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Abstract

As the deep learning makes big progresses in still-image

face recognition, unconstrained video face recognition is

still a challenging task due to low quality face images

caused by pose, blur, occlusion, illumination etc. In this

paper we propose a network for face recognition which

gives an explicit and quantitative quality score at the same

time when a feature vector is extracted. To our knowledge

this is the first network that implements these two func-

tions in one network online. This network is very simple

by adding a quality network branch to the baseline network

of face recognition. It does not require training datasets

with annotated face quality labels. We evaluate this network

on both still-image face datasets and video face datasets

and achieve the state-of-the-art performance in many cases.

This network enables a lot of applications where an explicit

face quality scpre is used. We demonstrate three applica-

tions of the explicit face quality, one of which is a pro-

gressive feature aggregation scheme in online video face

recognition. We design an experiment to prove the bene-

fits of using the face quality in this application. Code will

be available at https://github.com/deepcam-

cn/facequality .

1. Introduction

While face recognition makes tremendous progresses in

recent year thanks to deep learning particularly deep CNN,

noises in face images, or low-quality face image is still a

challenging problem. For low quality face images caused

by pose, blur, occlusion, illumination etc., even though hu-

man’s eyes cannot recognize them, a feature vector is still

generated, and very likely ends up with a recognition error.

In addition, in the training of a face recognition model, low

quality face images are more like noise [1] and degrade the

face recognition performance if not handled appropriately.

For such hard cases, human usually gives an uncertain an-

swer. Likewise, it is good to have a similar confidence or

quality score of uncertainty for every extracted feature vec-

tor and use it in training or other scenarios.

In the video face recognition, this brings further values.

In video surveillance applications, the system does not care

if every face image in the video is detected and recognized.

What really matters is if a person can be recognized cor-

rectly during the time he shows up in the video. This can

be accomplished by picking up good quality face images,

if there are any. This goal is consistent with the bench-

marking protocol of the video face data sets, such as the

Youtube Face data sets (YTF) [2] and the IJB face data sets

[3], [4],[5], where the verification or identification accuracy

is measured per video instead of per image.

Our contribution in this paper is that we propose a simple

explicit quality network for face recognition, which we call

EQFace. This network has the following features.

1) This network generates an explicit quantitative quality

score for a face image. To our knowledge this is the first

network that achieves this goal while extracting the feature

vector at the same time. With this explicit quality score

available, more ways to use the face quality can be further

explored.

2) This network does not require face datasets with an-

notated quality value, which is very hard to get.

3) This network is very simple in terms of extra complex-

ity on top of a baseline face recognition network. We add

a quality assessment branch network to generate the quality

score. A new loss function and a new training pipeline are

proposed to work on this branch network.

After the explicit quantitative quality score becomes

available in the EQFace, we use it to weight or filter out low

quality face images in training and/or testing the face recog-

nition network. We evaluate the performance on the still-

image face datasets LFW [6], CALFW [7], CPLFW [8],

and CFPFP [9], and the template video datasets Youtube

face (YTF) [2] and IJB-B [4], IJB-C [5]. Experimental

results confirm the performance improvement brought by

weighting or filtering out the feature vector of low qualities

in training and/or testing.

Our second contribution is that we propose a progressive

feature aggregation using the explicit face quality out of the



EQFace for online video face recognition. Unlike in the

bench-marking protocol of YTF and IJB data sets, where

feature aggregation is done after all video frames are pro-

cessed, we aggregate the features online while video frames

become available. we design an experiment to evaluate the

performance of this feature aggregation scheme. Our results

show impressive performance improvement.

2. Related work

Quite a few approaches have been studied to combat the

problem of using noisy data to learn the face recognition

representation, including [10],[11],[12],[13],[14]. In [1], a

co-mining strategy using the loss value as the cue of noisy

label was proposed. However, the very complex twin net-

work made the training on a large dataset very challenging.

Our idea is along the line of reweighting, but weighted by an

explicit and quantitative face quality. As pointed out in [15],

re-weighting methods are susceptible to the performance of

the initial model. We work around this problem by propos-

ing an iterative training pipeline.

An earlier work that gave explicit and quantitative face

quality is [16]. It is a good reference for review of quality

assessment work before 2017. They studied the face quality

assessment using a SVR predictor on extracted CNN fea-

tures. In order to do so, they collected training dataset with

quality label annotated by human. This is not only very

time consuming, but also subjective to the annotating per-

son. They compared the quality assessments by human and

by the SVM predictor. They then used the quality generated

by the SVR predictor to filter out low quality faces in face

recognition.

Another work that gave quantitative face quality is the

FaceQNet [17]. It proposed to find the best quality face im-

age for every face ID, and use it as the base for its class. Af-

ter that, the face recognition model is used to calculate the

similarity scores between this face and all other faces. And

these scores are used as quality labels for these faces. This

approach has some disadvantages. For example, one person

has two face images taken at different ages, the qualities of

both images are good, but their cosine similarity may not

be large, therefore may not be appropriate to be used as the

quality score.

The authors of [18] studied the benefits from using the

quantitative face quality in the face recognition network.

They also studies a feature aggregation scheme by using

the face quality. However, they did not study how to obtain

the face quality. Instead, they simply used the confidence

score of face detection as the quality score. In our study, we

found that the face detection score is not a good metric for

face quality.

QAN [19] is the first work that explored a face quality

prediction function embedded in the baseline network. In

their work, a two-branch network architecture is used. The

first branch extracts feature vector for every sample of data,

while the second branch predicts a quality score for the sam-

ple. Then the features and quality scores of all samples in a

set are aggregated to generate the final feature vector. How-

ever, QAN did not give an explicit face quality output.

Inspired by QAN, the NAN [20] and [21] were proposed.

The NAN used a two layers of neurons to train the qual-

ity weight in the feature aggregation. The [21] extended

NAN by replacing the per frame scalar weight with a ma-

trix weight. Both did not generate an explicit face quality

score.

In [22] an attention-aware method was proposed for

video face recognition. They modeled the attentions of

videos as a Markov decision process and train the attention

model through a deep reinforcement learning. The motiva-

tion was to discard the misleading and confusing frames and

find the focuses of attentions in face videos. They used the

information in both the image space and the feature space.

Same as other work, it did not give an explicit face quality

score.

Our work is inspired mostly by the work in [23] and

[24], particularly by [24], where they first introduced qual-

ity weighing in their loss functions. We leave more detailed

discussion of their work in next section.

3. Proposed Explicit Quality Network

In this section we describe a new approach - the so called

EQFace to estimate the quality of face image. Other than

[23] and [24], our work is inspired by the ArcFace [25] for

their superior performance in face recognition.

3.1. Review of ArcFace Loss Functions

In the training of a face recognition model,in order to de-

crease the distance inside a class, and increase the distance

between classes, many loss functions have been proposed.

Among them, SphereFace [26] CosFace[27], ArcFace[25]

added margin into different factor to achieve better training

results. The CircleLoss[28] unified the interpretation of the

loss function from another view, and proposed more reason-

able weight assignments to the probabilities of the positive

and negative samples. These methods helped significantly

to improve the face recognition performance.

In [25], starting with the widely used softmax loss, the

authors proposed the ArcFace: additive angular margin loss

for face Recognition. Let fi ∈ Rd denote the feature vector

of the sample xi, belonging to the yi-th class. The feature

vector dimension d is typically 512. Let Wj ∈ Rd denote

the j−th column of the weight W ∈ Rd×n and bj ∈ Rn de-

note the bias term. Let the class number be n. The softmax

loss is expressed as:



l1 = −log
eW

T
yi

fi+byi

∑n

j=1 e
WT

j
fi+bj

(1)

Please note that we do not include the summation over

batch size in all loss functions in this paper for simplicity.

The bias term can usually be fixed bj = 0. Then the logit

can be transformed to WT
j fi = ||Wj ||||xi||cos(θj), where

θj is the angle between the weight Wj and the feature xi.

As usual, the individual weight can be fixed to ||Wj || = 1
by L2 normalisation. Similarly, the feature vector fi is fixed

to ||fi|| = 1 by L2 normalisation and then re-scale it to s.

After adding a margin term, the ArcLoss is presented as:

l2 = −log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑

j 6=yi
es(cos(θj))

(2)

By combining all of the margin penalties, they imple-

mented the SphereFace, ArcFace and CosFace in an united

framework with m1, m2 and m3 as the hyper-parameters:

l3 = −log
es(m1cos(θyi+m2)−m3)

es(m1cos(θyi+m2)−m3) +
∑

j 6=yi
es(cos(θj))

(3)

Our loss function is based on the loss function in Equ.

(3) for its superior performance in face recognition.

3.2. Review of Confidence-Aware Loss Function

In [23], the authors proposed to model face image as a

Gaussian distribution, and to use the variation of the face

image to define the confidence. This confidence is used as

a measure of the face quality. This approach mitigates the

impact of the low quality face images, and reduces the noise

effect in training. On top of that, in [24], the authors pro-

posed a new loss function, and a few strategies to improve

the confidence-aware embedding.

In this method, each sample xi is modeled as a Gaussian

distribution N(fi, σ
2
i I) in the feature space, where σi is the

standard deviation of the feature fi. Define si = 1/σ2
i , the

softmax loss function becomes:

l4 = −log
esiW

T
yi

fi+byi

∑n

j=1 e
(siWT

j
fi+bj)

(4)

Comparing Equ. (1) with Equ. (4), it is obvious that

there is an extra term si in front of the logit term. The bias

terms is simply dropped. After adding a margin term, the

loss function is:

l5 = −log
esiw

T
yi

fi−m

esiw
T
yi

fi−m +
∑

j 6=yi
esiw

T
j
fi

(5)

Comparing Equ. (5) with Equ. (3), we see the following

two differences. First, Equ. (5) only uses one margin term,

while Equ. (3) uses three. More importantly, there is an

extra term si in front of the logit term in Equ. (5). This si -

inverse of the σ2
i - is the quality measure of sample xi.

We must note that in the loss function Equ. (5), si has a

indefinite range. Because m is an independent variable, for

low quality face images, the value of si is hard to go close

to 0. As a result, the discrimination capability of si is not

sufficient.

3.3. Proposed Loss Function

Inspired by the loss function in Equ. (3) and Equ. (5),

we proposed a new loss function:

l6 = −log
esiS(m1 cos(θyi+m2)−m3)

esiS(m1 cos(θyi+m2)−m3) +
∑

j 6=yi
esiS cos(θj)

(6)

where si is in [0, 1], and S has a fixed value, which is equiv-

alent to inverse of the minimum variation value in the Gaus-

sian distribution. In the training process, it is expected that

low quality face images should have smaller si, while high

quality face images have larger si. This si makes every

sample to use its own quality as its weight in training. Fi-

nally, the si generated in the model is used as the estimated

quality of a face image.

This loss function combines the advantages of the loss

functions in Equ. (3) and Equ. (5). In Equ. (3), the scalar s
is a fixed term, therefore cannot discriminate the quality of

face images. However, it does show the best performance

in baseline face recognition to our knowledge. The Equ. (5)

introduced the term si for every sample xi. However since

its values is unbounded, it cannot be used in a normalized

manner. In our proposed loss function, both weakness is

worked around while the strengths remain.

3.4. Proposed Quality Network

In order for the model to output si, we add a small quality

network as a branch to the baseline network, as shown in

Figure 2. The key layers in this branch network are two

FC layers, used to extract the quality value. A BN layer

and a ReLU layer are used after the first FC layer, and a

sigmoid layer is used after the second FC layer to have a

output value in range [0,1]. It is obvious that the complexity

of the branch quality network is very small.

There are three steps in our training pipeline. This train-

ing pipeline has some similarity to [23]. We make it an

iterative way.

Step1: si is fixed to 1 in the loss function. This is same

as the normal face recognition baseline network training,

where only the feature extraction is trained. The face quality

network is not trained in this step.



Figure 1. The proposed network architecture.

Figure 2. The training pipeline.

Step 2: After the first step is finished, the baseline net-

work is frozen, and si in replaced with the output of the face

quality network. The same loss function in Equ. (6) is used

for calculation of gradients with regard to the parameters of

the face quality network.

Step 3: The face quality network is frozen and a face

quality is generated for every sample face image. Set si to

this face quality, and retrain the baseline network. The base-

line network can restart from scratch or continue to train

from Step 1.

The Step 2 and Step 3 can iterate more times to train the

network to get better performance. After the Step 3 in first

iteration, it is fine to train the backbone and si together, but

we choose not to do so.

Let us explain why we use this three step training

pipeline. Among multiple face images of a face ID, their

qualities vary. Let wj denote their ground true factor in

Figure 3. At the initiation stage of the training process, their

angular distance to wj are large, as shown in Figure 3(a). If

we use them directly in the loss function, in order to mini-

mize the loss function, si of all face images will be trained

to very small value approaching 0. As a result, the quality

values of all face images will be small and have no discrim-

ination. Therefore, we need to set si = 1 at first and only

train the baseline network. After this training runs a while,

the angular distances of these face images to wj becomes

much smaller. Among them, the angular distances of low

quality face images are larger than others. When the train-

ing process continues, the si’s for them will be trained to

smaller. As a result, the si’s are discriminated for high and

low quality face images. One condition for this approach

is that there must be more high quality face images than

low quality ones in every face identity. In order to ensure

their angular distance to wj is small, in Step 3 we use the

face quality value generated in a pre-trained model (Step 2).

Since the weights for high quality images are larger, their

angular distance to wj will be trained to even smaller.

Comparing with [24] our innovations are three fold.

Firstly, we introduce a different loss function using the si
term and the S term. Please note the subtle difference of

the si term in the loss functions Equ. (6) and Equ. (5). In

Equ. (5), since si is in front of Wyi fi and there is a −m
term, si will not be trained to 0 for good quality face im-

ages. That is why the baseline network and si are trained

together. However, in our loss function Equ. (6), the si term

is outside the m1 cos(θyi
+m2)−m3 term, so the si will be

trained to 0 if we start training the baseline network and si
at the same time. We can change our loss function similar

to Equ. (5), but it will cause the same non-normalization

issue, since even for very low quality face, the si can not

be trained to 0. In addition, in the way how our si term

is defined, we can use the sigmoid activation function to

keep si in a normalized [0,1] range. This solves the non-

normalization problem in [24]. With this normalized face

quality, we can compare quality of face images of a same

person, or of different persons.

Secondly, we propose a separate small quality network

branch to train si. We can train the si in training for every

face image, and can generate si for every test image in test-

ing. The si in [24] can be trained for the training data, but

cannot be generated for test data. Our explicit and quantita-

tive face quality is very important for many applications.

Thirdly, we propose a very different training pipeline to

accomplish the training of si. In this new training scheme,

the qualities of high-quality face images and low-quality

face image are more discriminated.

Lastly, we use the more powerful loss function integrat-

ing the margin terms in CosFace, Sphere Face and ArcFace,

while only one penalty margin was used in [24]. It is be-

lieved that this loss function is one of the best for face recog-

nition.

4. Experiments

In this section we first describe our implementation de-

tails, then describe the datasets we use, and present our ex-

periment results.



Figure 3. Explanation of the proposed training pipeline.

4.1. Implementation Details

All the models are implemented with Pytorch v1.6. Our

baseline model is essentially a reimplemented ArcFace [25]

and its released code [29].

For the training dataset, We use the clean MS-Celeb-1M

V2 (MS1MV2) [7] face dataset as in ArcFace [4]. We use

the method in [30] for face alignment and crop all images

into a size of 112x112. We use the 100-layer ResNet (R100)

as our backbone network. The feature vector size is 512 for

all models. We use SGD optimizer with momentum 0.9

and weight decay 5e-4. In the ArcFace loss function, we

use m1 = 1.0, m2=0.3, m3=0.2. We use S = 64 in our

loss function. In Step 1 of our training, the learning rate is

initially set to 0.1, and decays by 10 at 30, 60, 90 epochs for

a total 100 epochs. In Step 2, the learning rate is initially

set to 0.01, and decays by 10 at 5, 10 epochs for a total 15

epochs. The learning rate scheme in Step 3 is same as in

Step 1. In our benchmark experiments, we stop the training

at Step 2 in the 2nd iteration.

After the model training is done, we can generate the

quality score for every face image. Unlike other offline

methods, like NAN [20], our method can generate a quality

score online and for individual face image. Shown in Figure

4 are some sample face images from the from the CPLFW

[8] dataset and their generated quality scores. We can see

that the quality score match the face image very well.

4.2. Evaluation Results on LFW, CALFW, CPLFW,
CFP-FP, and YTF

We report the performance of EQFace on the widely used

LFW [6] dataset, and the CALFW [7], CPLFW [8] and

CFP-FP [9] datasets. Furthurmore, we also test EQFace on

the template video face dataset YTF [2].

The results are reported in Table 1. In Table 1, the model

trained with quality weight (QW) in Equ. (6) is denoted

QW, feature aggregation on video template using QW is

called QWFA, feature aggregation using QW and a filter

on low quality faces is called QWFAF.

We do four sets of experiments on the YTF dataset. In

the first experiment, we follow the same protocol as in [26].

Specifically, the feature vectors of the faces in the first 100

frames of a video are averaged. The similarity is calculated

on the averaged feature vector between two videos. This is

standard protocol but on a model trained with face quality

weight. it is called QW in Table 1. The second experiment

uses the QWFA on first 100 frames. In the third to fifth

experiment, we use the QWFAF with filter threshold sth =
0.1, 0.2, 0.3. on the first 100 frames. If the average quality

mean(si) >= sth then we weight the feature vectors of

qualities si >= sth. If average quality mean(si) < sth,

then we take the averaged feature vectors same as in the

first experiment.

First of all, our baseline is different from [25] and [29].

Even our baseline performance on LFW is worse than

[25], the QW brings performance improvement on LFW,

CALFW and CPLFW. There is a small performance loss

on CFP FP. The performance improvements on the static

dataset shows the implicit benefit of using face quality in

the training process.

The results on the YTF dataset is more convincing. We

notice that the QW accuracy of 0.9802 is same as [25].

However, when the QWFA is applied, we achieve an ac-

curacy of 0.9812. Furthermore, when we apply extra filter

in the QWFAF mode with threshold sth = 0.3, we achieve

an accuracy of 0.9818, the state of art performance on YTF.

4.3. Evaluation Results on IJB-B and IJB-C

In previous section we show that our EQFace surpasses

older algorithms [19], [20], [16], [18] by a big margin. So

we do not include those algorithms in this section, partic-

ularly because they did not have results on the IJB-B and

IJB-C datasets. In this study we use the IJB-B and IJB-C

datasets and compare our EQFace with [25] and [24].

The 1:1 verification results are shown in the 2nd panel

in Table 2. The best performances in this panel better than

that in the 1st panel are highlighted. Our baseline gives

comparable performance to the ArcFace [25], which is ex-

pected, even though the TAR values vary at different FAR

values. On the IJB-C dataset, [24] achieved the state-of-the-

art TAR of 95.0% and 96.6% at FAR=1E-5 and 1E-4. The

fine tuning method predicts the σi which has the unbounded

issue we explain in Section 3.4. It brings good improvement

over the one without fine tuning. The Subcenter-ArcFace

[15] achieves the state-of-the-art performance at most of the

FAR values.

The most important observation is that comparing with

the baseline,the QW gives performance gains at all FAR val-

ues. The QWFA and QWFAF give noticeable performance

gains for FAR at 1E-4 and lower, while give small perfor-

mance losses for FAR at 1E-3 and 1E-2. Our best TAR per-

formance is better than the Subcenter-ArcFace [15] at FAR

= 1E-6,1E-5 on both the IJB-B and IJB-C datasets, and is

very close to [24] at FAR=1E-5, 1E-4 on the IJB-C dataset.

Also included in Table 2 are the ablation study results,

which will be discussed in more details in next section.



Figure 4. Sample face images and their quality scores

Method LFW[6] CALFW[7] CPLFW[8] CFP FP[9] YTF

Center Loss[31] 98.75 85.48 77.48 - -

SphereFace[26] 99.27 90.30 81.40 - -

VGGFace2[32] 99.43 90.57 84.00 - -

ArcFace[25] 99.83 95.45 92.08 - 98.02

Shi et.al [24] 99.78 - - 98.64 97.92

Ranjan et. al [18] 99.78 - - - 96.08

QAN [19] - - - - 96.17+/-0.86

NAN [20] - - - - 95.72+/-0.64

Liu et. al [21] - - - - 96.21+/-0.63

Ours - Baseline 99.80 95.91 92.55 98.34 -

QW 99.82 95.98 92.60 98.20 98.02

QWFA - - - - 98.12

QWFAF,sth = 0.1 - - - - 98.12

QWFAF,sth = 0.2 - - - - 98.12

QWFAF,sth = 0.3 - - - - 98.18
Table 1. Verification performance (%) on LFW, CALFW, CPLFW, CFP FP, and YTF.

The 1:N identification results are shown in Table 3. We

show our baseline results, which are supposed to be same as

ArcFace [25] but in fact have some varieties in the 4 cases.

First of all, let us look at the QW results, where QW is

used in training, but no feature aggregation is used in test-

ing. The QW shows performance gain in all four cases by

0.14-0.27% in the Rank 1 and Rank 5 accuracy. Further-

more, our QW outperforms the ArcFace [25] and [24] in the

Rank 1 and Rank 5 on the IJB-B dataset, and in the Rank 5

on the IJB-B dataset, as highlighted in the line ”QW”.

Next, we test the QWFA and QWFAF. We achieve extra

performance gains. The best performance in each case is

highlighted. We notice that our best performance in each

case is the new state-of-the-art. This proves the benefit of

using face quality in training and/or in testing.

5. Ablation Study and Applications

The most important ablation study is if and how to use

the quantitative quality of a face image in the training and

testing of face recognition. These are also the first two ap-

plications of them. That is why we put them in one section.

Other factors in ablation study: We test multiple iter-

ations of Step 2 and Step 3. We find out that, as long as

the Step 3 training converges well in 1st iteration, further

iterations of the backbone retraining do not necessary bring

extra gains. Our standard configuration is to stop at Step 3



Method
IJB-B IJB-C

1E-6 1E-5 1E-4 1E-3 1E-2 1E-6 1E-5 1E-4 1E-3 1E-2

ArcFace [25] 38.38 89.21 94.23 96.16 97.53 86.17 93.11 95.64 97.21 98.18

SubCenter-ArcFace [15] 35.86 91.52 95.13 96.61 97.65 90.16 94.75 96.50 97.61 98.40

Shi et al. [24] - - - - - - 91.6 93.7 - -

Shi et al. [24] fine tuning - - - - - - 95.0 96.6 - -

Ours - Baseline 39.30 86.74 94.27 96.41 97.61 81.97 92.01 95.62 97.36 98.27

QW 41.90 89.62 94.51 96.48 97.62 81.41 93.01 95.84 97.39 98.30

QWFA 46.61 91.87 94.88 96.31 97.24 90.22 94.93 96.38 97.45 98.22

QWFAF,sth=0.1 47.34 91.87 94.86 96.31 97.24 90.23 94.93 96.38 97.45 98.22

QWFAF,sth=0.2 47.30 91.92 94.87 96.32 97.24 90.22 94.93 96.38 97.45 98.22

QWFAF,sth=0.3 47.11 91.82 94.85 96.27 97.25 90.21 94.93 96.37 97.46 98.21

Ours - QWDF,sth=0.2 41.21 89.07 94.68 96.45 97.77 83.22 93.67 95.96 97.38 98.40

+QWFA, 45.59 91.99 95.05 96.20 97.52 89.72 95.07 96.53 97.49 98.33

+QWFAF,sth=0.1 45.60 91.99 95.05 96.20 97.52 89.73 95.06 96.53 97.49 98.33

+QWFAF,sth=0.2 45.55 91.98 95.04 96.21 97.53 89.73 95.05 96.53 97.49 98.33

+QWFAF,sth=0.3 44.37 91.89 95.00 96.22 97.51 89.73 95.05 96.53 97.48 98.33

Ours - QWFA on ArcFace [25] 46.75 90.56 94.51 95.79 97.07 90.15 94.70 96.21 97.17 98.05

QWFAF,sth=0.1 on ArcFace [25] 46.84 90.46 94.50 95.78 97.07 90.15 94.70 96.19 97.18 98.05

QWFAF,sth=0.2 on ArcFace [25] 46.64 90.62 94.49 95.85 97.03 90.14 94.69 96.19 97.18 98.06

QWFAF,sth=0.3 on ArcFace[25] 47.53 90.47 94.45 95.80 97.01 90.14 94.69 96.18 97.19 98.06
Table 2. 1:1 verification performance (%) on IJB-B and IJB-C datasets at FAR=1E-6 to 1E-2. The results of [25] are regenerated using its

code [29]. The results of [15] are from its Line 14 of Table 2. The 1st and 2nd panels are comparison of our results with the state-of-the-art.

The 3rd panel is for ablation study of using quality in distilling training data. The 4th panel is for ablation study of using quality in feature

aggregation in testing data, where the highlighted best performance is comparison with ArcFace [25].

Method
IJB-B IJB-C

Rank1 Rank5 Rank1 Rank5

ArcFace [25] 94.50 96.60 95.87 97.27

Shi et.al. [24] - - 96.00 97.06

Ours - Baseline 94.60 96.69 95.61 97.13

QW 94.79 96.88 95.88 97.27

QWFA 95.03 96.60 96.64 97.54

QWFAF,sth=0.1 95.02 96.58 96.63 97.54

QWFAF,sth=0.2 95.05 96.59 96.63 97.54

QWFAF,sth=0.3 95.01 96.56 96.62 97.57
Table 3. 1:N identification performance (%) on IJB-B and IJB-C.

The ArcFace [25] results are regenerated using its released code

[29]. The Sub-Center ArcFace [15] results are not included since

they are not presented in the paper.

of the 1st iteration. Another possibility is that after the Step

2 of 1st iteration, we can train the backbone and the quality

together. But in practice, it is preferred to train them sep-

arately to prevent unexpected interaction of the backbone

and the quality branch parameters.

5.1. Using Face Quality in Training

In Section 3.4 we describe the training pipeline. We use

the face quality metric si generated in Step 2 and retrain the

baseline network in Step 3. It is in this step where the QW

is taking effect. We show in Table 1 and Table 2 the benefits

of using the QW in training the face recognition model.

In Table 1 we show that the extra filter on the low quality

faces on the YTF dataset has extra performance improve-

ment. This motivates us also to explore the filter in the QW

in training. In other words, in addition to using si as the

weight, we force the weight to 0 if si < sth. Please note

that in Table 1 we use the filter on testing data, but in this

ablation study we use the same idea on training data. This

is one way to distill the training data, and is called qual-

ity weighted distilling filter (QWDF). In [15], a different

approach was used. By studying the distribution of sub-

centers, they drop samples whose angular distance is larger

than a threshold.

The results on the IJB-B and IJB-C datasets are shown

in the 3rd panel in Table 3. The best performances better

than that in the 1st and 2nd panels are highlighted. In this

experiment we only test the QWDF with threshold sth =
0.2 in training. In the testing data, we use QWFAF with

sth = 0.1, 0.2, 0.3. From the results, we see that we achieve

new state-of-the-art performances in a few cases, while in

other cases it causes small performance loss comparing with

QW without the extra filter in training.

5.2. Using Face Quality in Testing

In Section 4, we show the face quality can be used in

the QWFA on video datasets. In this section, we show that

the qualify score of the EQFace can be combined with other



baseline network, e.g., the ArcFace [25]. This is equivalent

to we use the ArcFace baseline network in Step 1, and stop

after Step 2 in the training pipeline. This is similar to our

QWFA, and QWFAF, except for there is no QW used in

training the baseline network. This is another way how face

quality can be used in face recognition testing.

The results are shown in the 4th panel in Table 2. The

best performances are highlighted if they outperform the

ArcFace [25]. We see that for FAR at 1E-4 and lower, the

QWFA and QWFAF both have better performance than the

ArcFace [25]. Some of them are better or close to the per-

formance of the Sub-Center ArcFace [15].

5.3. Using Face Quality in Real-Time Video Face
Recognition

In all the performance benchmarks of the video face

datasets, we use all the face data throughout a video to ag-

gregate the feature vector. In real-time this is just not possi-

ble because not all face images of a person are available at

the same time. What is more practical is a progressive face

recognition, where a face image is processed online when

it shows up in a face recognition device, such as a video

camera.

In this section, we design an experiment to demonstrate

how we can use the explicit face quality in a progressive fea-

ture aggregation in video face recognition applications. Let

a person have N face images in a video {x1, x2, . . . , xN},

and their feature vectors and qualities be {f1, f2, . . . , fN}
and {s1, s2, . . . , sN}. Then at time i, the QWFA feature Fi

is expressed as:

Fi =

∑i

j=1 sjfj
∑i

j=1 sj
(7)

A L2 norm is applied afterwards.

We now introduce the extra filter on the low quality face

images, similar to using face quality in testing, but in a pro-

gressive manner. We initially set F1 = f1, ssum = s1, then

at time i, the QWFA feature Fi is updated as,

Fi =

{

ssumFi−1+sifi
ssum+si

ifFi−1 · fi > fth and si > sth,

Fi−1 otherwise

(8)

ssum =

{

ssum + si ifFi−1 · fi > fth and si > sth,

ssum otherwise

(9)

where in Equ. (8, 9), fth is the threshold for the similarity

of Fi−1 and fi. The L2 norm is applied on Fi. Please note

that, if we ignore the thresholding conditions in these two

equations, they simply become the Equ. (7).

In this experiment, we randomly pick 300 IDs and 50

face images for each ID in the vggface2 test dataset and use

them as baseline reference dataset. Then we pick 50 more

Figure 5. The ROC curve on the vggface2 test data sets. In the

legend, baseline does not use feature fusion; others use WQFA

with threshold fth and sth in Equ. (8, 9)

.

face images for every of these 300 IDs, and these images

should be exclusive to the already picked 1500 reference

face images. Extra 300 different IDs and 50 images for each

ID are picked as a disturbance set. These later 3000 face

images are used as the query dataset.

All the face images in the reference dataset and all im-

ages in the query dataset are compared pair-wisely and a

1500x3000 similarity matrix is obtained. We use the known

ground truth to calculate the TAR and FAR. In the com-

parison of the pair-wise face images, the QWFA feature is

implemented as in Equ. (8, 9).

The performance comparison in the ROC curve is shown

in Figure 5. We can see that, a properly selected face qual-

ity threshold can help improve the face recognition accuracy

significantly. In contrast, an inappropriate quality threshold

may degrade the performance. So the face similarity thresh-

old and the face quality should need to be selected carefully.

In our experiment, fth = 0.5, and sth = 0.3 gives the best

results.

6. Conclusions

In this paper we propose a simple network to estimate the

explicit and quantitative quality score for a face image. This

explicit quality can be used to distill the training data and

to filter low quality testing data. Experiment results prove

the performance improvement by the quality weighting in

the loss function on a few datasets. As an application, we

propose a progressive feature aggregation using this face

quality for video face recognition. A designed experiment

shows the gain brought by the face quality.

It is worth noting that our approach can be extended to

other object or event recognition where the quality of the

training or testing image is an important factor.
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