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1 Introduction 

We describe a new general framework, called Epsilon 

Geometry, for coping with computational errors in geo- 

metric algorithms that arise from the use of finite pre- 
cision arithmetic. 

The Epsilon Geometry framework allows us to build 

robust geometric algorithms out of imprecise geomet- 

ric primitives. Our method combines the techniques of 

interval arithmetic and backward error .analysis, along 
with agood deal of geometric reasoning. Our algorithms 

compute an exact solution for a perturbed version of the 

input., and they return a bound on the size of this im- 

plicit perturbation. 

The problem of building robust geometric algorithms 

has received a good deal of attention in the last few 

years. For example, Yap [9] and Edelsbrunner and 

Miicke [l] studied the problem of coping with geometric 

degeneracies, such as the possibility of three collinear 

points. The methods they propose are vaguely reminis- 
cent of ours, in that they too make use of use perturba- 

tions on the input data. However, their perturbations 

are infinitesimal and bear only a superficial resemblance 

to ours. Furthermore, the problem of imprecise compu- 

tations that we address is distinct and much harder, in 
the sense that rounding errors not only increase the like- 

lihood of degenerate cases, but they also introduce the 

possibility of inconsistencies. For example, imprecise 

computations may tell us that points a, b, c and b, c, d 

are collinear, but that points a,b, and d are not. 

Ottmann, Thiemt, and Ullrich [8] showed how it is 
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possible to create a robust segment-intersection algo- 

rithm assuming a scalar-product operator that is ex- 

act to within the machine’s precision. By contrast, our 

framework is designed to cope with computations that 

are significantly less accurate than the machine’s preci- 

sion limits. Greene and Yao [2] showed how a discrete 

version of the segment-intersection problem can be for- 

mulated and satisfactorily solved, but they too assume 

precise computations. 

Our approach is more similar to those of 
Milenkovic [S] and of Hoffmann, Hopcroft, and Kara- 

sick [3]. These methods compute an exact result for a 

perturbed version of the input data, but they assume 

a perturbation bounded by a constant chosen a priori. 
Among other differences, the algorithms in our frame- 
work can determine the size of the required perturbation 

based on the size of the rounding errors observed during 

the computation. 

1.1 Epsilon-Predicates 

The following definitions attempt to capture the notion 

of “‘approximate tests” in a very general setting. Let 0 

be a set of objecis endowed with some distance metric 

II., .I]. Let P be a predicate defined on 0. Then for 
any X E 0 and any d 1 6, we define e-P(X) as a 
shorthand for “P(X’) is true for some X’ E 0 such 
that IlX, X’ll 2 E.” That is, X is at most E away from 

satisfying P(X). Therefore, the truth-set of 6-P is that 

of P, “fattened” by E. Note that O-P(X) is the same as 

P(X)- 
In order to extend these definitions to an n-ary pred- 

icate P, we note that if 01, . . . , 0, are metric spaces 

with distance functions II Iii,. . . , II Iln, then Uix...xO, 

is a metric space with the distance function given by 

Thus, for example, if CIi = 02 = % with metric 

]]z,z’]~ = ]Z - ~‘1, then 01 x 02 has the implicit metric 

]l(z, y), (z’, y’)][ = max (1~ - 2’1, ]y - y’]). Therefore, if 
P(x,y) is the predicate (Z > y), then &-P(z,y) means 
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that x > y can be made true by perturbing x and y by 
at most .5. 

Throughout this paper we will assume that 11 11 is a 
Minkowski metric. Minkowski metrics include all L, 

distance functions, in particular the Euclidean (Lz) and 
Manhattan (Ll) metrics. Note that the composite met- 
ric (1) is Minkowski if the metrics 11 [Ii are Minkowski. 

It follows immediately from the definition of an 
c-predicate that 

and 

E-P(X) * &‘-P(X) for all 6’ 2 E (2) 

Ilot(&-P(X)) =R not(&-P(X)) for all 8 < e (3) 

We can extend our definition of c-predicate to negative 
values of E, in such a way that properties (2) and (3) 
remain true for all E. If E > 0, we define (+)-P(X) as 
a shorthand for “P(X’) is trzle for all X’ E 0 S&J ihat 
11x, X’ll 5 E.” Intuitively, an object X that is (-6)-P 
is “extremely P,” whereas an X that is only E-P is just 
“nearly P.” This definition can also be expressed by 
the identity 

(-&)-P(X) * not(s-(not P(X))) 

The following properties of epsilon-predicates follow 
readily from the definitions and the triangle inequality 
for distances: 

Lemma 1 For any predicates, P and Q, and any E 2 0, 

E-(P v Q)(X) (j E-P(X) v E-Q(X) 

E-(P A Q)(X) =$ E-P(X) A E-Q(X) 

Note that in the case of A the implication only works 
in one direction, because even if it is possible to satisfy 
P(X) and Q(X) separately with c-perturbations to X, 
it may not always be possible to satisfy both constraints 
simultaneously. 

Lemma 2 For any ~,6 1 0, and any predicates 

P, Q, R, if P(X) implies E-Q(X), and Q(X) implies 

&R(X), then P(X) implies (E + 6)-R(X). 

1.2 Implementing Epsilon-Predicates 

When geometric tests such as collinearity or convex- 
ity are implemented using floating point arithmetic in 
the straightforward way, their outcome becomes subject 
to errors. In order to quantify those errors and allow 
geometric algorithms to cope with them, we propose 
to implement each geometric test P(X) as a procedure 
P(X) that, instead of simply returning true or false, 
returns an estimate of how far X is from satisfying P. 

More precisely, the procedure P(X) should return a par- 
tition of the real line into three sets F, U, T, such that 
the predicate E-P(X) is false for 6 E F, true for E E T, 

and unknown for E E U. We call such a procedure an 
epsilon-box for P. 

Given that E-P(X) is a monotonic boolean function 
of E, for any fixed X, we can assume that F, U, and 
T are intervals of the real line (empty, bounded, or un- 
bounded), with F before U before T. Since the floating- 
point numbers are a discrete set, such a partition can be 
represented by a pair of numbers e = (e.lo, e.hi), such 
that a-P(X) is false for e < e.lo, true for E > e.hi, and 
unknown for e.lo 5 E < e.hi. To cover all possible tri- 
partitions of 3, we must let e.lo and e-hi assume also 
the special values +oo or -oo. 

We will call such pairs intervals ofuncetiaintyor sim- 
ply intervals. Note that this name is slightly misleading, 
because the pairs cannot be viewed as ordinary intervals 
of the real line. The difference is that two degenerate 

pairs (2, x) and (Y, Y) with z # y are quite distinct out- 
comes, even though they define the same (empty) set U 
of “uncertain” E-values. 

Informally, the pair e returned by P(X) tells us that 
X is at least e.lo and at most e.hi away from satisfying 
the predicate P. In particular, if e.lo > 0, then P(X) 

is definitely false; if e.hi 5 0, then P(X) is definitely 
true; and if e.lo 5 0 < e.hi, the procedure was unable 
to decide whether P(X) is true of false because of com- 
putation errors. 

As we shall see, this approach allows us to build ro- 
bust geometric algorithms out of arbitrarily inaccurate 
primitives. In general, such an algorithm will produce 
results that are correct only in an approximate sense. 
However, the algorithm will always be able to combine 
the uncertainty intervals returned by the primitives into 
a “warranty” for the result: that is, an interval of uncer- 
tainty that states how far the result that was returned 
may be from the exact one. 

In principle, we do not make any assumptions on 
the size of the uncertainty intervals U returned by an 
epsilon-box. We consider an epsilon-box to be correct 

as long as E-P(X) is false for all E E F, and true for all 
E E T. An epsilon-box box is always allowed to say “I 
don’t know” for an arbitrarily large range U or E values. 
In particular, the trivial epsilon-box that always returns 
T = F = 4, U = SR is a correct implementation of any 
predicate P. 

In practice, of course, an epsilon-box should keep its 
uncertainty trange U reasonably small in order to be 
useful. Typically, a primitive box P(X) will compute 
the distance from X to the truth-set of P using floating 
point arithmetic, and estimate the uncertainty of the 
result according to standard numerical analysis tech- 
niques. For most primitives, this epsilon-box will be 
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only a few times slower than the naive implementation 
of P(X). We will come back to this topic in section 2. 

1.3 Combining Epsilon-Boxes 

The following operations on uncertainty intervals turn 
out to be useful for combining primitive epsilon-boxes 
into more complex algorithms. Given two uncertainty 
intervals a, b, we define 

min{a,b} = ( min{a.lo,b.lo}, min{a.hi,b.hi)) 

max {a, b} = (max {ale, b.Zo}, max {a.hi,b.hi}) 

sub = (min{a.lo,b.Zo}, max{a.hi,b.hi}) 

anb = (max {a.lo, b.lo}, min {ahi, b.hi}) 

For example, suppose we managed to prove that the 
predicate e-R(X) is equivalent to e-P(X) V E-&(X), for 
all X and all E. Then the predicate R(X) can be imple- 
mented as the procedure R(X) that evaluates the inter- 
vals a = P(X) and b = Q(X), and returns the interval 
min{a, b}. Note that this interval is generally noi the 
union of the intervals a and b. 

This rule is easy to understand with the help of 
figure 2, which shows the “graphs” of the predicates 

E-W) 9 dxw, and E-R(X), for a particular X, as a 
function of &. The “fuzzy” portion of each graph rep- 
resents the uncertainty interval returned by the corre- 
sponding epsilon-box. 

q.lo ehi 

T-Qcle 
*C: 

Figure 2. 

Similary, if we know that the predicate &-R(X) is 
equivalent to &-P(X) A E-Q(X), for all X and all &, then 
the procedure R(X) should return max {P(X), Q(X)}. 

Note that in most machines these operations can be 
performed without any rounding errors. Note also that 
the uncertainty c.hi - c.10 of the result c is no greater 
than the uncertainty in the inputs a and b. 

Another situation that often arises in algorithms is 
the following. Suppose we computed two possible re- 
sults a and b for the epsilon-box R(X), by two differ- 
ent algorithms, and we know that the first algorithm 
is correct when some condition P(X) is true, and the 
second one is correct when P(X) is false. If we cannot 
decide whether P(X) is true or false, we can still tell 

that E-R(X) is false for & < min{a.lo,b.lo}, and true 
for E 1 max {a.hi, b.hi). Therefore, the procedure R(X) 
can safely return the pair T = a LI b, which we call the 
join of a and b. 

As a final example, suppose again that we have com- 
puted two possible results a and b for R(X), but now 
we know that both intervals are correct. This tells us 
that E-R(X) is false for E < max{a.Zo, b.lo}, and true 
for E 1 min {ahi, b.hi}. Therefore, R(X) can return the 
pair r = a 176, which we call the meet of a and b. 

Note that if both a and bare correct outcomes, the re- 
sult r = an b is bound to satisfy r-lo 5 r.hi. IIowever, in 
more complicated expressions this need not be the case. 
For those situations, it is useful to define the “impossi- 
ble” interval 0 = (+oo, -00) and define by convention 
a fl b = 0 whenever a and b are incompatible outcomes, 
that is, whenever a.10 > b.hi or b.lo > a.hi. Note that 
0lla=a~0=0,andaU0=0Ua=a,foranya. 

2 Some Basic Predicates 

Now let’s consider in more detail the implementation 
of basic geometric predicates of two-dimensional geom- 
etry. Unless said otherwise, we will measure distances 
between points in the plane with the familiar Euclidean 

(~52) metric, tlp,qll = &.z - 4.z12 + (I-V - q412. 
However, many of the results that follow can be adapted 
to any other L, metric. In fact, some of the algorithms 
described below may be easier to code (but probably 
harder to prove) if we defined 11 11 to be the L, or L1 
metric. 

2.1 Coincidence 

Let’s consider first the Coincident predicate, which 
merely tests whether two points of the plane are coinci- 
dent or distinct. According to the general definition, the 
derived predicate E-Coincident(p, q) is true if and only 
if& 2 alIp, qll. Therefore, the procedure Coincident 
that implements this predicate should compute the dis- 
tance IIp,qII, and return a pair (e.lo,e.hi) such that 
e.lo 5 fllp,qll 5 e.hi. This interval tells us that it 
is possible to make p and q coincident if we displace 
both points by e.hi in suitable directions, and it is not 
possible to make p and q coincident if we displace them 
by less than e.lo. 

Note that depending on the application, it may 
not be necessary to compute the Euclidean distance 
Ilp,q(l with high accuracy. For example, we can use 

the property that IIP, !?II, I III? !7II 5 fillP7 qll,, 
where IIP, 4, = max(1p.z - q.zl, 1p.y - q.yl}. The 
Coincident box may then compute D = IIp,qII,, and 

return the interval (e.lo, e.hi) = (D/2, D/d). This is a 

210 



very coarse approximation, with a relative uncertainty 
of the result is almost 50%; however, it is somewhat 

faster to compute than the square root formula, and it 
may still be accurate enough for many applications. 

2.2 Estimating Roundoff Errors 

In practice, besides the approximation error that results 

from using the L, norm to compute a distance, we also 

have rounding errors due to the subtraction and the 
division by 4. Fortunately, the magnitude of these 

errors is easy to estimate. 
A fundamental “axiom” of numerical analysis [5] says 

that for each floating-point number system there is a 

constant u (the machine precision) such that the result 
c* of computing c = a * b in floating point (where * is 

either +, -, a, or /) satisfies c* = c( 1 + A), for some A 
with [Al < u. Furthermore, the same guarantee applies 

to the basic numerical functions (J, sin, exp, etc.), if 
they are properly implemented. 

So, for example, the computed value d’ of the distance 

d = d(p.z - q.x)2 + (P.Y - Q.YJ2 (4) 

is actually 

8 = { [(P.X - VW+ h)12(l + A2) 

+ KP.Y - !l.Y)P f W12(1 + bp2 0 + J45) (5) 

where I&( 5 21 for all i. 

We can simplify the last expression by resorting to 
a standard numerical analysis trick. Observe that the 
maximum relative rounding error IA1 in a floating-point 

operation is normally very small, typically 10-s or less. 
If we define u to be just a little bigger than this max- 

imum error (say, twice as big), then we can prove that 
any expression of the form 

fi(l+xi)/fi(l+J;) 
i=l j=l 

lies in the interval 1 f (m + n)u, provided m and n are 

not too big. In particular, this “safety factor” built into 

u allows us to ignore second and higher powers of the 

Ai in error bounds, and freely move factors of (1 f Xi) 

between the numerator and denominator. Using this 

trick, formula (5) simplifies to 

d“ = j/[(p.x - q.x)2 + (p.9 - q.y)]‘(l + 3A6) (1 + A5) 

and finally to 

d’ = &.x - q.x)2 + (p.y - q.y)2 (1 + ;A,) (6) 

for some Ji with IAil 5 21. We conclude that the exact 
distance d is well inside the interval d’ f 3u. Therefore, 

the Coincident procedure can return the uncertainty 
interval 

e = (e.lo, e.hi) = (d*(l - 3u)/2, d*(l + 3u)/2) (7) 

Note that the division by 2 is exact, and the rounding 

error in the multiplication by (1 + 3u) is on the order of 

u2 and is therefore covered by the safety factor implicit 

in u. 

Of course there are many other correct implementa- 

tions of Coincident, each with its own cost and accuracy. 

We are not concerned here with the problem of choosing 

between those alternatives. Our goal is not so much to 
design fast or accurate primitives, but to show how to 

make good use of arbitrarily inaccurate ones. 

2.3 Collinearity and Orientation 

The tests for collinearity and orientation of three given 

points deserve careful discussion, since they are basic 
building blocks of many two-dimensional geometric al- 
gorithms. We denote by Collinear(p, q, r) the predi- 
cate that checks whether the points p, q and P of ?R2 
lie on a common straight line, in any order. There- 

fore, c-Collinear(p,q, r) is true if there exists a line 1 

that passes within & of all three points. The predicates 

Collinear and e-Collinear are obviously symmetric in 
their three arguments. 

We can visualize the .c-Collinear predicate as follows. 
Consider the disks P and & of radius E centered at p 
and Q, respectively. The set of all lines passing through 

a point of r-and a point of Q cover a bow-tie-shaped 
region of the plane bounded by the two inner and two 

outer tangents of P and Q. (If P and Q have a point 

in common, then this region degenerates to the entire 

plane.) We call this region the c-buttefly determined 

by p and q. See figure 3. 

Figure 3. The E-butterfly of p and q. 

Obviously, the three points p, q, and r are E-collinear 

if and only if the E-disk centered at r intersects the 
c-butterfly of p and q. Equivalently, the three points 
are E-collinear if and only if one of the c-disks intersects 
the c-stroke of the other two points, which is how we 
call the convex hull of the two c-disks centered at those 
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points. See figure 4. 

Figure 4. E-Collinearity. 

In exact geometry, a triangle T = (p, q, r) whose ver- 

tices are not collinear can be further classified by its ori- 

entation, either positive (counterclockwise) or negative 

(clockwise). The orientation is the sign of the determi- 
nant 

1 Pax P*Y 

D(P, q, r) = 1 q-2 Q*Y (8) 
1 r.2 r.y 

We define the predicates Pos(p, q, r) and Neg(p, q, r) as 

meaning D(p, q, r) > 0 and D(p, q, r) 5 0, respectively. 

Note that PM(T) is not the same thing as not Neg(T); 
in fact Pm(T) A Neg(T) s Collinear(T). (This conven- 
tion is a bit confusing, but it seems to simplify many of 
the proofs and algorithms we will see later on.) 

By definition, then, E-Pos(p, q, r) means that is possi- 

ble to make D(p, q, r) 1 0 by displacing the three points 

by at most E in suitable directions. In graphical terms, 

E-Pos(p, q, r) means that the closed e-disk centered at r 

either intersects the c-butterfly ofp and Q, or lies fully to 
the left of it (as looking from p towards q). See figure 5. 

Figure 5. E-Orientation. 

From linear algebra we know that the the determinant 

D changes sign if we swap any two of the three points, 

and remains unchanged if the three permuted are per- 

muted in a cyclic fashion. Thus, 

E-Pos(p, q, r) G e-Pos(q, r,p) E c-Pos(r,p, q) 

E e-Neg(q, p, r) G c-iVeg(r, q,p) E c-Neg(p, r, q) 

Note again that &-Neg(T) is quite different from 

not a-Pas(T), and, in fact, 

e- Collinear(p, q, r) E c-Neg(p, q, r) A c-Pos(p, q, r) 

Geometrically, the determinant D is twice the area of 

the triangle pqr, with a plus or minus sign depending 

on the orientation of the three points. In the Euclidean 

metric, the smallest perturbation that makes the three 

points collinear is one that moves them onto the perpen- 

dicular bisector of the shortest altitude of the triangle. 
See figure 6. 

Figure 6. 

Since the area of a triangle is given by one half its base 

times its height, the necessary perturbation E is iIDJ/b, 

where b is the length of the longest side. 
We can use this result to implement a Pos box that 

uses only single-precision floating-point computations, 

as follows. First, we need to estimate the rounding er- 

rors incurred in the computation of IDl/b. From equa- 

tion (8) we get 

D= (q.x-p.z)(r.y-p.y)-(q.y-p.y)(r.x-p.x) (9) 

If we compute this formula using floating-point opera- 

tions, we obtain an approximate result D’ satisfying 

Dk = ((4.x - p.x)(r.y - p.y)(l + 3X1) 

-(q.y - p.y)(r.+ - p.x)(l + W))(l + X3) 

= D(l + X3) + 3A4M 

where M = IQ.2 - p.xl1r.y - p-yI+lq-y - p4llr.x - p.21, 
and l&l < U. We can compute the longest side b by the 

obvious formula 

b = max {IIP, 41, Ilq, 41, Ilv4lI 
where II II is the familiar square root formula (4). As we 

discussed in section 2.2, if we assume that the square 

root operation is accurate to the machine precision, then 

the the computed value b’ satisfies b’ = b(1 + 3Xe). 

Therefore, the computed value h* for the triangle’s 

height h = D/b satisfies 

h* = D( 1+ A3) + 3X&4 

b(l + 3A7) 
(1 + k3) 

= 

In fact, since IDI 2 I<, we can further simplify this to 
h* = h + 7AllM/b. Therefore, we conclude that 

h E h’ f 7uM*/b* (10) 
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Note that M can be as large as b2, and that uM/b can 
easily be greater then h, which means that the rela- 

tive error of h* can be arbitrarily large. Formula (10) 

says that the absolute error of h’ is small compared to 

the distances between the three points. If this inaccu- 

racy is a problem, one can make the relative error small 
by computing D with extended precision; more specifi- 

cally, with at least 2m + 1 fraction bits, where m is the 

number of fraction bits in single-precision floating-point 
numbers. 

Even though Pos and Neg are not the exact oppo- 

sites of each other, the asymmetric representation we 
use for the outcome of epsilon-boxes allows us to state 

the following result: if the pair a = (U./O, a.hi) is a valid 
outcome for Pas(T), then the pair -a = (-a.hi, -a.lo) 
is a valid outcome of Neg(p, Q, r). Therefore the proce- 

dures Pos and Neg can share most of their code, and if 
we evaluate Pas(T) we do not need to evaluate Neg(T). 

2.4 Betweenness 

We say that a point z is between two other points z and Q 

if z lies on the closed segment pg. We denote this fact by 
Between(z,pq). It is easy to see that E-Between(z,pq) 

if and only if the distance from z to the segment pq is 
at most 2s; or, equivalently, if and only if the c-disk 

centered at z intersects the E-stroke of p and q. See 

figure 7. 

Figure 7. The &-Between test. 

In order to compute the distance from z to the seg- 

ment pq we must find the projection z’ oft on the line 1 

through p and q, and then return either illz,pll, $llz, 111, 

or ~ll~~dl, d P d g e en in on whether z’ lies before p, be- 

tween p and Q, or after q, respectively. 

We can check the position of z’ by checking the 

signs of the dot products LY = (z - p) . (q - p) and 

P = (z - 9) ’ (P - q). If cr < 0, then z’ lies before 
p; if ,B < 0, then z’ lies after q; otherwise z’ lies be- 

tween p and q. If we compute these dot products with 

single-precision floating point arithmetic, we must take 
into account the attendant rounding errors. An analysis 
similar to the one we did for the Pos predicate shows 

that the computed value (Y* of Ly satisfies a E a*f4~1(,‘, 
where I(p* is the computed value of the quantity 

ICp = I(= -I-)(9.2: - P.C)l f 1lr.y - P.Y)(9.Y - P.Y)l 

A similar result holds for /?. Therefore, these computa- 
tions give us two intervals a and b, which may or may 

not include 0. 
We obtain uncertainty intervals dp and dq for the dis- 

tances $l/z,pll and $1jz,qll by calling the Coincident 

box. As for ~llz,~lJ, its value is twice the area of 
the triangle zpq, divided by the length of pq; that is 

I%> p, dI/IIp, nil, w h ere D is the determinant defined 

by equation (8). Therefore the analysis we did for the 
Pos subroutine applies here too (except that b is the 

length of pq, instead of the longest side), and we get the 

same uncertainty interval dl = h*f7uM*/b*. (If b’ = 0 
then we can conclude that b = 0, in which case we let 

dl be the pair (O,O).) 
We now have to put all this information together and 

deduce from it an uncertainty interval e for the distance 

from z to the segment pg. The algorithm is relatively 

straightforward: 

1. et0 

2. if a.lo_<OAb.hi_>O then e+-eUd, ii 
3. if b.lo<OAa.hikO then eteUd, ii 
4. if a.hi>Ohb.hi>O then e+eUd, ii 

5. return e 

Step 1 initializes e to the dummy interval 0 that is a 
neutral element of U. Step 2 checks whether the projec- 

tion .z’ could lie before p, in which case the uncertainty 
interval e is set to the range of possible values of ~&~,pll. 

Step 3 does the same thing for q. Finally, step 5 checks 

whether z’ could lie strictly between p and q, in which 
case it sets to e the range of )IIz, /Il. Note that if the 

algorithm cannot decide between any two cases, it will 

simply merge the corresponding uncertainty intervals. 

3 Approximate Point Inclusion 

3.1 Point Inclusion in a Triangle 

We now show how these primitives can be combined 

into a more complex algorithm. We consider the prob- 

lem of testing whether a point z is inside a trian- 

gle T = (to,tl,tz), which we denote by the predicate 

Inside(z,T). We define “inside” to include the trian- 

gle’s boundary. 
The E-version of this predicate is true if the point z 

and the triangle T can be perturbed by at most E so 

that Inside(z,T) becomes true. Here, the distance be- 
tween two triangles is defined as the maximum distance 

between a vertex of one triangle and the corresponding 
vertex of the other. Thus, e-Inside(z, T) is true if and 
only if Z it is within 2~ of some point of T. 

Assume for the moment that the vertices to, tl, t2 of 
T are known to be non-collinear and positively (coun- 

terclockwise) oriented. Then ordinary geometry tells US 
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that % is inside T if and only if the triangles ztctr , ztrtz, 
and %-&to are all positively oriented (or flat). Moreover, 
if % is inside T, any perturbation that puts I outside the 
triangle must reverse the orientation of one (or more) of 
these triangles. We conclude that 

Lemma 3 If a point % is inside a positively oriented 

triangle T = (to, tl, tz), then for any e (positive or neg- 

ative), 

c-lnside(z,T) e i .z-Pos(z,ti,ti+l) (11) 
i=O 

If T is a negatively oriented triangle, formula (11) holds 
with Pos replaced by Neg. 

Unfortunately, equation (11) does not hold if % is out- 
side T. as figure 8 shows, the triangles Aiti+l can be 
all c-positive, and yet % may be arbitrarily far from T. 

The explanation is that it is indeed possible to make ei- 
ther one of the triangles ztotl and ztltz positive with an 
c-perturbation, but there is no such perturbation that 
makes them both positive at the same time. 

Therefore, when % is outside T, the information re- 
turned by the Pos boxes is not sufficient. To handle 
this case, we introduce the predicate Bounday(z,T), 

that tests whether the point % lies on the boundary of 
the triangle T. This predicate has a simple expression: 

n 

Bounday(r,T) e c Betweeu(z,ti, ti+l). . (12) 
i=O 

Recall that for E > 0 the e- qualifier distributes over V. 
Therfore, we can write 

c-Bounday(z,T) H c &-Between(z,ti, ti+l). (13) 
i=O 

In other words, we are E away from the boundary if and 
only if we are e-away from some side. This identity holds 
also for E < 0, since in that case both sides are false. 
The implementation of Boundary follows immediately 
from equation (13) and the V construction described in 

section 1.3: evaluate Between(z,p, q) for all edges p, q 
of T, and return the min of the resulting pairs. In fact, 
it is easy to check that this algorithm works even if T 

is replaced by an arbitrary polygon. 
How does the Boundary predicate help us? The an- 

swer is given by the foiowing trivial properties: 

Lemma 4 If a point z is outside a triangle T, then for 
all E 2 0 

E-Inside(z, T) M c-Boundary(z, T) (14) 

Lemma 5 If a point z is inside a triangle T, then for 

all E < 0, 

e-lnside(r, T) e not (-&)-Bounday(z, T) (15) 

With these results, we can implement the Inside tests 
for a point and a triangle by the procedure InTriangle 
below: 

1. al) + Pos(r,to,t~) 
2. a1 + Pos(%,t&) 
3. a2 + Pos(z,t2,to) 

4. sp +m={ao,al,a2} 

5. if s,.hi < 0 then return sp 
6. sn +-max{-a~,-al,-a2) 

7. if s,.hi < 0 then return sn 
8. s +Pos(to,tl,t2) 
9. if s.hi 50 then r tsp 

10. elsif s.10 2 0 then r t s,, 
ii. else r+-s,Usp 
12. ii 
13. b + Boundary(t, T) 

14. return (All (r.lo-00))Ub 

In this algorithm, steps l-4 compute the perturbation 
sp needed to independently make each of the triangles 
ztotl, ztlt2, and zt2tO positive or collinear. If this per- 
turbation is definitely negative, meaning all three tri- 
angles are positively oriented, then we can deduce that 
the triangle T itself is positively oriented, and that % is 
inside it. Lemma 3 then authorizes us to return sp itself 
in step 5 as the uncertainty interval of Pos. Steps 6- 
7 perform the symmetric test for the case when T is 
negatively oriented. 

If these two tests fail, the algorithm does some addi- 
tional work in order to find the minimum perturbation 
T that makes each of the three triangles have (idepen- 
dently) the same orientation as T. First the algorithm 
tries to determine the orientation of T by evaluating 
Pos(tc, tl, t2). If the result of this test has a definite 
sign, then r is taken to be either sp or s,. If the test is 
inconclusive, then r is set to the join of the two intervals. 
Note that in any case we will end up with r.hi 10. 
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As we observed before, the interval P is still not the 
answer we want, since r was obtained by considering 
independent perturbations to each of the three edges, 
and those perturbations may not be simultaneously re- 
alizable. The only useful information contained in r is 
its lower endpoint r.10, provided it is less than zero: if 
--E < r.lo < 0, that is, if we cannot change the orien- 
tation of one of any of the three triangles with any E- 
perturbation, then we cannot move z out of T with any 
&-perturbation, which means z is (-&)-inside T; and 
conversely. On the other hand, if r.lo 2 0, we know 
only that z is outside, but we can’t tell by how much. 
In other words, at step 13 the uncertainty interval of 
Pos is (r.10 _ 00) U(0 _ infty). 

In order to reduce this uncertainty to a useful level, 
we evaluate b = Boundary(z, T), the minimum pertur- 
bation needed to put z on the boundary of t. The re- 
sulting interval b is always non-negative; moreover, by 
lemmas 4 and 5, the result we want is either -b or +b, 

depending on whether t is inside or outside T. So, the 
result we want is the intersection of those two inter- 
vals with (r.lo _ oo) Ll (0 _ infty), which simplifies to 
(-bn(r.lo _ co)) LI b, as returned in step 14. 

Note that the width of the interval returned by this 
algorithm is at most twice the size of the widest interval 
returned by the Pos and Between boxes. 

As usual, there is here a tradeoff between speed and 
accuracy. One could reduce the width of the uncertainty 
interval returned by InTriangle(z, T) by performing 
more elaborate tests, by using more accurate primitives, 
by combining their results in a more sophisticated fash- 
ion, or by implementing the InTriangle procedure as a 
primitive, as we did with Poe. 

3.2 Point Inclusion in a Convex Polygon 

Let’s now consider the more general predicate that 
tests whether a point z lies inside a convex polygon 

P=(poJQ,... ,pn-r). One might think that the imple- 
mentation InConvex of this predicate is a trivial general- 
ization of InTriangle, but that is not the case. While 
lemmas 4 and 5 generalize nicely to arbitrary convex 
polygons, lemma 3 does not. , , 

Figure 8. 

As figure 8 shows, a point can be well inside the polygon 
P, even if it is possible to reverse the orientation of some 
triangle zpipi+r by an arbitrarily small perturbation to 
those three points. Therefore, for InConvex must use a 
different approach, as follows. When z is inside P, we 
will estimate the degree of “insideness” from the output 
of the Boundary box alone, using lemma 5. When z is 
outside P, we will estimate its degree of “outsideness” 
with several calls to InTriangle, using the following 
obvious property: 

Lemma 6 LetTr,Tz,..., T, be a set of triangles whose 

union is the set P. If a point z is outside P, then for 

all E 1 0, 

c-Inside(t, P) H 6 E-lnside(z, Ti) 
i=l 

Note that lemma 6 cannot be extended to E < 0, be- 
cause J can be near an edge of some triangle Ti and 
still be arbitrarily far from the boundary of P. Nev- 
ertheless, lemma 6 allows us to write an epsilon-box 
InPolygon(z, P, Tl, . . . , Tm) that implements the Inside 

test for a planar figure P, given a collection of triangles 

Tl,T2 ,..., Tm whose union is P: 

1. r c rain {InTriangle(z, Ti) : 15 i 5 m} 
2. if r.lo 2 0 then return r f i 
3. r.10 c -00 
4. b c Boundary(z, P) 
6. return (r fl b) LI (r fl -b) 

Step 1 computes the perturbation r necessary to put 
z inside one of the triangles Ti::. If r.lo 2 0, it means 
z is outside P, and by lemma 6 we can return r itself 
as the outcome. If r.lo < 0, lemma 6 tells us nothing: 
the uncertainty interval for Inside(z,P) is not r but 
the whole interval (-oo,r.hi). In order to reduce this 
uncertainty, we look at the perturbation b needed to put 
z on the boundary of P (step 4). According to lemmas 4 
and 5, the InPolygon box can safely return r 17 b is z 
is outside P, and r tl -b if z is inside P; therefore, it 
can always return return the join of these two intervals 
(step 5). 

Given this algorithm, the InConvex box that im- 
plements the Inside test for convex polygons is triv- 
ial: it suffices to note that a convex polygon P = 

(Pod%... ,p,-1) is the union of the triangles Popipi+l 
for 1 5 i 2 n - 2. 

Note that, as in the the case of InTriangle, the width 
of the uncertainty interval returned by InPolygon or 
InConvex is at most twice that of the widest interval 
returned by any of the primitive epsilon-boxes called by 
them. 
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Some applications of the InConvex box may not re- 
quire all the information that it returns. In such cases 
the algorithm can often be made simpler and faster, at 
the cost of returning a much wider uncertainty interval. 
For example, if we only want to know whether we are 
inside or outside P, but we don’t care by how much, we 
can omit steps 4 and 5. In that case, when z is inside P 

or close enough to it the algorithm will return intervals 
of the form (--00, E). 

4 Approximate Convexity 

The InConvex test of the previous section assumes the 
polygon is convex in the ordinary sense. By itself, such 
a test isn’t very useful, since in many applications we 
cannot always ensure that the polygons are strictly con- 
vex, because they can be the result of previous ap- 
proximate computations, and the rounding errors in- 
curred may have introduced slightly concave corners, 
self-intersections, and other similar defects. Worse still, 
if we are allowed to use only approximate primitives 
like the ones we described, we will not even be able to 
clrecA whether a given polygon is convex. Therefore, we 
must learn how to handle polygons that are only “ap- 
proximately convex.” In order to do this, we must first 
define more carefully the meaning of “inside,,, and prove 
a few results about closed curves in general. 

4.1 Closed Curves 

We define a closed curve to be a continuous function 
from the unit circle Sr into the plane, and we consider 
two curves to be the same if they differ only by a simple 
reparametrization, that is, by a homeomorphism of Sl 
to itself. We say that a point z is inside such a curve C 
if the curve passes through Z, or if its winding number 
around z is non-zero [4]. Note that the curve need not 
be simple. We denote this fact by Inside(z) C). 

We define the distance between two curves C,C’ 
as the smallest value of max {]]C((~(t)),C’(t)]l : t E Si}, 
when cp ranges over all reparametrizations of C. In 
spite of this complicated metric, the meaning of 
e-Inside(r) C) is quite simple: if E 1 0, this predicate 
means that z is either inside C or at most 21~1 away 
from C; and if E < 0, it means that z is inside C but at 
least ]&I away from C. 

Lemma 7 Let P and Q be two closed curves with the 

property that IIP(t), Q(t)/1 5 E for allt on the unit circle. 

Then any point that is inside P is (E/2)-inside Q, and 

vice versa. 

Proof: Let x be a point inside P. If x is inside Q or x 
is on the curve P, then we are done. Let’s assume that 

z is inside P but not inside Q. Consider the rays from 
x to P(t) and from z to Q(t). As t goes once -around 
the unit circle, the first ray makes a non-zero number of 
full turns, while the second makes zero full turns. Since 
the curves are continuous, there must exist a value oft 
for which the angle between the two rays is a. At that 
moment, 2 is on the segment connecting P(t) and Q(t), 

whose length is at most E, by hypothesis. q 

This result is not as trivial as it may sound. For 
instance, it is not enough to merely require that every 
point of the curve P be within E of Q and vice versa. 

4.2 Polygons 

The next lemma states an elementary property of 
Minkowski metrics is useful when applying lemma 7 to 
polygons: 

Lemma 8 Let 11,II b e any Minkowski metric. Then for 

any four points p, q, p’, q’ such that IIp,p’ll < E and 
IIq, q’jl < e, and for any cx E [0 _ 11, we have 

ll(1 - @Y)P + %I, (1 - (Y)p’ + q’ll I E 

The next result is a trivial corollary of lemmas 7 
and 8: 

l$rny; “, If the polygons P = (~0, pl, . . . ,p,,-1) and 
= 0, l,.**,!In-1 ) are such that lIpi, gill 5 2~ for 

all i, then any point inside P is e-inside Q (and vice 
versa). 

4.3 Inclusion in an E-Convex Polygon 

Now let’s try to extend the InConvex algorithm to 
polygons that are not necessarily convex, but merely 
&-convex. According to the general definition, a poly- 
gon P is &-convex: if there exists a convex polygon P’ 

that is at most E away from P; or, equivalently, if we 
can perturb the vertices of P by at most E in such a 
way that the result is a convex polygon. We will use 
the following result: 

Lemma 10 Let P = (po,p1,. . . ,p,,l) be an e-convex 
polygon, with E > 0, and z a point of the plane. Let P” 

be the union of the triangles popipi+l for 1 5 i 2 n - 2. 
Then 

Inside(z) P) =S Inside(z, P’) + &-lnside(z, P) 

Proof: Let’s prove first that Inside(r,P) =+ 

Inside(z,P*). If the point z is inside the polygon P, 

then any ray starting from z should meet at least one 
edge pipi+ of P for 1 5 i 5 n- 2. (Assuming each edge 
includes its endpoints.) In particular, this should hap- 
pen for the ray out of z that is directed away from po. 
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This ray proves that z is inside the triangle popipi+l, 
and hence inside P”. 

Now let’s prove that Inside(z, P’) + .e-1nside(r, P). 
By definition there exists a convex polygon P’ such that 
]]pi,dl] 5 E for all i. By corollary 9, every point inside 
P’ is (a/2)-inside P. By the same argument, any point 

of triangle popipi+l is (E/2)-inside the corresponding tri- 
angle pbp:pi+,; therefore, by lemma 6, any point in P* 
is (s/2)-inside P’. By the triangle inequality (lemma 2), 

then, any point of P’ is E-inside P. 0 
This lemma gives us an algorithm InEpsConvex(z, P, E) 
that tests whether a point z is &Inside a polygon P, 
assuming that P is &-convex. The algorithm is a slight 
modification of the InConvex box that we gave in sec- 
tion 3.2: 

1. r e min{InTriangle(z,pcpipi+l) : 1 _< i 5 ta - 2) 

2. r.hi+r.hi+s 

3. if r.10 2 0 then return r ii 
4. r.lot--00 

5. b + Boundary(z,P) 
6. return (r ll b) U (r ll -b) 

After step 1 we know that I is b-inside some of the 

triangles papipi+l, for 6 2 r.hi, and not b-inside any of 
them for 6 < r.lo. Step 2 adjusts r.hi to account for the 
fact that the union of those triangles may include points 
that are up to 2~ away from P. This step is justified 
by the triangle inequality (lemma 2). The rest of the 
algorithm is shown correct by the same arguments used 
for InPolygon in section 3.2. 

5 Conclusions 

The Epsilon Geometry framework we described in this 
paper allows us to build robust algorithms using im- 

precise computations. Because our framework allows us 

to use ordinary fixed- or floating-point arithmetic and 

substitute simpler approximations for hard-to-compute 

formulas, we believe it has great practical potential. 

An important feature of the Epsilon Geometry ap- 
proach is its flexibility, in that it gives the designer of a 

geometric algorithms great freedom to choose between 
accuracy, efficiency and simplicity. Our approach allows 

us to combine primitive epsilon-boxes into more com- 

plex algorithms, independently of the number represen- 
tation and machine precision used inside each primitive 

box. 

We have barely started to explore the application of 

this framework to classical computer geometry prob- 
lems. If the examples we give in this paper are too 
elementary, it is only because we haven’t had time yet 
to consider more complex ones. 
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