathbf{w}}$	CI	mean	SD	$\mathrm{E}_{1 \mathbf{w}}$	CI
DC1	2.50	31.27	15.73	. 50	2.14	33.19	24.09	. 33	2.14 H	89.77	107.87	. 36	1.81
DC2	1.48	(Historical change)				22.22	17.16	. 22	1.22	146.65	217.28	. 59	1.13
DC3	1.75	(Overlay failed)				27.04	17.02	. 27	1.37	72.50	126.48	. 29	1.06
DC4	1.53	18.15	12.46	. 29	1.40 H	30.32	13.45	. 30	1.34	64.20	42.98	. 26	$1.23{ }^{\text {L }}$
DC5	1.13	22.12	52.88	. 35	$1.14{ }^{\text {L }}$	13.73	5.94	. 14	$1.04{ }^{\text {L }}$	107.97	202.97	. 43	1.01
BC1	1.18	17.87	14.78	. 29	1.15	22.73	22.30	. 23	1.16	111.62	234.36	. 45	1.09
BC2	1.38	35.51	22.23	. 57	1.19	15.94	23.94	. 16	1.37	86.28	261.17	. 35	1.13
BC3	1.17	19.51	13.08	. 31	1.11	20.71	9.46	. 21	1.15	129.05	262.66	. 52	1.07 H

CI = Mueller's (1968) Channel Index. Channel Index is simply the length of the stream divided by the 'crow fly' distance from its two endpoints and is used to judge stream sinuosity. CI_{b} is the Channel Index of the $1: 24,000$ stream reach.
$\mathrm{B}_{1 \mathrm{w}}=$ the width of the epsilon band as it would appear on the map, in millimeters. Values should be doubled to get actual line width.

SD = Standard Deviation
$\mathrm{H}=$ Highest standard deviation found in group.
$\mathrm{L}=$ Lowest standard deviation found in group.

The most plausible explanation for this twin-peaked curve is the undercut and overshoot tendencies that Traylor (1979) observed in digitizing, where one mode represents an undercut and the other an overshoot. It seems likely that the same undercut and overshoot would occur in manual map production processes and would be a natural consequence of generalization, 80 that the line placed on a map is rarely on the actual true location, but some mean (or epsilon) distance away. This has the disturbing consequence that the center of a drafted line is rarely on the true location, but some distance away (figure 6). For digitized lines, which have no thickness (i.e., a mathematical line), the true location of the line is most likely to be some mean distance away from the digitized line, or at the edges of the epsilon band. As to be expected, generalization only increases this distance. In generalizing, the cartographer attempts to systematically smooth the line while retaining the character of the line, intentionally straightening out corners, which is just a radical form of undercutting (for an example of this, see line DC5a in figure 3).

The area under a bi-modal curve is the same as a single-mode curve. Bquidistant between the two modes falls the digitized line, and the probability that the line is in its true ground location at this point is 0.5 . At the modes, the probability that the mode represents true location is either 0.75 or 0.25 . If we wanted the mode with the highest probability, which one would we choose? The question could be answered if we could assume that everyone undercut convex curves and overshot concave ones, but this would be dependent on tracing or digitizing direction; clockwise or counter-clockwise. Since this information is not readily available, to say the least, the question cannot be answered so we end up choosing the saddle, a 0.5 probability, the same as if we assumed that the distribution of error was a single-mode curve. However, the model is not without its utility, for it allows and easier prediction of probability, as demonstrated in the next section.

One might expect that sinuous lines would have a higher error variance compared against straight lines. The data did not seem to validate this assumption (see measure of Channel Index in table 1) because, in generalizing relatively straight lines, once the line is missed, there is less of an opportunity to 'get back on track' as there is with more sinuous lines (see, for example, lines DC1c and DC5c in figure 3).

Figure 5. Bi-modal distribution of error about a cartographic line. The distribution of error due to tracing or generalization is bi-modal, most likely due to 'overshoot' and 'undercut' when tracing a line. The result is that the true ground location of the line is more likely to be to at the peaks of the distribution and not the saddle, where the line has been placed on the map. Distribution 2 shows how the area under the curve (the probability) is calcuated.

Figure 6. How the bi-modal distribution of cartographic error is created. The bottom curve (a) represents the error distribution that might be associated with instrumentation error. The second curve (b) shows how the line would be traced, where the cartographer or digitizer operator unconsciously places the line to the left or right, or, if generalizing, consciously places the line to the left or right to smooth the line while retaining its character. The third curve (c) represents the distribution of error as it appears on the final product. It is likely that the true ground location is away from the drafted or digitized line. The final distribution shows how scale generalization affects the distribution.

Throughout the analysis, the $1: 24,000$ map was assumed to be ground-truth when in fact it is not. Bvery map is a generalization of reality, but one has to start somewhere. In practical terms, the $1: 24,000$ map series is usually the largest scale available for any particular area. In this analysis, the assumption was that the error distribution about the $1: 24,000$ line was a single-mode distribution, where the actual location is distributed evenly about a mean of zero, and the standard deviation would be based upon the National Map Accuracy Standards (90 percent of the points within 0.02 inches of true ground location).

Abstract

Summary Thirty-two different stream reaches, eight apiece from the standard USGS topographic series maps, were digitized to measure positional error due to generalization. While all due care was taken in digitization of the reaches, errors were bound to occur. How much of the observed error was attributable to digitizing versus generalization is unknown, but it is felt that the majority was due to generalization. The procedures followed are typical of most short-lived, specific purpose data base construction methods (as opposed to more concerted long-term efforts, such as the Digital Line Graphs).

The sample size is too small to make any global assumptions about generalization errors, but the statistics were sufficient to perform the next part of the analysis. Much more experimentation with a higher degree of control is needed before there can be any global solution to the question of generalization error.

CALCULATING PROBABILITY

The statistics from table 1 were used to construct hypothetical sliver polygons. The highest and lowest standard deviations (SDs) from each of the compare line map scales were discarded and the remaining means and SDs were averaged by scale (table 2). For the $1: 24,000$ series, a mean of zero was used and a standard deviation of 7.41 meters was calculated based on the National Map Accuracy Standards that 90 percent of the well-defined points fall within 0.002 inches (0.508 mm) of their true ground position.

TABLE 2. Statistics used in probability analysis.

Scale	Mean	SD
1:24,000	0.00	7.41
1:62,500	26.04	16.46
1:100,000	23.16	17.22
1:250,000	102.13	191.67

Method

A program was written that constructed square polygons of varying areas. The mean and SD of each side of the square could be specified, as well as a start length (in meters) for each side of the square. Figure 7 shows two such polygons. The solid exterior line of the polygons in this figure represent a digitized boundary while the dotted interior lines represent the mean (epsilon) distance from the boundary based on table 2. These hypothetical polygons represent sliver polygons resulting from a polygon overlay.

Once the means and SDs were input, $\mathbf{3 0 0}$ random points, a sufficiently large sample, were placed inside the boundaries of the square and the Z-score of each of these points from each of the four sides were calculated. If we consider that the sides of the square represent boundary lines, then probabilities can be calculated (from the individual Z -scores) that represent the likelihood that the point is actually the attribute on that side of the boundary line. The total probability that the point is actually the attribute bound by the four sides is some function of the four separate probabilities. Three measures could be used here. One is the average of the four probabilities. A second is that the total probability is that of the side of the square that is closest to the point (minimum distance to mean). The third measure is that of the side of the square that is closest in terms of standard deviation units (minimum Z-score). Bach measure has its advantages and disadvantages. The average probability for a point right next to a line with a high epsilon would be offset by the higher probabilitiy it attained from the line directly opposite, which could have a low epsilon. The minimum distance to mean assumes a distance-decay function where the closest line exerts the most influence. The minimum Z-score assumes that the total probability is a function of the most inaccurate line (the line with the highest SD) that is closest to the point. As would be expected, the average probability was much higher in all cases. For squares

Figure 7. Hypothetical polygons constructed from a polygon overlay process using maps at three different scales. Polygon A shows how probability is calculated. A random point is generated that falls within the area bounded by the solid line, which represents the polygon boundaries. The line on the left is a $1: 100,000$ line, the top line is $1: 62,500$, and the bottom and right lines are $1: 250,000$. The dotted lines represent the weighted means from Table 2. The curve at the top shows the bi-modal distribution. The point's probability of being the attribute associated with the line on the right can be calculated by determining its distance from the mean and dividing by the standard deviation of that line. The probability of the point being the attribute associated with the entire square is some function of the probabilities associated with all 4 lines.
with all the same mean and standard deviation, the minimum distance to mean and minimum Z-score were identical. For squares made of sides of different scales, the minimum distance was a percentage point or two higher than the minimum Z-score until around 0.80 to 0.85 confidence, when they became nearly identical.

The program would iterate by doubling the lengths of the sides of the squares until all three measures of probability exceeded 0.99 . At the end of each iteration, the average, minimum distance, and Z -score measures were output. A sample output is shown in figure 8.

The minimum Z-score probabilities were graphed against the area of the square, as shown in figure 9. Squares made up of lines of all the same scale are shown, as well as a few selected combinations that might result from a polygon overlay. There were many possible combinations of lines and only a few were tested. The initial chosen side length of the square was twice the value of the highest epsilon so that the epsilons would not overlap. These graphs can be read by selecting the confidence desired from the y-axis and reading the minimum area required to meet this confidence from the x-axis. The area was transformed to \log (base 10) simply because the wide range of area values made it impossible to graph if the values were not transformed.

Abstract

Analysis If we could assume for a moment that the generalization error calculated here was an accurate measure of all generalization error, regardless of what features were generalized, then the cartographer has an extremely valuable set of information from which to make decisions about the design of a map. One general rule of thumb is that any polygon with an area equal to epsilon squared is the minimum area to be mapped; anything less would imply that the polygon boundary lines would cross each other. For example, on a $1: 100,000$ map, an square of $536 \mathrm{~m}^{2}$ (epsilon squared) is but $0.23 \mathrm{~mm}(0.009 \mathrm{in}$) on a side, and this would be the minimum mappable areal unit. For a $1: 250,000 \mathrm{map}$, the area would be $10,430 \mathrm{~m}^{2}$, or $0.41 \mathrm{~mm}(0.016 \mathrm{in})$ on a side. Beyond this, the probability curve in the top of figure 9 could be used to determine minimal areas to be mapped. Here, for example, if we wanted to have a 99 percent confidence that an area contained 'a thing' or attribute, then the minimal mapping unit would be about $11 \mathrm{~km}^{2}$ on a

ANALYSIS OE AREAL PROBAEILITY

LINE (T,E,L,K)	MEAN	SW	SCALE
T	26.04	-16.46	62500
G	102.13	191.67	250000
L	23.16	17.22	100000
F	102.13	191.67	250000

This is a systematic rarioom sample...
Start lerigtr $=205.0$ meters
lricremerit miltiplier $=2.0$
Program will stop when all protatilities $>=99.00$ Numtier of rarisom points gerierated per pass $=300$

*	LENGTHm	AREA (k.m)	PROBAEILITIES		
			$3 \vee 3$	mirill	miric
1.	205.0	0.042	84.40	69.82	68.47
2	410.0	0.168	89.95	76.32	74.66
3	820.0	0.672	94.66	84.30	83.38
4	1640.0	2.690	97.30	91.03	90.61
5	3280.0	10.758	98.65	95.16	95.08
5	6560.0	43.034	99.33	97.59	97.51
7	13120.0	172.134	99.65	98.70	98.65
8	26240.0	688.538	99.83	99.34	99.34

Figure 8. Sample output from the probability analysis.

Figure 9. Graphs of probability versus area of hypothetical polygons. In the top graph, the squares were made of lines of all the same scale. In the bottom graph, the squares were made of lines of different scales. This information would be valuable to a GIS user to eliminate sliver polygons or to place some confidence in the results of a polygon overlay process.
$1: 62,500 \mathrm{map}$ (a square about 53 mm or 2 in on a side). If more data were available, we could build a regression equation that would predict scale versus confidence versus minimal mapping area, and use this to determine optimum scale. In an automated environment, one novel approach might be to always output a map with lines having thicknesses scaled to epsilon, so that the map reader receives a visual clue regarding line accuracy.

The graph at the bottom of figure 9, showing squares made of polygons of different scales, contains no real surprises. Generally, the combination of scales averages out so that the probability curve falls somewhere between the largest and smallest scale. No attempt was made to mathematically determine the relationship between the confidence interval and scales used, although such a determination could undoubtably be done.

There are some obvious problems with the data and the analysis. First and foremost is the fact that a very limited data set was used to calculated generalization error. Secondly, there is an assumption made that a linear feature, such as a stream, will form a polygon boundary. One rarely draws polygons made of nothing but stream segments. It should also be noted that the attribute of a polygon and the purpose of the map have much to do with the confidence one places with the data. For instance, a polygon of some forest type may just be the demarcation of an area of homogeneous heterogeneity, where the boundary is a transistional zone whose width is far greater then an epsilon band resulting from generalization error.

CONCLUSION

As cartographers enter the structured, logical world of map automation, their assumptions about the accuracy of a map should likewise become structured and logical. Cartographic convention must be transformed from an intuitive graphic language to a structured mathematical language if we are to commit ourselves to automated methods. Nowhere is this more evident then in the interplay of map scale and generalization, where the cartographer feels his/her way through the nuances of map design to present a map that communicates the limitations of the data. This study is one attempt to quantify this process. No claim is made
towards a solution, for the study is limited. Rather, it is hoped that the methods and analysis presented here will lay some groundwork for further study. It has been shown that a map symbols can be viewed as a surface of probability and as such, cartographic convention can be programmed into our systems so that informed decisions can be made.

REFERENCES

Michael Blakemore, "Generalisation and Brror in Spatial Data Bases", Auto-Carto Six, Selected Papers, David Douglas, ed., Cartographic Monograph Series, 32-33, Vol. 21, No. 2 \& 3, Toronto:University of Toronto Press, 1984, pp. 131-139

Nicholas R. Chrisman, "A theory of Cartographic Error and its Measurement in Digital Data Bases", Proceedings of Auto-Carto 5, Environmental Assessment and Resouce Management, Jack Foreman, ed., American Society of Photogrammetry and American Congrees of Surveying and Mapping, 1982, pp. 159-168

George F. Jenks, "Lines, Computers, and Human Frailties", Annuals of the Assoc-

 iation of American Geographers, March, 1981, pp. 1-10
Jerry B. Mueller, "An Introduction to the Hydraulic and Topographic Sinuosity Indexes", Annuals of the Association of American Geographers, June, 1968, pp. 371-985

Arthur H. Robinson, Randall D. Sale, and Joel L. Morrison, Elements of Cartography, 4th edition, New York:John Wiley \& Sons, 1978

Charles T. Traylor, "The Evaluation of a Methodology to Measure Manual Digitization Error in Cartographic Data Bases", unpublished doctoral dissertation, University of Kansas, 1979
J. Perkal, "On the length of empirical curves", Discussion Paper 10 Ann Arbor MI, Michigan Inter-University Community of Mathetical Geographers, 1966

APPENDICIRS

APPENDLX A - Programs
APPBNDLX B - Reports from PASTA OVBRLAY and TRANSBCTAPPBNDLX C - Reports from program BOX
APPENDDX D - Maps and stream reaches used in analysis

APPENDIX A

Programs

All programs were written on a Tektronics 4051 in BASIC. This machine is a real beauty, except that it is limited to 32 K memory which limited the analysis somewhat. As it turned out, I was limited to lines of less than 100 points. The memory limitation also has the unfortunate side effect of limiting the number of REMARKS, so the some of the programs, especially TRANSBCT, are poorly documented. I went through and briefly annotated some sections by hand.

A total of 5 main programs were used. They are as follows:

1) DIGITIZB
2) PASTA OVERLAY
3) TRANSBCT
4) $B O X$
5) PLOTLINES

DIGITIZB is used to digitize the lines. It is a slight modification of A. Jon Kimerling's basic digitizing program. The program first asks for a line description which becomes a file header to the digitized line. CAUIION: this program will 'mark' a file of 5000 bytes on the tape. 'Marbing' a file requires that the file be the last file on tape. If you mark a file in the middle of the tape, all flles after that are lost.

PASTA OVBRLAY is the program that creates the polygons. It asks for a base line file number and a compare line file number. It requests the scale of each line as terminal input. A POLYGON file number is also requested. CAUTION: like DIGIIIZB, PASTA OVBRLAY will mark a file (of 10,000 bytes). The two lines will be drawn to the screen. When a polygon is calculated, it is traced on the screen. PASTA OVBRLAY takes a while to tra.

TRANSBCT calculates the deviations, variences, standard deviations, and a whole host of other statistics, and outputs a report.

BOX constructs the hypothetical polygons from terminal input and calculates probabilities. It is fairly straight-forward.

PLOTLINB simply plots the lines as shown in figures $\mathbf{3 a}$ and $\mathbf{3 b}$ in the main text. It is included here as an example of how to drive the HP plotter.

DIGITIZE

20

30 PEM大
40 REM program to digitize lines for arialysis．Modification
40 REMA of AJ Kimerling＇s original digitize progran．Uses
50 REMk ari affirie trarisformation．．
60 REMA大夫A
70 CALL＇KATE＇，1200，5，0
80 INIT
90 DIM X4（100），Y4（100）
100 PRINT＂LGTCO Digitizer to x, y, z coordiriate program＂
110 PRINT •JIritialize Digitizer for Coordiriate calculation．＂
120 PRINT＇Type＇R＇wher ready．．．＂；
130 INPUT Q\＃
$140 \mathrm{E} 2=47400$
150 FRINT JKRewind and eject Frogram Tape，insert Ilata Tape＇
160 PRINT＇Type＇k＇when ready．．．＇；
170 INPUT Q
180 FKINT EJEriter llata Eile number．．．\cdot ；
190 INFUT I9
200 EINLI I9
210 MARK 1，5120
220 EINII I9
230 PKINT＂IEniter line description：＂
240 INFUT A4
250 FKINT E33：A
2G0 PRINT＇JEnter the minimum and maximum Eastings：＂
270 INPUT CO．Cl
280 FRINT＇JEnter the mirimum and maximum Northings：＂
290 INPUT［10，［1
300 PKINT •JEriter the iriterval between grid ticks：•；
310 INFUT TO
320 PAGE
330 FRINT J Jلigitize 3 control points
340 INPUT E40：X1，Y1
350 INPUT e40：X2，Y2
360 INFUT $240: \times 3, Y 3$
370 FRINT X1；Y1；X2；Y2；X3；Y3
380 PRINT Correct？（Y or N ）．．．．g．＂
390 INFUT $Q *$
400 IE $Q \$=^{\circ} N^{\circ}$ THEN 330
410 PkINT Eriter 3 grid coordiriates corresporiding with those digitiaed．
420 FRINT＂g．
430 INFUI MI，N1，M2，N2，M3，N3
440 PRINT＂G＂
450 PKINT Correct？（Y or N）．．．•；
460 PRINT＂G．
470 INFUT Q
480 IE QS＝＇N＇THEN 410
$490 \mathrm{D}=\mathrm{X} 1 \star \mathrm{Y} 2+\mathrm{Y} 1 \star \mathrm{X} 3+X 2 \star Y 3-Y 2 \star X 3-X 2 \star Y 1-X 1 \star Y 3$


```
OIGITIZE (cont.)
510 A2=(X1*M2+M1*X3+X2*M3-M2*X3-M1*X2-X1*M3)/I1
520 A3 = (X1*Y2*M3+Y1*M2*X3+M1*X2*Y3-M1*Y2*X3-Y1*X2*M3-X1*M2*Y3)/L
530 B1=(N1*Y2+Y1*N3+N2*Y3-Y2*N3-Y1*N2-N1*Y3)/L
540 B2=(X1*N2+N1*X3+X2*N3-N2*X3-N1*X2-X1*N3)/I
550 B3=(X1*Y2*N3+Y1*N2*X3+N1*X2*Y3-N1*Y2*X3-Y1*X2*N3-X1*N2*Y3)/口
560 20=-1
570 PRINT "Bigitize the start point three times"
580 X8=0
590 Y8=0
G00 EOK I=1 TO 3
610 INFUT E40:X,Y
G20 X8=X8+X
630 Y8=Y8+Y
640 PKINT "G"
650 NEXT I
GEO X8= X8/3
670 Y8=Y8/3
BBO PRINT "Now digitize the erid point three times"
690 X9=0
700 Y9=0
710 EOK I=1 T0 3
720 INFUT C40:X,Y
730 X9=X9+X
740 Y9=Y9+Y
750 FEINT 'G*
7GO NEXT I
770 X9=X9/3
780 Y9=Y9/3
790 X4(1)=A1*X8+A2*Y8+A3
800 Y4(1)=81*X8+E2tY8+E3
810 I=1
830 FKINT "JDigitize the line - wher, done digitize the ENII LINE dot"
830 PRINT Maximım of 100 points per line"
840 FRINT No. E N=
850 FRINT E32,26:2
8G0 PKINT X4(1),Y4(I)
870 INPUT E40:X,i
880 PKINT X4(I), Y4(I)
890 PRINT "GK"
900 IE 1-100 THEN 1390
910 IE X`E2 THEN 980
920 I= I +1
930 X4(I)=Al AX+AZ \ Y +A3
940 Y4(I)=E 1 kX+E 2kY+E3
950 IE I<゙>50 THEN B70
960 PRINT '50 pointsGGG*
970 GO TO 870
980 FKINT "J.Nine is digitized!G"
990 FRINT E32,26:0
1000 PKINI 'JJo you want to see a display of this line?(Y or N)...G";
```

```
aIGITIZE (cont.)
1010 INPUT Q*
1020 IE Q&='N' THEN 1170
1030 PAGE
1040 UINLOW CO,Cl,DO,DI
1050 S=(D1-DO)/(Cl-CO)
1060 IE S<1 THEN 1090
1070 UIEWPORT 0,100/S,0,100
1080 GO TO 1100
1090 VIEWFORT 0,100,0,100*S
1100 AXIS TO,TO
1110 MOVE X4(1),Y4(1)
1120 FGK J=2 TO I
1130 DRAN X4(J),Y4(J)
1140 NEXT J
1150 PRINT "mWheri through viewing,enter 'R`...g.';
11GO INFUT Q$
1170 I= I+1
1180 IF 1<100 THEN 1200
1190 I=100
1200 X4(I)=Al*X9+A2太Y9+A3
1210 Y4(I)=E1AX9+E 2tY9+E3
1220 EOR J=1 TO I
1230 PRINT e33:X4(J),Y4(J)
1240 NEXT J
1250 CLOSE
1260 FRINT "Number of points= ";I
1270 PRINT "JIigitize arother?(Y or N):";
1280 INPUT QS
1290 IE Q$='N* THEN 1430
1300 P&INT "Eriter file riumber:";
1310 INFUT I9
1320 EINI I9
1330 MARK 1,5120
1340 FINI I9
1350 FKINT 'Enter descriptiori:"
1360 INPUT A$
1370 PKINT E33:A*
1380 GO T0 570
1390 FOK 1=1 TO 10
1400 HOME
1410 PRINT "Give up! Too many coordinates!gGggin"
1420 NEXT I
1430 END
```

END OF DIGITIZE PROGREM

PASTA OVBRLAY

```
20 PAGE
30 X=100
40 Y=X*2
50 DIM LI(2,X),L2(2,X),A(2,Y+5),M1(X-1),M2(X-1)
60 DIM Tl(X),T2(X)
70 P1=1
B0 P2=1
90 X=1
100 Y=2
110 11=0
120 12=0
130 B=0
140 E1=0
150 B2=0
160 N1=]
170 N2=1
180 k=7
190 F9=0
```



```
210 PRINT "* *"
220 PKINT "* PASTA OUERLAY PROGRAM **
230 FRINT "* by *"
240 PKINT "* IIale M. Horieycutt *'
250 FRINT "* *"
```



```
270 PRINT " *
280 PFINT " "
290 PRINT 'EJECT THIS PROGRAM TAFE, INSERT DATA TAFE, HIT RETURN";
300 INFUT A&
310 FKINT * "
320 PKINT 'Eniter experiment riumteer:';
330 INFUT E
340 PKINT 'Enter file number of tase line: ";
350 INFUT J
360 EIND I
370 INPUT E33:A$
380 FKINT "Llescraption is:"
390 PRINT AS
400 PRINT 'Enter scale of line:';
410 INFUT S8
\triangle20 PKINT 'MAKE SURE FRINTER IS HOOKEI UP, THEN HIT RETURN';
430 INFUT E$
440 CALL 'RATE",600,5,0
450 D&=CHR(15)
460 PRINT E40:II$
470 PRINT E40:'J"
480 PRINT 240:"J."
490 PRINT Q40: USING 500:
500 IMAFEISX'OREFORT OF LINNE OUERLAYY--J.*
```

```
PASTA OUERLAY (corit.)
510 FKINI e40:"J.'
520 PRINT E40: USING 530:E
530 IMAGEIOX, "This is experimerit rumber ",3D,"J.
540 PRINT 040: USING 550:]
550 IMAGEIOX, "Ease lirie file riumber: ",3I,"J."
560 ON EOE (O) THEN 60&
570 INFUT E33:LI(X,N1).LI(Y,N1)
580 NI=NI+J
590 GO TO 560
600 FRIN'{ E40: USING 620:LI(X,1),S8
G10 N1=N1-1
620 IMAFEElOX,"Start X-pt: ", 100,3X,"Scale: l:".7I,.j"
630 FRINT E40: USING G40:LI(Y,1),N]
G40 IMAGEIOX,"Start Y-pt: ", 10D,3X,"Numtier of points: ",4U,"J."
650 FRINT E40: USING GGO:LI(X,NI)
660 IMAGE10X, "Erid X-pt: ", 2X,10I,"J."
670 FRINT E40: USING 680:LI(Y,N1)
G80 IMAFEIOX, 'Erid Y-pt:",3X,10I,"J.
G90 FKINT E40: USING 700:
700 IMAGEIOX,'ILescriptionI."
710 PRINT E40: USING 720:A&
720 IMAGE1OX,78A,'J.
730 FRINT E40:"J"
740 PRINT E40:"J."
750 FRINT Eriter compare line file numtier: ";
7GO INFUT 1
70 EINLI I
780 INPUT E33:E$
790 PRINT "Lescription is:*
800 PRINT E$
310 FKINT "E'riter scale of this line:":
820 INFUT S9
B30 FKINT E40: USING 840:I
840 IMAGEIOX, "Compare line file rumber",3[,"J"
850 ON EOE (0) THEN 890
8G0 INPUT E33:L2(X,N2),L2(Y,N2)
870 N2=N2+1
880 GO TO 850
890 FRINT E40: USING 620:L2(X,1),59
900 N2=N2-1
910 PRINT E40: USING 640:L2(Y,1),N2
920 PRINT E40: USING GGO:L2(X,N2)
930 PKINT E40: USING 680:L2(Y,N2)
940 PRINT e40: USING 700:
950 PRINT E40: USING 720:B$
9G0 PRINT E40:`J"
970 FRINT E40:`J."
9B0 PRINT *
990 FRINT Enter file to write polygons to:";
1000 INFUT F
```

```
PASTA OVERLAY (corit.)
1010 EINI R
1020 MARK 1,1024(
1030 EINI K
1040 PRINT e33:E
1050 PRINT P33:A*
1060 FRINT P33:S8
1070 PRINT e33:E*
1080 FRINT E33:S9
```



```
1100 REMt Now calculate slopes for line segments, line distarices
lll0 REMA arid min/max's. Dutput to report.
```



```
1130 21=L1(X,1)
1140 22=Ll(X,1)
1150 23=L1(Y,1)
1160 24=L1(Y,1)
1170 FOK I=1 TO NI-1
1180 IE Ll(X,I)<>Ll(X,I+1) THEN 1200
1190 L1(X,I+1)=L1(X,I+1)+1.0EE-3
1200 2=L1(X,I+1)-Ll(X,I)
1210 U=L1(Y,I+1)-Ll(Y,I)
1220 [1=[11+SOR(AES(U^2+Z^2))
1230 IF 2<`O THEN 1260
1240 FKINT "VERTICAL LINE SEGMENT ON EASE LINE, SEGMENT* ",I,"g.
1250 STOF
1260 kl(I)=U/Z
1270 Z1=Z1 MIN Ll(X,I)
1280 22=Z2 MAX LI(X,I)
1290 Z3=%3 MIN Ll(X,I;
1300 Z4=24 MAX Ll(Y,I)
1310 NEXT ]
1320 Zl=21 MIN Ll(X,Nl)
1330 Z2=Z2 MAX Ll(X,N1)
1340 23=23 MIN Ll(Y,N1)
1350 Z4=Z4 MAX LI(Y,N1)
1360 PKINT E40: USING 1370:[1
1370 IMAGE10X,"Ease lirie distance: ',loII,"\"
1380 25=L2(X,1)
1390 ZG=L.2(X,1);
1400 Z7=L2(Y,1)
1410 Z8=L2(Y,1)
1420 EOR I=1 TO N2-1
1430 IE L2(X,I)<<>L2(X,I+1) THEN 1450
1440 L2(X,I+1)=12(X,I+1)+1.OE-3
1450 Z=L2(X,I+1)-L2(X,I)
1460 U=L2(Y,I+1)-L2(Y,I)
1470 D2=02+SQR(AES(U^2+Z^2))
1480 IE Z<O THEN 1510
1490 PRINT "VERTICAL LINE SEGMENT ON COMPARE LINE, SEGMENT* ",I,"G."
1500 5TOF
```

```
PASTA OUEKLAY (conit.)
1510 M2(I)=U/Z
1520 21=Z1 MIN L2(X,I)
1530 22=22 MAX L2(X,I)
1540 23=Z3 MIN L2(Y,I)
1550 24=24 MAX L2(Y,I)
1560 NEXT J
1570 Z1=Z1 MIN L2(X,N2)
1580 Z2=Z2 MAX L2(X,N2)
1590 23=23 MIN L2(Y,N2)
1600 Z4=Z4 MAX L2(Y,N2)
1610 FRINT E40: USING 1620:D2
1620 IMAGEIOX, "Compare line distarice: ",loL,"I."
1630 Z=L1(X,1)-LI(X,N1)
1640 U=L1(Y,1)-LI(Y,N1)
1G50 1%=SQR(Zn}2+\mp@subsup{U}{}{m}2
16G0 FRINT E40: USING 1670:D1/[I3
1670 IMAGE'J.", 10x, 'Chaririel Iridex for tase line: ",3d.2d, 'J."
1680 Z=L2(X,1)-L2(X,N2)
1690 U=LZ(Y,1)-L2(Y,N2)
1700 13=SQ&(Z`2+U"2;
1710 YKINT E40: USING 1720:112/D3
1720 IMAGEIOx, Chanmel inusex for compare line: ",3山.2d," ."
1730 HFINI E33:W1
1740 FRINT E33:L2
```



```
1760 REMt Now we'll Ar.3W lines to screeri. Eirst calculate miri/ma%.
```



```
1780 Z1=%l MIN Z5
1790 Z2=Z2 MAX 2G
1800 23=23 MIN 27
1810 Z4=24 MAX 28
1820 IE Z2-Z1>Z4-Z3 THEN 1860
1830 G1=90
(840 G=(Z2-Z1)/(Z4-Z3)*90
1850 GO TO 1880
1860 G=90
1870Gl=(Z4-Z3)/(Z2-Z1)*90
1880 WINHOW Z1,Z2,Z3,Z4
1890 UIEWHORT 5,G+5,5,G1+5
1900 PAGE
1910 MOUE Ll(X,1),Ll(Y,1)
1920 EOR I=1 TO N]
1930 DRAW LI(X,I),LI(Y,I)
1940 NEXT J
1950 HOUE L2(X,1),L2(Y,1)
19G0 EOR I=1 TO N2
1970 URAW L2(X,I),L2(Y,I)
1980 NEXT ]
1990 HOME
2000 FRINT A$
```

```
PASTA OUERLAY (cont.)
    2010 FRINT 8$
2020 FKINT Experiment number: ";E
```



```
2040 REMt Now for the guts of the overlay routine!
```



```
2060 P1=1
2070 P2=1
2080 Il=LI(X,1)
2090 I2=L1(Y,1)
2100 F4=1
2110 EOK I=1 TO NI
2120 T1(I)=0
2130 NEXT I
2140 EOK I=1 TO N2
2150 T2(1)=0
2160 NEXT ]
```



```
Z180 EEMA TOF OF SEGMENT INTERSECTION LOOF
```



```
2200 EEM**** KEEP THIS REMARK, IT'S A 'GOTO" LABELI
2210 KEMA Calculate equatiori coristarits, solve ty Cramer's rule.
2220 REM****
2230 Cl=M1(Y1) ALI(X,P1)-LI(Y,F1)
2240 Al=Ml(F1;
2250 C2=M2(F2) AL2(X,F2)-L2(Y,F2)
2260 A2=M2(F2)
2270 !1=-A1+A2
2280 FEMA大*A
2290 REMA Yarallel liries if determinate=0 (D)
2300 REMA大夫t
2310 IE I<>O THEN 2410
2320 REM大夫大*
2330 KEMA Here for parallel limes. If Cl<>C2, theri they have nothing
2340 REMA in commori.
2350 KEMA大**
2360 IE C1<<C2 THEN 2850
2370 GO T0 4490
2380 REM大太大t
2390 REMt Einud iritersection.
2400 REM大*大t
2410 Yl=(Al*C2-A2*C1)/II
2420 X1=(-C1+C2)/I
2430 REM大夫t*
240 REMt LOES XI&Yl fall withiri toth MER's?
2450 REMA大丈*
2460 E=0
2470 F1=0
2480 25=LI(X,F1) MIN LI(X,F1+1)
2490 ZG=LI(X,F1) MAX LI(X,F1+1)
2500 IE XI<Z5 OR X1>26 THEN 2550
```

```
PASTA OUERLAY (cont.)
2510 EEM大大大大
2520 REMA X' IN
2530 REMA大A大
2540 E=1
2550 25=Ll(Y,P1) MIN LI(Y,Fl+1)
2560 ZG=Ll(Y,F1) MAX L1(Y,Fl+1)
2570 IE Y1<Z5 OR Y1>Z6 THEN 2650
2580 REM大*大*
2590 REMA Y' IN
2600 REMA大大*
2610 E=E+1
2620 IE E<2 THEN 2640
2630 El=]
2640 E=0
2650 Z5=L2(X,P2) HIN L2(X,F2+1)
2GG0 ZG=L2(X,F2) MAX L2(X,P2+1;
2670 IE XI<̌Z5 OR XI`26 THEN 2720
2680 REM大*大*
2690 KEMA X', IN
2700 KEM大太大丈
2710 E=1
2720 25=L2(Y,P2) MIN L2(Y,F2+1)
2730 ZG=L2(Y,P2) MAX L2(Y,F2+1)
2740 IE YI<ZS ANI Y1>Z6 THEN 2790
2750 REM大*大*
27G0 REMA Y', IN
2770 kEM大太大*
2780 E=E +1
2790 IE E<<2 THEN 2810
2800 Fl=El+]
2810 IE El=2 THEN 3010
2820 REMA大At
2830 KEMt No initersection, iricremerit poiniters to L2
2840 KEMA大A*
2850 F2=F2+1
2860 IE F2<N2 THEN 2200
2870 REMA大t*
2880 REMt At erid of compare lirie, iricremerit base, set compare tiack.
2890 REMA大A大
2900 Pl=rl+1
2910 IE HI=NI THEN 2940
2920 P2=1
2930 G0 T0 2200
2940 Xl=Ll(X,N1)
2950 Y1=LI(Y,N1)
2960 E=1
```



```
2980 REMt Here we have iritersection. Upsate 'T' arrays. They
2990 REMt are valuat.le. They tell us what nodes are free.
```


PASTA OUERLAY（corit．）

$3010 \mathrm{Tl}(\mathrm{Fl})=\mathrm{Tl}(\mathrm{F} 1)+1$
$3020 \mathrm{~T} 2(\mathrm{P} 2)=\mathrm{T} 2(\mathrm{~F} 2)+1$
3030 REMAt大t
3040 REMA If II or $T 2$ under currerit segment equal to one．
3050 KEMt theri we have to accourit for nodes．If Il or I2
3060 REMA have something greater than one，thari there are
3070 REMA rio riodes to accourit for on this segment．To accourit
3080 REMA for rioles，we work backwaris through the＇T＇arrays．
3090 REMA If $T()=0$ ，theri stuff that riode iri．If $T()>0$ ，theri
3100 REMt stuff last intersection in and stop looping．

3120 P3＝1
3130 IE $\mathrm{H} 1=1$ ANU $\mathrm{H} 2=1$ THEN 4220
3140 REM大
3150 KEMt Fut last iritersection in．
3160 REMA大
$3170 \mathrm{~A}(\mathrm{X}, \mathrm{F} 3)=11$
$3180 \mathrm{~A}(\mathrm{Y}, \mathrm{F} 3)=12$
3190 F3＝2
3200 REMA大
3210 KEMA Has Ll segment tieen iritersected more thari once？
3220 REMA If so，no nodes on this segmerit．
3230 REMAt大t
3240 IE Tl（F1）＞1 THEN 3480
3250 REMA大
3260 REMA No－－we have riodes ir，Ll
3270 REMA大
$3280 \mathrm{~K}=\mathrm{F} 1$
3290 K＝K－1
3300 REMA大t
3310 REMA If $K=1$ ，we＇re tiack．at first segment．Start stuffing
3320 REMA nodes irito area array（A）．
3330 KEMA大
3340 IE K＝0 THEN 3420
3350 KEM大
3360 REMA If segmerit not initersected，then decrement
3370 REMA大
3380 IF TI（K）$=0$ THEN 3290
3390 REMA大
3400 KEMA Segmerit intersected，incremerit K to poirit to end node
3410 REMA大AA
$3420 K=K+1$
3430 EOR I＝K TO Fl
$3440 \mathrm{~A}(\mathrm{X}, \mathrm{F} 3)=\mathrm{L} 1(\mathrm{X}, \mathrm{I})$
$3450 \mathrm{~A}(\mathrm{Y}, \mathrm{P} 3)=\mathrm{L} 1(\mathrm{Y}, \mathrm{I})$
3460 P3＝r3＋1
3470 NEXT I
$3480 \quad A(X, Y 3)=X 1$
$3490 A(Y, P 3)=11$
3500 KEMA大 大

PASTA OUERLAY（cont．）

3510 REMA Save pointer to intersection．We write this to tape．
3520 REM 3 大
$3530 \quad \mathrm{PG}=\mathrm{F} 3$
$3540 \quad \mathrm{P} 3=\mathrm{F} 3+1$
3550 REMA
3560 KEMt Now put iri lirie 2 rodes．Same logic as tiefore－has
3570 KEMA current segment been intersected more than oncer
3580 REMA If 50 than rio free riodes on segment．
3590 REMA K A A
3600 IE T2（P2））THEN 3830
$3610 K=F 2$
$3620 \quad K=K-1$
3630 REMA大太
3640 KEMA If $K=1$ ，we＇re back to first segmerit．
3650 REM $k \star \star$
$36 G 0$ IE $K=0$ THEN 3740
$3 G 70$ REMA
3680 REMA If segmerit not intersected，go back arid decrement
3690 REMA 3 大
3700 IE T2（K）$=0$ THEN 3620
3710 REM大 B 大
3720 KEMt Segment iritersected，increment K to point to end－node
3730 REM大
$3740 K=K+1$
3750 EOK I＝F2 T0 K STEF－1
$3760 A(X, F 3)=L 2(X, I)$
$3770 A(Y, H 3)=L 2(Y, I)$
$3780 \quad \mathrm{~F} 3=\mathrm{F} 3+1$
3790 NEXT I
3800 REMA $3 \star \star$
3810 REMA Make first and last node equal
3820 KEMA大太
$3830 \quad A(X, P 3)=A(X, 1)$
3840 A $(Y, P 3)=A(Y, 1)$

3860 REMA Outpist section．Dutput to tape number of points in this
3870 KEMt polygon and the poiriter to the intersection point（fo）．
3880 KEMt Write area array，too，since we might want it．Chect．
3890 KEMA first if Bl or 42 equal to l，which mearis we have a
3900 REMt polygori that has all four points the same，the result．
3910 REMt of parallel lines．

3930 REMA KEEP THIS，IT＇S A LABEL
3940 MOUE $A(X, 1), A(Y, 1$ ；
3950 IE E1＝1 OK B2＝1 THEN 4020
3960 PRINT E33：P3，P9
3970 EOK $I=1$ TO F3
3980 FRINT e33：$A(X, I), A(Y, I)$
3990 DRAW $A(X, I), A(Y, I)$
4000 NEXT I

```
PASTA OUERLAY (cont.)
4010 F4=F4+1
4020 B2=0
4030 IE E=1 THEN 4380
```



```
4050 REMA Clean up section to iricremerit poiriters (Pl ANII P2).
4060. REMA If P2%=N2, than increment Pl by one anis set P2 back.
4070 REMt to l. Also check if this was a special parallel line
4080 REMt case (Il arnu I2 are set to something differerit).
```



```
4100 IE El=1 THEN 4910
4110 Il = Xl
4120 I2=Y]
4130 P2=Y2+1
4140 IE F2<N2 THEN 2200
4150 Fl=F1+1
4160 IE PI=N1 THEN 2940
4170 F2=1
4180 GO TO 2200
```



```
4200 REMA Special case for the very first two segmerits intersectirig.
```



```
4220 A(X,1)=L1 (X,1)
4230 A(Y,1)=L1(Y,1)
4240 A(X,2)=X1
4250 A(Y,2)=Y1
4260 A(X,S)=L2(X,1)
4270 A(Y,3)=L2(Y,1)
4280 A(X,4)=A(X,1)
4290 A(Y,4)=A(Y,1)
4300 FY=4
4310 P9=2
4320 I1 = X1
4330 I2= %1
4340 GO T0 3930
```



```
4360 REMA Here for program enu. Eire up variarice programr
```



```
4380 HOME
4390 CLOSE
4400 EOR I=1 TO 3
440 HOME
4420 FRINT * ALL DONE!GGGG:"
440 NEXT I
4440 ENI
```



```
4460 REMt Special section, for parallel lines that have chance
4470 REMt of sharinis points.
```



```
4490 IE F2=N2 OR Pl=N1 THEN 2850
4500 IIM S3(4)
```

```
PASTA OVERLAY (cont.)
4510 S3(1)=Ll(X,P1)
4520 S3(2)=L1(X,F1+1)
4530 S3(3)=L2(X,F2)
4540 S3(4)=L2(X,F2+1)
4 5 5 0 ~ D I M ~ Q ( 4 )
4560 EOR I-1 TO 4
4570 Q(I)=0
4 5 8 0 ~ N E X T ~ I ~
4590 IF S3(1)>S3(S) KAX S3(4) OR S3(1)<S3(3) MIN S3(4) THEN 4610
4600 Q(1)=1
4610 IF S3(2)>S3(3) MAX S3(4) OR S3(2)<S3(3) MIN S3(4) THEN 4630
4620 Q(2)=1
4G30 IE S3(3)>S3(1) MAX S3(2) OR S3(3)<S3(1) MIN S3(2) THEN 4650
4640 Q(3)=1
4G50 IE S3(4)>53(1) MAX S3(2) Ok S3(4)<S3(1) MIN S3(2) THEN 4710
4GG0 Q(4)=]
4670 KEMA大丈大
4680 REMA If riorie of the Q'S are set to l, theri we have
4690 REM* 'NON-INTERSECTING' parallel liries.
4700 REMA大大大
4710 K9=0
4720 K9=K9+1
4730 IE R(K9)=1 THEN 4790
4740 IE K9=4 THEN 2850
4750 GO TO 4720
4 7 6 0 ~ R E M A t * * ~
4770 REMt We have 'INTERSECTING' parallel lines.
4 7 8 0 \text { REMAt**}
4790 KEMA KEEF THIS- IT'S A LABEL
4800 El=]
4810 X1=53(K9)
4820 IE K9<3 THEN 4850
4830 Y1=L2(Y,K9-3+F2)
4840 GO TO 3010
4850 Y1=Li(Y,P1+K9-1)
48GOGOTO 3010
4 8 7 0 ~ R E M * * * * ~
4880 REMt Eritry point from clean-up section... it kriows that
4890 REMt it has a different Il and I2.
4 9 0 0 ~ K E M A 大 ה 大 ~
4910 Bl=0
4920 82=1
4930 K9=K9+1
4940 IE Q(K9)=1 THEN 4980
4 9 5 0 ~ I E ~ K G < S ~ T H E N ~ 4 9 3 0 ~
4960 PRINT -OUT OE RANGE ON K9'
4 9 7 0 ~ S T O F ~
4980 Il=S3(K9)
4990 IE K9<3 THEN 5020
5000 12=L2(Y,K9-3+H2)
```


PASTA OUERLAY (corit.)

```
5010 60 TO 4130
5020 12=L1(Y,K9-1+F1)
5030 GO TO 4130
```

ENI OE PASTA OUERLAY

TRANSBCT

```
10 EUZZ 8,1.OE-12
20 CALL RATE',600,5,0
30 C$=CHF(15)
40 FRINT E40:C*
50 REMA This program takes the outpost polygoris fron PASTA OUEKLAY
60 REMt arid calculates meari error and variarice by a trarisect
70 KEMA method.
80 FAGE
90 PRINT 'JJTRANSECT, ty Lale M. HorieycuttJ]."
100 X=100
110 Y =X*2
120 LIM H(2,X),C(2,X),WI(2,Y),W2(2,Y),SG(24),M1(X-1),M2(X-1),E9(2,X)
130 EOK I=1 T0 24
140 S9(I)=0
150 NEXT ]
1GO HRINT *SET UP FRINTER, HIT KETURN*
170 INFUT A$
180 EOK I=1 TO 3
190 PRINT E40:'J.
200 NEXT I
210 FRINT e40: USING 220:
220 IMAGE2OX,:- S T A T I S I I C S - - J.
230 FRINT E40:'J."
240 IMAGE16X,"# TOTAL AKEA AREAJ."
250 IMAGEI4X, TRAN- TKANSECT TRANS. COORI. WEIGHTEIJ"
2GO IMAGEIIX, * SECTS LENGTH METHOD METHOL AUEFAGE VARIANCEJ.
270 IMAGEIOX,:---
280 PKINT E40:"J."
290 X=1
300 Y=2
310 FRINT 'Eriter polygori file numter:";
320 INFUT K
330 EINI K
340 FRINT:
350 FRINT "Iriput distarice to test variarice:G":
360 INFUT 5
370 INFUT E33:59(23)
380 INFUT E33:A$
390 INPUT E33:59(21)
400 PKINT "JExperiment number:*.S9(21;
410 PKINT 'JEase lirie descriptiori scale:"
4 2 0 ~ P R I N T ~ A \$ * ~ \$
430 PKINT S9(21)
440 INFUT E33:E$
450 INFUT E33:S9(22)
4GO FKINT 'JCompare line descriptiori scale:"
470 FRINT E$
480 PRINT S9(22)
490 FRINT 'JHit carriage return to contiriveG.';
500 INPUT C$
```

```
TRANSECT (cont.)
510 INFUT E33:S9(15)
520 INPUT e33:S9(1G)
530 FKINT E40: USING 540:S9(23),k
540 IMAGEiOX, Experimerit riumber: ", 3I,lX, "Polygori file number: * 2H, "J]"
550 FRINT e40:' Gase lirie descriptiori:J.
560 PRINT E40: USING 590:A$
570 PKINT 040:'J Compare lirie descriptionJ"
580 FKINT e40: USING 590:E$
590 IMAGEIOX,72A,"J"
G00 FKINT 240:'JJ."
G10 FRINT E40: USING 240:
G20 PRINT E40: USING 250:
630 PRINT E40: USING 260:
G40 FRINT E40: USING 270:
650 IELETE C*
6G0 ON EOE (O) THEN 4570
G70 INFUT E33:I1,Z
G80 PASE
690 EOR I=1 TO II
700 INFUT Q33:WI(X,I),Wl(Y,I)
```



```
720 EOR I=2 TO IL-1
730 S9(1)=59(1)+W1(Y,I)*(W1(X,I-1)-W1(X,I+1))
                                    cOORDINdTE metHOD
740 NEXT J
750 S9(1)=S9(1)+Wl(Y,1)\star(Wl(X,Il)-Wl(X,2))
760 S9(1)=S9(1)+W1(Y,I1)A(W1(X,Il-1)-W1(X,1))
770 59(1)-59(1)/2
780 Z5=1.0E+20
790 Z6=1.0t+20
800 EOR I=1 TO 2
B10 Z5=Z5 MIN Wl(X,I)
820 LG=ZG MIN Wl(Y,I)
830 E(X,Y)=WI(X,I)
B40 E(Y,I)=Wl(Y,I;
85O NEXT I
860 K=1
870 N1=Z
880 N2=Il-Z+1
B90 EOK I=Z TO II
900 ZS=ZS MIN Wl(X,I;
910 26=ZG MIN W1(Y,I)
920 C(X,K)=Wl(X,I;
930 C(Y,K)=Wl(Y,I)
940 K=K+1
9 5 0 ~ N E X T ~ I ~
GGO REMA Kotate so pririciple axis is vertical.
970 SET IIE[jREES
980 Z1=1.OE+20
990 Z2=-1.0E+20
1000 Z3=21
```

```
TRANSECT (conit.)
1010 24=Z2
1020 1E K(X,1)<>B(X,N1) THEN 1040
1030 B(X,1)=B(X,1)+1.OE-4
1040 J=-ATN((E(Y,Nl)-B(Y,I))/(E(X,NI)-E(X,l)))
1050 J=90-3
1060 PRINT USING 1070:J
1070 IMAGE'Rotating by ',3[.1D, " degrees"
1080 Cl=COS(J)
1090 Sl=SIN(J)
1100 EOK I=1 TO NI
1110 Z7=(E(X,I)-Z5)*C1+(E(Y,I)-Z6)*S1
1120 B(Y,I)=(B(X,I)-Z5)*-Sl+(B(Y,I)-ZG)*Cl
1130 E(X,I)=27
1140 Z1=Z1 MIN E(X,I)
1150 22=22 MAX E(X,I)
1160 23=Z3 MIN E(Y,I)
1170 Z4=24 MAX E(Y,I)
1180 NEXT I
1190 FOK I=1 TO N2
1200 Z7=(C(X,I)-Z5)*Cl+(C(Y,I)-Z6)AS1
1210 C(Y,I)=(C(X,I)-Z5)*-Sl+(C(Y,I)-ZG)*C]
1220 C(X,I)=27
1230 Z2=22 MAX C(X,I)
1240 Z3=23 MIN C(Y,I)
1250 Z4=24 MAX C(Y,I)
1260 Z1-Z1 MIN C(X,I)
1270 NEXT 1
1280 IF Z1>0 ANII 23>0 THEN 1440
1290 LS=ABS(Z1);
1300 Z6=AES(23)
1310 EOR I=1 T0 NJ
1320 B(X,I)=B(X,1)+25
1330 B(Y,I)=E(Y,I)+2O
1340 NEXT I
1350 FOK I=1 TO N2
1360 C(X, X, ) =C(X,I)+25
1370C(Y,I)=C(Y,I)+2G
1380 NEXT I
1390 Z2=22+25
1400 21=21+25
1410 Z4=24+26
1420 23=23+26
1430 REMt INelete duplicate poinits that sometimes show up.
1440 IF }B(X,1)<>B(X,2) THEN 1510
1450 IE E(Y,1)<>E(Y,2) THEN 1510
14G0 EOR I=1 TO Nl-1
1470 E(X,I)=E(X,I+I)
1480 B(Y,I)=B(Y,I+I)
1490 NEXI I
1500 Nl=N1-1
```

```
TRANSECT (corit.)
1510 IE C(X,N2-1)<<C(X,N2) THEN 1550
1520 IE C(Y,N2-1)<>C(Y,N2) THEN 1550
1530 N2=N2-1
1540 REMK Dletermirie slopes.
1550 EOR I=1 TO NI-1
1560 IE E(X,I)<>E(X,I+1) THEN 1580
1570 B(X,I+1)=E(X,I+1)+1.0E-3
1580El=E(X,I+l)-E(X,I)
1590 E2=E(Y,I+1)-E(Y,I)
1600 IE Elく>O THEN 1630
1610 FRINT 'VERTICAL LINE SEGMENT ON BASE LINE, SEGMENT* *,I,"G:*
1G20 STOF
1630 Ml(I)=E2/El
1640 S9(17)=SQR(E1~2+E2~2)
1650 59(19)=S9(17)+S9(19)
1GGO NEXT I
1670 EOK I=1 TO N2-1
1680 IE C(X,I)<<>C(X,I+1) THEN 1700
1690 C(X,I+1)=C(X,I+1)+1.0E-3
1700 El=C(X,I+1)-C(X,I;
1710 E2=C(Y,I+1)-C(Y,I)
1720 IE El《% THEN 1750
1730 FKINT "UERTICAL LINE SEGMENT ON COMPARE LINE, SEGMENT* ',I,"员"
1740 STOF
1750 M2(1)=E2/El
17G0 S9(18)=SQR(El^2+E2^2;
1770 S9(20)=59(20)+59(18)
1780 NEXT ]
1790 REMt Uraw liries to screen.
1800 Gl=90
1810G=(22-Z1)/(24-23)*90
1820 WINDOW Z1,Z2+1.OE-3,Z3,Z4+1.OE-3
1830 VIEWFOKT 5,G+5,5,G1+5
1840 FAGE
1850 MOVE E(X,1),E(Y,1)
18G0 EOR I=1 TO NI
1870 DRAW E(X,I),E(Y,I)
1880 NEXT I
1890 MOVE C(X,1),C(Y,1)
1900 EOR I=1 TO NZ
1910 DRAW C(X,I),C(Y,I)
1920 NEXT I
1930 REM* Segment iritersectiori loop.
1940 HOME
1950 PKINT 'S (step)= ',S
1960 PRINT * *
1970 K=1
1980 F=1
1990 Pl=1
2000 S1=23
```

```
TRANSECT (corit.)
2010 C1=M1(F1) АE(X,P1)-E(Y,P1)
2020 Al=M1(Fl)
2030 H=0
2040 IE Al<`O IHEN 2160
2050 IE Cl<>-S1 THEN 2340
2060 Wl(X,F)=E(X,Fl)
2070 Wl(Y,P)=51
2080 F=P+1
2090 IE Pl=Nl+1 THEN 2410
2100 Wl(X,F)=E(X,Fl+1)
2110W1(Y,P)=Sl
2120 H=1
2130 F=F+1
2140G0 T0 2340
2150 REMt Eirnd iritersection & draw...
2160 Xl=(-Cl-S1)/-A]
2170 X8=6(X,F1) MIN E(X,Pl+1)
2180 X9=E(X,P1) MAX E(X,Fl+1;
2190 IE XI<XB OR XI>X9 THEN 2340
2200 Wl(X,F)=Xl
2210 W1(Y,H)=Sl
2220 MOVE Wl(X,F),Wl(Y,P;
2230 HKAW Z2,Wl(Y,P)
2240 URAW Zl,Wl(Y,F;
2250 H=1
2260 P=F+1
2270 51=51+5
2280 IE Sl<=Z4 THEN 2040
2290 Fl=Pl+1
2300 IE Pl=NI THEN 2410
2310 Sl=Z3
2320 GO T0 2010
2330 kEMk Here for ro iritersection. Step the Y iricrement
2340 Sl=Sl+5
2350 IE Sl<=Z4 AND H=O THEN 2040
2360 Fl=Pl+1
2370 IF Fl=NI THEN 2410
2380 Sl=23
2390 GO TO 2010
2400 REMAAKA \ INTHRSECT COMPAR& CINK
2420 P=1
2430 P1=1
2440 Sl=23
2450 Cl=M2(Fl)*C(X,P1)-C(Y,F1)
2460 Al=M2(Fl;
2470 H=0
2480 IE Al<>O THEN 2600
2490 IE Cl<>-SI THEN 2780
2500 W2(X,F)=C(X,F1)
```

```
TRANSECT (corit.)
2510 H2(Y,P)=S1
2520 F=F+1
2530 IE FI=N2+1 THEN 2850
2540 W2(X,F)=C(X,P1+1)
2550 W2(Y,P)=S1
2560. }H=
2570 P=P+1
2580 GO TO 2780
2590 REMt Eirid iritersectiori
2600 Xl=(-Cl-S1)/-A]
2610 X8=C(X,F1) MIN C(X,Fl+1)
2620 X9=C(X,F1) MAX C(X,Fl+1)
2630 IE XI<X8 OR XI>X9 THEN 2780
2640 W2(X,P)=X1
2650 W2(Y,F)=S1
2G60 MOUE W2(X,P),W2(Y,F)
2670 UKAW Z2,W2(Y,F)
2680 [IRAW Zll,W2(Y,P;
2690 H=1
2700 F=F+1
2710 51=51+5
2720 IF 51<<=24 THEN 2480
2730 F1=F1+1
2740 IE Fl=N2 THEN 2850
2750 51=25
2760 GO TO 2450
2770 REM* No intersectior,
2780 51=51+5
2790 IE S1<<=Z4 ANI H=0 THEN 2480
2800 Fl=Fl+1
2810 IE Pl=N2 THEN 2850
2820 51=23
2830 60 T0 2450
2840 KEMt Now sort this gartuage.
2850 T2=F-1
2860 HOME
2870 FRINT *
2880 FRINT 'Sortirig..."
2890 FOR I=1 TO N2
2900 Eg(X,I)=E (X,I)
2910 Eg(Y,I)=E(Y,I)
2920 NEXT I
2930 Xl=1
2940 <2=2
2950 K=(Z4-Z3)/5
2960 K=K+1
2970 K=INT(K)
2980 EOK l-1 TO K+3
2990 E(XI,I)=-1
3000 E (X2,1)=-1
```

TRANSECT（cont．）
3010 NEXT I
3020 KEMA Fill array with intersections，sorting on the fly．
3030 IE T1く1 THEN 3080
3040 ER I＝1 TO TI
$3050 \mathrm{~J}=\operatorname{INT}((W 1(Y, I)-Z 3) / S+1.00001)$
$3060 \mathrm{~B}(\mathrm{XI}, \mathrm{J})=\mathrm{Wl}(\mathrm{X}, \mathrm{I})$
3070 NEXT I
CALCULATE POINTER TO

3080 IE T2く1 THEN 3140
3090 ER IT TO TL
$3100 \mathrm{~J}=1 \mathrm{NT}((\mathrm{W} 2(\mathrm{Y}, \mathrm{I})-23) / 5+1.00001)$
$3110 \mathrm{E}(\mathrm{X} 2, \mathrm{~J})=\mathrm{W} 2(\mathrm{X}, \mathrm{I}$ ； ARRAY

3120 NEXT I
3130 REM X Avert your eyes．This gets ugly．．．
$3140 \mathrm{G}=1$
3150 EON $I=G$ TO $K \quad$ CHECK IF NO INTERSECTION FOR
3160 IE $E(X 1, I)=-1$ THEN $3190 \quad$ THO Y－COORDINATE ON BASE LINE
3180 GO TO 3350
$3190 \mathrm{~L}=\mathrm{I}$
$3200 \mathrm{H}=\mathrm{O}$
$3210 \mathrm{Z5}=(\mathrm{I}-1) \star 5+23$
3220 ER $\mathrm{I}=1$ TO TR
3230 IE W2（Y，I）>25 THEN 3270
3240 IE $W 2(X, I)=E(X 2, L)$ THEN 3270
$3250 \quad \mathrm{E}(\mathrm{X} 1, \mathrm{~L})=\mathrm{W} 2(\mathrm{X}, \mathrm{I})$
$3260 \quad H=1$
3270 NEXT I
3280 IE $H=1$ THEN 3330
3290 E OR I＝1 TO TR
3300 IE W2（Y，I）く＞Z5 THEN 3320
$3310 \mathrm{E}(\mathrm{XI}, \mathrm{L})=\mathrm{W} 2(\mathrm{X}, \mathrm{I})$
3320 NEXT I
$3330 \mathrm{G}=\mathrm{L}+1$
3340 IE GK THEN 3150
$3350 \mathrm{G}=1 \quad$ DO THE SAME CHECK FOR THE
3360 FOR InG TO K
3370 IE $E(X 2, I)=-1$ THEN 3400
3380 NEXT I
339060 TO 3580
$3400 \mathrm{~L}=\mathrm{I}$
$3410 \mathrm{H}=0$
3420 25＝（1－1） $\mathrm{AS}+\mathrm{Z3}$
3430 FOR I＝1 TO T］
3440 IE WI $(X, 1) \ll Z 5$ THEN 3480
3450 IF WI（XiI）$=\mathrm{E}\left(\mathrm{X}_{1, \mathrm{~L}} \mathrm{~L}\right)$ THEN 3480
$3460 E(X 2, L)=W 1(X, I)$
$3470 \mathrm{H}=\mathrm{I}$
3480 NEXT I
3490 IE $H=1$ THEN 3540
3500 ER ILl TO TI

TRANSECT (corit.)

3510 IE WI $(Y, I)<\rangle Z 5$ THEN 3530
$3520 B(X 2, L)=W 1(X, I)$
3530 NEXT I
3540 G=L+1
3550 IE GくK THEN 3360
3560 60 T0 3580

3580 PAGE
3590 HOME
$3 G 00$ FRINT A\$
$3 G 10$ PKINTE

$3 G 30$ PKINT FOlygon number: $\quad ; 59(2)+1$
3640 MUVE E9(X,1),E9(Y,1)
3G50 EOK I=2 TO NJ
$36 G 0$ LKAW Eg (X,I), EG(Y,I)
3670 NEXT I
3680 MUVE $C(X, 1), C(Y, 1)$
3690 EOK $I=2$ TO N2
3700 UKAW $C(X, I), C(Y, I)$
3710 NEXT]
3720 REM
3730 REMt 59 is the statistic array, arranged as follows:
3740 REMA
3750 REMA 1: area for this polygori, coordinate method
3760 REMA 2: polygori number (later, total riumber of polygoris)
3770 REMA 3: numtier of transects, this polygori
3780 REMA 4 : total length of transects, this polygon
3790 REMA $5:$ cumilative area, by coordiriate method, no sigri removal

3810 KEMt 7: cumulative number of trarisects
3820 REMA 8 : cumulative total length of trarisects, no signi removal
3830 REMA $9:$ cumulative total length of trarisects, atisolute value
3840 kem 10: uriweighed avg. transect distarice, this polygon.
3860 REM
3870 REM 13: Variarice (X mirius uriweighted avg squared)/N trarisects - 1
3880 KEM 14: Sum of the variances times area (weighted variarice).
3890 REM 15: Total lerigth of base lirie from PASTA overlay routirie3910 KEM 17: Lerigth of tase line, this polygon
3920 REM 18: Lerigth of compare line, this polygori
3930 REM 19: Total lerigth as accumulated here of base
3940 REM 20: Total length as mccumulated here of compare
3950 REM 21: Scale of tiase line
3960 REM 22: Scale of compare lirie
3970 REM 23: Experiment number (entered in PASTA overlay).
3980 REM 24: Weighted average trarisect distance (avg. distance A
3990 REM polygon area), this polygori.
4000 EEMA

```
TRANSECT (conit.)
```



```
4020 IE K=0 THEN 4230
4030 EOK I=1 TO K
4040 IE E(X1,I)=-1 OK E(X2,I)=-1 IHEN 4160
4050 S8=E(X1,I)-E(X2,I;
4060 IF SE=0 THEN 4160
4070 S8=ABS(5B)
4080 IE S9(1)>0 THEN 4100
4090 58=-58
4100 Z5=(1-1)*S+23
4110 MOUE E(1,I),25
4120 DKAW K(2,I),25
4130 S9(3)=59(3)+1
4140 59(4)=59(4)+58
4150 S9(11)=S9(11) MAX ABS(S8)
4160 NEXT I
4170 REMA Erio of polygor, output intermediate stats, jack.
4180 REMAtt Weightes avg. ariu sum of weightev avg.
4190 IE S9(4)=0 THEN 4430
4200 S9(8)=59(8)+59(4)
4210 S9(9)=S9(9)+AKS(S9(4))
4220 S9(7)=59(7)+59(3)
4230 S9(24)=AES(S9(1))*(AES(S9(4))/S9(3))
4240 59(12)=59(12)+59(24)
4250 S9(5)=59(5)+S9(1)
4260 S9(2)=S9(2)+1
4270 S9(6)=S9(6)+AES(S9(1))
4280 S7=S9(4) *S
4290 59(10)=AES(S9(4)/S9(3))
4300 REMAtt firut variarice and sum weighted sum of variarice
4310 IE K=0 THEN 4410
4320 EOR I=1 TO K
4330 IF B(X1,I)=-1 OR B(X2,I)=-1 THEN 4370
4340 S8=AES(E(X1,I)-E(X2,I))
4350 IE 58=0 THEN 4370
4360 S9(13)=S9(13)+AES(S8-S9(10))
4370 NEXT I
4380 J=S9(3)-1
4390 IE j>0 THEN 4410
4400 J=J +1
4410 59(13)=59(13)~2/J
4420 S9(14)=S9(14)+59(13)太ABS(S9(1);
4430 PRINT E40: USING 4440:S9(2),59(3),59(4),57,59(1),59(24),59(13)
```



```
4450 S9(24)=0
4460 57=0
4470 59(13)=0
4480 59(3)=0
4490 59(4)=0
4500 S9(10)=0
```

TRANSECT (cont.)

```
4510 59(1)=0
4520 89(17)=0
4530 59(18)=0
4540 COFY
4 5 5 0 ~ G O ~ T O ~ 6 6 0 ~
4560 REM* Here for erid-of-file
4570 EOR I=1 TO 3
4580 HOME
4590 PRINT "ALL DONEG.
4600 PKINT E40:"J."
4610 NEXT I
4620 PAGE
4630 DELETE B,C
4640 PRINT 'AIIJUST PAPER IN PRINTER - HERE COME EINAL STATS'
4650 PRINT "(Hit return when paper ready)GG"
4G60 INFUT C$
4670 FRINT E40: USING 4680:S9(23)
4680 IMAGEIOX,'EINAL STATISTICS EOR EXPERIMENT NUMBER ",3I,'JJ"
4690 FRINT E40: USING 4700:
4700 IMAfGEIOX, "ABS=Atsolute value, urisigried values are to tre assumed.J."
4710 FRINT E40: USING 4720:S9(5)
4720 IMAGEIOK,"JTotal area by coordinate method (CM): ",6J.2I,"J."
4730 PRINT E40: USING 4740:S9(6)
4740 IMAGEIOX,'Total area ty coordiriate method, AES: *,6D.2D, 'J."
4750 PKINT e40: USING 4760:S9(5)/S9(6)
47G0 IMAGEIOX,"Ratio of CM to AES CK: ",2D.3[,"J."
4770 FRINT E40: USING 4780:S9(8)*5
4780 IMAGEIOX,'Total area by transect method(TM): ",60.2D, "J."
4790 FRINT E40: USING 4800:S9(9)*S
4800 IMAGEIOX,'Total arez by trarisect method, AES: ",6I. 2H,"J."
4810 PRINT E40: USING 4820:S
4820 IMAGEIOX, "JWidth tetween transects: •,3D.1D,'J."
4830 FRINT E40: USING 4840:S9(7)
4840 IMARjEIOX, 'JTotal riumber of trarisects (N): ",5H,"J.
4850 PRINT E40: USING 48G0:S9(8)
4860 IMAGE゙IOX,' Total lerigth of trarisects (II)eviatiori : ',6II.2I,'J."
4870 FRINT E40: USING 4880:S9(9)
4880 IMAGkiOX,'Total lerigth of transects (J)eviation, ABS: ",6II.2D,"J."
4890 PRINT e40: USING 4900:S9(15)
4900 IMAGEiOX,'JTrue lerigth of tase line (EL): ',6[I.2I,"J."
4910 PRINT E40: USING 4920:S9(16)
4920 IMAGEIOX,'True lerigth of compare line (CL): ',6D.2U,"J."
4930 PRINT E40: USING 4940:S9(21)
4940 IMAGEIOX,"JScale of tase line 1:',6D;"J."
4950 PRINT E40: USING 4960:S9(22)
4960 IMAGEIOX,'Scale of compare lirie 1:',61,"J."
4970 PRINT 840:'J.'\
4980 FRINT E40: USING 4990:S9(12)/S9(6)
4990 IMAGElOX,"Weighted avg/total area (epsilori): ",loD.2D,"J."
5000 C$=`.
```

```
TRANSECT (cont.)
5010 J=1
5020 IE INT(S9(15))=INT(S9(19)) THEN 5050
5030 C$=`丸"
5040 J=2
5050 IE S9(2)>1 THEN 5070
5060. J=0
5070 PRINT E40: USING 5080:SQR(S9(14)/S9(6)/(S9(2)-J)),C%
5080 IMAGEIOX, "Starusard deviatiori: ",10[I.2D,1a,"J"
5090 HRINT E40: USING 5100:59(12)/59(6)/(59(22)/1000)
5l00 IMAGE10x, "Epsilori line width at compare lirie scale: *,2d.4s,"mmj"
5110 FRINT E40: USING 5120:S9(11)
5120 IMAGE 10%, "M.aximum trarisect length found: ",5山.2d, "J."
5l30 FKINT "GrAdjust paper again, here comes statistic arrayg"*
5140 INFUT C$
5150 PRINT E40: USING 5160:S9(23)
5lGO IMAGEIOx, "Experimerit number: ",3d,"JJ"
5170 FRINT E40: USING 5180:A$
5180 IMAGE10*,72a,"J."
5190 FRINT e40: USING 5180:B%
5200 FRINT 040:'JJ'
5210 EOK I=1 TO 24
5220 FRINT E40: USING 5230:I,S9(I)
5230 IMAGE11x,2d,*) ", 12LI.2[."J"
5240 NEXT 1
5250 ENII
```

END OF TRANSECT

BOX

10
20
40
50
60 REM 6 大 $\lambda 大$ 大
70 REMA
80 REMA
90 REMA
100 REMt
110 REM 10 大 $\lambda \star$ 大
120 IIM $5(4,2), W(4), A(500), H(4), F(4), R(4), \operatorname{Hg}(500), Z 9(500), K 1(500)$
130 IIM R2（500）
140 REM 1 大 大
150 REMt $5(1,1) \$ 5(1,2)=$ Mean and 51 of Top line
160 REMA $S(2,1) \& S(2,2)=s a m e$ for bottom line
170 REMA $S(3,1) \& 5(3,2)=1$ eft line
180 REM大 $S(4,1) \hat{4} S(4,2)=r i g h t 1 i n e$
190 REM大 1 大 k
200 FRINT ${ }^{2}$ EOX－program to calculate protatility of raridom poirits＂
210 FkINT＂faliirig withiri a square maje of sides of different＂
220 FRiNT＂mearis arid deviatioris．＂
230 FRINT ：JEy Iale M．Honeycutt．
240 FKINT JJ＂
250 FRINT Eriter Meari，SH，arid scale for TOF lirie：＂
260 INPUT $S(1,1), S(1,2), \mathrm{K}(1$ ；
270 FKINT Enter Mean，SH arid scale for gotiom line：
280 INPUT $S(2,1), S(2,2), R(2)$
290 FRINT Eriter Meari，SI，arid scale for LEET lirie：
300 INPUT S（3，1），S（3，2）， $\mathrm{K}(3)$
310 FKINT Eniter Meari，SI，and scale for RIGHT Lirie：＂
320 INPUT S（4，1），S（4，2），R（4）
330 FKINT＂J．＂
340 EOR $I=1$ TO 4
350 IE $S(1,2) \geqslant 0$ THEN 380
360 FRINT＂No 0 SL＇s allowes！！！！！ggGg＂
370 GO TO I OE 250，270，290，310
380 NEXT 1
390 FAGE
$400 \mathrm{~W}(1)=A S C\left({ }^{(T)}\right)$
410 W（2）＝ASC（＂E＂）
420 W（3）＝ASC（＂L＂）
$430 W(4)=A S C\left({ }^{-1}\right)$
440 FRINT SH SIIE SCALEJ．＂
450 EOR I＝1 TO 4
460 W\＄＝CHK（W（I））
470 PRINT USING $490: S(I, 1), S(I, 2), W \$, K(I)$
480 NEXT I
490 IMAGE 4d．2d， $2 x, 4 d .2 d, 5 x, 2 a, 3 x, 6 I$
500 PRINT＂J．

```
80X
    (corit.)
    5l0 PKINT 'Are these correct (y/n?): *;
    520 INFUT Q$
    530 IE Q$="N" THEN 250
    540 PRINT "Make sure pririter is hooked up, hit <return>: ";
    550 INFUT Q&
    560 CALL 'rate',600,5,0
    570 A$=CHE(15)
    580 PRINT E40:A*
    S90 PRINT 240:"J.
    600 PRINT P40: USING 610:
    610 IMAGEIOX'ANALYSIS OE AREAL FROBAEILITYJ"
    G20 FRINT E40: USING 630:
    630 IMAGE10X'-----------------------------------
    G40 PEINT E40: USING 650:
    G50 IMAGE'JJ.',10X,"LINE (T,E,L,R) MEAN SI SCALEJ."
    660 PRINT E40: USING 670:
G70 IMAGEIOx,
680 FOR I=1 TO 4
G90 W$=CHK(W(I))
700 PRINT Q40: USING 720:WS,S(I,1),S(I,2),R(I)
710 NEXT I
720 IMAGEE16x,1a,9x,3d.2d,3x,3d.2d,3X,6II, "J."
730 FRINT E40: USING 740:
740 IMAGE'JJ.",l0x, "This is a systematic raridom sample...JJ."
750 REMAt大tt
760 REM* Calculate default lerigth of sides based ori maximum mean
770 REMk ericouritered. Make lerigth so that it is greater than,
7B0 REMt twice this mear, so that the sides do not coalese, or however
790 REMt it's spelled....
800 REM大杖
810 PRINT "Avgerage probatility will be displayed to screen. Charige"
820 FRINT 'this (y/ri)?';
830 INPUT Q$
840 IE Q$='N' THEN 870
850 PEINT "Iriput 2 for minimum distance or 3 for minimum z-score: *;
860 INFUT U
870 M=S(1,1)
880 EOK I=2 TO 4
890 M=M MAX S(I,I)
900 NEXT I
910 PRINT 'Maximum meari is: ";M
920 REMt大t大
930 REMt Take twice maximum arid rourid up. We warit length to
940 REMt be iri steps of .S, so multiply by 10, take integer,
950 REMk ther, divide by 10.
```



```
970 L=M*2+0.5
980 L=INT(LA10)
990 L=L/10
1000 PRINT 'Default length is: ';L;'. Do you want to change (y/ri?):';
```

```
80X (corit.)
1010 INFUT Q*
1020 IE Q&=*N* THEN 1050
1030 PKINT Enter riew start length: ";
1040 INPUT L
1050 FRINT Lerigth will tie doutiled for each iteration. Do you warit"
1060 PRINT "to change this factor (y/n)?";
1070 INHUT Q$
1080 IE QS=*N' THEN 1110
1090 FKINI *Input new factor: *
1100 INPUT E
1110 FKINT *Analysis will stop wheri all probatilifities are*;Sl
1120 PRINT "or greater. Do you warit to charige this (y/ri):*
1130 INPUT Q$
1140 IE OS='N' THEN 1170
1150 FRINT Eriter riew stop for all protatilitites: ";
1160 INFUT 51
1170 FRINT "I will gerierate *;kg;" pts. Charige (y/ri?):*;
1180 INFUT Q$
1190 IE Q$=`N" THEN 1220
1200 PRINT "Iriput rismber of pts to gerierate:";
1210 INFUT RG
1220 PRINT JJLength is *:L
1230 PRINT "Incremerit factor is *;E
1240 PRINT *Arialysis will stop wheri all protiatilitites are *;Sl
1250 FRINT E40: USING 1260:L
1260 IMAGE10X,"Start lerigth = ",3d.ld," metersJ."
1270 FRINT e40: USING 1280:F
1280 IMAGElOK,"Incremerit multiplier = ",2d.1d,"J."
1290 PRINT Q40: USING 1300:S1
```



```
1310 FRINT E40: USING 1320:R9
1320 IMAGEIO%,"Numtier of random points generated per pass = ", 3d,"JJ]."
1330 FRINT E40: USING 1340:
1340 IMAGE3OX, 'AREA",GX, 'FROBAEILITIESJ."
1350 FRINT E40: USING 1360:
1360 IMAGEIIOX' * LENGTHm (km) avg mirili miriZJ."
1370 PRINT E40: USING 1380:
```



```
1390 REMA***
1400 REMA Set up coristarits for calculation of area urider curve.
1410 REMt Ihis equation from "Harudtook. of Mathematical Eurictions",
1420 REMt National Bureau of Standards, 1968."
1430 REM*大**
1440 T1=SQR(FI*2)
1450 T2=0.2316419
1460 T3=0.31938153
1470 T4=-0.356563782
1480 T5=1.781477937
1490 TG=-1.821255978
1500 I7=1.330274429
```

```
80X (corit.)
1510 EOR I=1 TO RO
1520 RI(I)=RNLI(1)
1530 R2(I)=KNL(-1)
1540 NEXT I
1550. REMA大大大
1560 REMA LIraw a tox to screen
1570 REMAt大t
1580 K1=0
1590 GOSUE 2520
1600 KEMAt大夫 Start loop for new lerigth
1G10 K=0
1620 REMA*At Loop for w/iri same lerigth (Rg times)
1630 IE K=R9 THEN 2310
1640 X1=R1(K+1)
1650 X1=L*X1
1660 IF XI>L THEN 1630
1670 Y1=K2(K+1)
1G80 Y1=LAY1
1690 IE Y1>L THEN 1670
1700 K=K+1
1710 MOUE XI,Y1
1720 HRAW XI,Y1
1730 [1(1)=L-S(1,1)-Y1
1740 [1(2)=Y1-S(2,1)
1750 L(3)=X1-S(3,1)
1760 I(4)=L-S(4,1)-X1
1770 UG=1
1780 [5=1(1)
1790 EOR I=2 TO 4
1800 IE H(I)>IS THEN 1830
1810 [1G=]
1820 DS=11(I)
1830 NEXT 1
1840 FEM大太大夫
1850 REMA Eind z-score
1860 FEMA大大太
1870 EOK I=1 TO 4
1880 L(I) = [I(I)/S(I,2)
1890 NEXT I
1900 26=1
1910 25=1!(1)
1920 FOR I=2 TO 4
1930 IF H(I)>ZS THEN 1960
1940 26=1
1950 25=11(I)
1960 NEXT I
1970 REMA大夫大
1980 REMA Calculate protatiditty
1990 REM大*大*
2000 EOR I=1 TO 4
```

```
80X (corit.)
2010 IE H(I)<4 THEN 2040
2020 P(I) =1
2030 GO TO 2160
2040 N1=0
2050 LE H(I)=>0 THEN 2080
2060 D(I)=ABS([I(I))
2070 Nl=1
2080 TE=1/(1+T2*11(I))
2090 T9=EXF(-(0)(I)m2/2))/T1
2100 F(I)-T9*(T3*TB+T4*TE^2+T5*T8^3+TG*T8^4+T7*T8^5)
2110 P(I)=P(I)/2
2120 IE N1=0 THEN 2150
2130 P(I)=F(I)+0.5
2140 GO TO 2160
2150 F(I)=1-F(I)
2160 NEXT I
2170 REM大太大A
2180 KEMt Calculate total protiability
2190 REMA大夫A
2200 A(K)=(F(1)+P(2)+F(3)+F(4))/4
2210 [19(K)=F(DG)
2220 Z9(K)=F(Z6)
2230 GO TO V DF 2240,22G0,2280
2240 FKINT USING 2300:A(K)
2250 f0 T0 1630
3260 FKINT USING 2300:II9(K)
2270 GO TO 1630
2280 FRINT USING 2300:Z9(K)
2290 GO TO 1G30
2300 IMAGEId.2I
2310 E=0
2320 El=0
2330 E2=0
2340 110=k9/100
2350 Kl=Kl+1
2360 EOK I=1 TO R9
2370 E=E + A(I)
2380 El=El+[19(I)
2390 E2=E2+Z9(I)
2400 NEXI I
2410 E=E/[O
2420 El=El/DO
2430 E2=E2/DO
2440 PRINT E40: USING 2450:Kl,L,(L/l000)~2,E,El,E2
2450 IMAGE10x,2d,1x,7d.1d, 3x,5d.3d, 2x,3d.2d,1x,3d.2d, 1x,3d.2d, "I."
2460 IE E=>5l ANI El=>S1 ANI E2=>51 THEN 2490
2470 L=L*E
2480 GO TO 1590
2490 HOME
2500 FKINT *ALL DONE!!!!GgGGGGGG*
```

```
80X (conit.)
2510 END
2520 UIEWPORT 35,95,20,80
2530 PAGE
2540 HINLOW O,L,O,L
2550 MOVE 0,0
2560 DRAW O,L
2570 DRAW L,L
25B0 DKAW L,O
2590 URAW 0,0
2600 MOVE S(3,1),S(2,1)
2610 DRAW S(3,1),L-S(1,1)
2620 DKAW L-S(4,1),L-S(1,1)
2G30 DRAH L-S(4,1),S(2,1)
2640 DKAW S(3,1),5(2,1)
2G50 HOME
2660 FKINT 'Lerigth = ; ; 
2G70 FEINT ARea = ; (L/1000) -2
2680 KETURN
```

End of Box

PLOTLINBS

```
IO PRINT "KAKE SURE PLOTTER IS HOOKELI UF RIGHT, HIT RETURNGGGGGG:'
20 INPUT Q&
30 PAGE
40 X=1
50 Y=2
60 51=24
70 CALL *KATE*,1200,5,0
80 DIM E(2,100),C(2,100),M(4),C1(3),P(3),E1(2,100)
90 EOR I=1 TO 3
100 P(3)=0
110 NEXT I
120 PRINT "ENTER THE BASE LINE EILE NUMEER:*;
130 INFUT E2
140 FRINT *NOW ENTER THE 3 COMFARE EILE NUMEERS:";
150 INPUT Cl(1),Cl(2),C1(3)
160 FRINT EENTER EIT (0,1) PATTERN: ";
170 INPUT F(1),P(2),F(3)
180 FRINT "ENTER START Y IN FLOTTER UNITS: **
190 INFUT E
200 FRINT EENTER THE X STEF EETWEEN LINES: *;
210 INPUT 5
220 REMA KEALI EASE
230 EINII E2
240 ON EOE: (O) THEN 320
250 INPUT ES3:A$
260 FRINI 'HESCKIFTION IS*
270 PRINT A&
280 I =1
290 INFUT e33:El(X,I),B1(Y,I)
300 I=I+1
310 GO TO 290
320 Nl=I-1
330 REMA EIND MIN MAX
340 M(1)=E1(X,1)
350 M(3)=E1(Y,1)
360 M(2)=M(1)
370 M(4)=M(3)
380 EOR I=1 TO Nl
390 M(1)=K(1) MIN El(X,I)
400 M(2)=M(2) MAX El(X,I)
410 M(3)=M(3) MIN El(Y,I)
420 M(4)=M(4) MAX El(Y,I)
430 NEXT I
440 PRINT E40:"IN;SFI;VA;ECO;"
450 EOR Kl=1 TO 3
460 IE F(KI)=0 THEN 490
470 PRINT 'I'M ON EILE NUMEER *;KI;" INSERT CORRECT TAFE, HIT RETURNGG";
480 INPUT AS
490 EINL Cl(Kl)
500 INFUT E33:A*
```

```
PLOTLINES (corit.)
S10 PRINT 'UESCRIFTION IS *
520 PRINT A&
530 I=1
540 ON EOE (O) IHEN 580
550 INPUT Q33:C(X,I),C(Y,I)
560'I= I + 1
570 GO IO 550
580 N2=I-1
590 EOR I=1 TO NZ
G00 Z1=C:(X,I) MIN M(1)
610 Z2=C(X,I) MAX M(2)
620 Z3=C(Y,I) MIN M(3)
630 Z4=C(Y,I) MAX M(4)
G40 NEXT I
G50 REMA大 EIND PLOTTER UNITS
GGO EO& I=1 TO NJ
G70 E(X, I)-E1(X,I)-Z1
680 E(Y,I)=E1(Y,I)-2S
G90 NEXT I
700 EOR I=1 TO N2
710C(X,1)=C(X,I)-Z1
720 C(Y,I)=C(Y,I)-Z3
730 NEXT I
740 Z2=Z2-Z1
750 Z4=24-23
760 21=0
770 Z3=0
780 ZG=Z2-Z1
790 ZG=Z6/51/0.025
800 27=24-23
810 27=27/51/0.025
820 A= (Kl-1) AS+2000
830 ZG=INT(Z6+A+0.5)
840 27=INT(Z7+E+0.5)
850 PRINT 'FLOTTER UNITS EOLLOH"
8GO FRINT A,E,ZG,Z7
```



```
880 Z1=INT(Z1+0.5)
890 22=INT(Z2+0.5)
900 Z3=INT(Z3+0.5)
910 24=1NT(Z4+0.5)
920 PKINJ C40:'SC*,Z1,*,*,Z2,*,",Z3,",",24,";"
930 II=SQR((ZG-A)^2+(Z7-E)~2)
940 E=3000/II
950 E=F*1.5
960 FRINT e40:'LTl,",E,";"
970 PRINT e40:'PU;FA', B(X,l),*,",E(Y,1),";"
980 FKINT E40:*FD:*
990 EOR I=2 TO NI
1000 FKINT E40:"FA", E(X,I),",",B(Y,I),";"
```

```
FLOTLINES (cont.)
1010 NEXT I
1020 EEM PLOT COMPARE
1030 PRINT Q40:'LT;'
1040 PRINT E40:'PU;PA",C(X,1),",",C(Y,1),";"
1050 PRINT e40:'PD;*
1060. EOK I=2 TO N2
1070 PKINT E40:'PA',C(X,I),',',C(Y,I),";'
1080 NEXT I
1090 FRINT P40:'PU;"
1100 NEXT K1
1110 ENI
1120 FRINT P32,26:0
1130 EOR I=1 TO NI
1140 PRINT E(X,I),B(Y,I)
1150 NEXT 1
1160 PKINT
1170 EOK I=1 TO NE
1180 FRINT C(X,I),C(Y,I)
1190 NEXT I
```

END OF PLOTLINES

APPENDIX B
Reports from PASTA OVBRLAY and TRANSECT

This is experiment number 498
Base line file number: 12
5tart X-pt: 473212 Scale: 1: 24000
Start Y-pt: 5091272 Number of poirits: 76
End X-pt: 474310
Erid Y-pt: 5091158
Lescription
[1eep Creek. from Nehalam River, lst reach, 1:34,000

Compare lirie file riumtier 13
Start X-pt: 473196 Scale: 1: 62500
Start Y -pt: 5091291 Number of poirits: 59
Erid X-pt: 474325
Enis Y-pt: 5091197
Mescription
Nehalem Kiver and Leep Creek, 1:62,5000

```
Base lirie distarice:
2758
Compare line distance: 242 G
```

Charinel Irujex for tiase lirie: 2.50
Charimel inidex for compare line: 2.14


```
-- 5 T A T I S T I C S --
```

Experiment riumber: 8 folygori file riumber: 39
Base lifie description:
[leep Creek from Nehalam River, lst reach, l:24,000
Compare line description
Nehalea River aris Ieep Creek, 1:62,5000

*	TRANSECTS	$\begin{aligned} & \text { TOTAL } \\ & \text { TKANSECT } \\ & \text { LENGIH } \end{aligned}$	AREA TKANS. METHO[$\begin{aligned} & \text { AREA } \\ & \text { COORI. } \\ & \text { METHOL } \end{aligned}$	WEIGHTEI AVERAGE	VARIANCE
1.	\%	-51.56	-515.61	-526.05	3874.8	68.11
2	2	7.14	71.38	73.86	263.6	2.68
3	6	-48.35	-483.46	-490.99	3956.2	72.59
4	10	164.27	1642.73	1658.96	27252.3	339.43
5	14	-640.14	-6401.41	-6488.85	296698.4	1764.18
5	2	1.70	16.96	23.18	19.7	0.52
7	7	-57.45	-574.51	-618.00	5072.1	53.45
8	7	83.69	836.87	845.01	10102.4	135.74
9	15	-756.25	-7562.50	-7698.53	388134.4	5535.89
10	1	0.00	0.01	8.46	0.0	0.00
11	10	-317.96	-3179.63	-3300.22	104934.9	919.66
12	8	118.90	1188.99	1230.99	18295.4	264.81
12	0	0.00	0.00	-4.34	0.0	0.00
13	25	783.36	7833.56	7810.33	244730.8	4765.03
14	4	-11.23	-112.30	-104.45	293.3	0.21
15	82	2033.18	20331.83	20360.41	504834.8	5389.76
16	2	-2.99	-29.93	-38.10	57.0	0.42
17	2	45.86	458.59	620.51	14228.0	291.99

EINAL STATISTICS EQR EXPERIMENT NUMBER 8
AES = Absolute value, urisigried values are to be assumed.
Total area by coordiriate method (CM): 13366.51
Total area ty coordiriate method, ABS: 51896.91
K.atio of CM to AES CM: 0.258

Total area by trarisect method(TM): 13521.59
Totsl area ty transect method, AES: 51240.30
Width betweer trarisects: 10.0
Total number of transects (N): 204
Total lerigth of transects (n)eviation: 1352.16
Total lerigth of trarisects (fi)eviation, AES: 5124.03
True lerigtin of tiase lirie (EL): 2757.92
Trise lerigth of compare lirie (CL): 2426.19
Scale of base line 1: 24000
Suale of compare lirie 1: 62500

Weighted avg/total area (epsilori): 31.27
Staridard deviation: 15.73
Epsilon line width at compare line scale: 0.5003 mm Maximum trarisect lerigth fourid: 89.62

Experimerit riumber: 8
Deep Creek from Nehalam River, lst reach, 1:24,000 Nehalem Kiver arid Leep Creek, 1:62,5000

1)	0.00
2)	17.00
3)	0.00
4)	0.00
5)	13366.51
6)	51896.91
7)	204.00
8)	1352.16
9)	5124.03
10)	0.00
11)	89.62
13)	1622748.05
13)	0.00
14)	205344737.77
1.5)	2757.92
16)	2426.19
17)	0.00
18)	0.00
19)	2757.92
20)	2453.60
21)	24000.00
23)	62500.00
23)	B. 00
24)	0.00

```
    --KEFOKIOELINE OUERLAY--
This is experiment number 892
Gase lirie file rumber: l4
Start X-pt: 475052 Scale: l: 24000
Start Y-pt: 5090989 Number of poirits: 6G
End X-pt:
    475805
End Y-pt: 5090000
Description
Deep Creek, reach $2, 1:24,000
Compare line file riumber 15
Start X-pt: 475052 Scale: 1: 62500
Start Y-pt: 5091011 Number of points: 55
Erid X-pt: 475812
Ends Y-pt: 508998G
Description
Deep Creek, 2nut reach, 1:62,500
Base line distarice: }183
Compare line distance: 1675
Charinel Index for base line: 1.48
Charinel index for compare line: 1.31
```


R

द्य

4y

$-2+4$

4. 5
$\operatorname{ar} \operatorname{sen}-\cos +8$

W, Wht, r,
tytany
$\operatorname{tex}+x \rightarrow 2$
[-esu Creet; reach E2, 1: 34,809
feek feest, 2nu reait, 1: EE,500

(

 yriscoty

 $4+4+\sin$


```
-- S T A T I S T I C S --
Ewperimerit riumber: 2 Folygori file number: 1G
Ease lirie description:
|lep Creek, resch &2, 1:24,000
Compare line description
Ueep Creek, 2rus reach, 1:62,500
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline * & TKANSECTS & TOTAL TKANSECT LENGTH & AREA TKANS. METHOLI & AREA COORLI. METHOD & WEIGHTED AUERAGE & VARIANCE \\
\hline 1 & 8 & -92.20 & -921.98 & -991.25 & 11424.0 & 242.27 \\
\hline 2 & 46 & 2187.99 & 21879.92 & 21729.00 & 1033540.7 & 43913.47 \\
\hline 3 & \(E\) & -216.94 & -2169.42 & -2198.90 & 59629.4 & 1763.65 \\
\hline 4 & 18 & 136.11 & 1361.12 & 1375.58 & 10401.8 & 36.54 \\
\hline 5 & 15 & -268.13 & -2681.31 & -2717.08 & 48568.8 & 403.81 \\
\hline 6 & 11 & 375.44 & 3754.42 & 3784.19 & 129158.7 & 2193.73 \\
\hline 7 & 12 & -197.33 & -1973. 34 & -1969.48 & 32387.1 & 302.10 \\
\hline 8 & 6 & 80.53 & 805.29 & 857.55 & 11509.6 & 284.44 \\
\hline 9 & 21 & \(-588.38\) & -5883.80 & -5951.59 & 166752.2 & 1105.73 \\
\hline
\end{tabular}
```

EINAL STATISTICS EOK EXPERIMENT NUMBER 2
ABS=Atosolute value, unsigried values are to be assumed.
Total area by coordinate method (CM): 13918.02
Total area by coordinate method, ABS: 41574.62
Ratio of CM to ABS CM: 0.335
Total areaty trarisect method(TM): 14170.90
Total area ty trarisect method, ABS: 41430.61
Wiath between trarisects: 10.0
Total rismber of trarisects (N): 145
Total lerigth of trarisects (I)eviatiori 1417.09
Total lerigth of trarisects (I)eviatiori, AES: 4143.06
Trise lerigth of tiase lirie (EL): 1837.34
Trise lerigth of compare lirie (CL): 1674.55
Scale of tiase lirie 1:24000
Scale of compare lirie 1: 62500
Weighted avg/total area (epsilori): 36.16
Starnjard jeviation: 54.15
Epsilori lirie width at compare lirie scale: 0.578GmmMaximum trarisect lerigth fourus: 118.04
Experiment rumber: 2
[leep Creek, reach $\ddagger 2,1: 24,000$ leep Creek. 2nd reach, 1:62,500
1)

$$
0.00
$$

2)

$$
9.00
$$

$$
3) \quad 0.00
$$

$$
\begin{array}{lr}
\text { 4) } & 0.00 \\
5 ; & 13918.02
\end{array}
$$

$$
\text { і) } \quad 41574.62
$$

7)

$$
145.00
$$

$$
\text { B) } \quad 1417.09
$$

$$
\text { 9) } \quad 4143.06
$$

$10) \quad 0.00$
11) 118.04
12) 1503372.20
13) 0.00
14) 975182578.83
15) 1837.34
16) 1674.55
$17) \quad 0.00$
$18) \quad 0.00$
19) 1837.34
$20) \quad 1711.63$
21) 24000.00
22) 62500.00
23) 2.00
$24) \quad 0.00$
--KEPORTOE LINE OUERLAY--
This is experiment riumber 9524 Base line file riumber: 18
Start X-pt: 475909 Scale: l: 24000
Start Y-pt: 5088994 Number of points: 85
End X-pt: 475770
Enu Y-pt: 5087998
llescription
Deep Creek, reach 4, 5089-5088, 1:24,000
Compare line file number 21
Start X-pt: 475920
Scale: 1: 62500
Start Y-pt: 5089017 Number of points: 52
End X-pt: 475752
End Y-pt: 5088017
Uescription
Ueep Creek. 4th, 5089-5088,1:62,500
Base line distance: 1542
Compare line distance: 1421
Chaririel Index for base line: 1.53
Charimel index for compare line: 1.40


```
    -- S T ATIISTICS --
Experimerit number: 3 Folygori file rumber: 24
Ease lirie description:
#eep Creek, reach 4, 5089-5088, 1:24,000
Compare line description
Weep Creek. 4th, 5089-5088,1:62,500
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline * & TKANSECTS & total TKANSECT LENGTH & AREA TRANS. METHOL & AREA COORD. METHOL & WE IGHTED AUERAGE & VARIANCE \\
\hline 1 & 2 & 10.78 & 107.76 & 106.97 & 576.4 & 116.08 \\
\hline 2 & 10 & -101.59 & -1015.91 & -1050.10 & 10668.1 & 127.56 \\
\hline 3 & 24 & 405.95 & 4059.46 & 4062.16 & 68709.1 & 1134.10 \\
\hline 4 & 13 & -300.84 & -3008.42 & -3077.61 & 71221.2 & 787.64 \\
\hline 5 & 21 & 353.73 & 3537.30 & 3546.13 & 59731.9 & 872.23 \\
\hline 6 & 17 & -165.57 & -1655.74 & -1668.56 & 16251.1 & 548.30 \\
\hline 7 & 32 & 697.69 & 6976.91 & 7022.43 & 153108.8 & 1727.42 \\
\hline 8 & 11 & -137.21 & -1372.06 & -1337.01 & 16676.8 & 326. \\
\hline
\end{tabular}
```


EINAL STATISTICS EOR EXPERIMENT NUMEER 3

AES=Atsolute value, urisigned values are to be assumed.
Total area ty coordinate method (CM): 7604.41
Total area by coordiriate method, AES: 21870.97
Katio of CM to AES CM: 0.348
Total area by transect method(TM): $\quad 7629.30$
Total area ty trarisect method, ABS: 21733.55
Width betweer transects: 10.0
Total rismber of trarisects (N): 130
Total length of trarisects (I)eviation: 762.93
Totョl lerigth of trarisects (D)eviatiori, AES: 2173.36
Trise lerigth of base lifie (EL): 1542.34
True lerigth of compare lirie (CL): 1420.73
Scale of base line 1: 24000
Scale of compare line 1: 62500

Weighted avg/total area (epsilon): 18.15
Staridard deviation: 12.46
Epsilon line width at compare line scale: 0.2904 mm Maximum trarisect length found: 42.58

Experiment number: 3

Leep Creek, reach 4, 5089-5088, 1:24,000 Deep Creet. 4th, 5089-5088,1:62,500

1)	0.00
2)	B. 00
3)	0.00
4)	0.00
$5)$	7604.41
6)	21870.97
7)	130.00
$8)$	762.93
9)	2173.36
10)	0.00
11)	42.58
12)	396943.46
13)	0.00
14)	23751805.61
15)	1542.34
16)	1420.73
17)	0.00
18)	0.00
19)	1542.34
20)	1471.66
21)	24000.00
22)	62500.00
23)	3.00
24)	0.00


```
This is experiment rimmber galo
Base lirie fille rumbin: 19
Start X-pt: 475772 Scale: 1: 24000
Start Y-pt: 5087998 Number of poirits: 74
Eris X-pt: 476027
Eris Y-pt: 5086994
Description
Lleep Creek., 5th reach, 5088-5087, 1:24,000
Compare line file riumber 22
Start X-pt: 475755 Scale: 1: 62500
Start Y-pt: 5088018 Number of points: 4]
Enis X-pt: 476036
Enris Y-pt: 5087006
Llescription
Heep Creek. 5th, 4088-4087, 1:62,500
B.ase lirie distarice: ll7l
Compare line distarice: l20l
Chaririel Iride% for base lirie: 1.13
Chaririel irisex for compare line: 1.14
```



```
-- S T A T I S T I C S--
```

Experiment riumber: 10 Polygorifile riumber: 41

```
Base lime description:
lieep Creek, 5th reach, 5088 - 5087, 1:24,000
Compare lirie Sescription
Deep Creek. 5tr, 4088-4087, 1:62,500
```

*	TRANSECTS	TOTAL TKANSECT LENGTH	AREA TRANS. METHOI	GREA COORL. METHOI	WEISHTEII AUERAGE	VARIANCE
1.	16	-481.08	-4810.84	-4812.59	128625.6	3241.04
2	69	1516.21	15162.10	15225.93	334575.4	11102.50
3	2	-2.72	-27.18	-32.31	43.9	4.43
4	16	198.74	1987.40	1997.16	24807.2	244.73

EINAL STATISTICS EOF EXPERIMENT NUMBER 10
ABS=Absolute value, urisigried values are to be assumed.
Total area ty coordinate method (CM): 12378.19
Total areaty coordiriate method, ABS: 22067.99
katio of CM to ABS CM: 0.561
Total area ty trarisect method(TM): 12311.4E
Total area ty transect method, AES: 21987.51
Wisth betweeri transects: 10.0
Total rimmtier of trarisects (N): 105
Total length of transects (a)eviation: 1231.15
Total lerigth of trarisects (II)eviatiori, ABS: 2198.75
True lerigth of tiase line (EL): 1171.3]
True lerigth of compare lirie (CL): 1201.11
Scale of tase line 1: 24000
Scale of comp.are lirie l: 62500
Weighted avg/total area (epsilon): 22.12
Staridars deviation: 52.88
Epsilon line width at compare line scale: 0.3539 mmMaximum trarisect lerigth fourid: 76.2l

Experiment number: 10
Geep Creek, 5th reach, 5088-5087, 1:24,000 Deep Creek Sth, 4088-4087, 1:62,500

1)	0.00
2)	4.00
3)	0.00
4)	0.00
5)	12378.19
$6)$	22067.99
7)	105.00
$8)$	1231.15
9)	2198.75
10)	0.00
11)	76.21
12)	488051.95
13)	0.00
14)	185132529.91
15)	1171.31
16)	1201.11
17)	0.00
18)	0.00
19)	1171.31
20)	1243.23
21)	24000.00
22)	62500.00
23)	10.00
24)	0.00


```
This is experimerit rimmber 20
Base lirie fille rimmtier: 7
5tart x-pt: 5cale: 1: 45149 24000
Start Y-pt: 4974148 Number of poinits: 75.
Erid X-pt: 44659G
Eris Y-pt: 4975004
liescriptiori
Goulder Creek, lst segmerit, jurictiori Siletz to 4975ri, 1:24,000
Compare lirie file rimmtier 10
5tart x-pt: 445133 Scale: 1: 62500
Start Y-pt: 4974120 Number of poirits: 4%
Erus X-pt: 446525
Erid Y-pt: 4975001
luescriptiori
Boulder Creek, lst reach, Siletz to 4975, 1:62500
Base lirie distarice: 1986
Compare lirie dist.arice: 1902
Chaririel Iridex for tase line: 1.18
Ghaririel irudex for compare lirie: 1.15
```


- -5 TATISSTICS——

Experzmerit riumtier: 20 Folygorifile riumber: 13
Ease lirie descriptiori: Boulder Creek, lst segmerit, jurictiori Siletz to 4975ri, 1:24,000

Compare lirie description
Boulder Creek, lst reach, Siletz to 4975, 1:62500

*	TRANSECTS	$\begin{aligned} & \text { TOTAL } \\ & \text { TRANSECI } \\ & \text { LENGTH } \end{aligned}$	AREA TRANS. METHOL	AREA COORD. METHOL	WEIGHTED AUERAGE	UAR IANCE
1	77	957.07	9570.70	9580.22	119077.2	1511.20
2	4	-25.70	-256.99	-266.02	1709.2	24.04
3	8	80.70	806.97	811.01	8180.8	33.88
4	4	-13.37	-133.67	-143.05	478.0	12.84
5	19	587.78	5877.84	5874.88	181745.0	1909.88
6	19	-165.14	-1651.42	-1656.88	14401.1	693.49
7	16	204.94	2049.36	2050.59	26265.0	456.08
8	15	-176.76	-1767.61	-1773.09	20894.2	203.80
9	18	420.58	4205.84	4231.01	98860.8	4243.88

EINAL STATISTICS EOR EXPERIMENT NUMBER 20
ABS=Atsolute value, urisigried values are to be assumed.
Total areaty coordiriate method (CM): 18708.68
Total area by coordinate method, ABS: 26386.76
Katio of CM to ABS CM: 0.709
Total area by trarisect methos(TM): 18701.01
Total area ty trarisect method, ABS: 26320.40
Width betweer transects: 10.0
Total riumtier of trarisects (N): 180
Total length of transects (\mathbb{I}) eviation : 1870.10
Total length of trarisects (II)eviation, ABS: 2632.04
True lerigth of base lirie (BL): 1985.91
True lerigth of compare line (CL): 1902.35
Scale of b.ase line l: 24000Scale of compare line $1: 62500$
Weighted avg/total area (epsilori): 17.87
Staridard deviation: 14.78
Epsilor line width at compare line scale: 0.2860 mmmaximum trarisect lerigth fourid: 51.14

Boulder Creef. lst segment, junction Siletz to 4975n, 1:34,000 Eoulder Creek, lst reach, Siletz to 4975, 1:63500

1)	0.00
$2)$	9.00
3)	0.00
4)	0.00
5)	18708.68
6)	26386.76
7)	180.00
8)	1870.10
9)	2632.04
10)	0.00
11)	51.14
12)	471611.36
13)	0.00
14)	46135112.30
15)	1985.91
16)	1902.35
17)	0.00
18)	0.00
19)	1985.92
$20)$	2005.98
21)	24000.00
22)	62500.00
23)	20.00
24)	0.00


```
This is experiment numbiber
                2.]
Base lirie file riumtier: 8
Start X-pt: 446598 Scale: 1: 24000
Start Y-pt: 4975002 Number of poirits: 69
Eris X-pt: 447299
Eruj Y-pt: 4975536
Llescriptiori
EOulder Creek, 2nd reach, from 4975 to junction L. Boulder, 1:24.:
Compare lirie file riumtier ll
5tart x-pt: 44652G Scale: 1: 62500
Stヨrt Y-pt: 4975001 Number of poirits: 2E
Erus X-pt: 447276
Enid Y-pt: 4975567
llescription
Boulder Creek, 2ris reach, 4975ri to L. Boulder jurictiori, 1,62500
Base line distarice: 12ll
Compare lirie distarice: 1114
Chaririel Irmex for tugse lirie: 1.3%
Chaririel iridex for compare line: 1.19
```


-- STATISTICS——

Experimerit number: 21 Folygorifile number: 14
Ease line description:
Boulder Creek, 2rid reach, from 4975 to junction L. Boulder, $1: 24, i$
Compare line description Boulder Creek, 2 rid reach, 4975 ri to L. Eoulder jurictiori, 1,62500

*		TOTAL TKANSECT LENGTH	AREA TKANS. METHOL	AREA COORD. METHOL	WEIGHTEII AUERAGE	VARIANCE
1	49	2067.10	20671.01	20948.58	883731.1	3954.48
2	5	-27.83	-278.26	-280.51	1561.1	36.72
3	13	363.97	3639.71	3657.92	102413.3	1479.11
4	3	-17.76	-177.62	-182.18	1078.6	3.79
5	18	279.04	2790.37	2799.48	43397.8	1083.70
6	12	-342.73	-3427.33	-3425.72	97842.2	994.90
7	8	70.36	703.63	706.59	6214.8	218.50

EINAL STATISTICS EOR EXFERIMENT NUMEER 21
ABS = Absolute value, urisigried values are to be assumed.
Total area tiy coordinate method (CM): 24224.15
Total area by coordiriate method, AES: 32000.99
Ratio of CM to ABS CM: 0.757
Total area by trarisect method(TM): 23921.52
Total area tiy trarisect method, ABS: 31687.93
Wisth betweeri trarisects: 10.0
Total rimmber of transects $(N):$ 108
Total lerigth of tranisects (II)eviation: 2392.15
Total lerigth of trarisects (II)eviation, ABS: 3168.79
True lerigth of base lirie (BL): 1211.14
True lerigth of compare lirie (CL): 1113.90
Scale of tiase line 1: 24000
Scale of compare lirie 1: 62500
Weightes avg/total area (epsilori): 35.51
Starioary deviation: 22.23
Epsilon line wisth at compare line scale: 0.5681 mm
Maxinum transect lerigth fourid: 65.40

Experimerit riumber: 21

Boulder Creek, 2rid reach, from 4975 to juriction L. Eoulder, $1: 24$, Eoulder Creek, 2ris reach, 4975 n to L. Eoulder junction, 1,62500

1)	0.00
2)	7.00
3)	0.00
4)	0.00
$5)$	24224.15
6)	32000.99
7)	108.00
8)	2392.15
9)	3168.79
10)	0.00
11)	65.40
12)	1136238.96
13)	0.00
14)	94858545.31
15)	1211.14
16)	1113.90
17)	0.00
18)	0.00
19)	1211.14
20)	1224.02
21)	24000.00
22)	62500.00
23)	21.00
24)	0.00

```
    --REFORIOELINEOUERLAY--
This is experimerit number 22
Base lirie file rumtier: }
5tart x-pt: 447298 Scale: l: 24000
Start Y-pt: 4975537 Number of poirits: 84
Erid X-pt: 44900G
Eris Y-pt: 4975528
llescription
Boulser Creek, 3rd reach, from juriction L. Eoulder to 449e, 1:24,0
Compare lirie file rimmtier 12
Start x-pt: 447271 Scale: 1: 62500
Start Y-pt: 4975570 Number of poirits: 52
Enot X-pt: 449001
Enij Y-pt: 4975475
Hescriptiori
Boulder Creek., 3rd reach, L. Eoulder to 449e, 1:62500
Ease lirie distarice:
1999
Compare lirie distarice: 1914
Chaririel Irusex for tuse line: 1.1?
Chaririel iridex for compare lirie: l.ll
```

 Exper imert ridaker: 22 each, L. Boulder to 449e, $1: 62520$

```
-- S T A T IS I I CS --
```

Experiment riumber: 22 Folygon file number: 15
Ease line description:
Boulder Creek, 3ri reach, from juriction L. Eoulder to 449e, 1:24,
Compare line description
Boulder Creek, 3rd reach, L. Boulder to 449e, l:62500

*	TRANSECTS	TOTAL TKANSECT LENGTH	AREA TKANS. METHOL	AREA COORI. METHOD	WEIGHTEL AVERAGE	VARIANCE
1	9	89.97	899.73	958.52	9582.3	184.41
2	34	-526.77	-5267.67	-5276.57	81750.7	803.55
3	19	206.45	2064.48	2073.45	22529.4	430.36
4	13	-201.94	-2019.38	-2026.90	31485.2	589.12
5	19	146.95	1469.47	1472.44	11388.0	105.16
\square	3	-4.51	-45.08	-50.82	76.4	4.47
7	13	183.89	1838.87	1842.10	26056.8	173.92
B	23	-631.06	-6310.63	-6316.57	173311.1	3192.61
9	1	0.18	1.79	3.02	0.5	0.00
10	11	-161.91	-1619.07	-1628.18	23964.9	556.69
11	13	268.06	2680.61	2687.74	55421.5	912.64
12	22	-578.07	-5780.66	-5795.62	152284.1	4513.92

```
EINAL STATISTICS EOR EXPERIMENT NUMEER 22
ABS=At,solute value, unsigned values are to be assumed.
Total area ty coordiriate method (CM): -12057.37
Total area by coordiriate method, AES: 30131.92
Ratio of CM to AES CM: -0.400
Tot:al area by transect method(TM): -12087.55
rotal area ty transect method, ABS: 29997.45
Wisth betweeri transects: 10.0
Total rimmtier of trarisects (N): 180
Tot.al lerigti of trarisects (D)eviation: - 1208.76
Total lerigth of trarisects (II)eviation, AES: 2999.74
Trise lerigth of tiase line (BL): 1999.45
True lerigth of compare lirie (CL): 1914.18
Scale of tiase lirie 1: 24000
Scale of compare line 1: 62500
Weighted avg/total area (epsilori): 19.51
Staridary deviatiori: 13.08
Epsilori lirie width at compare line scale: 0.312lmm
Maximum trarisect length fourid: 45.6G
```

Experiment number: 22
Boulder Creek, 3rij reach, from juriction L. Eoulder to 449e, $1: 24,($ Boulder Creek, 3rd reach, L. Boulder to 449e, l:G2500

1.)	0.00
2;	12.00
$3)$	0.00
4)	0.00
5)	-12057.37
6)	30131.92
7)	180.00
8)	-1208.76
9)	2999.74
10)	0.00
11)	45.65
12)	587850.81
13)	0.00
14)	56G65188.18
15)	1999.45
16)	1914.18
17)	0.00
18)	0.00
19)	1999.45
20)	2005.71
21)	24000.00
22)	62500.00
23)	22.00
24)	0.00

```
    --REFDKT OE LINNE OUENLASM--
This is experiment number 99
Base lirie file rumber: 12
Start X-pt: 473212 Scale: l: 24000
Start Y-pt: 5091272 Number of points: 76
Erid X-pt:
    4 7 4 3 1 0
Erid Y-pt: 5091158
Llescriptiori
[eep Creek. from Nehalam River, lst reach, 1:24,000
Compare line file number 25
Start X-pt: 473217 Scale: 1: 100000
Start Y-pt: 5091314 Number of points: 6G
Erid X-pt: 474325
End Y-pt: 5091173
Llescription
Cleep Creek, lst segmerit, 1:100,000
B.ase lirie distance: 2758
Compare lirie dist.3rice: 2393
Cinaririel Iridex for ti.3se line: 2.50
Chaririel iridex for comp.are lirie: 2.14
```

Cuen Creei Grur Hehalam River. Ist reach: 1:24,000 [ees Creek, $1 \equiv t$ segrient, $1: 106,000$ E: हer.inent muntier: 5


```
-- S T A T I S T I C S --
```

```
Experimerit number: 5 Folygori file number: 3l
Base lirie description:
Geep Creek from Nehalam Kiver, lst reach, l:24,000
Compare line description
0eep Creek, lst segmerit, 1:100,000
```

*	$\begin{gathered} \text { TKAN- } \\ \text { SECTS } \end{gathered}$	total TKANSECT LENGTH	AREA TRANS. METHOI	AKEA COORL. METHON	WEIGHTEII AVERAGE	VARIANCE
1	40	1104.74	11047.41	11076.64	305920.3	5243.39
2	15	-274.23	-2742.29	-2804.20	51266.2	2163.67
3	12	368.70	3686.98	3699.96	113680.9	2211.64
4	13	-498.34	-4983.41	-4978.43	190842.9	2158.57
5	3	49.51	495.14	505.27	8339.3	44.01
5	3	-15.98	-159.85	-156.76	835.2	14.42
7	23	775.95	7759.48	8197.93	276572.7	1782.25
8	2	-12.61	-126.15	-150.22	947.5	6.24
9	4	133.70	1337.02	1430.35	47810.4	365.38
10	2	-3.50	-35.01	-43.47	76.1	12.24
11	93	3364.89	33648.89	33595.53	1215539.9	8590.69

EINAL STATISTICS EOR EXPERIMENT NUMEER 5
AKS=Absolute value, urisigned values are to be assumed.
Total area by coordinate metnod (CM): 50372.60
Total area ty coorsinate methoy, AES: 66638.7\%
Ratio of CM to AES CM: $0.75 G$
Total area ty transect method(TM): 49928.22
Total area ty trarisect method, AES: G6021.63
Width between trarisects: 10.0
Tot.al rumber of trarisects (N): 210
Total lerigth of transects ([I)eviztion: 4992.82
Total lerigth of trarisects (a)eviation, ABS: 6602.1G
Trise lerigth of base line (EL): 2757.93
True lerigth of compare lirie (CL): 2392.60
Scale of base line 1: 24000
Scale of compare line 1:100000
Weigntey avg/total area (epsilon): 33.19
Starijard deviation: 24.09
Epsilon lirie wisth at compare lirie scale: 0.3319mm
Mヨximum trarisect length fouris: 71.12

Experiment rismatior: 5

Ueep Creek from Nehalam River, lst reach, 1:24,000 Ileep Creek, lst segmerit, 1:100,000

1)	0.00
2)	11.00
3)	0.00
4)	0.00
$5)$	50372.60
6)	66638.77
7)	210.00
8)	4992.82
9)	6602.16
10)	0.00
11)	71.1 .2
12)	2211831.47
13)	0.00
14)	386843886.65
15)	2757.92
16)	2392.60
17)	0.00
18)	0.00
$1.9)$	2757.92
$20)$	2457.37
21)	24000.00
22)	100000.00
$23)$	5.00
24)	0.00

- KEPOKTOE LINE OVER
This is experiment riumber 30
Base lirie file rimmer: 14
Start X-pt: 475052 Scale: 1: 24000
Start Y-pt: 5090989 Number of points:
End X-pt: 475805
End Y-pt: 5090000
Description
lleep Creek, reach $\$ 2,1: 24,000$
Compare line file rumber 26
Start X-pt: 475019 Scale: 1: 100000 Start Y-pt: 5090994 Number of poirits: 41
End X-pt: 475819
End Y-pt: 5090013
Oescription
lleep Creek, 2̈nd reach, 1:100,000
Base lirie distarice: 1837
Compare lirie distarice: 154 e
Chaninel Index for bise line: 1.48
Chaririel index for compare line: 1.22

Exiverfont rutiber: 30

```
-- 5 TATISTICS--
```

Experimerit number: 30 Folygorifile riumber: 47
Ease line description:
lleep Creek, reach $\$ 2,1: 24,000$
Compare line description
lieep Creek, 2rid reach, 1:100,000

*	TKANSECTS	$\begin{aligned} & \text { TOTAL } \\ & \text { TKANSECT } \end{aligned}$ LENGTH	AREA TFANS. METHOI	AREA COORD. METHOI	WEIGHTED AVERAGE	VAKIANCE
1	4	-48.33	-483.29	-478.65	5783.2	149.24
2	27	518.07	5180.74	5281.97	101350.0	3123.58
3	9	-255.06	-2550.59	-2583.64	75220.1	758.31
4	17	481.68	4816.76	5226.83	148096.4	4359.14
5	35	-449.71	-4497.09	-4547.10	58425.0	646.45
5	12	264.74	2647.44	2657.80	58636.5	1470.08
7	4	-32.31	-323.06	-326.46	2636.6	10.68
8	18	519.65	5196.46	5419.75	156464.0	4792.85
9	2	-0.61	-6.13	-8.63	2.6	0.17
10	13	181.49	1814.94	1822.02	25437.4	560.33

```
EINAL STATISTICS EOK EXPERIMENT NUMEER 30
AES=At,solute value, unisigned values are to be assumed.
Total area by coordiriate method (CM): 12463.88
Tot:3l area ty coordiriate method, ABS: 28352.85
Ratio of CM to AES CM: 0.440
Tot.al area by trarisect method(TM): 11796.l8
Total area tyy transect method, ABS: 27516.51
Width between transects: 10.0
fot:al riumber of trarisects (N): l41
Total length of transects (D)eviation: 1179.62
INotal lerigth of trarisects (II)eviation, ASS: 275l.65
Trise lerigth of base lirie (EL): 1837.34
True lerigth of compare lirie (CL): 1547.71
Scale of tuase lirie 1: 24000
Scale of compare line 1:100000
Werghted avg/total area (epsilori): 22.22
Staridard deviation: 17.16
Epsilori lirie width at compare lirie scale: 0.2222mmi
Maximun trarisect lerigth found: 77.22
```


Experiment number: 30

Heep Creek, reach $\# 2,1: 24,000$ lleep Creek, 2nd reach, $1: 100,000$

1)	0.00
2)	10.00
3)	0.00
4)	0.00
5)	12463.88
6)	28352.85
7)	141.00
8)	1179.62
9)	2751.65
$1.0)$	0.00
11)	77.22
12)	630051.78
13)	0.00
14)	75160873.43
15)	1837.34
16)	1547.71
17)	0.00
18)	0.00
19)	1837.34
20)	1600.22
21)	24000.00
22)	100000.00
23)	30.00
24)	0.00


```
This is experimerit number gog6
Ease lirie file number: }1
Start X-pt: 475813 Scale: 1: 24000
Start Y-pt: 5089998 Number of points: 77
Enit X-pt: 475914
Erid Y-pt: 5088992
llescription
luep Creek, reach 3, 5090 to 5089
Compare lirie file riumber 27
Start X-pt: 475825 Scale: 1: 100000
Start Y-pt: 5090007 Number of points: 31
Enid X-pt: 475877
E'ris Y-pt: 5088992
Uescription
Ueep Creek, 3rd reach, 1:100,000
Base lirie dist.эrice: 1771
Compare lirie distarice: 1395
Chaririel Iridex for base lirie: 1.75
Charimel index for compare line: l.37
```



```
- S T A T I S I I CS - 
```

Experiment number: 6 Folygon file number: 32
Ease lirie description:
[leep Creek, reach 3, 5090 to 5089
Compare line description Ueep Creek, 3ri reach, 1:100,000

*	TRANSECTS	TOTAL TKANSECT LENGTH	AREA TRANS. METHOII	AREÁ COORII. METHOI	WEITHTEII AUERAGE	VARIANCE
1	20	426.08	4260.81	4332.40	92297.5	3580.01
2	13	-259.05	-2590.47	-2589.27	51595.7	780.84
3	13	389.67	3896.67	3895.26	116758.1	547.89
4	26	-583.99	-5839.90	-5990.28	134548.7	5282.24
5	5	46.70	466.98	477.89	4463.3	156.99
\square	8	-118.08	-1180.77	-1178.94	17400.7	98.2E
7	3	9.81	98.07	109.47	357.9	21.36
5	11	-375.84	-3758.43	-4072.50	139147.2	3507.67
9	3	18.67	186.66	168.85	1050.6	77.41
10	10	-419.88	-4198.79	-5319.59	223358.8	5294.52
11	8	118.99	1189.88	1203.70	17903.3	311.60
12	4	-35.81	-358.08	-312.16	2794.4	425.12

EINAL STATISTICS FOR EXPERIMENT NUMEER 6
AES=Absolute value, urisignes values are to be assumed.
Total area by coordinate method (CM): -9275.17
Total area ty coordiriate method, ABS: 29650.31
Katio of CM to AES CM: -0.313
Total area by trarisect methos(TM): -7827.37
Total area by transect method, ABS: 28025.52
Wisth between transects: 10.0
Total rimmber of transects (N): 124
Total lerigth of transects (1)eviation: -782.74
Total lerigth of trarisects (D)eviation, ABS: 2802.55
True lerigth of base lirie (EL): 1770.70
True lerigth of compare lifie (CL): 1395.08
Scale of tase line 1: 24000
Scale of compare line 1:100000

Weighted avg/total area (epsilori):	27.04	
Staridard deviation:	27.02	
Epsilori line width at compare line scale:	0.2704 mm	
Maximum trarisect length found: 102.60		

Experimerit riumber: G

```
Heep Creek, reach 3,5090 to 5089
Lleep Creek., 3rd reach, 1:100,000
```

$1)$	0.00
$2)$	12.00
$3)$	0.00
$4)$	0.00
$5)$	-9275.17
$6)$	29650.31
$7)$	124.00
$8)$	-782.74
$9)$	2802.55
$10)$	0.00
$11)$	102.60
$12)$	001676.17
$13)$	0.00
$14)$	1770.76
$15)$	1355.08
$16)$	0.00
$17 j$	0.00
$18)$	1770.76
$19)$	1447.47
$20)$	24000.00
$21)$	6.000
$22)$	0.00

- K E Y O K T OE LINE OVEKL A $Y=-$
This is experiment number 957 E.3se lirie file number: 18Start X-pt: 475909 Scale: 1: 24000
Start Y-pt: 5088994 Number of poirits: 85
Erid X-pt: 475770
Erid Y-pt: 5087998
LIescription
Leep Creek. reach 4, 5089-5088, 1:24,000
Compare lirie file rimmtier 28
Start X-pt: 475903 Scale: 1: 100000
Start Y-pt: 5088984 Number of poirits: 30
End X-pt: 475776
Erid Y-pt: 5088026
Lescriptiont
lieep Creek., 4th reach, 1:100,000
B.ase lirie distarice: 1542
Compare lirie distarice: 1292
Chaririel Index for thase lirie: 1.53
Chaririel irisex for compare line: 1.34


```
-- STATIISTIICS--
```

Experimerit number: 7 Folygori file rumber: 33
Ease line Jescription:
Deep Creek, reach 4, 5089-5088, 1:24,000
Compare line description
Deep Creek, 4th reach, 1:100,000

*	TKANSECTS	TOTAL TRANSECT LENGTH	AREA TKANS. METHOD	AKEA COORI. METHOL	WEIGHTEI AUERAGE	VAKIANCE
1	11	-401.55	-4015.50	-4067.77	148492.3	2410.48
2	4	7.57	75.68	81.51	154.2	3.59
3	8	-48.04	-480.42	-488.98	2936.4	45.24
4	4	31.03	310.30	318.48	2470.6	22.65
5	15	-563.96	-5639.63	-5695.14	214123.2	3469.47
6	4	10.49	104.89	112.13	294.0	8.59
7	19	-712.95	-7129.49	-6989.60	262275.3	4646.79
8	1	1.90	19.01	26.20	49.8	0.00
9	ϵ	-50.43	-504.35	-521.26	4381.6	11.16
10	5	37.51	375.11	359.73	2698.7	91.53
11	9	-144.72	-1447.20	-1442.04	23188.0	431.91
12	2	10.20	102.03	97.54	497.6	29.30
13	5	-100.63	-1006.26	-1015.46	20436.2	75.80
14	9	147.99	1479.93	1487.16	24454.5	490.18
15	6	-43.77	-437.74	-448.79	3274.2	44.36
16	7	28.45	284.46	292.51	1188.7	28.66

```
EINAL STATISTICS EOR EXPERIMENT NUMEER 7
ABS=Atisolute value, urisigried values are to be mssumed.
Total area by coordiriate method (CM): -17893.77
Totisl area ty coordinate method, ABS: 23444.3l
Katio of CM to ABS CM: -0.763
Tot.al area ty trarisect method(TM): -17909.18
Total area ty transect method, ABS: 23411.99
Width betweer, transects: 10.0
Total riumber of trarisects (N): 115
Total length of transects ([1)evigtion : -1790.92
Total length of transects (a)eviation, ABS: 2341.20
True lerigth of t.3se lirie (BL): 1542.34
True lerigth of compare lirie (CL): 1292.07
Scale of tiase line 1: 24000
Scale of compare lime 1:100000
Weighted avg/total area (epsilon): 30.32
Staridard deviation: 13.45
Epsilon lirie width at compare lirie scale: 0.3032mm
Maximum transect length founid: 64.06
```

Experimerit rumber: 7
Lleep Creek, reach 4, 5089-5088, 1:24,000Heep Creek, 4 th reach, 1:100,000

1)	0.00
2)	16.00
3)	0.00
4)	0.00
5)	-17893.77
6)	23444.31
$7)$	115.00
8)	-1790.92
9)	2341.20
10)	0.00
11)	64.06
12)	710915.39
13)	0.00
14)	63572868.16
15)	1542.34
16)	1292.07
17)	0.00
18)	0.00
19)	1542.34
20)	1333.29
21)	24000.00
22)	100000.00
23)	7.00
24)	0.00

- REFOKTOE LINE OUERLAY--
This is experimerit number 11
Base 19
Start X-pt: 475772 Scale: 1: 24000
Start Y-pt: 5087998 Number of poirits: 74
End $X-p t$: 476027
Erid Y-pt: 5086994
Liescription
Deep Creek. 5th reach, 5088-5087, 1:34,000
Compare lirie file rumber 29
Start X-pt: 475770 Scale: 1: 100000
Start Y-pt: 5088031 Number of poirits: 22
Enid X-pt: 476039
Erid Y-pt: 5086956
Llescription
[leep Creek, 5th reach, 1:100,000
Base lirie distarice: 1171
Compare lirie distarice: 1155
Chaririel Iritex for base line: 1.13
Chaririel inidex for compare line: 1.04


```
Experimerit riumber: ll folygori file riumber: 4z
kase lime deseription:
beep Creek, 5thregit, 508e - 5087, 1:24,000
Compare lirie descriptaon
Heep Creet, 5th resch. 1:100.000
```

	*	Total	GREA	AREA		
	TKAN-	TRANSECT	TEANS.	COOKL.	WEIGHTEM	
\ddagger	SECTS	LENGTH	METHOD	METHOL	AUEFAGE	VAEIANEE
I.	5	41.14	411.44	431.12	2956.4	28.63
2	9	-76.29	-762.89	-769.73	6524.6	87.83
3	5	12.54	125.41	130.62	327.6	6.26
t	1	-0.26	-2.64	-5.62	1.5	0.00
5	15	310.37	3103.74	3103.89	64224.5	1050.69
3	5	-11.06	-110.56	-115.89	256.2	5.82
7	2	2.05	20.50	26.54	27.2	2.83
8	16	-169.23	-1692.32	-1686.21	17855.0	132.49
9	2	E. 66	66.56	64.90	216.0	0.25
10	2	-4.36	-43.65	-48.01	104.8	3.50
11	7	36.23	362.26	387.52	2005.4	85.28
12	4	-59.22	-592.25	-601.96	8912.7	266.76
13	22	315.09	3150.92	3158.56	45238.2	300.76
14	12	-115.05	-1150.53	-977.09	9368.1	589.31

EINAL STATISTICS FOF EXFERIMENT NUMBER 11
AES=Absolute value, urisigried values are to be assumed.
Totaj area ty coordirite method (CM): 3096.64
Total area by coordiriate method, AES: 11507.60 Rytio of CM to AES CM: 0.269
fotal ares by trarisect method(TM): 2885.99
Total gres ty transect method. ABS: 11595.66
Wuth tetween transects: 10.0
Total rumber or trarisects (N): los
Total lengtin of transects (H)evigtion: 288.60
Total lerigth of trarisects (ll)evigtion, ABS: 1159.57
True lerigth of bise lire (EL): 1171.3
True lerigth of compare lirie (CL): li55.4?
Scale of base lime 1: 24000.
Scale of compare lirie 1:100000

```
Weagnted avg/totsl ares (epsilon): 13.7%
Stardarg devzatıon: 5.94
Epsilon line width at compare line scale: 0.1373mm
m3*imun tramsect lengtn found: 32.77
```

```
Experimerit riumber: 11
Meep Creek, 5th re.ach, 5088-5087, 1:24.000
Leep Creek, Sth reach, 1:100.000
\begin{tabular}{|c|c|}
\hline 1) & 0.00 \\
\hline \(2)\) & 14.00 \\
\hline \(3)\) & 0.00 \\
\hline 4: & 0.00 \\
\hline 5) & 3098.64 \\
\hline \(6 ;\) & 11507.60 \\
\hline 7 & 108.00 \\
\hline \(\theta 9\) & 286.60 \\
\hline 9 & 1159.57 \\
\hline 16! & 0.00 \\
\hline 11) & 32.77 \\
\hline 12: & 157996.21 \\
\hline 139 & 0.00 \\
\hline 14) & 5286954.60 \\
\hline 15) & 1171.31 \\
\hline \(16 \%\) & 1155.4\% \\
\hline 1.79 & 0.00 \\
\hline 18. & 0.00 \\
\hline 197 & 1171.31 \\
\hline \(20)\) & 1228.24 \\
\hline 213 & 24000.00 \\
\hline 2\%) & 100000.00 \\
\hline 33) & 11.00 \\
\hline \(24 ;\) & 0.00 \\
\hline
\end{tabular}
```



```
Thi= 1s experimerit rimmiter 2%
Base lirie file rummber: 7
5t.artx-pt: 445149 50.1e: 1: 24000
Etjrt i-pt: 497414e Number of poinits: 7%
Enodx-pt: 446596
Eruj r-pt: 49%5004
Gescraption
Bouliger Creek, lst segmerit, jurictiori Silete to 4g75ri. 1:24,000
Eumpare dirie file rimmter le
Start x-pt: 4451l0 5ç1e: 1: 100000
StFrt i-pt: 4974158 Number of polrt: : 4t,
Enis x-pt: 44G589
End Y-pt: 4975038
MEScrlption
Boulder Creek, lst resch, 1:100,000
H.ase lirie distarice: 1986
Compare ilre distarice: 200l
Ginanel Irmex for bose line: 1.18
Gharimed irijex for compare lime: 1.lG
```

Eun'der Ereet. $1: \mathrm{E}_{\mathrm{t}}$ segment, jurictian Siletz to 4975r, $1: 24,000$ Eunider creat, 1Et reacti, 1: iub, 0日e
Evary iment number: ze

-5 TATISTICS--

```
Experiment riumber: 2З Folygorifile number: 19
Base lirie description:
Bouljer Creek, lst segmerit, jurictioni Siletz to 4975ri, 1:24,000
Compare line description
Boulder Creek, lst reach, 1:100,000
```

*	TKANSECTS	TOTAL TKANSECT LENGTH	AREA TRANS. METHOD	AREA COORI. METHOI	WEIGHTED AUERAGE	VARIANCE
1	12	229.85	2298.55	2297.81	44013.4	1123.81
2	39	-728.65	-7286.47	-7287.51	136154.5	1317.92
3	31	755.22	7552.16	7558.65	184142.3	2279.92
4	3	-6.00	-60.01	-65.38	130.8	1.77
5	1	0.00	0.01	0.00	0.0	0.00
\square	20	-352.07	-3520.75	-3516.38	61901.4	1685.90
7	84	2089.79	20897.86	20921.60	520496.0	4250.60

EINAL STATISTICS EOR EXPERIMENT NUMEER 23
ABS=Atisolute value, urisigries values are to be assimed.
Total area ty coorsiriate method (CM): 19908.78
Total area ty coorsiriate method, ABS: 41647.32
katio of CM to ABS CM: 0.478
Total area by trarisect methou(TM): 19881.34
Total area ty transect method, AES: 41615.81
Wiath betweeri trarisects: 10.0
Total riumber of transects (N): 190
Total lerigth of trarisects (n)eviation: 1988.13
Total lerigth of trarisects (I)eviatiori, ABS: 4161.58
True lerigth of b.ase line (BL): 1985.91
True lerigth of compare line (CL): 2001.00
Scale of tiase line 1: 24000
Scale of compare lirie 1:100000
Weighted avg/total area (epsilori): 22.73
Starisard deviation: 22.30
Epsilon lirie width at compare lirie scale: 0.2273mmMaximum trarisect lerigth fourit: 46.15

Experimerit rumber: 23

Boulder Creek, lst segment, juriction Siletz to 4975ri, 1:24,000 Houlder Creek, lst reach, 1:100,000

1)	0.00
2)	7.00
3)	0.00
4)	0.00
5)	19908.78
6)	41647.32
7)	190.00
8)	1988.13
9)	4161.58
10)	0.00
11)	46.15
12)	946838.35
13)	0.00
14)	124277591.64
15)	1985.91
16)	2001.00
17)	0.00
18)	0.00
19)	1985.92
20)	2076.74
21)	24000.00
22)	100000.00
23)	23.00
24)	0.00


```
This is experiment numbuer
24
Base lirie file riumber: 8
Start X-pt: 446598 Scale: 1: 24000
Start Y-pt: 4975002 Number of poirits: 69
Erus X-pt: 447299
Eris Y-pt: 4975536
Llescriptiori
Eoulder Creek, 2rid reach, fron 4975 to juriction, L. Boulder, 1:24,
Compare line file riumber 17
Start X-pt: 446590 Scale: 1: 100000
Start Y-pt: 4975036 Numtier of poinits: 29
Erid X-pt: 447265
End Y-pt: 4975543
luscription
Boulder Creek, 2rid reach, 1:100,000
Base lirie distarice: l211
Compare lirie distarice: 1156
Chaririel Irujex for tu.ase lirie: 1.38
Charinel iridex for compare line: 1.37
```



```
    - 5 T A T I S I I [ S m
E<perimerit riumber: 24 folygori file rimatier: 20
Base lirie description:
Boulder Creek, 2rid remch, from 4975 to jurictiori Le Bouider, 1:24.'
Compare line descriptiori
Boulder Creek., 2rid reach, 1:100,000
```

*	TKANSECTS	TOTAL TKANSECT LENGTH	AREA TRANS. METHO[I	AREA COORI. METHOL	WEIGHTEI AUERAGE	VAR IANCE
1	49	871.29	8712.92	8669.12	154149.8	3793.80
2	8	-47.79	-477.93	-484.36	2893.6	46.75
3	9	76.51	765.14	778.99	6622.6	160.15
4	2	-10.06	-100.64	-116.28	585.1	0.66
5	23	241.56	2415.59	2454.44	25777.9	1039.99
6	18	-336.48	-3364.81	-3392.64	63420.0	2936.62

EINAL STATISTICS FOR EXPERIMENT NUMEER 24
ABS=Atisolute value, urisigries values are to be assumed.
Total area by coordirate method (CM): 7909.27
Total area ty coordirate methou, ABS: 15895.83
Katio of CM to AES CM: 0.498
Total area by transect method(TM): 7950.28
Total area by trarisect methou, ABS: 15837.03
Wisth betweeri trarisects: 10.0
Total riumber of transects (N): 109
Total lerigth of trarisects (a)eviation 795.03
Total lerigth of trarisects (I)eviation, ABS: 1583.70
Trise lerigth of tiase lirie (EL): 1211.14
True lerigth of compare lirie (CL): 1156.25
Scale of tiase lirie 1: 24000Scale of compare lirie 1:100000
Weightey avg/total area (epsilori): 15.94
Starisard deviation: 23.94
Epsilon lirie wisth at compare lirie scale: 0.1594mmMaximum trarisect length fourid: 38.95

Experimerit number: 24

Boulder Creek, 2ris reach, from 4975 to juriction L. Boulder, 1:24, Boulder Creek, 2ris reach, 1:100,000

1)	0.00
2)	6.00
3)	0.00
4)	0.00
5)	7909.27
6)	15895.83
7)	109.00
8)	795.03
9)	1583.70
10)	0.00
11)	38.95
12)	253448.98
13)	0.00
14)	45551877.33
15)	1211.14
16)	1156.25
1.7)	0.00
18)	0.00
19\%	1211.14
20)	1225.34
21)	34000.00
22)	100000.00
23)	24.00
24)	0.00


```
This is experiment number 25
Base lirie file number: }
St.artx-pt: 44729E Sc.3le: 1: 24000
Start Y-pt: 4975537 Numtier of poirits: 84
End X-pt: 44900G
Enis Y-pt: 4975528
Llescription
Eoulder Creek., Srd reach, from jurictioniL. Eoulder to 449e, 1:24,'
Compare lime file rumber l8
Start X-pt: 447266 Scale: 1: 100000
Start Y-pt: 4975550 Number of poirits: 5l
End X-pt: 448987
Erus Y-pt: 4975553
llescriptiori
Boulder Creek, 3rd reach, 1:100,000
Base lirie distarice: }199
Compare lirie distarice: 1971
Charinel In\ex for tusee line: 1.17
Chaririel irodex for compare lirie: 1.15
```


EG=ramert insubr: at:


```
-- 5 T A I I S T I C S --
```

Experiment number: 25 Polygon file number: 21
Ease lime description:
Boulder Creek. 3rd reach, from junction L. Eoulder to 449e, $1: 24$,
Compare line description Boulder Creek. 3rd reach, 1:100,000

\ddagger	TRAN- SECTS	toral TKANSECT LENGTH	AKEA TKANS. METHOLI	AKEA COQKI. METHON	WEIGHTEI AUERAGE	VAR IANCE
1.	37	948.57	9485.71	9522.05	244117.3	1057.64
2	23	-377.53	-3775.34	-3791.51	62235.9	417.95
3	8	123.42	1234.17	1236.41	19074.3	233.16
4	6	-25.54	-255.44	-257.21	1095.0	13.64
5	4	5.25	52.54	52.98	69.6	3.13
\square	2	-0.07	-0.72	-0.55	0.0	0.00
7	3	0.25	2.52	3.29	0.3	0.01
B	5	-7.74	-77.40	-77.81	120.5	2.70
9	5	14.57	145.73	145.44	423.9	7.46
10	5	-27.86	-278.58	-285.49	1590.6	14.90
11	26	612.84	6128.36	6138.17	144680.3	2552.16
12	13	-55.98	-559.82	-557.93	2402.6	44.88
13	2	4.73	47.27	55.10	130.2	3.80
14	10	-193.94	-1939.40	-1949.42	37807.0	312.20
15	33	600.86	6008.57	6015.71	109532.9	1575.28

```
EINAL STATISTICS EOR EXPERIMENT NUMEER 2S
AES=At,solute value, urisigried values are to be assumed.
Total area by coordinate method (CM): 16249.25
Total area ty coorsinate methos, ABS: 30089.07
Katio of CM to ABS CM: 0.540
Total area by transect method(TM): 16218.15
Total area ty transect methos, ABS: 29991.57
Wigth between transects: 10.0
Total riumtuer of trarisects (N): 182
Total lerigth of trarisects (a)eviation : 1621.82
Total lerigth of trarisects (D)eviatiori, AES: 2999.16
True lerigth of tase line (BL): 1999.45
True lerigth of compare lirie (CL): 1971.37
Scale of biase lirie 1: 24000
Scale of compare lirie 1:100000
Weighted av3/total area (epsilori): 20.71
Starisard deviation: 9.4G
Epsilori line wiyth at compare lirie scale: 0.207lmm
Maximum transect lerigth fouris: 37.08
```

Experimerit riumber: 25
Boulder Creek, 3rd reach, from junction L. Boulder to 449e, 1:24, C Boulder Creek, 3rs resch, 1:100,000

1)	0.00
2)	15.00
3)	0.00
4)	0.00
5)	16249.25
6)	30089.07
7)	182.00
8)	1621.82
9;	2999.16
10)	0.00
11)	37.08
12)	623280.44
13)	0.00
14)	37728945.63
15)	1999.45
16)	1971.37
17)	0.00
18)	0.00
19)	1999.45
20)	2037.21
21)	24000.00
22)	100000.00
23)	25.00
24)	0.00

-- KEPOKTOE LINE OUERLAY--
This is experimerit number 9
Ease line file rumber: 12
Start X-pt: 473212 Scale: 1: 24000
Start Y-pt: 5091272 Number of poirits: 76
End X-pt: 474310
Enid Y-pt: 5091158
Description
Deep Creek. from Nehalam River, lst reach, 1:24,000
Compare line file number 34
Start X-pt 473337 Scale: 1: 250000
Start Y-pt: 5091408End X-pt:474470
Erid Y-pt: 5091200
Uescription[leep Creek, first reach (from Nehalem), 1:250000
Base line distance: 2758
Compare line distarice: 2083
Charirel Index for tase line: 2.50
Chaririel iridex for compare line: 1.81

Feen Creet: Fron Nehoiam Eiver, Ist reacti, 1:24,000 [reen ireen, firet reash (from Netalen), 1:258090 Enerimert maber: 9

Experimerit riumber: 9 Polygori file riumter: 40						
Base line description: [leep Creek from Nehalam River, lst reach, l:24,000						
Compare lirie Jescription lleep Creek, first reach (from Nehalem), 1:250000						
*	TRANSECTS	total TRANSECT LENGTH	AKEA TKANS. METHOL	$\begin{aligned} & \text { AREA } \\ & \text { COORII } \\ & \text { METHOL } \end{aligned}$	WEIGHTEM AUERAGE	UAR IANCE,
1.	16	2377.09	47541.79	48409.36	7192085.8	18186.26
2	8	-341.30	-6825.94	-6926.91	295516.9	2652.97
3	3	333.61	6672.16	8784.04	976809.3	4834.44
4	1	-4.24	-84.81	-96.29	408.3	0.00
5	67	3509.34	70186.85	72194.90	3781442.1	74902.91

```
ABS=Atsolute value, urisigried values are to be assummed.
Total area by coordinate method (CM): 122365.11
Total area by coordiriate method, AES: 136411.50
Ratio of CM to AES CM: 0.897
Total area ty trarisect method(TM): 117490.05
Total area by trarisect method, AES: 131311.55
Wisth between trarisects: 20.0
Total riumber of trarisects (N): 95
Total lengti of transects (LI)eviation: 5874.50
Total lerigth of trarisects (II)eviatiori, ABS: 6565.58
Trise lerigth of base line (EL): 2757.92
True lerigth of compare lirie (CL): 2082.84
Scale of toase line 1: 24000
Scale of compare lirie 1:250000
Weighted avg/total area (epsilori): 89.77
Staridard deviation: 107.87
Epsilori lirie width at compare lirie scale: 0.359lmm
Maximum transect lerigth fourid: 194.22
```


Experiment riumber: 9

Deep Creek. from Nehalam Kiver, lst reach, $1: 24,000$ Leep Creek, first reach (from Nehalem), 1:250000

$1)$	0.00
$2)$	5.00
$3)$	0.00
$4)$	0.00
$5)$	122365.11
$6)$	136411.50
$7)$	95.00
$8)$	5874.50
$9)$	6565.58
$10)$	0.00
$11)$	194.22
$12)$	12246262.31
$13)$	0.00
$14)$	6348836177.97
$15)$	2757.92
$16)$	2082.84
$17)$	0.00
$18)$	0.00
$19)$	2757.92
$20)$	2434.25
$21)$	24000.00
$22)$	250000.00
$23)$	0.00
$24)$	0.00

```
            --KEFOKTME
                    L I N E
This is experiment number 12
Base lirie file ntmber: 14
Start X-pt: 475052 Scale: 1: 24000
Start Y-pt: 5090989 Number of points: 66
Erad X-pt:
    475805
Erid Y-pt: 5090000
Llescriptiori
[leep Creek., reach *2, 1:24,000
Compare line file riumber 35
Start X-pt: 475177 Scale: 1: 250000
Start Y-pt: 5090970 Numbier of points: 20
Erid X-pt: 476070
Eris Y-pt: 5090001
Ilescriptiori
Ueep Creek, 2rid reach, 1:250,000
Base lirie distance: 1837
Compare lirie distarice: 1495
Chaririel In\ex for base lirie: 1.48
Chaririel iridex for compare lirie: 1.13
```

 OUEKLAY--

Cere freei, zrai redet.0 1:250,000
E.FE?Mert rimere: 12

Experiment rumater: 12 Folygorifile rumber: 43
Ease lirie description:
lieep Creek, reach $\# 2,1: 24,000$
Compare line description Deep Creek, 2rid reach, 1:250,000

EINAL STATISTICS EOR EXFERIMENT NUMEER 12
ABS=Atsolute value, unsignes values are to be assumes.
Total area by coordiriate method (CM): 208417.06
Total area by coorsiriate methos, AES: 208417.06
Ratio of CM to ABS CM: 1.000
Total area by trarisect method (TM): 205315.98
Total area ty trarisect method, AES: 205315.98
Wiath tetweeri trarisects: 25.0
Total rismber of trarisects (N): 56
Total length of trarisects ([I)eviation: 8212.64
Total lerizth of transects (LI)eviztion, AB5: 8212.64
True lerigth of base lirie (BL): 1837.34
Trise lerigth of compare lirie (CL): 1495.19
Scale of biase line 1: 24000Scale of compare line 1:250000
Weighted avg/total area (epsilori): 146.65
Starisard deviatiori: 217.28
Epsilori line wisth at compare lirie scale: 0.5866 mm
Mヨximism trarisect lerigth fourid: 245. 27

```
Experimerit number: 12
Lleep Creek, rescn $2, 1:24,000
|eep Creet, Zrud reach, 1:250.000
\begin{tabular}{|c|c|}
\hline 1) & 0.00 \\
\hline 2) & 1.00 \\
\hline 3) & 0.00 \\
\hline 4) & 0.00 \\
\hline \(5)\) & 208417.06 \\
\hline 6) & 208417.06 \\
\hline 7 ) & 56.00 \\
\hline B) & 8212.64 \\
\hline 9) & 8212.64 \\
\hline 10) & 0.00 \\
\hline 11) & 245.27 \\
\hline 12) & 30565251.95 \\
\hline 13) & 0.00 \\
\hline 14) & 9839422866.63 \\
\hline 15) & 1837.34 \\
\hline 16) & 1495.19 \\
\hline 17) & 0.00 \\
\hline 1.8) & 0.00 \\
\hline 19) & 1837.34 \\
\hline \(20)\) & 1885.93 \\
\hline 21) & 24000.00 \\
\hline 22) & 250000.00 \\
\hline 23) & 12.00 \\
\hline 24) & 0.00 \\
\hline
\end{tabular}
```

- KEFOKTOE LINE
OUEKL A Y--
This is experiment number 37
Base line file number: 17
5tヨrt X-pt: 475813 Scale: 1: 24000
St.art Y-pt 5089998
Erid $X-p t$: 475914
Erid Y-pt: 5088992
Gescription
Geep Creek, reach 3, 5090 to 5089
Compare line file riumtier 27
5tart x-pt: 476026 Scale: 1: 250000
St.art Y-pt: 5089995 Number of points: 15
Erid X-pt: 475972
Enid Y-pt: 5088924
Gescription
Ueep Creek, 3ry reach, $1: 250,000$, (2ris uigitication)
甘ase lirie distarice: 1771
Compare line distarice: 1139
Chaririel Iridex for tiقse lirie: 1.75
Charinel irutex for compare line: $1.0 G$


```
-- T A T I S T I CS--
```

Experiment riumber: 37 Polygori file riumber: 32						
Base line description: lieep Creek, reach 3,5090 to 5089						
Compare line description Lieep Creek, 3rd reach, $1: 250,000$, (2nd digitization)						
*	TKANSECTS	$\begin{aligned} & \text { TOTAL } \\ & \text { TKANSECT } \\ & \text { LENGTH } \end{aligned}$	AREA TRANS. METHOI	AREA COORI. METHOI	WEIGHTEII AVEKAGE	VAKIANCE
1	38	2920.05	58401.04	58420.17	4489208.2	75990.76
2	5	-263.63	-5272.64	-5477.19	288792.3	422.67
3	2	37.93	758.57	935.05	17732.5	501.95
4	4	-23.30	-465.94	-502.24	2925.2	6.19
5	4	232.27	4645.43	4301.82	249797.8	3141.41

```
FINAL STATISTICS EOR EXPEKIMENT NUMEER 37
ABS=Absolute value, urisigried values are to be assumed.
Total area tyy coordiniate method (CM): 57677.61
Total area ty coordinate methos, AES: 69636.4%
katio of CM to AES CM: 0.828
Total area by trarisect method(TM): 58066.46
Total area ty trarisect method, ABS: 69543.61
Width betweeri transects: 20.0
Total numbier of transects (N): 53
Total lerigth of transects ([I)eviation: 2903.32
Total lerigth of trarisects (II)eviatior!, ABS: 3477.18
Trise lerigth of tase line (EL): 1770.76
True lerigth of compare lirie (CL): 1138.69
Scale of buse line 1: 24000
Scale of compare line 1:250000
Weightey avg/total area (epsilon): 72.50
5tarisars deviatiori: 126.48
Epsilori lirie wisth at compare lirie scale: 0.2900mm
Maximum transect lerigth folsrid: 169.66
```

```
Experiment riumtier: 37
Lleep Creek, reach 3, 5090 to 5089
Ueep Creek, Зrd reach, 1:250,000, (2rod digitizatior,)
\begin{tabular}{rr}
\(1)\) & 0.00 \\
\(2)\) & 5.00 \\
\(3)\) & 0.00 \\
\(4)\) & 0.00 \\
\(5)\) & 57677.61 \\
\(6)\) & 69636.47 \\
\(7)\) & 53.00 \\
\(8)\) & 2903.32 \\
\(9)\) & 3477.18 \\
\(10)\) & 0.00 \\
\(11)\) & 169.66 \\
\(12)\) & 5048455.94 \\
\(13)\) & 0.00 \\
\(14)\) & 4455694148.34 \\
\(15)\) & 1770.76 \\
\(16)\) & 1138.69 \\
\(17 ;\) & 0.00 \\
\(18)\) & 0.00 \\
\(19)\) & 1770.76 \\
\(20)\) & 1440.23 \\
\(21)\) & 24000.00 \\
\(22\rangle\) & 250000.00 \\
\(23 ;\) & 37.00 \\
\(24)\) & 0.00
\end{tabular}
```

- REFORTOE L I NE OUEKLAY--
This is experiment rumber 38
Base lirie file number: 18
Start X-pt: 475909 Scale: 1: 24000
Start Y-pt: 5088994 Number of points: 85
End $X-p t$: 475770
Eris Y -pt: 5087998
liescription
Ueep Creet., reach 4, 5089-5088, 1:24,000
Eompare lirie file rumber 28
Start X-pt: 475936 Scale: 1: 250000
Start Y-pt: 5088943 Number of poirits: 20
Erid $X-p t$: 475803
Erus Y-pt: 5087993
liescriptiori

```Heep Creek, 4 th reach, \(1: 250,000\) (2rit digitization)
```

Base lirie distarice: 1542
Compare line distarice: 1185
Chaririel Iritex for tisse lirie: 1.53
Chaririel iridex for compare lirie: 1.23
C.Eek Ereek, reach 4, 5085-5988, 1:24,890
[een urest, 4 th reach, l: e59, 800 (2nd dagitization) Experimenet number: * β

Experiment riumber: 38 Polygon file number: 33
Ease line description:
[ieep Creek, reach 4, 5089-5088, 1:24,000
Compare line description
Ueep Creek, 4 th reach, 1:250,000 (2nd digitization)

*	TRANSECTS	total TKANSECT LENGTH	AREA TKANS. METHOL	AREA COOKII. METHOLI	WEIGHTEE AUERAfiE	VAKIANCE
1	12	448.77	8975.36	8952.80	334810.7	5739.48
2	6	-287.37	-5747.34	-5758.64	275807.5	1258.06
3	5	386.98	7739.50	7855.34	607964.1	3293.35

4	7	-597	-11933	-12218	1041416	5812
5	13	896	17927	18738	1291923	25067
6	4	-95	-1903	-1979	47070	116
7	2	51	1016	930	23627	186

EINAL STATISTICS EOR EXFERIMENT NUMEEK 38
AES=Atsolute value, unisigned values are to be assumed.
Total area ty coordinate method (CM): 16520.48
Total area ty coordinate methor, ABS: 56431.09
Katio of CM to ABS CM: 0.293
Total area by transect method(TM): 16074.02
Total area by transect method, AES: 55241.09
Wisth between transects: 20.0
Total number of transects (N): 49
Total length of transects (a)eviation : 803.70
Total lerigth of trarisects (I)eviation, ABS: 2762.05
True length of base line (BL): 1542.34
True length of compare line (CL): 1184.86
Scale of base line 1: 24000Scale of compare line 1:250000
Weighter avg/total area (epsilon): 64.20
Standard deviation: 42.98
Epsilon line width at compare line scale: 0.2568 mmmaximum transect length fourid: 157.74
Experiment number: 38
Heep Creek, reach 4, 5089-5088, 1:24,000Ueep Creek, 4 th reach, $1: 250,000$ (2nd digitization)

1)	0.00
2)	7.00
3)	0.00
4)	0.00
$5)$	16520.48
6)	56431.09
7)	49.00
8)	803.70
9)	2762.05
10)	0.00
11)	157.74
12)	3622619.06
13)	0.00
14;	625604844.30
15)	1542.34
16)	1184.86
17)	0.00
18)	0.00
19)	1542.34
20)	1276.26
21)	24000.00
22)	250000.00
23)	38.00
24)	0.00

```
                --REFOKI OE LINNE OVERLA Y - F
This is experiment nummer 39
Gase lirie file rimmber: }1
5tart X-pt: 475772 Scale: 1: 24000
St.3rt Y-pt: 5087998 Number of poirits: 7a
Erid X-pt: 476027
Erid Y-pt: 5086994
luescr1ptiori
Meep Creek, 5th reacin, 5088-5087, 1:24,000
Compare lirie file riumber 29
Start X-pt: 475803 Scale: 1: 250000
Start Y-pt: 5087984 Number of poirits: 1]
End X-pt: 476172
Erit Y-pt: 5086938
Luescription
|eep Creek, 5th reach, 1:250,000 (2nd digitization)
Base lirie distarice: 1171
Conpare lirie distarice: lll8
Chaririel Iritex for base lirie: 1.13
Chaririel irisex for compare lirie: 1.0l
```


EINAL STATISTICS EOR EXPERIMENT NUMEER 39
AES=Absolute value, unsigried values are to be assumed.
Total area by coordinate method (CM): 120675.17
Total area by coorsiriate methos, AES: 120675.17
Ratio of CM to ABS CM: 1.000
Total area by trarisect method(TM): 120430.62
Total area ty transect method, ABS: 120430.62
Width tuetween transects: 25.0
Total riumtier of transects (N): 45
Iotal lerigth of trarisects (f)eviation : 4817.22
Total length of trarisects (II)eviatiori, ABS: 4817.22
Trise length of base line (BL): 1171.31
True lerigth of compare lirie (CL): 1117.88
Scale of base lirie 1: 24000
Scale of compare line 1:250000
Weighted ava/total area (epsilon): 107.05
Staridard deviation: 202.97
Epsilon line width at compare lirie scale: 0.4282mm
Maxinum transect length fourid: 155.45

```
-- S T A T I S TIICS--
```

```
Experiment riumbier: 39 Folygon file number: 34
base line description:
Deep Creek, 5th reach, 5088-5087, 1:24,000
Compare line description
Deep Creek, 5th reach, 1:250,000 (2nd digitization)
```


Experiment numtier: 39

Deep Creek, 5th reach, 5088-5087, 1:24,000
Lleep Creek, 5 th reach, $1: 250,000$ (2ris disitiastion)

$1)$	0.00
$2\rangle$	1.00
$3)$	0.00
$4\rangle$	0.00
$5)$	120675.17
$6\rangle$	120675.17
$7)$	45.00
$8)$	4817.22
$9)$	4817.22
$10 ;$	0.00
$11)$	155.45
$12\rangle$	12918210.11
$13)$	0.00
$14)$	4971640201.14
$15)$	1171.31
$16\rangle$	1117.88
$17\rangle$	0.00
$18)$	0.00
$19)$	1171.31
$20)$	1307.51
$21\rangle$	24000.00
$22\rangle$	250000.00
$23)$	39.00
$24)$	0.00


```
This is experimerit riumber 40
Base lirie fille number: 7
5tart X-pt: 445l49 Scale: 1: 24000
Start Y-pt: 4974148 Number of poinits: 75
Erid X-pt:
446596
Eriot Y-pt: 4975004
Llescription
Boılder Creek, lst segmerit, junction, Siletz to 4975ri, 1:24,000
Compare line file riumber 22
Start X-pt: 445178 Scale: 1: 250000
Start Y-pt: 4974071 Number of points: 20
Enid X-pt: 446612
Eris Y-pt: 4974951
lescriptiori
*oulder Creek. lst reach, 1:250,000
B.3se lirie distarice: 1986
Compare lirie distarice: 1841
Chaririel Iritex for trase lirie: 1.18
Chaririel index for compare line: 1.09
```


E-iticuer ereeh. ist reacti, i: 250,00日

-- 5 TATISTICS--

Experiment number: 40 Folygon file number: 35
Ease line description:
Boulder Creek, lst segment, juriction Siletz to 4975r, 1:24,000
Compare life description
Eoulder Creek, lst reach, 1:250,000

EINAL STATISTICS EOK EXPERIMENT NUMEER 40
ABS=Absolute value, unsigried values are to be assumed.
Total area ty coordiriate method (CM): -192084.53
Total area ty coordiriate methos, ABS: 192084.53
katio of CM to ABS CM: -1.000
Total area ty trarisect method(TM): -189748.67
Total area by trarisect method, ABS: 189748.67
Width between transects: 25.0
Total riumtier of transects (N): 68
Total length of transects (II)eviation: -7589.95
Total lerigth of trarisects (D)eviatiori, ABS: 7589.95
True lengtin of base line (EL): 1985.91
True lerigtin of compare line (CL): 1840.75
Scale of base line 1: 24000
Scale of compare lirie 1:250000
Weighted avg/total area (epsilon): 111.62
Starisard deviation: 234.26
Epsilon lirie wisth at compare line scale: 0.4465 mmi
Maximun transect lerigth fourid: 184.78

Experiment number: 40

Boulder Creek, lst segment, juriction Siletz to 4975r, 1:24,000 Eoulder Creek, lst reach, 1:250,000

$1)$	0.00
$2)$	1.00
$3)$	0.00
$4)$	0.00
$5)$	-192084.53
$6)$	192084.53
$7)$	68.00
$8)$	-7589.95
$9)$	7589.95
$10\rangle$	0.00
$11\rangle$	184.78
$12\rangle$	2143972.79
$13)$	0.00
$14)$	10541057780.20
$15)$	1985.91
$16)$	1840.75
$17)$	0.00
$18)$	0.00
$19)$	1985.92
$20)$	1977.48
$21)$	24000.00
$22)$	250000.00
$23)$	40.00
$24)$	0.00


```
This is experimerit number 4]
Base lirie fille rimmtier: 8
Start X-pt: 446598 Scale: 1: 24000
Start Y-pt: 4975002 Number of poirits: 69
Erid X-pt: 447299
Eris Y-pt: 4975536
Uescriptioni
Boulder Creek, 2rid reach, from 4975 to jurictiori L. Eoulder, 1:24,'
Compare lirie file riumtier 23
Start X-pt: 446604 Scale: 1: 250000
Start Y-pt: 4974979 Number of poirits: 10
Erid X-pt: 447325
Erid Y-pt: 4975470
Lescriptiori
Boulder Creek, 2rid reach, 1:250,000
Base lirie distarice: l211
Compare lirie distarice: 990
Channel Irujex for tuse line: 1.38
Charinel index for compare lirie: 1.13
```

 E. Fue: alert ramper: 41

$$
-5 \text { TATISTICS-- }
$$

```
Experiment riumber: 4l Folygori file number: 3G
Base lirie descriptiori:
Eoulder Creek, 2nd reach, from 4975 to juriction L. Eoulder, l:24,(
Compare lime description,
Boulder Creek, 2nd reach, 1:250,000
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & * & TOTAL & AREA & Area & & \\
\hline & TRAN- & transect & trans. & COORD. & WEIGHTEL & \\
\hline * & SECTS & LENGTH & METHOL & METHOII & AUERAGE & VARIANCE \\
\hline 1 & 36 & -3106 & -77652 & -79307 & 68425796 & 208 \\
\hline
\end{tabular}
```

EINAL STATISTICS FOR EXPERIMENT NUMEER 41
AES=Absolute value, unsigned values are to be assumed.
Total area ty coordiriate method (CM): -79306.85
Total area by coordinate method, ABS: 79306.85R3tio of CM to AES CM: -1.000Total area by transect method(TM): -77651.82Total area by transect method, ABS: 77651.82
Width between transects: 25.0
Total riumber of transects (N): 36
Total lerigth of transects (a)eviation : -3106.07
Total lerigth of trarisects (II)eviation, AES: 3106.07
Trise lenigth of base line (EL): 1211.14
Trise lerigth of compare line (CL): 989.62
Scale of base line 1: 24000Scale of compare line 1:250000
Weighted avg/total area (epsilon): 86.28
Starisard deviョtion: 261.17Epsilon line width at compare line scale: 0.345lmmMaximim transect length found: 217.70

Experiment number: 41

Boulder Creek, 2nd reach, from 4975 to junction L. Boulder, 1:24, Boulder Creek, 2nd reach, 1:250,000

$1)$	0.00
$2)$	1.00
$3)$	0.00
$4)$	0.00
$5)$	-79306.85
$6)$	79306.85
$7)$	36.00
$8)$	-3106.07
$7)$	3106.07
$10)$	0.00
$11)$	217.70
$12)$	6842578.90
$13)$	0.00
$14)$	5409345056.32
$15)$	1211.14
$16)$	989.62
$17)$	0.00
$18)$	0.00
$19)$	1211.14
$20)$	1084.85
$21)$	24000.00
$22)$	250000.00
$23)$	41.00
$24)$	0.00


```
This is experimerit ritmber 4Z
Base lirie file riumber: }
Start X-pt: 447298 Scale: 1: 24000
Start Y-pt: 4975537 Number of points: 84
Enit X-pt: 44900G
Erij Y-pt: 4975528
Llescription
Boulder Creek., 3rd reach, from juriction L. Eoulder to 449e, 1:24,'
Compare lirie file riumber 24
Start X-pt: 447340 Scale: l: 250000
St.art Y-pt: 4975442 Number of poirits: 20
Env X-pt: 448954
Eris Y-pt: 4975364
Liescriptiori
Boulder Creek, 3rd reach, 1:250,000
B.3se lirie distarice: 1999
Compare lirie distarice: 1723
Chaririel Irisex for tiase lirie: 1.17
Chaririel iridex for compare lirie: 1.07
```

Eisulder Crea, Frd react, from junction L. Eoulder to 449e, 1:24,080 Eunlier Ci eet. 3ra reacti, 1:250,800


```
-- S T ATIIS I I C S --
```

Experimerit number: 42 Folygon file number: 37
Base line description:
Boulder Creek, 3rd reach, from junction L. Boulder to 449e, 1:24,
Compare line description Boulder Creet, 3rd resch, 1:250,000

	*	total	AREA	AREA		
	TKAN-	thansect	TKANS.	CORRI.	WEIGHTED	
*	SECTS	LENGTH	METHOI	METHOI	Average	VAK IANCE
1	69	-8904	22606	22446	59976	991

EINAL STATISTICS EOR EXPERIMENT NUMEER 42
$A B S=A$ asolitte value, unsigried values are to tue assifmed.
Total ares ty coordinate method (CM): -222446.24
Total area toy coordin.ate methos. ABS: 222446.24
Katio of CM to ABS CM: -1.000
Total area tiy trarisect method(TM): -222605.90
Total area ty trarisect method, AES: 222605.90
Width betweeri trarisects: 25.0
Total nimmer of transects (N): 69
Total lerizth of trarisects ([i)eviation: -8904.24
Total length of transects (D)eviatiori, ABS: 8904.24.
Trise lerigth of base lirie (BL): 1999.45
True lerigth of compare line (CL): 1721.58
Scale of biase line 1: 24000
Scale of compare lirie 1:250000
Weighted avg/total area (epsilon): 129.05
Starisard deviation: 262.66
Epsilori line width at compare lirie scale: 0.5162mmMaximum transect lerigth founid: 190.27

Experimerit number: 42

Boulder Creek, 3rd reach, from junction L. Eoulder to 449e, 1:24, Eoulder Creek, 3rd reach, 1:250,000

$1)$	0.00
$2)$	1.00
$3)$	0.00
4%	0.00
$5)$	-222446.24
$6)$	222446.24
$7)$	69.00
$8)$	-8904.24
$9)$	8904.24
107	0.00
$11)$	190.27
$12)$	28705996.55
$13)$	0.00
$14)$	15346730029.70
$15)$	1999.45
$16)$	1721.58
$17)$	0.00
$18)$	0.00
$19)$	1999.45
$20)$	1996.82
$21)$	24000.00
$22)$	250000.00
$23)$	42.00
$24)$	0.00

APPENDIX C

Reports from program BOX

IINE (T,E,L,R)	MEAN	SI	SCALE
T	0.00	7.41	24000
G	0.00	7.41	24000
L	0.00	7.41	24000
F	0.00	7.41	24000

This is a systematic random sample...
Start lerigth $=16.0$ meters
Increment multiplier $=2.0$
Program will stop wheri all protiatilities $>=99.00$ Number of ranisom points generated per pass $=300$

*	LENGTHm	AREA (km)	FROEAEILITIES		
			avg	mirib	miriz
1	16.0	0.0003	90.93	82.00	82.00
2	32.0	0.001	95.44	87.10	87.10
3	64.0	0.004	97.70	92.18	92.18
4	126.0	0.016	98.85	95.72	95.72
5	256.0	0.066	99.46	97.89	97.89
5	512.0	0.262	99.75	99.02	99.02
7	1024.0	1.049	99.90	99.61	99.61
8	2048.0	4.194	99.97	99.86	99.86
7	4096.0	16.777	99.99	99.97	99.97

NNALYSIS OE AKEAL PROEABILITY

LINE (T,E,L,K)	MEAN	SU	SCALE
T	26.04	16.46	62500
B	26.04	16.46	62500
L	26.04	16.46	62500
K	26.04	16.46	62500

This is a systematic raridom sample...
5 tart lerigth $=52.5$ meters
Iricrement multiplier $=2.0$
Program will stop wheri all protiatilities $>=99.00$ Number of raridom points generated per pass = 300

*	LENGTHm	AREA (km)	PROEAEILITIES		
			av9	mirill	minz
1	52.5	0.003	75.18	58.37	58.37
2	105.0	0.011	87.57	67.16	67.16
3	210.0	0.044	93.87	79.46	79.46
4	420.0	0.176	97.17	89.16	89.16
5	840.0	0.706	98.76	95.06	95.06
5	1680.0	2.822	99.46	97.82	97.82
\because	3560.0	11.290	99.78	99.11	99.11
B	6720.0	45.258	99.93	99.70	99.70
9	33440.0	180.634	99.98	99.93	99.93

LINE (T,K,L,R)	MEAN	SII	SCALE
\mathbf{T}	23.16	17.22	100000
E	23.16	17.22	100000
L	23.16	17.22	100000
F	23.16	17.22	100000

This is a systemstic raridom sample...
Start lerigth $=52.5$ meters
Increment mitiplier $=2.0$
Program will stop wheri all protiatilities $>=99.00$
Number of raridom poirits generated per pass $=300$

*	LENGTHM	$\begin{aligned} & \text { AREA } \\ & (k \equiv) \end{aligned}$	Probakilities		
			av9	mirill	miriz
1	52.5	0.003	77.56	60.70	60.70
2	105.0	0.011	88.65	69.41	69.41
3	210.0	0.044	94.47	81.32	81.32
\pm	420.0	0.176	97.14	89.43	85.43
5	840.0	0.706	96.54	94.23	94.23
5	1680.0	2.822	99.24	96.96	96.96
7	3360.0	11.290	99.70	98.79	98.79
8	5720.0	45.158	99.90	99.60	99.60
7	13440.0	180.634	99.96	99.82	99.82
10	26880.0	722.534	95.99	99.97	95.97

LINE (T,K,L,K)	MEAN	SH	SCALE
T	102.13	191.67	250000
H	102.13	191.67	250000
L	102.13	191.67	250000
K	102.13	191.67	250000

This is aystematic random sample...
5tart lerigth $=205.0$ meters
Iricrement multiplier $=2.0$
Progran will stop when all protatilities $>=99.00$ Number of random poirits generated per pass $=\mathbf{3 0 0}$

*	LENGTHm	AREA (km)	Probatilities		
			avs	mirill	miriz
1	205.0	0.042	75.04	68.09	68.09
2	410.0	0.168	83.65	71.51	71.51
3	820.0	0.672	91.45	77.79	77.79
\downarrow	1640.0	2.690	95.57	85.52	85.52
5	3280.0	10.758	97.68	91.61	91.61
5	6560.0	43.034	98.84	95.52	95.52
\square	13120.0	172.134	99.44	97.77	97.77
5	26240.0	688.536	99.71	98.85	98.85
7	52480.0	2754.150	99.86	99.44	99.44
10	104960.0	11016.602	99.94	99.78	99.78
11	209920.0	44066.406	99.98	99.91	99.91

hNALYSIS OE AKEAL FROEABILITY

LINE (T,E,L,K)	MEAN	SII	SCALE
\mathbf{T}	0.00	7.41	24000
E	0.00	7.41	24000
L	0.00	7.41	24000
K	23.16	17.22	100000

This is a systematic raridom sample...
5tart lerigth $=52.5$ meters
Increment misltiplier $=2.0$
Program will stop wheri all protiatilities $>=99.00$ Numtier of random points generated per pass=300

+	LENGTHM	AREA(km)	frobatilities		
			avg	minf	miriz
1	U2.5	0.003	92.49	76.18	75.55
2	105.0	0.011	96.26	86.39	86.19
3	210.0	0.044	98.13	92.81	92.76
4	420.0	0.176	99.08	96.36	96.36
5	840.0	0.706	99.52	98.11	98.09
5	1680.0	2.822	99.74	98.95	98.95
7	3560.0	11.290	99.86	99.43	99.43
5	6720.0	45.158	99.94	99.76	99.76
9	15440.0	180.634	99.97	99.87	99.87
10	26880.0	722.534	99.98	99.90	99.90

LINE (T,E,L,R)	MEAN	SD	SCALE
I	-0.00	7.41	24000
E	26.04	16.46	62500
L	23.16	17.22	100000
R	0.00	7.41	24000

This is a systematic raridom sample...
Start lerigth $=52.5$ meters
Iricrement maltiplier $=2.0$
Program will stop wher all protatilities $>=99.00$ Number of raridom points generated per pass $=\mathbf{3 0 0}$

*	LENGTHm	AREA (km)	frobabilities		
			av9	minll	minz
1	52.5	0.003	86.86	67.86	67.67
2	105.0	0.011	93.58	80.17	79.90
3	210.0	0.044	96.95	89.34	89.27
4	420.0	0.176	98.60	94.68	94.65
5	840.0	0.706	99.31	97.24	97.24
5	1680.0	2.822	99.69	98.74	98.74
7	3360.0	11.290	99.89	99.54	99.54

HNALYSIS OE AREAL PROEAEILITY

LINE (T, R,L,R)	MEAN	51	SCALE
T	0.00	7.41	24000
E	0.00	7.41	24000
L	26.04	16.46	62500
F	26.04	16.46	62500

This is a systematic raridom sample...
5 tart length $=52.5$ meters
Incremerit multiplier $=2.0$
program will stop wher all protatilities $>=99.00$ Number of raridom points generated per pass $=300$

*	LENGTHm	MREA ($k . m$)	PROBAEILITIES		
			avg	mind	minz
1	52.5	0.003	86.05	62.55	62.55
3	105.0	0.011	93.14	76.19	75.85
3	210.0	0.044	96.67	87.55	87.50
4	420.0	0.176	98.40	93.82	93.79
5	840.0	0.706	99.19	96.80	96.79
\square	1680.0	2.822	99.62	98.48	98.48
7	3360.0	11.290	99.82	99.28	99.28

ANALYSIS OE AREAL PROBABILITY

LINE	($\mathrm{I}, \mathrm{E}, \mathrm{L}, \mathrm{K}$)	MEAN	SII	SCALE
	T	0.00	7.41	24000
	H	26.04	16.46	62500
	L	26.04	16.46	62500
	K	23.16	17.22	100000

This is a systematic raridom sample...
Start lerigth = 52.5 meters
Iricremerit mitiplier $=2.0$
Program will stop wheri all protiatidities $>=99.00$ Number of rarisom points generated per pass = 300

4	LENSTHa	$\begin{aligned} & \text { AKEA } \\ & (k \mathrm{~m}) \end{aligned}$	Prokatilities		
			av3	minil	miriz
1	52.5	0.003	81.42	61.09	61.09
2	105.0	0.011	90.80	71.96	71.72
3	210.0	0.044	95.32	83.31	83.28
4	420.0	0.176	97.46	90.52	90.50
5	840.0	0.706	98.63	94.89	94.87
5	1680.0	2.822	99.31	97.37	97.37
7	3360.0	11.290	99.65	98.62	98.62
日	6720.0	45.158	99.83	99.31	99.31

ANALYSIS OE AKEAL PROBAEILITY

LINE (T,E,L,K)	MEAN	SI	SCALE
T	0.00	7.41	24000
E	26.04	16.46	62500
L	23.16	17.22	100000
F	102.13	191.67	250000

This is asystematic random sample...
Start length $=205.0$ meters
Increment mistiplier $=2.0$
Hrogram will stop wheri all protiatilities $>=99.00$
Number of raridom points gerierated per pass $=300$

*	LENGTHm	$\begin{aligned} & A R E A \\ & \left(K . A_{1}\right) \end{aligned}$	rkokakilities		
			avg	mirill	m 2 riz
l	205.0	0.042	90.30	73.39	70.89
2	410.0	0.168	94.14	82.55	79.23
3	820.0	0.672	96.90	89.90	88.27
4	1640.0	2.690	98.47	94.45	94.11
5	3280.0	10.758	99.31	97.31	97.27
-	6560.0	43.034	99.74	98.97	98.97
7	13120.0	172.134	99.91	99.65	99.65

ANALYSIS OF AREAL PROBABILITY

LINE (T,E,L,R)	MEAN	SLI	SCALE
\mathbf{T}	26.04	16.46	62500
B	102.13	191.67	250000
L	23.16	17.22	100000
K	102.13	191.67	250000

This is a systematic raridom sample...
Start lerigth $=205.0$ meters
Iricrement maltiplier $=2.0$
Program will stop wher all protiatilities $>=99.00$ Number of raridom points gerierated per pass $=300$

4	LENGTHm	AREA (km)	Protakilities		
			av3	minf	miriz
1	205.0	0.042	84.40	69.82	68.47
2	410.0	0.168	89.95	76.32	74.66
3	820.0	0.672	94.66	84.30	83.38
$+$	1640.0	2.690	97.30	91.03	90.61
5	3280.0	10.758	98.65	95.16	95.08
0	6560.0	43.034	99.33	97.59	97.51
7	13120.0	172.134	99.65	98.70	98.69
8	26240.0	688.538	99.83	99.34	99.34

ANALYSIS OE AREAL PROBAEILITY

LINE (T,E,L,R)	KEAN	SII	SCALE
\mathbf{T}	102.13	191.67	250000
E	102.13	191.67	250000
L	102.13	191.67	250000
R	23.16	17.22	100000

This is a systematic raridom sample...
5 tart lerigth $=205.0$ meters Increment multiplier $=2.0$ Program will stop wheri all protatilities $>=99.00$ Number of random poirits generated per pass $=300$

*	LENGTHm	$\begin{aligned} & \text { AREA } \\ & \text { (km) } \end{aligned}$	PROEAEILITIES		
			av3	minll	miriz
1	205.0	0.042	80.00	68.94	68.37
2	410.0	0.168	87.14	73.60	72.90
3	820.0	0.672	93.45	81.50	80.70
4	1640.0	2.690	96.89	89.39	89.11
5	3280.0	10.758	98.50	94.37	94.34
0	6560.0	43.034	99.27	97.13	97.13
7	13120.0	172.134	99.63	98.50	98.50
B	26240.0	688.538	99.81	99.24	99.24

APPENDIX D

Maps and stream reaches used in analysis

Lines DC1 through DC5

These stream reaches were of Deep Creek

1:24,000 BIRKBNFELD QUADRANGLE, published 1979, aerial photographs taken 1973. Projection: Oregon State Plane.

1:62,500 BIRKENFBLD QUADRANGLB, published 1955, aerial photographs taken 1953. Projection: Polyconic.

1:100,000 NBHALEM RIVBR, published 1979, compiled from the 1:24,000 and 1:62,500 maps, plaimetry revised from 1975 aerial photographs. Projection: UTM.

1:250,000

DC1: from junction of Deep Creek and Nehalem River to first drainage entering from the north.

DC2: from function of second drainage entering from north to intersection with $5,090,000 \mathrm{n}$ UTM meter grid line.

DC3: from 5,090,000n meters to $5,089,000 \mathrm{n}$ meters.
DC4: from 5,089,000n meters to $5,088,000 \mathrm{n}$ meters.
DC5: from $5,088,000 \mathrm{n}$ meters to $5,087,000 \mathrm{n}$ meters.

LINBS BC1 through BC3

These stream reaches were of Boulder Creek

1:24,000 WARNICKB CRBEK QUADRANGLE, published 1974, aerial photographs taken 1972. Projection: Oregon State Plane.

1:62,500 VALSETZ QUADRANGLB, published 1956, aerial photographs taken 1939. Projection: Polyconic.

1:100,000 CORVALLIS QUADRANGLB, published 1980, compiled from the $1: 24,000$ and 1:62,500 maps, plaimetry revised from $1975-1976$ aerial photographs. Projection: UTM.

1:250,000 SALEM QUADRANGLB, published 1960, revised 1979, planimetry from 1975 aerial photographs. Projection: UTM.

BC1: from junction with Siletz river to intersection with $4,975,000 \mathrm{n}$ meter grid line. BC2: from intersection with 4,975,000n meter grid line to junction with Little Boulder Creek.

BC3: from junction of Little Boulder Creek to intersection with 449,000e meter grid line.
Charles T. Traylor, "The Evaluation of a Methodology to Measure Manual Digitization Error in Cartographic Data Bases", unpublished doctoral dissertation, University of Kansas, 1979
J. Perkal, "On the length of empirical curves", Discussion Paper 10 Ann Arbor MI, Michigan Inter-University Community of Mathetical Geographers, 1966

Charles T. Traylor, "The Evaluation of a Methodology to Measure Manual Digitization Error in Cartographic Data Bases", unpublished doctoral dissertation, University of Kansas, 1979

J. Perkal, "On the length of empirical curves", Discussion Paper 10 Ann Arbor MI, Michigan Inter-University Community of Mathetical Geographers, 1966
Charles T. Traylor, "The Evaluation of a Methodology to Measure Manual Digitization Error in Cartographic Data Bases", unpublished doctoral dissertation, University of Kansas, 1979
J. Perkal, "On the length of empirical curves, Discussion Paper 10 Ann Arbor MI, Michigan Inter-University Community of Mathetical Geographers, 1966

Charles T．Traylor，＂The Evaluation of a Methodology to Measure Manual Digitization Error in Cartographic Data Bases＂，unpublished doctoral disserミこごごった。

