
The Visual Computer (2022) 38:2723–2738

https://doi.org/10.1007/s00371-021-02149-8

ORIG INAL ART ICLE

��-Curves: controlled local curvature extrema

Kenjiro T. Miura1 · R. U. Gobithaasan2 · Péter Salvi3 · Dan Wang1 · Tadatoshi Sekine1 · Shin Usuki1 ·

Jun-ichi Inoguchi4 · Kenji Kajiwara5

Accepted: 23 April 2021 / Published online: 18 May 2021

© The Author(s) 2021

Abstract

The κ-curve is a recently published interpolating spline which consists of quadratic Bézier segments passing through input

points at the loci of local curvature extrema. We extend this representation to control the magnitudes of local maximum

curvature in a new scheme called extended- or ǫκ-curves. κ-curves have been implemented as the curvature tool in Adobe

Illustrator® and Photoshop® and are highly valued by professional designers. However, because of the limited degrees of

freedom of quadratic Bézier curves, it provides no control over the curvature distribution. We propose new methods that

enable the modification of local curvature at the interpolation points by degree elevation of the Bernstein basis as well as

application of generalized trigonometric basis functions. By using ǫκ-curves, designers acquire much more ability to produce

a variety of expressions, as illustrated by our examples.

Keywords Interpolatory curves · Curvature continuity · Control of curvature magnitude · Degree elevation

B Kenjiro T. Miura

miura.kenjiro@shizuoka.ac.jp

R. U. Gobithaasan

gr@umt.edu.my

Péter Salvi

salvi@iit.bme.hu

Dan Wang

wang.dan.18@shizuoka.ac.jp

Tadatoshi Sekine

sekine.tadatoshi@shizuoka.ac.jp

Shin Usuki

usuki@shizuoka.ac.jp

Jun-ichi Inoguchi

inoguchi@math.tsukuba.ac.jp

Kenji Kajiwara

kaji@imi.kyushu-u.ac.jp

1 Graduate School of Science and Technology, Shizuoka

University, Hamamatsu, Shizuoka, Japan

2 Faculty of Ocean Engineering Technology & Informatics,

University Malaysia Terengganu, Kuala Nerus, Terengganu,

Malaysia

3 Department of Control Engineering and Information

Technology, Budapest University of Technology and

Economics, Budapest, Hungary

4 Institute of Mathematics, University of Tsukuba, Tennodai,

Tsukuba, Japan

1 Introduction

The κ-curve, proposed recently by [28], is an interpolating

spline which is curvature-continuous almost everywhere and

passes through input points at the local curvature extrema.

It has been implemented as the curvature tool in Adobe

Illustrator® and Photoshop® and is accepted as a favored

curve design tool by many designers (see, e.g., [4,6]).

We consider the reasons for the success of κ-curve to be:

1. Information along contours is concentrated at local max-

ima of curvature.

2. Curves of low degree have smooth distribution of curva-

ture.

3. G2-continuous curves tend to look fairer than only G1-

continuous ones.

Attneave [1] suggested, based on his empirical study, that

information along contours is concentrated in regions of high

magnitude of curvature, as opposed to being distributed uni-

formly along the contour, and it is further concentrated at

local maxima of curvature (see also [33]). Although Attneave

never published the details of his methods, [20] conducted a

5 Institute of Mathematics for Industry, Kyushu University,

Fukuoka, Fukuoka, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-021-02149-8&domain=pdf
http://orcid.org/0000-0001-9326-3130
https://orcid.org/0000-0003-3077-8772
http://orcid.org/0000-0003-2456-2051
http://orcid.org/0000-0003-1906-4998
http://orcid.org/0000-0003-1813-822X
https://orcid.org/0000-0002-4363-6346
https://orcid.org/0000-0002-6584-5739
https://orcid.org/0000-0002-0543-9384

2724 K. T. Miura et al.

similar experiment and obtained the same results. Levien and

Séquin [12] argue similarly and assert that points of maximal

curvature are salient features.

The curvature of a polynomial curve is given by a rela-

tively complicated rational function [7], and its distribution

might not be globally smooth. However, if the curve is of a

low degree, the curvature distribution is more uniform and

the curve is fairer, thus more suitable for illustration. The

quadratic polynomial curve has the nice property that its

curvature has only one local maximum, and its location is

easily computable [28], which makes the handling of curva-

ture extrema much easier.

Graphic designers often accept G1 continuity as good

enough for illustration. However, discontinuity remains; for

example, if you join a straight line and a circular arc with

G1 continuity, the rhythm of the curve will be broken at the

joint. For this reason, we give preference to G2-continuous

curves.

Nonetheless, κ-curves are not perfect, and their further

investigation is necessary [29]. The following are two impor-

tant shortcomings of κ-curves:

1. They are not curvature-continuous everywhere: at inflec-

tion points only G1 continuity is guaranteed.

2. Since the degree of freedom (DoF) of the quadratic seg-

ments is limited, it is impossible to control the magnitudes

of local maximum curvature at the input points.

For the first shortcoming, Wang et al. [26] provided a solu-

tion through the use of log-aesthetic curves [15,17] instead

of polynomial curves. Log-aesthetic curves have a shape

parameter (α), which can be utilized to control the curva-

ture distribution as shown in Fig. 1. Their method guarantees

G2 continuity everywhere, including inflection points, since

log-aesthetic curves with negative α values can represent S-

shaped curves with G2 continuity. (Note that these cannot be

represented by quadratic Bézier curves.)

These curves, however, are defined by a Cesàro equation

and thus take extra time to evaluate, making the interpolation

method impractical for real-time design purposes.

Because of the second shortcoming, if the designer wants

to increase or decrease the magnitude of the curvature

extremum, she needs to add extra input points, as shown

in Fig. 2. Yan et al. [27] proposed a piecewise rational,

quadratic, interpolatory curve that is able to reproduce circles

and other elliptical or hyperbolic shapes. Although their main

intention was to reproduce circles, their method could also

control the magnitude of local maximum curvature. How-

ever, only rational quadratic curves are applicable, and it is

not possible to extend their method for other types.

In this paper, we propose a new method to solve the second

shortcoming by degree elevation of the Bernstein basis func-

tions, giving an extra DoF to each quadratic curve segment,

Fig. 1 Log-aesthetic curves with various α values [26]. Input points are

depicted by black boxes, and green points correspond to positions of

local maximum curvature. The blue curves show the normal curvature.

These curves are G2-continuous everywhere

(a) (b) (c)

Fig. 2 Addition of extra input points to control the magnitude of cur-

vature extrema: b is the original κ-curve, a, c shows deformed curves

with large and small curvature extrema by adding two extra input points

providing control over the magnitudes of local maximum

curvature at input points as shown in Fig. 3. In order to

increase the designers’ possible choices, we also introduce

a new trigonometric basis for which we can perform degree

elevation. In addition, we propose a general method for bases

with extra shape parameters. By adding one more parame-

ter to each of the curve segments, the designers obtain more

expressive power for their illustration. The family of this new

curve is denoted as ǫκ-curves.

ǫκ-curves preserve all of the appealing properties of κ-

curves, i.e., point interpolation, G2 continuity (except at

inflection points), continuous modification

(changes smoothly when the input points move), local influ-

ence, and real-time generation. With a small processing

overhead, ǫκ-curves offer the ability to control the magni-

tude of local maximum curvature.

We have implemented ǫκ-curves in MATLAB® and Julia

[11]. The source of the Julia code is available online [22].

The rest of this paper is organized as follows. Section 2

reviews the related work. Section 3 presents a method to con-

trol the magnitudes of local maximum curvature by degree

elevation of the Bernstein basis functions. Section 4 intro-

duces a new trigonometric basis and proposes a method with

degree elevation similar to the one proposed in the previous

section. Finally, we end with conclusions and discussion of

future work.

123

ǫκ-Curves: controlled local curvature extrema 2725

(a=2/3) a=0.7 a=0.8 (a=2/3)a=0.95

Fig. 3 The left- and rightmost curves are κ-curves; the others are ǫκ-curves with gradual changes in the global shape parameter a. The face part

(for a = 0.95 and a = 2/3) is zoomed in for better comparison. When a=2/3, κ- and ǫκ-curves are identical

2 Related work

In this section, we first review [28] and their underlying strat-

egy developing κ-curves. Next, we discuss related researches

on various kinds of basis function formulations for curve

design.

2.1 �-Curve

The basic framework of our method is adopted from [28],

generating curves controlled by interpolation points. κ-

curves have stimulated the field of interpolatory curve

generation, resulting in works such as [5], which proposes a

method for good control over the location and type of geo-

metric feature points (e.g., cusps and loops).

Yan et al. [28] create a sequence of quadratic curves

with G2 continuity almost everywhere. They derived explicit

formulae for the point between two quadratic segments to

guarantee G2 continuity and for the additional condition

that input points should be interpolated at maximum cur-

vature magnitude positions. κ-curves are determined by the

locations of the middle control points of quadratic Bézier

segments—the rest is easily derived from the continuity con-

straints. Hence, the variables are the locations of these middle

control points.

Their basic strategy to determine these locations is to adopt

a local/global approach [13,23]: G2-continuous connection

is performed locally, while the interpolation at maximum

curvature magnitude positions is done globally.

Regarding control of the magnitude of local curvature, the

most common technique is to change the weight of a con-

trol point of a rational curve [7]. A larger weight attracts the

curve to its control point, which makes local curvature larger.

However, this technique is not applicable for interpolatory

curves. Another technique is to introduce extra parameters

called bias and tension to the B-spline formulation for con-

trolling local curvature [2], but this is also not applicable to

interpolatory curves.

2.2 Basis functions

As mentioned in [28], curve modeling has a long history,

especially in computer-aided geometric design, as well as

computer graphics. In CAGD and applied mathematics, to

extend the expressive power of curves, many researchers have

been trying to develop new bases with extra shape parame-

ters. The following is a (nonexhaustive) list of such bases:

1. C-Bézier curve [31]

2. Cubic alternative curve [10]

3. Cubic trigonometric Bézier curve (T-Bézier basis) [8]

4. αβ-Bernstein-like basis [32]

5. Quasi-cubic trigonometric Bernstein basis [30]

6. Trigonometric cubic Bernstein-like basis [24]

Our method proposed in the next section can be applied for

curves based not only on polynomials, but also other bases

such as a trigonometric basis with degree elevation property

which we will introduce in Sect. 4. All of the representations

listed above have extra parameters for shape control, and

we can utilize these parameters to control the magnitudes of

local maximum curvature. (Not all curve types are applicable,

however, as explained in Appendix C.)

It is interesting to note that most researchers to date have

attempted to develop new bases using four control points,

based on cubic polynomials or quadratic trigonometric func-

tions. They prefer using four control points out of concern

for connections at both ends of the curve. In order to control

the magnitude of curvature at the two ends independently,

at least two control points are necessary at each end. This

differs fundamentally from Yan et al.’s (and our) approach,

which uses only three control points.

The importance of [28] is their proposed paradigm shift

for curve generation, by considering the local maximum cur-

vature in the middle, instead of focusing on the endpoints. If

we can assume that the curvature has just one local maximum

in each segment, then only one extra parameter per segment

123

2726 K. T. Miura et al.

is adequate to control the magnitude of its local maximum

curvature.

To our best knowledge, no trigonometric basis family for

arbitrary degree has been published yet. Our novel general-

ized trigonometric basis functions range from linear, using

three control points, to any higher degree n, using 2n + 1

control points. The curve can be evaluated by a recursive

method , similar to de Casteljau’s algorithm, as explained in

Appendix B. Since the curve uses trigonometric functions

as blending functions, it can represent a circular arc exactly,

without using a rational form.

3 Cubic Bernstein polynomials

In this section, we extend κ-curves in a direct manner, by

elevating the degree of quadratic Bézier segments to cubic.

ǫκ-curves retain the following properties of κ-curves:

1. Interpolate all input points (control points).

2. All local maximum curvature points are the same as the

input points.

3. G2 continuity is guaranteed almost everywhere (except

for inflection points).

In the following, we discuss only closed curves, but it is

straightforward to extend our methods to open curves as has

been demonstrated for κ-curves.

If we elevate the degree of a planar Bézier curve, we obtain

an additional control point, which has two DoFs (the x and

y coordinates). To reduce these to one, we add a geometric

constraint on the location of the second and third control

points of the cubic Bézier curve, as shown in Fig. 4. Here, a

is an internal division ratio, where the larger a is, the closer

the control points P1 and P2 are to the control point Q1. We

make the restriction 2/3 ≤ a < 1 because the curve should

not have a complicated curvature distribution. Using Qi , the

curve C(t; a) is expressed by

C(t; a) = (1 − t)3 Q0 + 3(1 − t)2t [(1 − a)Q0 + aQ1]

+ 3(1 − t)t2 [aQ1 + (1 − a)Q2] + t3 Q2. (1)

Note that if a = 2/3, the curve degenerates to quadratic.

We have proved that by constraining the construction of

the cubic polynomial curve as in Eq. (1), using only three

control points instead of four, the curvature in one curve seg-

ment has at most one local maximum for 2/3 ≤ a < 1; see

details in [16], as well as Appendix A for a general discus-

sion on the curvature extrema of cubic polynomial curves,

and a high-level summary of the proof. In addition, we have

made MATHEMATICA simulation available in [9] to com-

pute the number of curvature extrema for this curve using

a:
1-

a

P
0
=Q

0

Q
1

P
3
=Q

2

1
-a

:a

P
1

P
2

Fig. 4 Constrained cubic Bézier curve. If a = 2/3, the curve becomes

quadratic

both classical approach and Sturm’s theorem. Hence, we can

safely assume that the curvature in one curve segment has at

most one local maximum, and a single extra parameter for

each segment is enough to control the magnitudes of local

maximum curvature.

3.1 Geometric constraints

We assume that ǫκ-curves consist of a sequence of con-

strained cubic polynomial curves

ci (t; ai) = (1 − t)3ci,0 + 3(1 − t)2t
[

(1 − ai)ci,0 + ai ci,1

]

+ 3(1 − t)t2
[

ai ci,1 + (1 − ai)ci,2

]

+ t3ci,2,

(2)

parameterized by t and also ai , which is an extra shape param-

eter. The control points are given by ci,0, ci,1 and ci,2 ∈ R
2,

corresponding to Qi , i = 0, 1, 2 in Fig. 4. The ai ’s are

reserved for designers and can be manipulated independently.
The curvature of this curve ci (t; ai) is given by

κi (t; ai) = det

(

∂ci (t; ai)

∂t
,
∂2ci (t; ai)

∂t2

)

/

∥

∥

∥

∥

∂ ci (t; ai)

∂t

∥

∥

∥

∥

3

=
4

3
·
△(ci,0, ci,1, ci,2)

[

a2
i
(1 − t)t + ai (1 − ai)

(

(1 − t)2 + t2
)]

‖(1 − t)2ai ri + 2(1 − t)t(1 − ai)(ri + si) + t2ai si ‖
3

,

(3)

where △ indicates the area of the triangle specified by its

arguments, and ri = ci,1 − ci,0, si = ci,2 − ci,1.

In the quadratic case (i.e., κ-curves), as the curvature has

such a simple formula, we can express the parameter ti at the

point of maximal curvature explicitly, in terms of the Bézier

coefficients of the i th quadratic Bézier curve as

ti =
〈ri , ri − si 〉

‖ri − si‖2
, (4)

where 〈a, b〉 means the scalar product of vectors a and b.

Then, we add the condition

ci (ti) = pi , (5)

123

ǫκ-Curves: controlled local curvature extrema 2727

where pi is the i th input point. Solving for ci,1 and substitut-

ing into Eq. (4), we get a cubic equation in ti that depends

only on the endpoints ci,0 and ci,2, and the input points pi .

Unfortunately, we cannot obtain an explicit formula like

Eq. (4) for the parameter ti in the cubic case, because of its

high degree (see details in Appendix A.1), but this is not a

problem. Solving Eq. (5) for ci,1, we arrive at

ci,1 =
[

pi − (1 − ti)
3ci,0

− 3(1 − ti)ti (1 − ai)((1 − ti)ci,0 + ti ci,2)

−t3
i ci,2

]

/

(3ai (1 − ti)ti).

(6)

Substituting this into the derivative of Eq. (3), and letting it

equal 0, we obtain (after some simplification) a polynomial

equation of degree 9 in ti . This equation can be derived by

the Maxima [14] code in Fig. 13 (Appendix A). We solve

this equation and select a real root in [0, 1]. Note that we

have proved that there is one and only one solution for the

polynomial equation of degree 9 in ti ∈ [0, 1] as in the case

of κ-curves; see details in [16], as well as Appendix A.2.

However, when we use other types of curves with more

complicated representations (see examples in Appendix C),

this kind of formula may be hard to derive. In these cases,

we can use the relaxed Newton’s method to compute the

maximum curvature. For this, we need to be able to compute

the curvature and its derivative; we do this using a quadratic

Taylor series approximation around the last value of ti .

We introduce the constant λi (0 < λi < 1) according to

the construction method of κ-curves and set

ci,2 = ci+1,0 = (1 − λi)ci,1 + λi ci+1,1. (7)

Let the curvatures at the endpoints of the curve segment be

denoted by κi (0; ai) and κi (1; ai), then from Eq. (3)

κi (1; ai) =
4

3
·

(1 − ai)△
+
i

a2
i λ2

i ‖ci+1,1 − ci,1‖3
,

κi+1(0; ai+1) =
4

3
·

(1 − ai+1)△
−
i+1

a2
i+1(1 − λi)2‖ci+1,1 − ci,1‖3

, (8)

introducing the notations △+
i = △(ci,0, ci,1, ci+1,1) and

△−
i = △(ci−1,1, ci,1, ci,2).

By adopting the local/global approach, we treat ci,0 as

fixed for the computation of κi (1; ai), although it depends

on λi−1 (similarly for ci+1,2).

In order to guarantee G2 continuity at the joint of two

consecutive segments, the following equations should be sat-

isfied:

κi (1; ai) = κi+1(0; ai+1). (9)

Hence,

λi =

√

(1 − ai)△
+
i

√

(1 − ai)△
+
i +

ai

ai+1

√

(1 − ai+1)△
−
i+1

. (10)

Since 0 < ai , ai+1 < 1, λi is real and 0 < λi < 1.

3.2 Optimization

In the global phase, we calculate the positions of the middle

control points ci,1 by solving a linear system of equations. We

treat the current values of λi (internal division ratios of ci,1

and ci+1,1) and ti (parameters of local maximum curvature)

as fixed.

Substituting Eq. (7) into Eq. (5), we get

pi = (1 − ti)
3
[

(1 − λi−1)ci−1,1 + λi−1ci,1

]

+ 3(1 − ti)
2ti

[

(1 − ai)
[

(1 − λi−1)ci−1,1 + λi−1ci,1

]

+ai ci,1

]

+ 3(1 − ti)t
2
i

[

(1 − ai)
[

(1 − λi)ci,1 + λi ci+1,1

]

+ai ci,1

]

+ t3
i

[

(1 − λi)ci,1 + λi ci+1,1

]

, (11)

which can be solved for ci,1.

The optimization process is summarized in Algorithm 1.

Algorithm 1: The optimization process.

Result: control points ci,k and parameters of maximal

curvature ti
Set all λi to 0.5;

Compute all ci,0 and ci,2 by Eq. (7);

while not convergent do

Compute all λi by Eq. (10);

Compute all ci,0 and ci,2 by Eq. (7);

Compute all ti by polynomial root finding;

Compute all ci,1 by Eq. (11);

end

Compute all ci,0 and ci,2 by Eq. (7);

3.3 Results

Figure 5 shows examples of closed ǫκ-curves along with the

original κ-curve. The input points are located at the same

positions. The ai values of these curves are equal to 2/3,

except for one, two and three input points, respectively, where

ai is set to 0.85. If the ai of all input points are 2/3, the κ-

curve on the left is generated. Since we specify a larger value

for some input points, the magnitudes of the corresponding

local maximum curvature increase, as we expected.

123

2728 K. T. Miura et al.

Fig. 5 The leftmost curve is a κ-curve. The other curves are ǫκ-curves: the ai values are equal to 2/3 except for one, two and three input points,

respectively, where ai = 0.85

(a=2/3) (a=2/3)a=0.95, others=2/3 a=2/3, others=0.95

Fig. 6 The a values of the two wing tips in the second figure from the left are 0.95, and those of the other input points are 2/3; note the sharpening

of the wings. In the third figure, the roles are reversed. The left- and rightmost curves in red are κ-curves with the same input points

(a=2/3) a=0.75 a=0.85 a=0.95

Fig. 7 The leftmost curve is a κ-curve; the other curves are ǫκ-curves: a is equal to 0.75, 0.85 and 0.95, respectively. Note the curvature at the

inflection points

Figure 6 shows another example of local curvature control.

From the left to right, the first drawing shows a bird using

κ-curves. In the second, we set a at the wing tips to 0.95,

while leaving all others at the default 2/3. This has the effect

of sharpening the wing tips. In the third figure, we reversed

the role of the input points, giving a = 2/3 to those at the

wing tips and 0.95 to all other points. Here, the wings are

rounded, while other parts of the bird get sharper.

Notice that the bird’s beak resembles a cusp, but is actually

the start and end points of an open curve located at the same

position. In our implementation, we limit 2/3 ≤ a ≤ 1

to make a curve with smooth curvature distribution, which

disallows the generation of a cusp even at a = 1. In cases

where the designer wants to use a cusp, the curve should be

cut in two, or the input points should be relocated to form a

cusp as explained in [28].

Figure 7 shows examples of global curvature control.

There are three ǫκ-curves, with a set to 0.75, 0.85 and 0.95,

respectively, along with the original κ-curve (a = 2/3) for

comparison. By increasing a, the magnitudes of local maxi-

mum curvature increase. As the close-up windows indicate, at

the inflection point G2 continuity is violated forκ-curves, and

only G1 continuity is guaranteed. However, for ǫκ-curves

with a larger a, the magnitude of curvature at inflection

points, and consequently the G2 error, becomes smaller. Note

that although these curves are almost G2-continuous every-

where, they are quite different from those in Fig. 1 (generated

using the same input points).

Figures 3, 8 and 9 show the effect of changes of the

global shape parameter a on various designs. As discussed

above, larger a values generally induce larger local curvature

extrema and steeper curvature variation. The resulting curves

look more sharp at the input points and more flat between

them.

123

ǫκ-Curves: controlled local curvature extrema 2729

Fig. 8 Changing the global

shape parameter in the bear

model

(a=2/3) a=0.7 a=0.8 a=0.95 (a=2/3)

(a=2/3) a=0.7 a=0.8 a=0.95 (a=2/3)

Fig. 9 Changing the global shape parameter in the elephant model

4 Generalized trigonometric basis

In this section, we describe our new generalized trigono-

metric basis. This is based on the trigonometric cubic

Bernstein-like basis [24], which we are going to review first.

The trigonometric cubic Bernstein-like basis functions

have an extra shape parameter α and are defined by

f0 = αS2 − αS + C2 = 1 + (α − 1)S2 − αS,

f1 = αS(1 − S),

f2 = α(S2 + C − 1) = αC(1 − C),

f3 = (1 − α)S2 − αC + α = 1 + (α − 1)C2 − αC, (12)

where S = sin π t
2

, C = cos π t
2

, for α ∈ (0, 2), t ∈ [0, 1].

Note that these functions satisfy partition of unity, i.e.,
∑3

i=0 fi (t) = 1 for any α. When α = 1, the above func-

tions are simplified to

f0 = 1 − S,

f1 = S(1 − S),

f2 = C(1 − C),

f3 = 1 − C . (13)

If we add the second and third functions together and rename

them to u, v and w, we obtain blending functions {u, v, w}

as follows:

u = 1 − S,

v = S(1 − S) + C(1 − C) = S + C − 1,

w = 1 − C .

(14)

It is straightforward to define a curve by these blending func-

tions with three control points, which we can regard as a

“linear” trigonometric curve since the highest degree the

trigonometric functions are in is one.

One interesting relationship among these functions is

v2 = 2uw, (15)

which enables

(u + v + w)2 = u2 + 2uv + 4uw + 2vw + w2, (16)

and yields the five blending functions {u2, 2uv, 4uw, 2vw,

w2}, associated with five control points. We can define a

curve using these blending functions and regard it as a

“quadratic” trigonometric curve since the highest power of

each blending function is now degree two.

In a similar way, we can extend blending functions of

“degree” n with 2n + 1 control points. As explained in

Appendix B, we can perform a recursive procedure to evalu-

ate a curve of any degree similar to de Casteljau’s algorithm

avoiding the overhead of trigonometric function evaluation.

This means that it is not necessary to calculate the coefficients

of blending functions, or keep a coefficient table.

We formulate the ǫκ-curve in this basis using a strat-

egy similar to that in the previous section, i.e., using a

sequence of quadratic trigonometric curves with a con-

straint on the positions of their control points, as shown

in Fig. 10. Note the location of the control point P2 =

[(1 − a)Q0 + 2aQ1 + (1 − a)Q2] /2. The curve c(t; a) is

defined by

c(t; a) = u2 Q0 + 2uv [(1 − a)Q0 + aQ1]

+ 2uw [(1 − a)(Q0 + Q2) + 2aQ1]

+ 2vw [aQ1 + (1 − a)Q2] + w2 Q2.

(17)

123

2730 K. T. Miura et al.

a:
1-

a 1-a:a

1:1

P
0
=Q

0

P
2
=((1-a)(Q

0
+Q

2
)+2aQ

1
)/2

P
4
=Q

2

Q
1

P
1
=(Q

0
+Q

1
)/2

Q
1

P
3
=(Q

1
+Q

2
)/2

P
0
=Q

0
P

4
=Q

2

P
2
=(Q

0
+2Q

1
+Q

2
)/4

Fig. 10 Constrained quadratic trigonometric curve. When a = 1/2

(bottom), the curve becomes linear

When a is equal to 1/2, the curve degenerates to a linear

trigonometric curve.

4.1 Geometric constraints and optimization

First, we analyze the linear trigonometric curve since it

corresponds to the original κ-curve. Let ci (t) be a linear

trigonometric curve with control points ci,0, ci,1 and ci,2 and

defined by

ci (t) = (1 − S)ci,0 + (S + C − 1)ci,1 + (1 − C)ci,2, (18)

where S = sin π t
2

, C = cos π t
2

and t ∈ [0, 1]. Its curvature

is given by

κi (t) =
2	(ci,0, ci,1, ci,2)

(

C2‖ri‖2 + 2C S〈ri , si 〉 + S2‖si‖2
)

3
2

, (19)

where ri = ci,1 − ci,0 and si = ci,2 − ci,1. The numerator

of the above formula does not depend on t , so the extrema of

the following fi (t) corresponds to those of κi (t):

fi (t) = C2‖ri‖
2 + 2C S〈ri , si 〉 + S2‖si‖

2, (20)

and its derivative with respect to t is given by

d fi (t)

dt
= π(−C S‖ri‖

2 + (−S2 + C2)〈ri , si 〉

+ SC‖si‖
2).

(21)

By assuming d fi (t)/dt = 0 with S, C �= 0, we obtain

S2 − γ SC − C2 = 0, (22)

where γ = (‖si‖
2 − ‖ri‖

2)/〈ri , si 〉. We can solve the above

equation and obtain

C =
−γ +

√

γ 2 + 4

2
S = βS. (23)

Since 0 ≤ S, C ≤ 1, we have the unique solution

S =
1

√

β2 + 1
. (24)

Hence,

t =
2

π
arcsin

1

β2 + 1
. (25)

Note that when ri and si are perpendicular to each other, if

‖ri‖ = ‖si‖, then the curve becomes a circular arc, and no

local maximum curvature exists. If ‖ri‖ > ‖si‖, then the

curvature at t = 1 will be maximum, and if ‖ri‖ < ‖si‖, the

curvature at t = 0 will be maximum in this curve segment.

For a quadratic trigonometric curve, the

curvatures κi (1; ai) and κi+1(0; ai) at the endpoints of the

constrained quadratic trigonometric curve ci are given by

κi (1; ai) =
1 − ai

a2
i

·
△+

i

λ2
i ‖ci+1,1 − ci,1‖3

,

κi+1(0; ai+1) =
1 − ai+1

a2
i+1

·
△−

i+1

(1 − λi)2‖ci+1,1 − ci,1‖3
.

(26)

We can calculate λi by guaranteeing G2 continuity at the

joint of ci (1; ai) and ci+1(0; ai+1):

λi =

√

(1 − ai)△
−
i

√

(1 − ai)△
−
i +

ai

ai+1

√

(1 − ai+1)△
+
i+1

. (27)

As before, we get a linear system of equations for ci,1:

pi = u2
i ((1 − λi−1)ci−1,1 + λi−1ci,1)

+ 2uivi ((1 − ai)(1 − λi−1)ci−1,1

+ ((1 − ai)λi−1 + ai)ci,1)

+ 2uiwi ((1 − ai)(1 − λi−1)ci−1,1 + ((1 − ai)λi−1

+ 2ai + (1 − ai)(1 − λi))ci,1 + (1 − ai)λi ci+1,1)

+ 2viwi ((ai + (1 − ai)(1 − λi))ci,1

+ (1 − ai)λi ci+1,1)

123

ǫκ-Curves: controlled local curvature extrema 2731

(a=2/3) a=0.75

a=0.9a=0.75

a=0.9

a=0.55 a=0.6

a=2/3

Fig. 11 The two curves on the top left (red) are κ-curves; the two on the top right (brown) are ǫκ-curves using cubic Bernstein basis functions with

a = 0.75 and 0.9. The bottom row shows ǫκ-curves using quadratic trigonometric basis functions with a = 0.55, 0.6, 0.75 and 0.9

a=0.7 a=0.55

Fig. 12 A Christmas tree drawn with ǫκ-curves using the cubic Bernstein basis functions (left) and the quadratic trigonometric basis functions

(right). Note that the latter has more rounded forms and—in this case—preferable

+ w2
i ((1 − λi)ci,1 + λi ci+1,1), (28)

where ui = 1 − sin π ti
2

, vi = sin π ti
2

+ cos π ti
2

− 1 and

wi = 1 − cos π ti
2

.

4.2 Results

Figures 11 and 12 show examples of ǫκ-curves using the

quadratic trigonometric basis functions explained in this sec-

tion. In the first figure, the top left two curves (red) are

κ-curves. The top right two curves (brown) are ǫκ-curves,

using cubic Bernstein basis functions with a = 0.75 and 0.9.

The bottom row (green) shows ǫκ-curves using quadratic

trigonometric basis functions with a = 0.55, 0.6, 0.75 and

0.9. The curves in the bottom row are more rounded than

those of the Bernstein basis. By increasing a, the differ-

ences between the two types of curves become smaller as

they approach a polyline generated by connecting the input

points.

The second figure shows a case where these more rounded

forms are clearly preferable.

4.3 Use of built-in shape parameters

So far our strategy made use of degree elevation—from

quadratic to cubic in the polynomial case, and from linear

to quadratic in the trigonometric case. Yet another strategy is

to use extra shape parameters built into the basis functions.

As an illustrative example, take the trigonometric cubic

Bernstein-like basis functions reviewed in the previous sec-

tion. In the framework of ǫκ-curves, we have to degenerate

the curve by relocating the positions of its control points,

essentially reducing its degree.

The trigonometric cubic Bernstein-like basis functions

need four control points to define a curve. To construct

“quadratic” curves corresponding to the quadratic Bézier seg-

ments of κ-curves, we make the second and third control

123

2732 K. T. Miura et al.

points collocate. Hence, the blending functions become

b0(t;α) = 1 + (α − 1)S2 − αS,

b1(t;α) = α(S + C − 1),

b2(t;α) = 1 + (α − 1)C2 − αC, (29)

where S = sin π t
2

, C = cos π t
2

, for α ∈ (0, 2), t ∈ [0, 1].

Incidentally, this will result in the same curve as Eq. (17), if

we substitute 2a for α.

Note that several curve types—such as the cubic alter-

native curve and the αβ-Bernstein-like basis functions, for

specific extra parameters—have zero curvature at the end-

points, so we cannot obtain the internal division ratio λi . For

these curves, the method shown in this section cannot be

applied. See details in Appendix C.

5 Conclusions and future work

We have proposed two types of ǫκ-curves as extensions of

κ-curves, for controlling the magnitudes of local maximum

curvature. Our methods use degree elevation of the Bern-

stein basis functions and a new family of trigonometric basis

functions.

In line with Yan et al.’s paradigm shift for curve genera-

tion, we consider the local maximum curvature in the middle,

instead of focusing on the endpoints. The new curves preserve

all of the nice properties of κ-curves, i.e., point interpola-

tion, G2 continuity (except at inflection points), continuous

modification (changes smoothly when the input points move)

and local influence. Computing ǫκ-curves is quite fast, and

designers can manipulate them interactively, acquiring much

more expressive power for curve design, as illustrated by

our examples. The processing time for generating ǫκ-curves

is similar to that of κ-curves, especially for ǫκ-curves with

cubic Bernstein basis. For example, κ-curves consume 0.07

sec to draw Fig. 8 (bear). Under similar conditions, cubic

Bézier ǫκ-curves consume 0.08 sec and generalized trigono-

metric ǫκ-curves takes 0.37 sec on average.

Future work includes the development of ǫκ-curve plug-

ins for Adobe Illustrator® and Photoshop®. Another possible

research direction is to apply the proposed method to different

types of aesthetic curves, e.g., log-aesthetic curves [26], σ -

curves [18] or τ -curves [19].

Supplementary Information The online version contains supplemen-

tary material available at https://doi.org/10.1007/s00371-021-02149-

8.

Acknowledgements This work was supported by JST CREST

(No. JPMJCR1911); JSPS Grant-in-Aid for Scientific Research (B,

No. 19H02048); JSPS Grant-in-Aid for Challenging Exploratory

Research (No. 26630038); Solutions and Foundation Integrated Research

Program; ImPACT Program of the Council for Science, Technology

and Innovation; and the Hungarian Scientific Research Fund (OTKA,

No. 124727). The authors acknowledge the support by 2016, 2018 and

2019 IMI Joint Use Program Short-term Joint Research “Differential

Geometry and Discrete Differential Geometry for Industrial Design”

(September 2016, September 2018 and September 2019). The second

author acknowledges University Malaysia Terengganu for approving

sabbatical leave which was utilized to work on emerging researches,

including this work.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

A Local maximum curvature of cubic
polynomial curves

A.1 General case

The signed curvature κ(t) of a cubic polynomial curve c(t) =

(x(t), y(t)) is given by [3] as

κ(t) =
x ′y′′ − x ′′y′

(

x ′2 + y′2
)

3
2

, (30)

where x ′ = dx(t)/dt , x ′′ = d2x(t)/dt2, and higher deriva-

tives are expressed in a similar way.

At the extremum dκ(t)/dt = 0 and dκ(t)2/dt = 2κ(t) ·

dκ(t)/dt . Hence, if we exclude points where κ(t) = 0, we

can obtain t values at the extrema.

By differentiating

κ(t)2 =
(x ′(t)y′′(t) − x ′′(t)y′(t))2

(x ′(t)2 + y′(t)2)3
(31)

with respect to t , we obtain

(

x ′2 + y′2
)4

κ
dκ

dt
= (x ′′y′ − x ′y′′)

(

(x ′′′y′ − x ′y′′′)(x ′2 + y′2)

− 3(x ′x ′′ + y′y′′)(x ′′y′ − x ′y′′)
)

, (32)

123

https://doi.org/10.1007/s00371-021-02149-8
https://doi.org/10.1007/s00371-021-02149-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

ǫκ-Curves: controlled local curvature extrema 2733

where x ′y′′ − x ′′y′ = 0 means the curvature is equal to 0,

and it corresponds to inflection points. Consequently,

(x ′′′y′ − x ′y′′′)(x ′2 + y′2)

− 3(x ′x ′′ + y′y′′)(x ′′y′ − x ′y′′) = 0 (33)

corresponds to curvature extrema. The above equation is

regarded as (quadratic × quartic) − (cubic × cubic), but

the coefficient of sextic terms vanishes and it becomes quin-

tic. Therefore, a cubic polynomial curve can have at most 5

curvature extrema. Please refer to [25] for more details. Since

Eq. (33) is quintic, it is generally not possible to have analyt-

ical solutions, so we must use numerical approach to obtain

the points on the curve where curvature extrema occurs.

A.2 Uniqueness

Here, we give a high-level summary of the proof [16] that the

curvature of a cubic curve of the form shown in Eq. (1) has at

most one local extremum in the (0, 1)parameter interval. As a

consequence, the degree-9 polynomial in Sect. 3.1, computed

by the Maxima [14] program in Fig. 13, has at most one real

solution in the (0, 1) interval. When it has none, this means

that no local extremum is present in the curvature, so the

extremum occurs at

t0 = arg max
t=0,1

|κ(t)|. (34)

Without loss of generality, place the control points as fol-

lows:

Q0 = (−1, 0), Q1 = (b, h), Q2 = (1, 0), (35)

where b ≥ 0 and h > 0. (The special cases where Q0 = Q2

or h = 0 are also handled in [16].)

Let N (t, a) denote the left side of Eq. (33) applied to this

curve. When b ≤ 3−2/a, it is easy to see that ∂ N (t, a)/∂t <

0 for any t ∈ (0, 1) and a ∈ [2/3, 1], so N is decreasing.

Since N (0, a) is always positive, this means N has at most

one 0-crossing.

In the following, let us also assume that b > 3 − 2/a.

Then, the following statements can also be proven:

N (1, a) < 0 when ∂ N (1, a)/∂t > 0, (36)

∂ N (0, a)/∂t < 0, (37)

∂ N (t, a)/∂t < 0 when ∂ N (1, a)/∂t < 0, (38)

∂2 N (0, a)/∂t2 > 0, (39)

∂3 N (t, a)/∂t3 < 0. (40)

From the above„ it is easy to prove that N (t, a) = 0 has

exactly one solution—and thus, the curvature has at most

one local extremum—in (0, 1).

B Generalized trigonometric basis functions

B.1 Recursive evaluation

For our new trigonometric basis, we can derive a recursive

algorithm similar to de Casteljau’s algorithm . For simplicity

we explain only the quadratic case, but it can be extended to a

general degree n by induction. To shorten expressions, we use

u = 1− S(t), v = S(t)+C(t)−1 and w = 1−C(t), where

S(t) = sin π t
2

and C(t) = cos π t
2

. Note that v2 = 2uw, and

(u + v + w)2 =

u(u + v + w) + v(u + v + w) + w(u + v + w).
(41)

For a quadratic curve with this basis, five control points

Pi (i = 0 . . . 4) are used, and the curve point at t is evaluated

as

[

u v w
]

⎡

⎣

P0 P1 P2

P1 P2 P3

P2 P3 P4

⎤

⎦

⎡

⎣

u

v

w

⎤

⎦ . (42)

Hence, the algorithm repeats a simple blending of three points

u Pi−1 +vPi +wPi+1 to generate a point on the given curve.

B.2 Triangle method

We can also construct a triangle using the coefficients of

trigonometric basis functions, similarly to Pascal’s triangle.

Below is a table of degree elevation, from the first row rep-

resenting degree 1 to the sixth row representing degree 6:

1 1 1

1 2 4 2 1

1 3 9 8 9 3 1

1 4 16 20 34 20 16 4 1

1 5 25 40 90 74 90 40 25 5 1

1 6 36 70 195 204 328 204 195 70 36 6 1

(43)

C Various basis functions

Here, we check the applicability of the bases listed in Sect. 2,

except for the trigonometric cubic Bernstein-like basis func-

tions [24], since that was already discussed in the paper.

C.1 C-Bézier curve [31]

The basis of the C-Bézier curve is {sin t, cos t, t, 1}, and the
curve is defined by the following formula:

Bα(t) = Z0(t)q0 + Z1(t)q1 + Z2(t)q2 + Z3(t)q3

123

2734 K. T. Miura et al.

Fig. 13 Maxima [14] code to

calculate the degree-9

polynomial in Sect. 3.1

/*

Input:

(x0,y0) and (x2,y2) - the endpoints

(px,py) - the point to interpolate at the maximal curvature

cibuc/citardauqneewtebnoisrevnocrofoitareht,ahpla-a

Output:

<a 9th-degree polynomial in t, having one real solution in [0,1]>

*/

/* (cx,cy) is the curve, (dx,dy) and (ddx,ddy) are the 1st and 2nd derivatives */

cx: (1-t)^3*x0+3*(1-t)^2*t*((1-a)*x0+a*x1)+3*(1-t)*t^2*((1-a)*x2+a*x1)+t^3*x2$

cy: (1-t)^3*y0+3*(1-t)^2*t*((1-a)*y0+a*y1)+3*(1-t)*t^2*((1-a)*y2+a*y1)+t^3*y2$

dx: diff(cx,t)$

dy: diff(cy,t)$

ddx: diff(dx,t)$

ddy: diff(dy,t)$

/* n and d are the numerator and denominator of the curvature, respectively */

n: dx*ddy-ddx*dy$

d: (dx^2+dy^2)^(3/2)$

/* The numerator of the curvature’s derivative; we need to solve dk = 0 */

dk: diff(n,t)*d-n*diff(d,t)$

/* Looking at factor(dk), we can see that there is some room for simplification */

dk1: factor(dk/(162*a*(x1*y2-x0*y2-x2*y1+x0*y1+x2*y0-x1*y0)*sqrt(dx^2+dy^2)))$

solution: rhs(solve(dk1,t)[1])$

/* (x1,y1) is set s.t. the curve interpolates (px,py) */

x1: (px-((1-t)^3+3*(1-t)^2*t*(1-a))*x0-(3*(1-t)*t^2*(1-a)+t^3)*x2)/(3*(1-t)*t*a)$

y1: (py-((1-t)^3+3*(1-t)^2*t*(1-a))*y0-(3*(1-t)*t^2*(1-a)+t^3)*y2)/(3*(1-t)*t*a)$

/* Generate a string representation that can be inserted in a program */

display2d: false$ /* programming-friendly output */

collectterms(expand(num(xthru(ev(solution,x1=x1,y1=y1)))),t);

=
1

α − S

⎡

⎢

⎢

⎣

sin t

cos t

t

1

⎤

⎥

⎥

⎦

⊤ ⎡

⎢

⎢

⎣

C 1 − C − M M −1

−S (α − K)M −K M 0

−1 M −M 1

α −(α − K)M K M 0

⎤

⎥

⎥

⎦

×

⎡

⎢

⎢

⎣

q0

q1

q2

q3

⎤

⎥

⎥

⎦

.

Here, α is a built-in shape parameter satisfying 0 < α ≤ π ,

and S = sin α, C = cos α. The parameter of the curve is

t ∈ [0, α], and

K =
α − S

1 − C
,

M =

{

1 if α = π,
S

α−2K
=

S(1−C)
2S−α−αC

if 0 < α < π.

We degenerate the curve by adding its second and third

basis functions, i.e., placing the second and third control

points at the same position. The curve is then defined by

three control points. However, even if we vary α from 0 to π ,

the blending functions do not vary much, as shown in Fig. 14.

= /8 =7 /8

1.0

0.8

0.2

0.4

0.6

1.0

0.8

0.2

0.4

0.6

1.00.80.2 0.4 0.6 1.00.80.2 0.4 0.6

Fig. 14 Blending functions of the degenerated (quadratic) C-Bézier

curve

Therefore, this type of curve is not suitable for changing the

magnitude of local maximum curvature.

C.2 Cubic alternative curve [10]

The cubic alternative curve is similar to the cubic Bézier

curve, and is defined by

Z(t) = F0(t)P0 + F1(t)P1 + F2(t)P2 + F3(t)P3,

0 ≤ t ≤ 1,

where the basis functions Fi (t), t = 0 . . . 3 are

F0(t) = (1 − t)2(1 + (2 − α)t),

123

ǫκ-Curves: controlled local curvature extrema 2735

F1(t) = α(1 − t)2t,

F2(t) = βt2(1 − t),

F3(t) = t2(1 + (2 − β)(1 − t)).

When α = β = 2, the curve becomes the cubic Ball

curve; for α = β = 3, the classical cubic Bézier curve; and

for α = β = 4, the cubic Timmer curve. The basis functions

are nonnegative when 0 ≤ α ≤ 3.

We assume that β = α, and the curve is degenerated by

adding the second and third blending functions. Hence,

A0(t; α) = (1 − t)2(1 + (2 − α)t),

A1(t; α) = α(1 − t)t

= 1 − (1 − t)2(1 + (2 − α)t) − t2(1 + (2 − α)(1 − t)),

A2(t; α) = t2(1 + (2 − α)(1 − t)).

We define the curve c(t;α) by

c(t;α) = A0(t;α)P0 + A1(t;α)P1 + A2(t;α)P2

= A0(t;α)(P0 − P1) + P1 + A2(t;α)(P2 − P1).

Then,

dc(t;α)

dt
= (1 − t)(−3αt + 6t + α)(P1 − P0)

+ t(3αt − 6t − 2α + 6)(P2 − P1),

d2c(t;α)

dt2
= 2

[

(3αt − 6t − 2α + 3)(P1 − P0)

+ (3αt − 6t − α + 3)(P2 − P1)
]

.

Hence, the curvature κi (t;α) for each curve segment is given

by

κi (t;α) =

2αi (3(α − 2)(1 − t)t − αi + 3)(P1 − P0) × (P2 − P1)

‖(1 − t)(−3αi t + 6t + αi)(P1 − P0) + t(3αi t − 6t − 2αi + 6)(P2 − P1)‖3
.

When α = 3, this degenerates to the classical cubic Bézier

curve with collocated second and third control points, and

at the endpoints we get κi (0, 3) = κi (1, 3) = 0, since the

directions of the first and second derivatives are the same.

Hence, the proposed method is not applicable in this case.

When α �= 0,

κi (1;αi) =
4(3 − αi)△

+
i

α2
i λ2

i ‖ci+1,1 − ci,1‖3
,

κi+1(0;αi) =
4(3 − αi+1)△

−
i+1

α2
i+1(1 − λi)2‖ci+1,1 − ci,1‖3

.

To guarantee G2 continuity at the joint of the segments,

when 0 < αi , αi+1 < 3, we can compute λi (0 < λi < 1)

by

λi =

√

(3 − αi)△
+
i

√

(3 − αi)△
+
i +

αi

αi+1

√

(3 − αi+1)△
−
i+1

.

When αi , αi+1 > 3,

λi =

√

(αi − 3)△+
i

√

(αi − 3)△+
i +

αi

αi+1

√

(αi+1 − 3)△−
i+1

.

In other cases, such as αi > 3, 0 < αi+1 < 3 or 0 < αi <

3, αi+1 > 3, λi can be determined by careful handling of the

signs of 3 − αi and 3 − αi+1.

By assuming a local maximum curvature at ti , we can

express the input point pi as

pi = (1 − ti)
2(1 + (2 − αi)ti)

[

(1 − λi−1)ci−1,1 + λi−1ci,1

]

+ αi (1 − ti)ti ci,1

+ t2
i (1 + (2 − αi)(1 − ti))

[

(1 − λi)ci,1 + λi ci+1,1

]

.

C.3 Cubic trigonometric Bézier curve [8]

For λ, μ ∈ [−2, 1], t ∈ [0, 1], the cubic trigonometric Bézier

denoted as T-Bézier basis functions are defined by

b0(t) = (1 − S)2(1 − λS),

b1(t) = S(1 − S)(2 + λ − λS),

b2(t) = C(1 − C)(2 + μ − μC),

b3(t) = (1 − C)2(1 − μC),

where S = sin π t
2

and C = cos π t
2

.

We assume λ = μ = α, and the curve is degenerated by

adding the second and third blending functions. Hence,

A0(t;α) = (1 − S)2(1 − αS),

A1(t;α) = 1 − (1 − S)2(1 − αS) − (1 − C)2(1 − αC),

A2(t;α) = (1 − C)2(1 − αC).

We define the curve c(t;α) by

c(t;α) = (1 − S)2(1 − αS)P0

+ (1 − (1 − S)2(1 − αS) − (1 − C)2(1 − αC))P1

+ (1 − C)2(1 − αC)P2

= (1 − S)2(1 − αS)(P0 − P1) + P1

+ (1 − C)2(1 − αC)(P2 − P1).

123

2736 K. T. Miura et al.

Then,

dc(t; α)

dt
=

π

2

[

(1 − S)C(2 + α − 3αS)(P1 − P0)

+ (1 − C)S(2 + α − 3αC)(P2 − P1)
]

,

d2c(t; α)

dt2
=

π2

4

[

(S − 1)((2S + 1)(2 + α − 3αS) + 3αC2)(P0 − P1)

+ (1 − C)((2C + 1)(2 + α − 3αC) + 3αS2)(P2 − P1)
]

.

Hence, dc/dt × d2c/dt2 is given by

dc

dt
×

d2c

dt2
= (1 − S)(1 − C)

[

C(2 + α − 3αS)((2C + 1)(2 + α − 3αC) + 3αS2)

+ S(2 + α − 3αC)((2S + 1)(2 + α − 3αS + 3αC2)
]

(P1 − P0) × (P1 − P0).

When α = 0, this curve is the same as the trigonometric

cubic Bernstein-like curve with α = 2, and the curvatures at

the start and end points κ(0) and κ(1) are generally not equal

to zero. For other α values, κ(0) = κ(1) = 0, so our method

is not applicable. This is because the directions of the first

and second derivatives are the same.

C.4 ˛ˇ-Bernstein-like basis functions [32] and
quasi-cubic trigonometric Bernstein basis curves
[30]

For arbitrary α, β ∈ [2,+∞], and t ∈ [0, 1], the αβ-

Bernstein-like basis functions are defined by

A0(t;α) = (1 − t)α,

A1(t;α) = 1 − 3t2 + 2t3 − (1 − t)α,

A2(t;β) = 3t2 − 2t3 − tβ ,

A3(t;β) = tβ .

When α = β = 2, these degenerate to cubic Said-Ball basis

functions [21]. When α = β = 3, these become cubic Bern-

stein basis functions.

Let β = α and we degenerate the curve by adding the

second and third blending functions. Hence,

A0(t;α) = (1 − t)α,

A1(t;α) = 1 − (1 − t)α − tα,

A2(t;α) = tα.

We define the curve c(t) by

c(t;α) = (1 − t)α P0 + (1 − (1 − t)α − tα)P1 + tα P2

= (1 − t)α(P0 − P1) + P1 + tα(P2 − P1).

Then,

dc(t; α)

dt
= α

[

(1 − t)α−1(P1 − P0) + tα−1(P2 − P1)

]

,

d2c(t; α)

dt2
= α(α − 1)

[

(1 − t)α−2(P0 − P1) + tα−2(P2 − P1)
]

.

Hence, its curvature κ(t;α) is given by

κ(t; α) =
α − 1

α
·

(1 − t)α−2tα−2(P1 − P0) × (P2 − P1)

‖(1 − t)α−1(P1 − P0) + tα−1(P2 − P1)‖3
.

When α = 2 (cubic Said-Ball curve), the curvatures at the

start and end points κ(0;α) and κ(1;α) are generally not

zero. However, when α > 2, we get κ(0;α) = κ(1;α) = 0.

Therefore, in this case our method is not applicable.

In the case of quasi-cubic trigonometric Bernstein basis

curves, the directions of the first and second derivatives at

the ends are the same; thus, our method is not applicable.

References

1. Attneave, F.: Some informational aspects of visual perception. Psy-

chol. Rev. 61, 183–193 (1954)

2. Barsky, B.A., Beatty, J.C.: Local control of bias and tension in

beta-splines. ACM Trans. Graph. 2(2), 109–134 (1983)

3. do Carmo, M.P.: Differential Geometry of Curves and Surfaces.

Prentice-Hall, Upper Saddle River (1976)

4. Chelius, C.: Using the curvature tool in Adobe Illustrator

(2016). https://web.archive.org/web/20161023130701/https://

creativepro.com/curvature-tool-adobe-illustrator/. Accessed 7

May 2021

5. Chen, Z., Huang, J., Cao, J.C., Zhang, Y.J.: Interpolatory curve

modeling with feature points control. Comput. Aided Des. 114,

155–163 (2019)

6. Djudjic, D.: Photoshop CC officially gets curvature pen tool

and other improvementsts (2017). https://web.archive.org/web/

20200620025914/https://www.diyphotography.net/photoshop-

cc-officially-gets-curvature-pen-tool-improvements/. Accessed 7

May 2021

7. Farin, G.: Curves and Surfaces for CAGD. Morgan-Kaufmann, San

Francisco (2001)

8. Han, X.A., Ma, Y., Huang, X.: The cubic trigonometric Bézier

curve with two shape parameters. Appl. Math. Lett. 22(2), 226–

231 (2009)

9. Gobithaasan, R.U., Miura, K.T.: Curvature Extrema for Con-

strained Bézier Curves. https://demonstrations.wolfram.com/

CurvatureExtremaForConstrainedBezierCurves/. Accessed 7 May

2021

10. Jamaludin, M., Said, H., Majid, A.: Shape control of parametric

cubic curves. In: Proceeding of the 4th International Conference

on CAD & CG, pp. 161–167 (2001)

11. Julia: The Julia programming language (2020). https://julialang.

org/. Accessed 7 May 2021

12. Levien, R., Séquin, C.H.: Interpolating splines: which is the fairest

of them all? Comput. Aided Des. Appl. 6(1), 91–102 (2009)

13. Liu, L., Zhang, L., Xu, Y., Gotsman, C., Gortler, S.J.: A local/global

approach to mesh parameterization. In: Proceedings of the Sym-

posium on Geometry Processing, pp. 1495–1504 (2008)

123

https://web.archive.org/web/20161023130701/https://creativepro.com/curvature-tool-adobe-illustrator/
https://web.archive.org/web/20161023130701/https://creativepro.com/curvature-tool-adobe-illustrator/
https://web.archive.org/web/20200620025914/https://www.diyphotography.net/photoshop-cc-officially-gets-curvature-pen-tool-improvements/
https://web.archive.org/web/20200620025914/https://www.diyphotography.net/photoshop-cc-officially-gets-curvature-pen-tool-improvements/
https://web.archive.org/web/20200620025914/https://www.diyphotography.net/photoshop-cc-officially-gets-curvature-pen-tool-improvements/
https://demonstrations.wolfram.com/ CurvatureExtremaForConstrainedBezierCurves/
https://demonstrations.wolfram.com/ CurvatureExtremaForConstrainedBezierCurves/
https://julialang.org/
https://julialang.org/

ǫκ-Curves: controlled local curvature extrema 2737

14. Maxima: A computer algebra system. version 5.44.0 (2020). http://

maxima.sourceforge.net/. Accessed 7 May 2021

15. Miura, K.T.: A general equation of aesthetic curves and its self-

affinity. Comput. Aided Des. Appl. 3(1–4), 457–464 (2006)

16. Miura, K.T., Salvi, P.: On the curvature extrema of special cubic

Bézier curves (2021). arXiv:2101.08138

17. Miura, K.T., Shibuya, D., Gobithaasan, R.U., Usuki, S.: Designing

log-aesthetic splines with G2 continuity. Comput. Aided Des. Appl.

10(6), 1021–1032 (2013)

18. Miura, K.T., Suzuki, S., Gobithaasan, R.U., Usuki, S., Inoguchi,

J., Sato, M., Kajiwara, K., Shimizu, Y.: Fairness metric of plane

curves defined with similarity geometry invariants. Comput. Aided

Des. Appl. 15(2), 256–263 (2018)

19. Miura, K.T., Suzuki, S., Usuki, S., Gobithaasan, R.U.: τ -Curve—

introduction of cusps to aesthetic curves. J. Comput. Des. Eng.

7(2), 155–164 (2020)

20. Norman, J.F., Phillips, F., Ross, H.E.: Information concentration

along the boundary contours of naturally shaped solid objects. Per-

ception 30, 1285–1294 (2001)

21. Said, H.: Generalized ball curve and its recursive algorithm. ACM

Trans. Graph. 8, 360–371 (1989)

22. Salvi, P.: Implementation of ǫκ-curves (2020). https://github.com/

salvipeter/ekcurves/. Accessed 7 May 2021

23. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In:

Proceedings of the Symposium on Geometry Processing, pp. 109–

116 (2007)

24. Usman, M.M., Abbas, M., Miura, K.T.: Some engineering appli-

cations of new trigonometric cubic Bézier-like curves to free-form

complex curve modeling. J. Adv. Mech. Des. Syst. Manuf. 14(4),

1 (2020)

25. Walton, D.J., Meek, D.S.: Curvature extrema of planar paramet-

ric polynomial cubic curves. J. Comput. Appl. Math. 134, 69–83

(2001)

26. Wang, D., Gobithaasan, R.U., Sekine, T., Usuki, S., Miura, K.T.:

Interpolation of point sequences with extremum of curvature by

log-aesthetic curves with G2 continuity. Comput. Aided Des. Appl.

18(2), 399–410 (2021)

27. Yan, Z., Schiller, S., Schaefer, S.: Circle reproduction with inter-

polatory curves at local maximal curvature points. Comput. Aided

Geom. Des. 72(6), 98–110 (2019)

28. Yan, Z., Schiller, S., Wilensky, G., Carr, N., Schaefer, S.: κ-curves:

Interpolation at local maximum curvature. ACM Trans. Graph.

36(4), Article 129 (2017)

29. Yuksel, C.: A class of C2 interpolating splines. ACM Trans. Graph.

39(5), 160:1–160:14 (2020)

30. Zhang, G., Wang, K.: Quasi-cubic trigonometric curve and surface.

Preprint (2019)

31. Zhang, J.: C-curves: an extension of cubic curves. Comput. Aided

Geom. Des. 13, 360–371 (1996)

32. Zhu, Y., Han, X., Liu, S.: Curve construction based on four αβ-

Bernstein-like basis functions. J. Comput. Appl. Math. 272, 160–

181 (2015)

33. Ziatdinov, R.: Visual perception, quantity of information function

and the concept of the quantity of information continuous splines.

Sci. Vis. 8(1), 168–178 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

Kenjiro T. Miura Professor, Grad-

uate School of Science and Tech-

nology, Shizuoka University,

Hamamatsu, Shizuoka, 432-8561,

Japan. Kenjiro T. Miura is a full

professor in the Department of

Information Science and Technol-

ogy, Graduate School of Science

and Technology and the Depart-

ment of Mechanical Engineering,

Faculty of Engineering (joint

appointment) of Shizuoka Univer-

sity. He got his Bachelor and Mas-

ter degrees in Precision Machin-

ery Engineering from the Univer-

sity of Tokyo in 1982 and 1984, respectively, and his PhD in Mechani-

cal Engineering from Cornell University in 1991. His current research

interests include geometric modeling, especially curve and surface

design and its applications to CAD/CAM systems.

R.U. Gobithaasan Associate Pro-

fessor,University Malaysia Tereng-

ganu, Malaysia. Gobithaasan is an

Associate Professor at the Uni-

versity Malaysia Terengganu. He

received his PhD degree in 2010

from Universiti Sains Malaysia.

His research interests span in both

computer-aided geometric design

and topological data analysis.

Much of his work revolves around

the mathematics of shapes. This

motivates him to embark on the

journey of understanding the shape

of high-dimensional dataset. He

has also carried out research related to Network Science.

Péter Salvi Associate Profes-

sor, Budapest University of Tech-

nology and Economics, Hungary.

Péter Salvi is an associate

professor at the Budapest Uni-

versity of Technology and Eco-

nomics, where he teaches

computer-aided geometric design.

Previously, he also worked for

Geomagic Hungary LLC. He

received his PhD degree in 2013

from Eötvös Loránd University,

Hungary. He also spent years

researching in Japan, at the Uni-

versity of Tokyo, and at Shizuoka

University. His research interests include fair curves & surfaces and

multi-sided patch representations.

123

http://maxima.sourceforge.net/
http://maxima.sourceforge.net/
http://arxiv.org/abs/2101.08138
https://github.com/salvipeter/ekcurves/
https://github.com/salvipeter/ekcurves/

2738 K. T. Miura et al.

DanWangPhD candidate,Graduate

School of Science and Technol-

ogy,Shizuoka University, Hama-

matsu, Shizuoka, 432-8561, Japan.

Dan Wang has studied mechani-

cal engineering as a PhD student

at Shizuoka University for Grad-

uate School of Science and Tech-

nology in Shizuoka. She received

a master’s degree in mechanical

engineering from Harbin institute

of technology in 2017. The topic

of her PhD is Isogeometric Anal-

ysis of Airfoils, mostly for indus-

trial applications.Her main

research fields include isogeometric analysis and log-aesthetic curves.

Tadatoshi Sekine Assistant Pro-

fessor, Department of Mechanical

Engineering, Shizuoka University,

Hamamatsu, Shizuoka, 432-8561,

Japan. Tadatoshi Sekine received

the B.E. and M.E. degrees in Sys-

tems Engineering from Shizuoka

University, Hamamatsu, Japan, in

2007 and 2009. He received the

PhD degree in Engineering from

graduate school of information sci-

ence and technology, Shizuoka

University, Hamamatsu, Japan, in

2012. He was a research fellow at

the Japan Society for the Promo-

tion of Science (JSPS) from 2011 to 2015. Currently, he is an Assistant

Professor with Department of Mechanical Engineering, Shizuoka Uni-

versity. His research interests are in efficient numerical modeling and

fast analysis techniques related to electronic circuits, electromagnetics

and mechanical engineering.

Shin Usuki Associate Professor,

Research Institute of Electronics,

Shizuoka University, Hamamatsu,

Shizuoka, 432-8561, Japan. Shin

Usuki is an associate professor

at Research institute of Electron-

ics, Shizuoka University, Japan.

He got B.Eng, M.Eng and D.Eng

from Department of Precision

Engineering, the University of

Tokyo, Japan, respectively, in 2002,

2004 and 2008. He is a member of

Academic Societies, International

Society for Optics and Photonics

(SPIE), the Japan Society for Pre-

cision Engineering (JSPE) and the Japan Society of Mechanical Engi-

neers (JSME).

Jun-ichi Inoguchi Professor, Insti-

tute of Mathematics, University of

Tsukuba, Japan. Jun-ichi Inoguchi

is a full professor in the Depart-

ment of Mathematics, Faculty of

Pure and Applied Sciences, Uni-

versity of Tsukuba. He got PhD

in Mathematics from Tokyo

Metropolitan University in 1998.

His main research fields include

integrable geometry, discrete dif-

ferential geometry and informa-

tion geometry.

Kenji Kajiwara Professor, Insti-

tute of Mathematics for Industry,

Kyushu University, Japan. Kenji

Kajiwara is a full professor at

the Institute of Mathematics for

Industry, Kyushu University. He

graduated from the Department

of Mathematical Engineering,

School of Engineering, the Uni-

versity of Tokyo in 1989 and then

got Master and PhD degrees in

Department of Applied Physics,

Graduate School of Engineering,

the University of Tokyo in 1991

and 1994, respectively. After work-

ing at the Department of Electrical Engineering, Doshisha University,

he moved to the Faculty of Mathematics, Kyushu University, in 2001.

He moved to newly founded the Institute of Mathematics for Industry

in 2011. He has been working in mathematical physics, particularly

the theory of integrable systems. Recently, he is developing integrable

(discrete) differential geometry and its applications.

123

	εκ-Curves: controlled local curvature extrema
	Abstract
	1 Introduction
	2 Related work
	2.1 κ-Curve
	2.2 Basis functions
	3 Cubic Bernstein polynomials
	3.1 Geometric constraints
	3.2 Optimization
	3.3 Results
	4 Generalized trigonometric basis
	4.1 Geometric constraints and optimization
	4.2 Results
	4.3 Use of built-in shape parameters

	5 Conclusions and future work
	Acknowledgements
	A Local maximum curvature of cubic polynomial curves
	A.1 General case
	A.2 Uniqueness

	B Generalized trigonometric basis functions
	B.1 Recursive evaluation
	B.2 Triangle method
	C Various basis functions
	C.1 C-Bézier curve Zhang1996
	C.2 Cubic alternative curve Jamaludin2001
	C.3 Cubic trigonometric Bézier curve Han2009
	C.4 αβ-Bernstein-like basis functions Zhu2015 and quasi-cubic trigonometric Bernstein basis curves Zhang2019
	References

