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Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation

phase pattern
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In this work, we investigate the response of epsilon-near-zero metamaterials and plasmonic materials to
electromagnetic source excitation. The use of these media for tailoring the phase of radiation pattern of
arbitrary sources is proposed and analyzed numerically and analytically for some canonical geometries. In
particular, the possibility of employing planar layers, cylindrical shells, or other more complex shapes made of
such materials in order to isolate two regions of space and to tailor the phase pattern in one region, fairly
independent of the excitation shape present in the other region, is demonstrated with theoretical arguments and
some numerical examples. Physical insights into the phenomenon are also presented and discussed together
with potential applications of the phenomenon.
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I. INTRODUCTION

The growth of interest in metamaterials and plasmonic
materials has recently led not only to novel and interesting
theoretical possibilities for microwave, infrared, and optical
applications but also to several conceptual advancements in
the fundamentals of the electromagnetic theory. Limits that
were considered insurmountable in conventional setups have
indeed been shown to be, at least potentially, surpassed when
special materials are employed. Examples of these achieve-
ments, such as subdiffraction transport of information and
subwavelength focusing, have been proven theoretically and,
in part, experimentally in the recent technical literature.

In particular, materials with anomalous values of their ef-
fective permittivities and/or permeabilities have been ana-
lyzed in detail, owing to their anomalous and often counter-
intuitive wave interaction. For instance, a slab made of a
material with simultaneously negative permittivity and per-
meability at the desired frequency of operation has been
shown to potentially focus the subwavelength details of an
object as a “superlens.”1 Such materials, also named double
negative,2 have been realized at microwave frequencies by
embedding properly designed resonant electrical and mag-
netic inclusions in a periodic lattice,3 and several attempts
for extending these concepts to higher frequencies �up to the
visible domain� are recently being conducted by several
groups.4–7

Materials with negative permittivity �� negative� at these
higher frequencies, i.e., infrared and visible, are already
available in nature, even with relatively low losses, and they
are represented by noble metals and polar dielectrics. Gener-
ally, the permittivities of such materials follow Drude or
Drude-Lorenz dispersion models8,9 that describe the fre-
quency variation of the resonances of their molecular com-
ponents, which are responsible for the anomalous values of
permittivities typical of the specific range of frequencies
where these resonances take place. Their plasma frequency
fp, which is the frequency at which the real part of their
permittivity effectively goes to zero, usually lies in the tera-
hertz regime for polar dielectrics and some semiconductors10

and in the visible and ultraviolet for noble metals.8–11 The
interest in such plasmonic materials is quite relevant nowa-
days, since the bulk and surface plasmonic resonances char-
acterizing particles made of these materials may be exploited
in several ways. The advantage of utilizing such media
clearly resides in the fact that they are already available in
nature, overcoming the difficulties of manufacturing such
materials for higher frequencies.

The window of frequency in which the permittivity is low,
i.e., near the plasma frequency, has also become a topic of
research interest in several potential applications. The first
attempts to build a material with low permittivity at micro-
wave frequencies date back to several decades ago, where
their use was proposed in antenna applications for enhancing
the radiation directivity.12 Similar attempts have been pre-
sented over the past years with analogous purposes.13–16.
Other more recent investigations of the properties of
�-near-zero �ENZ� materials and metamaterials and their in-
triguing wave interaction properties have been reported in
Refs. 17 and 18. In particular, Ref. 18 addresses and studies
the possibility of designing a bulk material impedance
matched with free space but whose permittivity and perme-
ability are simultaneously very close to zero.

In all these works, the main attempt has been to exploit
the low-wave-number �index near zero� propagation in such
materials, which might provide a relatively small phase
variation over a physically long distance in these media.
When interfaced with materials with larger wave number,
this implies the presence of a region of space with almost
uniform phase distribution, providing the possibility for di-
rective radiation toward the broadside to a planar interface,
as proposed over past the years for antenna applications.
Also, in Ref. 18, the possibility of utilizing the matched low-
index metamaterial for transforming curved phase fronts into
planar ones has been suggested, exploiting the matching be-
tween the aforementioned metamaterial and free space.

Our group has recently proposed several different poten-
tial applications of ENZ and/or �-near-zero materials for dif-
ferent purposes. Relying on the directivity enhancement that
such materials may provide, we have shown how it is pos-
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sible to cover an opaque screen with low-index materials in
order to dramatically enhance the transmission through a
subwavelength narrow aperture in the screen.19 This effect
can be explained in terms of the leaky waves supported by
such grounded layers, which constitute directive leaky-wave
antennas.20,21 Relying on a different mechanism, we have
recently shown the possibility of squeezing electromagnetic
energy through plasmonic ENZ subwavelength narrow chan-
nels and demonstrated analytically and numerically how this
effect may improve the transmission at sharp waveguide
bends and narrow channels.22

In a different context, in Ref. 23, we have shown how
ENZ materials may be used as covers to cancel the scattering
from dielectric or even conducting objects, drastically reduc-
ing their total scattering cross sections and making the cov-
ered objects practically undetectable to an external observer.
This effect is related to the negative polarizability that such
covers may exhibit due to their low permittivity with respect
to the background medium.

In this paper, motivated by these exciting anomalous
properties and potential applications of ENZ materials, we
investigate in detail their behavior in the presence of electro-
magnetic sources. In particular, we investigate the possibility
of manipulating the phase fronts of such sources for obtain-
ing anomalous imaging, lensing, and radiative effects. This is
done for planar and cylindrical geometries in analytical
terms and for other more complex shapes using numerical
full-wave simulations. These results may provide other inter-
esting possibilities for imaging and radiative tools at infrared
and optical frequencies, where such plasmonic ENZ materi-
als may be readily available in nature. Similar results may be
obtained at lower frequencies by employing engineered
metamaterials.

A general comment on the assumptions underlying the
following analysis is the following: the possible presence of
spatial dispersion in the ENZ materials and metamaterials is
neglected in the present analysis, since we assume that the
material permittivity � is isotropic and local, and that its
possible dependence on the wave vector may be neglected.
While some optical crystals24 and certain classes of
metamaterials25 may be characterized by a non-negligible
spatial dispersion, the majority of natural isotropic plasmonic
materials and several metamaterials show a weak or negli-
gible spatial dispersion �at least for certain polarization�,
even in the vicinity of their plasma frequencies. Indeed, the
collective resonance of the free electrons or of the molecules
constituting the materials at their bulk plasma resonance8 is a
physical phenomenon distinct from the possible causes of
spatial dispersion and nonlocality.24 The physical behavior of
isotropic plasmas and plasmonic materials with low or nega-
tive permittivity has been studied analytically and experi-
mentally over the past decades by usually neglecting their
possible nonlocal effects while still obtaining good agree-
ments between theoretical predictions and experimental re-
sults. Therefore, here we justifiably limit our analysis to local
materials with negligible spatial dispersion, which represent
a wide class of available natural plasmonic materials and
several types of metamaterials �at least for certain polariza-
tions�.

II. HEURISTIC ANALYSIS

In the limit at which the permittivity � of a given material
is zero at a specific frequency �and neglecting the possible
spatial dispersion�, Maxwell’s equations under the e−i�t con-
vention in a source-free region are written in the following
form:

� � H = 0 , � � E = i��0H , �1�

with �0 being the free-space permeability that is also as-
sumed to be the permeability of the zero-permittivity mate-
rial. Equation �1� implies that the magnetic field is a curl-free
vector and that wave propagation in this material can happen
only with phase velocity being infinitely large �satisfying the
“static-like” equation �

2E=0, which is obtained directly
from Eq. �1��.

The fact that the phase variation in such material may be
effectively very small compared to the free-space wave-
length results has some interesting consequences. Imagine to
have a system such as the one shown in Fig. 1, in which a
given phase front impinges on the entrance side of an object
�side A in the figure� made of such an ENZ material. If
somehow we manage to couple electromagnetic energy into
this material �which is not trivial by itself, since the imped-
ance mismatch would be present�, the phase front at the exit
side �side B� should conform to the shape of the exit face,
since there is essentially no phase variation in the wave
propagation inside the material. This implies that, in prin-
ciple, with the use of such plasmonic �ENZ� materials, we
can manipulate a given impinging phase front and transform
its phase distribution into a desired shape by properly tailor-
ing the exit side of the ENZ slab. This, of course, may have
important implications in imaging and communications tech-
nology, since we may speculate that by designing the confor-
mal face of the exit side B, one can shape the phase front to
a given desired pattern, independent of the form of the
impinging wave.

In this paper, we present analytical solutions and numeri-
cal simulations for certain canonical geometries involving
ENZ materials �with no spatial dispersion� in proximity of

FIG. 1. �Color online� A curved phase front impinges on an
ENZ material in its entrance side �side A�. At the exit side �side B�,
the phase front is conformal to the exit surface, in this case a planar
phase front, due to the small phase variation inside the material.
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sources, which may reveal the conditions and limitations of
the previous heuristic prediction in realistic setups.

III. PLANAR ENZ SLAB

Consider as a first case the geometry of Fig. 2, which
shows an infinitely extended planar slab of ENZ material,
with permittivity �s, permeability �0, and thickness dslab, ex-
cited by a TM plane wave with magnetic field H���

=H0ŷei�k0
2−�2�z+dsource�ei�x. Here, k0=���0�0 represents the

wave number in free space, H0 is a generic complex ampli-
tude, dsource represents a given reference plane, and �
=k0 sin �i, where �i is the angle of incidence as indicated in
the figure. It is straightforward to calculate transmission and
reflection coefficients for this simple geometry. Defining
R��� as the complex reflection coefficient for the magnetic
field at the entrance face of the slab �at z=0� and T��� as the
complex transmission coefficient at the exit face �at z=dslab�,
interesting limiting expressions for this problem may be de-
rived by taking the limit for the slab’s permittivity going to
zero. The transmission and reflection coefficients yield the
following expressions in this limit:

lim
�→0

R��� = �−
k0dslabe

ik0dsource

2i + k0dslab

, � = 0

− e−jk0dsource, � � 0,
�

lim
�→0

T��� = �
eik0dsource

1 − i
k0dslab

2

,
� = 0

0, � � 0.
� �2�

Equations �2� imply that no transmission through such a
zero-permittivity slab occurs, unless the impinging plane
wave comes exactly at broadside ��i=0�, for which the trans-
mission is nonzero and is inversely proportional to the elec-
trical size of the slab. It seems evident here how such an
ENZ slab would act as an ideal angular filter in the limit of
�s=0, with an “anomalous” discontinuity in the transmission
coefficient, as one moves the angle from broadside incidence
to any other, even infinitesimally small angle. The magnetic-
field distribution inside the slab would be identically zero

unless �=0, for which particular case H�0� would be con-
stant inside the slab �to fulfill the curl-free condition in Eq.
�1�� with value H�0�=H0�eik0dsource / �1− i�k0dslab /2��	ŷ. The
electric field would decay exponentially inside the slab for
��0, whereas for normal incidence the electric field, being
directed along x̂, would be linearly varying along z to satisfy
Eq. �1� and to match the continuity conditions at the two
boundaries.

It is worth underlining how for any ��0 the �s=0 slab
acts as a perfect magnetic boundary in this geometry, yield-
ing a 180° phase shift for reflection of the magnetic field at
the entrance face. The anomalous behavior with partial tun-
neling of the field at �=0 is explained with a polaritonic
resonance of such a slab, as we discuss in the following.

Fixing the value of the slab permittivity �s to a nonzero,
but low value, we can study the behavior of the transmission
function when the angle of incidence of the impinging plane
wave is varied, in order to understand how the limiting dis-
continuous response predicted by Eq. �2� is reached when �s

becomes identically zero. In this way, we can predict the
realistic response of an ENZ planar slab near its plasma fre-
quency to a source excitation, satisfying all the physical con-
straints of continuity and finiteness of the fields. Also, some
physical insights may be gained by this analysis, as we
present below.

The transmission coefficient for such a simple problem
may be written in compact form as

T���

=
eikt0dsource

cos�ktsdslab� + i
��2��0

2 + �s
2� − k0

2�s��0 + �s��

2�0�skt0kts

sin�ktsdslab�

,

�3�

where kt0=�k0
2−�2 and kts=�kslab

2 −�2. The sign of the
square root for kt0 should be chosen to satisfy the radiation
condition, i.e., its imaginary part should be non-negative,
whereas the branch choice for kts does not influence the so-
lution of Eq. �3�.

Equation �3� clearly shows that the Brewster angle for this
problem, which corresponds to the polariton resonance of the
structure under analysis,19,26–28 is given by the simple rela-
tion sin�ktsdslab�=0 for which 
T 
 =1. Since we are not con-
sidering electrically thick slabs and the wave number in the
ENZ slab is small, the only available polariton resonance, for
which the wave tunnels completely through the slab despite
the huge mismatch between free space and the ENZ material,
is represented by the condition �pol=kslab�0

The “quality factor” Q for this resonance in terms of the
“angular fractional bandwidth” may be found by considering
the complex root for �=�r+ i�i of the denominator in Eq. �3�
and is given by Q�=�r / �2�i�. Interestingly, its value for
ENZ materials does not depend on �s��0 and is given by the
following closed-form expression:

FIG. 2. �Color online� A planar slab of permittivity �s excited by
a TM plane wave in a suitable Cartesian coordinate system.
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Q� =
k0dslab

2
. �4�

Since this expression is proportional to the inverse of the
fractional angular bandwidth of the system, this shows two
interesting aspects: �a� for a fixed material parameter �s��0,
the peak in the transmission coefficient at �pol narrows lin-
early its angular bandwidth with the thickness of the slab,
and �b� for a fixed thickness of the slab, the interval 	� of
angles that actually tunnel through the slab narrows down
when �s→0. Since Eq. �4� ensures that the fractional angular
bandwidth Q�

−1=	� /�pol remains constant with a variation
of �s �in the ENZ limit� and �pol=kslab=���s�0 is propor-
tional to ��s, the angular bandwidth of transmission 	� re-
duces proportionally with ��s.

These results are consistent with the limiting case of Eq.
�2�, for which �s=0 and the interval of angles that tunnels
through the slab becomes infinitesimally narrow, i.e., 	�
=0 �since �pol=0 as well, Q� may remain finite in this limit
and it may still satisfy Eq. �4��. Following these arguments, a
closed-form expression for the interval of phase vectors �cen-
tered around �pol=kslab� that tunnels with sufficient transmis-
sion �half of the impinging power� through such a slab is
given by

	� =
2kslab

k0dslab

. �5�

In terms of angles, considering that 	��k0 and that �pol�0,
Eq. �5� can be written as

	��
	�

k0
=

2��s/�0

k0dslab

, �6�

which shows how the transmitted angular band narrows
down when the relative permittivity of the slab approaches
zero or when the slab thickness is increased.

Figure 3 shows the transmission coefficient for different
values of the slab thickness dslab and for two different �s

close to zero, consistently with formula �5�. In particular, one
may notice how there is always a peak of total transmission,
corresponding to the case �=�pol, with the angular band-
width 	� decreasing with an increase in dslab or a decrease in
�s. In this figure, it is clearly shown how the position of the
polariton resonance is independent of the thickness of the
slab, since this anomalous transmission does not rely on a
resonance of the slab �as it would be for thicker slabs where
ksdslab is a multiple of 
, as in any Fabry-Pérot resonator�,
but rather it is a material resonance due to the fact that at this
specific angle the longitudinal component of the wave num-
ber in the ENZ material is null. We note from these figures
how the required value of slab permittivity �s has to be very
close to zero in order to obtain a strong angular selectivity
and therefore a strong modification of the phase pattern at
the exit face of the slab when a collection of plane waves
impinges on the slab, since according to Eq. �6� the angular
bandwidth has a slow variation with permittivity, i.e., it is
proportional to ��s. When �s→0+, the peaks in transmission
slowly move toward broadside with a simultaneous decrease
in the angular bandwidth of transmission. Exactly at broad-

side the transmission follows the decrease with the slab
thickness dslab predicted by Eq. �2� and confirmed by Fig. 3.
In the limit of �s=0+, the transmission peak vanishes, and the
slab does not support a real polariton resonance, since its
angular bandwidth becomes identically zero even though its
response at broadside is maintained, as Eq. �2� testifies, con-
firming partial-wave tunneling at this specific angle. It is
interesting to note that a similar geometry has recently been
proposed as a directive leaky-wave antenna,15,21 interpreting
such beam reshaping effects of a low-permittivity planar slab
as the result of leaky-wave excitation. This theoretical analy-
sis confirms such results and shows the strong correlation
between material polaritons and leaky-wave phenomena,
which is analyzed in detail in Ref. 19

For negative low values of �s, again the polariton reso-
nance is below cutoff, since kslab is not a real quantity. The
peak of transmission clearly remains at broadside, even
though it is less than unity and decreases exponentially with
the slab thickness. For reasonably small 
ksdslab
, �s=0−

would also act as an angular filter with similar properties of
modification of the impinging phase pattern to conform to
the exit face of the slab.

The presence of material losses may noticeably affect the
above results, since the polariton resonance may be drasti-
cally weakened by the presence of realistic losses in the slab

FIG. 3. �Color online� Transmission coefficient for the geometry
in Fig. 2 with different slab thicknesses dslab and permittivities �s

near zero.
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material. In this sense, a larger angular “bandwidth” implies
a higher robustness to the material loss, as in any resonant
system. This is evident from Eq. �3�, which is valid even for
complex values of �s and kts, i.e., when Ohmic losses are
considered. In such a case, the presence of Ohmic losses
generates an exponential decay in the transmission coeffi-
cient, exponentially weakening the polariton resonance as
the losses increase. Equation �4� may also be generalized to
accommodate the possible presence of moderate losses, re-
sulting in the following expression after a first-order pertur-
bation assuming �s→ i�i with �i��0:

Q� =
k0dslab

2

1 + 2k0dslab�i/�0

1 +
3

2
k0dslab�i/�0

. �7�

This result shows that the Q factor and angular bandwidth of
the polariton resonance are weakly affected by the presence
of moderate losses.

The TE polarization does not support polariton resonances
in this setup, as it may be easily noticed by applying duality,
since it has been assumed that the slab has the same perme-
ability as the background medium. The peak of transmission
is expected at broadside, which coincides with the TM analy-
sis, with a smooth degradation of transmission with an in-
crease in the angle of incidence, and converges toward zero
for �i=
 /2. No high angular selectivity is observed in this
TE polarization due to the lack of polariton resonances.

The previous analysis has shown that an ENZ planar slab
may act as an angular filter for the TM polarization, allowing
transmission only for a specific narrow angular width close
to the normal. Consistent with the heuristic prediction that
the phase at the exit face should be constant all over the
surface, the plane waves that tunnel through such a system
have always a propagation direction very close to the nor-
mal. A polariton resonance is responsible for the wave tun-
neling, which actually happens at �pol=kslab. One may fur-
ther notice how the ENZ slab effectively isolates the
entrance side from the exit side. For the angles that do not
tunnel through the slab, the slab acts as a perfect magnetic
conductor, electrically isolating the two faces. The only al-
lowed response between the two sides is related to the exci-
tation of the material polaritons supported by the structure.

Let us now suppose that a more complex wave front im-
pinges on the entrance face of the slab, composed of a wide
spectrum of plane waves. In this case, it is clear from the
previous study that only the components of the spectrum
with wave number close to �pol=kslab�0 and TM polariza-
tion would tunnel through the system, and, as predicted heu-
ristically in Fig. 1 and shown in the previous lines, the phase
front may be modified by the slab in order to resemble the
planar interface at the exit side of the slab. All other wave
components would be reflected back by the system.

For instance, suppose that an infinitesimal two-
dimensional �2D� magnetic source, such as a magnetic cur-
rent line, is positioned in front of the slab. In some sense, this
is similar to the antenna setup studied numerically in, Refs.
15 and 21, even though the source there was placed inside
the slab and the slab was backed by a perfect electric con-

ductor. For simplicity of analysis, here we assume that at a
distance dsource=�0 from the slab, the magnetic field has a
linelike distribution, i.e., the impinging magnetic field has
the distribution Himp=H0ŷ��z+dsource���x�. In the free-space
region, the magnetic-field distribution can be written as an
integral superposition of plane waves with magnetic field
H��� as defined above, each of which is transmitted with
amplitude T��� through the slab.

Figure 4 depicts the amplitude and phase distributions un-
der such an excitation at the exit face of an ENZ slab with
�s=10−4�0, while different thicknesses dslab are considered.
The results were calculated by analytically solving the prob-
lem as a superposition of plane waves with proper weighting

FIG. 4. �Color online� �a� Normalized amplitude and �b� phase
distributions at the exit face for an infinite magnetic line current
placed at distance dsource=�0 from the entrance side of an ENZ slab
with �s=10−4�0 for different thicknesses dslab.
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coefficients given by the transmission coefficients T��� given
by Eq. �3�. All the curves are normalized to their relative
maximum peak. The dotted thin lines in the plots refer to the
case in which the slab is removed, and the field is sampled at
the coordinate z=dno slab=�0. One may notice how the pres-
ence of the slab implies a very smooth variation of the phase
along several wavelengths, with a drastic modification of the
radiation pattern due to the total reflection of most part of the
impinging spectrum of plane waves. This corresponds to a
drastic modification of the radiation pattern at the exit side of
the slab. Also, the amplitude is more uniform along the exit
side when compared to the case in which the slab is re-
moved. These results confirm the heuristic predictions that
an ENZ material may be employed to effectively modify the
imaging and radiation pattern of a given source, which may
be useful in different applications.

Figure 5, as an example, shows the power flow for a line
current placed at distance dsource=2�0 from the entrance side
of a slab with �s=10−4�0 and dslab=�0 /5. It can be seen how
the power flow is significantly redirected by the polariton
resonance present inside the slab and that the electromag-
netic field becomes very close to a plane-wave distribution
directed toward broadside at the exit side.

We have also considered the case of bending the exit side
of the slab in order to verify whether the phase pattern fol-
lows the same perturbation of the shape of the exit face.
Figure 6 shows the magnetic-field distribution induced by an
electrically short electric dipole placed in front of an ENZ
slab, with the exit face bent in order to have a finite curva-
ture. The full-wave simulation has been performed with

finite-integration-technique commercial software �CST MI-

CROWAVE STUDIO™ �Ref. 29�� and considering a realistic
setup, i.e., a finite slab and a dispersive Drude-like lossy
material with

�s = �1 −
fp

2

f�f + i�
�0, �8�

where f is the operating frequency, fp is the plasma fre-
quency at which Re��s��0, and  is the damping factor tak-
ing into account material losses. The geometry and the ma-
terial properties are displayed in the figure and in the caption.
The excitation is represented by a short electric dipole lying
horizontal and parallel to the entrance face in the figure. We
notice how the exit phase distribution is conformal to the exit
face shape, as we may expect by following the same reasons
discussed in this paragraph. This shows how the ENZ mate-
rial allows, under proper conditions, modification of the
phase distribution of an impinging wave by properly tailor-
ing the shape of the bulk material.

We have verified a similar effect of phase front reshaping
in a different setup by the use of finite-element-method com-
mercial software �COMSOL MULTIPHYSICS™ �Ref. 30�� for the
concave-lens-like 2D structure depicted in Fig. 7. This figure
shows how the structure may convert planar phase fronts.

FIG. 5. �Color online� Power flow �real part of the Poynting
vector� for a source placed at distance dsource=2�0 from the en-
trance side of a slab with �s=10−4�0 and dslab=�0 /5.

FIG. 6. �Color online� Snapshot in time of the magnetic-field
distribution induced by an electric small dipole placed in front of an
ENZ slab with a bent exit face. Here, the simulation has considered
a realistic three-dimensional setup: the entrance face is a planar
square of 3�3 wavelengths at the operating frequency f0. A small
electric dipole, parallel to the entrance face, is placed in its close
proximity. The ENZ material composing the slab follows the mate-
rial dispersion Ref. 11 with fp= f0 and =10−2f0, representing ma-
terial losses for a metamaterial or a plasmonic material. Brighter
�darker in gray scale� colors correspond to higher amplitude of the
instantaneous local magnetic field.

FIG. 7. �Color online� Magnetic-field distribution induced by a
plane wave incident on a 2D ENZ slab with concave exit face. The
slab width is 1.2�0 and it is assumed to be made of realistic silver
with permittivity �s=0.016+ i0.42 at the frequency for which �0

=325 nm, following experimental data �Ref. 11�. Brighter �lighter
in gray scale� colors correspond to higher amplitude values of the
magnetic field. The dark lines represent equiphase fronts.
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To conclude this section and summarize the above results,
the present analysis shows how ENZ slabs may effectively
modify the phase patterns of electromagnetic sources by iso-
lating their entrance and exit faces. In the following sections,
it is shown how this phenomenon may be induced even for
more complex geometries. The price to be paid may be a
non-negligible reflectivity of these devices due to the strong
mismatch between an ENZ material and free space, espe-
cially if the incoming wave front is not conformal to the
entrance face of the ENZ material and the slab is not elec-
trically thin. Indeed, since these materials behave as “angu-
lar” filters, the more the impinging angular spectrum differs
from the desired phase distribution and the more the permit-
tivity of the device is close to zero, the more power will be
reflected by the device. Quantitatively, Eq. �6� summarizes
this concept, underlining how any component of the angular
spectrum of the incoming spherical wave front falling out-
side the angular range defined by Eq. �6� is mostly reflected
by the planar device and therefore providing a rule of thumb
for evaluating the power loss in this process. A way to avoid
such reflection, which may be undesirable for some applica-
tions, may be to match the ENZ material with free space by
lowering its permeability.18 However, natural materials with
both low permittivity and low permeability matched to the
free space are not readily available in nature, even though
their realization is within the realm of possibility.32 In the
following, we continue our analysis of ENZ materials and
electromagnetic sources in more complex scenarios, fully
considering the possible presence of high reflection.

IV. CYLINDRICAL ENZ SHELL

The cylindrical geometry may provide further verification
of the possibility of modifying a given phase pattern by em-
ploying ENZ materials. Consider, for instance, Fig. 8, i.e., a
cylindrical ENZ shell of local permittivity �s��0 surround-
ing a hollow cavity. Again, all the permeabilities are consid-
ered to be the same as that of free space. Applying the same
concepts as in the previous paragraph, we intuitively expect

that it may be possible to excite the structure with an arbi-
trary phase pattern in the outside region and obtain an angu-
larly uniform phase distribution in the hollow cavity. Again,
the ENZ shell in this configuration may act as an ideal insu-
lator �for the electric displacement vector� between the two
regions of space, producing the desired phase distribution in
the hollow core, which is weakly dependent on the source
distribution on the other side of the shell. Further than con-
firming the previous heuristic prediction in a curved geom-
etry, this effect may have interesting implications for isolat-
ing a closed region of space from the phase variation that
impinges from outside.

If a TM plane wave impinges on this structure, as
depicted in the figure, the problem may be solved using
the formal Mie approach. In particular, by expanding
the impinging plane wave in terms of Bessel functions, i.e.,

Hi=H0ẑ �
n=−�

�

inJn�k0��ein��−�0� �supposing that it is traveling in

a direction forming an angle �0 with the x axis and that the
cylinder axis is along z�, with � and � being, respectively,
the radial and azimuthal coordinates, the magnetic field
induced inside the cavity may be written in terms of the same

functions, i.e., Hc=H0ẑ �
n=−�

�

cninJn�k0��ein��−�0�, where the co-

efficients cn may be found by applying the proper boundary
conditions at the two interfaces. A closed-form expression
for the coefficients may be written by applying Kramer’s
formula as follows:

cn = −

�
0 Jn�ksac� Yn�ksac� 0

0 Jn��ksac�/�s Yn��ksac�/�s 0

Jn�k0a� Jn�ksa� Yn�ksa� Hn�k0a�

Jn��k0a�/�0 Jn��ksa�/�s Yn��ksa�/�s Hn��k0a�/�0

�
�

Jn�k0ac� Jn�ksac� Yn�ksac� 0

Jn��k0ac�/�0 Jn��ksac�/�s Yn��ksac�/�s 0

0 Jn�ksa� Yn�ksa� Hn�k0a�

0 Jn��ksa�/�s Yn��ksa�/�s Hn��k0a�/�0

�
,

�9�

where Jn�·�, Yn�·�, and Hn�·�=Jn�·�+ iYn�·� are the cylindrical
Bessel functions of integer order n.31 The derivatives in the
previous formulas are taken with respect to the argument of
the Bessel functions. We note from Eq. �9� that when ac=a,
the coefficients simplify to cn=1, since the ENZ shell would
have zero thickness and therefore the field in the hollow
region is the same as Hi.

By taking the limit for �2→0, expression �9� yields the
following interesting limit:

cn = �1, ac = a

0, ac � a ,
� �10�

for any n�0, and

FIG. 8. �Color online� A cylindrical shell with permittivity �s

much smaller than �0 and radius a enclosing a hollow cavity of
radius ac.
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c0 =
iā�J0�ā�Y1�ā� − Y0�ā�J1�ā��/J0�āc�

āH1�ā� − �āc

J1�āc�

J0�āc�
+

ā2 − āc
2

2
�H0�ā�

, �11�

where ā=k0a and āc=k0ac. This ensures that the ENZ shell
with a permittivity sufficiently close to zero would induce an
azimuthally constant-phase field inside the cavity, indepen-
dent of the angle �0 from which the plane wave impinges and
more generally, given the linearity of the problem, indepen-
dent of the form of the excitation. Again, as predicted heu-
ristically, the phase front at the exit side conforms to the
shape of the ENZ region, and the ENZ medium “isolates” the
two regions that it delimits.

In the limit of �2→0, this effect is independent of the
thickness of the ENZ shell and independent of the size of the
cavity, as Eqs. �10� and �11� show. For finite �s, a larger
cavity requires a value of �s closer to zero to yield the results
predicted by Eqs. �10� and �11�. Figure 9 shows the ampli-
tude of the first three coefficients cn for a hollow cavity with
diameter 2ac=�0, with �0 being the free-space wavelength,
varying the shell’s outer radius a for two different values of
permittivity �s. We notice how in the case of Fig. 9�a� all the

higher order coefficients go to zero very fast as soon as a

�ac, as predicted by Eq. �8�. This implies that, indepen-
dently of the thickness of the shell, the field inside the cavity
does not vary azimuthally, being dominated by the n=0
mode. In the case of Fig. 9�b� for a larger value of �s, one
notices how for very thin shells higher-order contributions
may become dominant, and the value of the coefficients with
n�0 goes more slowly to zero than in the previous case with
an increase in the shell thickness. For smaller cavities, the
required values of �s for getting a dominant n=0 term are
less close to zero.

Figure 10 shows the magnitude of the total electric �Fig.
10�a�� and magnetic �Fig. 10�b�� fields induced by a TM

FIG. 9. �Color online� Magnitude of the first three coefficients
cn for a hollow cylinder with ac=�0 /2 surrounded by an ENZ shell.

FIG. 10. �Color online� Electric- �a� and magnetic- �b� field
distributions for a TM plane wave traveling along x and impinging
on the cylindrical ENZ shell of Fig. 8 with ac=�0, a=ac /0.8, and
�s=10−3�0. Brighter �darker in gray scale� colors correspond to
higher amplitudes of the field.
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plane wave traveling along x and impinging on the cylinder
of Fig. 7 formed by a cavity with ac=�0 delimited by an
ENZ shell with a=ac /0.8 and �s=10−3�0. Following the pre-
vious analysis, we expect that the relative magnitude of the
higher-order coefficients is very low when compared with
the coefficient c0: in this specific case, 
c1
=4.54% 
c0
, 
c2

=0.75% 
c0
, and higher-order coefficients are negligible. We
see how inside the cavity the angular variation of the electric
and magnetic fields is not observable, despite the clear asym-
metry of the excitation and of the induced fields in the out-
side region and in the ENZ shell. The field inside the cavity,
despite its relatively electrically large size, is essentially a
standing wave with distribution Hc=H0ẑc0J0�k0��. The
modification of the impinging phase pattern due to the ENZ
material is very evident in this example, and the isolated
cavity presented here may offer interesting potentials for
applications.

Figure 11 shows the power flow �i.e., the real part of the
Poynting vector� for the same geometry as in Fig. 10. In this
case, similar to the planar geometry, the ENZ shell redirects
the power flow in order to isolate the inner cavity from the
asymmetric phase pattern of the source excitation. Since the
cavity in this case is electrically large �its diameter is two
wavelengths�, some minor circulation of power is visible due
to the interaction with higher-order modes inside the cavity,
whereas for smaller cavities, the inner region is essentially
totally isolated without any local net power flow. The inner
power flow feeds the resonant circulation of power arising in
the shell region and keeps the cavity mode that we have
predicted in the previous lines established. This circulation
and redirection of power provided by the ENZ shell also
remind of the similar power flow distribution induced in the
phenomenon of scattering suppression and induced invisibil-
ity that we have obtained by employing such ENZ shells in a
different configuration.23

The presence of material losses does not strongly affect
these results, since these effects do not rely on strong polari-

tonic resonances of the metamaterial shell. The suppression
effect of the higher-order modes is weakened by the presence
of material losses, but realistic materials �i.e., with a loss
tangent of about 10−2� may still support these findings.

As in the planar case, the TE polarization does not re-
spond similarly to the presence of the ENZ shell. This is
consistent with the previous considerations.

V. METHOD-OF-MOMENTS SIMULATIONS WITH MORE

COMPLEX GEOMETRIES

In order to confirm the results reported in the previous
sections, to demonstrate the generality of the concepts dis-
cussed here, and to show other possibilities, here we study
numerically the scattering of waves from complex shaped
ENZ obstacles. The following numerical simulations have
been obtained with a homemade method of moments �MoM�
simulator for 2D cylindrical structures.

In the first example, we validate the results of the previ-
ous sections by investigating whether an ENZ slab with �s

=0.01 may behave as a lens redirecting the incoming energy
toward a specific direction in space. To this end, the output
face of the object is tilted with respect to the input face, as
illustrated in Fig. 12. An incoming plane wave �propagating
along the positive x direction� illuminates this 2D trapezoidal
shaped obstacle. Consistent with the heuristic and theoretical
results of the previous sections, it is seen in Fig. 12 how the
phase of the transmitted field is nearly parallel to the output
face of the ENZ slab. This is due to the low value of the
wave number in the ENZ material, which allows an almost
constant phase distribution in the slab despite its relative
large physical size. The presence of partial standing wave
phase distribution on the back of the slab �entrance face� is
also evident from this figure. This is due to the partial-wave
reflection related to mismatch issues, as we discussed above.

The phase reshaping is, to some extent, independent of
the characteristics of the field impinging on the entrance

FIG. 11. �Color online� Power flow �real part of the Poynting
vector� distribution for the geometry in Fig. 10.

FIG. 12. �Color online� Phase of the magnetic-field distribution
�in degrees� when a TM �with magnetic field oriented along z� plane
wave impinges on a 2D trapezoidal slab with �s=0.01�0.
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face. Further numerical simulations that we have performed
�not reported here� indeed show analogous results even when
a magnetic line source is “moved” along the direction paral-
lel to the input face of the ENZ slab. Indeed, even when such
singular sources are placed very close to the ENZ object, by
generating rapidly outgoing wave fronts impinging on the
slab, the transmitted phase fronts essentially remain parallel
to the exit face. In other words, the ENZ trapezoidal cylinder
under analysis and other similar geometries may act as
“lenses” effectively redirecting the energy from a source and
reshaping their phase pattern in a desired manner. Compared
with standard lenses, this configuration is not limited by re-
strictions in size; therefore, it can be desirably very thin and
conformal to the desired shape. Also, this and the previous
results show how the focal surfaces may be shaped according
to any given specification, thus providing more degrees of
freedom in their design and in the possibility of their use
with respect to common lenses. As the permittivity of the
object approaches zero, the wave fronts become increasingly
conformal to the exit face and the phase distribution in the
ENZ material is more uniform.

This remarkable property of ENZ objects is indeed com-
pletely general and not specific to objects with planar inter-
faces or other canonical shapes. Indeed, as shown in Fig. 13,
this property is revealed even for objects with irregular or
“randomly” shaped interfaces.

The previous results suggest the possibility of using a
concave ENZ “lens” to transform an incoming planar wave
front into a convergent cylindrical wave front, consistent to
what has been reported in the previous sections and with the
geometry of Fig. 7. To investigate such possibility, we have
analyzed the field transmitted by a 2D ENZ lens with planar
input interface and concave output interface with radius of
curvature of 6�0. In Fig. 14, the amplitude �Fig. 14�a�� and
phase �Fig. 14�b�� of the magnetic field are plotted assuming
that the exciting field is a plane wave impinging along the
normal to the entrance face of the slab. Consistent with our

theory, it is seen that the electromagnetic field is focused at
the center of curvature of the output interface around
�3.0,6.2��0 and that the phase distribution inside the ENZ
material is uniform. We have also verified that the focal spot
tends to be narrower if the permittivity of the slab is brought
to a value closer to zero. In addition, we have verified that
the same effect exists independent of the nature of the
source, and similar exit phase distributions are obtained
when the slab is illuminated by a magnetic line source posi-
tioned at different locations in close proximity to the en-
trance side �not reported here for the sake of brevity�.

The standing wave present in front of the entrance side of
the structure seen in Fig. 14, which is associated with the
mismatch of this material with free space, may generate
some problems when a realistic feed for a closely placed
source is considered. To this end, our further simulations �not
reported here� considering ENZ metamaterials with a low
permeability, which leads to better matching of ENZ with the
free space, show improved results in terms of an increase of
transmitted power and a decrease in reflection.

Considering a convex shape for the output face, such plas-
monic lens may transform an incident arbitrary wave into a
divergent cylindrical wave with a desired curvature. This in-
teresting possibility is supported by the results shown in Fig.
15, which corresponds to the case in which the convex object
is illuminated by a magnetic line source that is scanned along
the planar input interface. The radius of curvature of the
convex interface here is 6�0. As in the previous cases, here
the location of the line source does not also influence the
phase pattern in the output region.

Since we have shown how an ENZ lens may effectively
control the phase front of the transmitted wave with the
shape of its exit face, it is interesting to study what would
happen if two or more of these objects are combined in series
so that the incoming wave undergoes successive phase trans-
formations. In order to ensure relatively good coupling be-
tween adjacent ENZ objects and thus lower reflectivity at the
entrance faces, it is clear from the previous discussion that
the output interface of the first ENZ object should be
complementary to the input interface of the adjacent ENZ
object. In Fig. 16, we have studied the geometry where two
2D complementary trapezoidal shaped ENZ lenses are paired

FIG. 13. �Color online� Phase of the magnetic-field distribution
when a plane wave illuminates a 2D cylindrical object with �s

=0.01�0 and arbitrarily shaped output interface.

FIG. 14. �Color online� �a� Normalized amplitude and �b� phase
of the magnetic-field distribution when a plane wave illuminates a
2D concave lens with �s=0.01�0 and radius of curvature of 6�0.
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together and illuminated by a plane wave propagating along
the positive x direction. It is seen that the wave fronts be-
come conformal to the shape of the first object after the first
transmission and that, after transmission through the second
object, they come back again parallel to the incoming wave.
When the input interface of the first object and the output
interface of the second object are not parallel �simulation not
shown here for the sake of brevity�, the wave fronts �after
two successive transmissions� may be tilted with respect to
the incoming wave. Fig. 17 reports similar results when con-
cave and/or convex complementary objects are cascaded.

These simulations confirm the slow phase variation in the
ENZ regions. Moreover, it is interesting to notice the
standing-wave phase distribution in the regions between the
two ENZ materials, which confirms the presence of multiple
reflections and transmissions in this intermediate region.
These results confirm the potential flexibility of such devices
in manipulating the phase fronts as desired.

As shown analytically in the previous section, another
interesting application of the phase-restoration properties of
ENZ materials is represented by the possibility of shielding a
cavity or a hole from the phase variations induced by an
external source. In this way, it is ensured that the angular
phase variation of the field inside a circular cavity is nearly
uniform. We have confirmed such possibility for cavities em-
bedded in more complex ENZ shapes �such as rectangular
shields� by finding analogous results for their phase isolation
�not reported here for sake of brevity�. A related geometry of
interest that has also attracted our attention is simulated in
Fig. 18. It consists of an ENZ slab in which a small semicir-
cular cavity with radius R=0.3�0 was carved in the exit face.
We tested if, when illuminated by a plane wave, the phase
front at the output face would be tailored by the shape of the
small cavity, even though the radius of the cavity is electri-
cally small. As it is apparent in Fig. 18�a�, indeed the phase
fronts conform to the anomalous surface shape, which may
turn out to be useful for some near-field applications. After
some distance from the cavity, due to diffraction, the phase
details are clearly lost and the phase distribution resembles
the exit face without its subwavelength details. In Fig. 18�b�,
we have studied the response of such structure to a line
source placed at the center of such semicylindrical cavity. In
this case, the radiated beam is collimated into the direction
normal to the planar interface by the ENZ slab, and this
effect can take place in a relatively small electrical distance.

VI. ENGINEERING THE PHASE PATTERN

It may be of interest for practical purposes to analyze the
inverse problem of determining the geometry of the ENZ
lens required to transform a given incident wave front �inc

into another desired wave front. The solution presented in

FIG. 15. �Color online� Phase of the magnetic-field distribution
when a point source illuminates an ENZ convex lens with �s

=0.01�0 and radius of curvature of 6�0. �a� Line source positioned
at �−0.5,3.0��0. �b� Line source positioned at �−0.5,4.5��0. The
color scale is the same as in Fig. 12.

FIG. 16. �Color online� Phase of the magnetic-field distribution
when a plane wave �propagating along the positive x direction�
illuminates two complementary ENZ lenses with �s=0.01�0.

FIG. 17. �Color online� Phase of the magnetic-field distribution
when a plane wave �propagating along the positive x direction�
illuminates two complementary ENZ lenses with �s=0.01�0. The
first object has a concave exit face and the second object has a
convex entrance face.
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this section is based on geometrical optics considerations.33

Within the validity of this approximation, one may assume
that the electromagnetic fields are modulated by the propa-
gation factor eik0�, where k0 is the free-space wave number
and � is the eikonal. As is well known,33 the eikonal is the
solution of the first-order partial differential equation 
��

=n, where n is the index of refraction of the medium.

Suppose now that � is prescribed at two different planes
x=x0 and x=x f �apart from the sum of an irrelevant phase
constant�. The problem is to determine the lens shape that
guarantees such phase front transformation. By assuming
that the lens material has an index of refraction close to zero,
the input and output faces of the lens can be designed nearly
independently, because they are coincident with the wave
fronts in free space. So, the problem of determination of the
lens shape is equivalent to calculating the desired wave-front
shapes in free-space and then filling the space in the middle
with an ENZ material acting as the desired lens.

Suppose that at the output plane x=x f, the prescribed
phase is given by


�
x=xf
= f�y� . �12�

Since the index of refraction of free space is unity, it follows
from the eikonal equation that


 � �
x=xf
= �1 − ḟ2ûx + ḟûy , �13�

where ḟ =df /dy.
The eikonal equation may be solved by using the Hamil-

ton method, which involves calculating the characteristic
curves of the system, i.e., the rays.33 In homogeneous media,
the rays are tangent to �� and the eikonal varies along a ray
as �=�0+ns �with n=1 in free space and s being the dis-
tance traveled along the ray�. Consequently, at the output
region, the wave fronts are defined by the following family
of parallel surfaces parametrized relatively to y:

S = �x f,y� +

 � �
x=xf

�C − f�y��

n
, �14�

where C is an arbitrary constant. There is a one-to-one cor-
respondence between C and the wave fronts, i.e., by fixing
C, a specific wave front at the output region is selected.

Thus, the previous analysis demonstrates that the desired
ENZ lens may be systematically designed by �a� calculating
the wave fronts associated with the input and output planes,
as described above; �b� selecting two specific wave fronts,
one associated with the input face and the other with the
output face �this selection is in general arbitrary, apart from
the fact that the two wave fronts should not be too far apart,
since the ENZ lens should be desirably thin to ensure rea-
sonable transmission�; and �c� filling the region of space de-
limited by the two wave fronts with an ENZ material.

FIG. 18. �Color online� Phase of the magnetic field distribution
when �a� a plane wave impinges from the negative x direction and
�b� a point source is positioned at �0.5,3.0��0, in both cases illumi-
nating a 2D ENZ planar slab with �s=0.01�0 with a small semicy-
lindrical cavity carved on its exit face with radius R=0.3�0. The
color scale is the same as in Fig. 12.

FIG. 19. �Color online� Phase of the magnetic-field distribution
when a plane wave �propagating along the positive x direction�
illuminates a 2D lens with �s=0.01�0 designed to obtain a pre-
scribed phase front at the output plane.

FIG. 20. Eikonal � as a function of y at the exit face of the ENZ
lens of Fig. 19, i.e., at x=x f =�0. Solid line: synthesized wave front.
Dashed line: target wave front.
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To illustrate these concepts, we consider here as an ex-
ample the case in which the incoming wave front is planar,
and consequently the input face of the lens is also designed
to be planar. The aim of the design is to shape the outer
interface so that the prescribed eikonal is �=0.05�y−3.0�2 at
x=x f =�0 over 0�y�6�0. Following the outlined algorithm,
one obtains the ENZ lens shape depicted in Fig. 19. In this
figure, a MoM simulation for the phase distribution in the
free-space region is reported. Figure 20, moreover, compares
the eikonal � at the output face compared with the desired
target function. For filling the lens region, we considered
�s=0.01�0 and TM polarization in the simulation. It is seen
that a good agreement is obtained apart from a small error at
the edges of the lens.

To conclude, we have shown in this section how effec-
tively such ENZ materials may be employed to tailor the
phase distribution at will. Considerations on the possible re-
flectivity of devices when not properly matched with free
space may hold, especially if the thickness of the device is
larger than the free-space wavelength, as outlined at the end
of Sec. III.

VII. CONCLUSIONS

In this work, we have fully analyzed the response of ENZ
materials �assuming negligible spatial dispersion� to electro-

magnetic excitation. In particular, we have studied the pos-
sibility of using these materials in various geometries to tai-
lor the phase pattern of the output radiation when the
structure is excited by an arbitrary source. Planar slabs, cy-
lindrical shells, complementary double ENZ structures, and
ENZ lenses with various exit faces have been shown to ef-
fectively isolate the regions of space they delimit and to tai-
lor the phase pattern according to the shape of their inter-
faces. Such devices may provide high flexibility in the phase
pattern design. Finally, an algorithm to synthesize lenses tai-
loring prescribed arbitrary wave fronts has also been pre-
sented. The described effects, although dependent on the po-
larization of the field, may have interesting potential
applications in several fields.
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