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Abstract 

An increasing number of gene expression quantitative trait locus (eQTL) studies have made 

summary statistics publicly available, which can be used to gain insight into complex human 

traits by downstream analyses, such as fine mapping and colocalisation. However, differences 

between these datasets, in their variants tested, allele codings, and in the transcriptional 

features quantified, are a barrier to their widespread use. Consequently, target genes for most 

GWAS signals have still not been identified. Here, we present the eQTL Catalogue 

(https://www.ebi.ac.uk/eqtl/), a resource which contains quality controlled, uniformly re-

computed QTLs from 21 eQTL studies. We find that for matching cell types and tissues, the 

eQTL effect sizes are highly reproducible between studies, enabling the integrative analysis of 

these data. Although most cis-eQTLs were shared between most bulk tissues, the analysis of 

purified cell types identified a greater diversity of cell-type-specific eQTLs, a subset of which 

also manifested as novel disease colocalisations. Our summary statistics can be downloaded by 

FTP, accessed via a REST API, and visualised on the Ensembl genome browser. New datasets 

will continuously be added to the eQTL Catalogue, enabling the systematic interpretation of 

human GWAS associations across many cell types and tissues. 
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Introduction 

Gene expression and splicing QTLs are a powerful tool to link disease-associated genetic 

variants to putative target genes. However, despite efforts by large-scale consortia such as 

GTEx (1) and eQTLGen (2) to provide comprehensive eQTL annotations for a large number of 

human tissues, target genes and relevant biological contexts for most GWAS signals have not 

been found yet. Systematic colocalisation efforts based on GTEx data have identified putative 

target genes for 47% of the GWAS loci (3). Still, these genetic effects mediate only 11% of 

disease heritability (4), suggesting that many regulatory effects cannot be detected in bulk 

tissues at a steady-state (5). In contrast, profiling specialised disease-relevant cell types such 

as induced pluripotent stem cells (6), peripheral immune cells (7), microglia (8, 9) or 

dopaminergic neurons (10) often identifies additional colocalisations that are missing in GTEx. 

While several databases have been developed to collect eQTL summary statistics from 

individual studies (11–17), these efforts have relied on the heterogeneous set of files provided 

by the original authors. These results often contain only a small subset of significant 

associations or lack essential details such as effect alleles, standard errors or sample sizes, 

which limit the downstream colocalisation and Mendelian randomisation analyses that can be 

performed (18).  

 

Moreover, there is considerable technical variation between studies in sample collection, RNA 

sequencing, genotyping and data analysis. Thus, it is currently unclear how strongly eQTL effect 

sizes are influenced by technical differences in sample collection, how many eQTLs are broadly 

shared, and what fraction are specific to a given cell or tissue type and could thus give rise to 

novel disease colocalisations. While analyses based on GTEx data have generally estimated 

high levels of eQTL sharing between most bulk tissues (1, 19), smaller studies have often 

estimated much lower levels of sharing between purified cell types (20, 21). However, these 

analyses are sensitive to how sharing is defined, which genes and variants are included in the 

analysis and which analytical approaches are used (19, 22). Thus, it is impossible to directly 

compare the estimates of eQTL sharing between studies without re-analysing the individual-

level data with uniform methods. 

 

Recent methodological advances have made it feasible to fine map genetic associations to 

small credible sets of putative causal variants and distinguish between multiple independent 

genetic signals in the region (23, 24). These fine mapping results can be directly used in 

colocalisation analysis (25). They can also help avoid the many false negative colocalisations 

missed by approaches that assume a single causal variant in the region of interest (18). 

However, reliable fine mapping requires precise information about in-sample linkage 

disequilibrium (LD) between genetic variants which is usually not available (26, 27). 

 

To overcome these limitations, we have uniformly re-processed (see Figure 1) individual-level 

eQTL data from 112 datasets across 21 independent studies (see Figure 2). We find that eQTL 

effect sizes from matched cell types or tissues are generally highly reproducible between 

studies. Using both eQTL sharing and matrix factorisation approaches on fine mapped eQTL 

signals, we find that differences in eQTL effect sizes between datasets are dominated by 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2021. ; https://doi.org/10.1101/2020.01.29.924266doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.29.924266
http://creativecommons.org/licenses/by/4.0/


3 

biological differences between cell types and tissues rather than technical differences in sample 

processing. Uniformly processed summary statistics provided us with a unique opportunity to 

characterise eQTL diversity across 69 distinct cell types and tissues. Consistent with previous 

analyses by the GTEx project, we find high levels of cis-eQTL sharing between most bulk 

tissues. In contrast, we find that a much smaller proportion of eQTLs are shared between 

purified cell types and bulk tissues, and between different cell types. This eQTL diversity also 

manifests itself at the level of disease colocalisation, where we detect many novel 

colocalisations that are missed when analysing GTEx data alone. Finally, in addition to gene 

expression QTLs, we have identified QTLs at the levels of exon expression, transcript usage, 

and splicing, which were often absent from the original studies. Our uniformly processed QTL 

summary statistics and fine mapping results are available from the eQTL Catalogue FTP server 

and REST API and they can also be explored using the Ensembl Genome Browser (28) (Figure 

1B).  

 

 

Figure 1. Overview of the eQTL Catalogue database. (A) A high-level representation of the 

uniform data harmonisation and eQTL mapping process. Supplementary Figure 1 provides a 

schematic illustration of the different quantification methods. (B) eQTL Catalogue summary 

results for the RBMS1 gene in BLUEPRINT CD4+ T cells, viewed via the Ensembl Genome 

Browser. 
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Results 

Studies, datasets and samples included in the eQTL Catalogue 

We downloaded raw gene expression and genotype data from 16 RNA-seq and five microarray 

studies from various repositories. The RNA-seq data consisted of 17,210 samples spanning 95 

datasets (defined as distinct cell types, tissues or contexts in which eQTL analysis was 

performed separately). These 95 datasets originated from 66 distinct cell types and tissues and 

ten stimulated conditions (Figure 2A). Similarly, the 4,631 microarray samples spanned 17 

datasets from eight distinct cell types and tissues and three stimulated conditions (Figure 2B). 

While most cell types and tissues were profiled only by two of the largest studies (GTEx (1) and 

Schmiedel_2018 (21), Figure 2A), 13 cell types or tissues were captured by multiple studies, 

allowing us to characterise both technical and biological variability between datasets and 

studies. The total number of unique donors across studies was 5,714, of which 89% had 

predominantly European ancestries and only 9% had African or African American ancestries, 

with other ancestries being rare (Figure 2C, Supplementary Table 1). Thus, similarly to most 

GWAS studies, published eQTL studies also suffer from a lack of genetic diversity (29).  
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Figure 2. Overview of studies and samples included in the eQTL Catalogue. (A) Cumulative 

RNA-seq sample size for each cell type and tissue across 16 studies. Datasets from stimulated 

conditions have been excluded to improve readability. DLPFC - dorsolateral prefrontal cortex, 

iPSC - induced pluripotent stem cell, LCL - lymphoblastoid cell line. (B) The cumulative 

microarray sample size for each cell type and tissue across five studies. Datasets from 

stimulated conditions have been excluded to improve readability. (C) The number of unique 
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donors assigned to the four major superpopulations in the 1000 Genomes Phase 3 reference 

dataset. Detailed assignment of donors to the four superpopulations in each study is presented 

in Supplementary Table 1. Superpopulation codes: EUR - European, AFR - African, EAS - East 

Asian, SAS - South Asian, NA - unassigned. (D) The relationship between the sample size of 

each dataset and the number of associations detected with each quantification method. The 

number of QTLs on the y-axis is defined as the number of genes with at least one significant 

QTL (FDR < 0.05). 

To uniformly process a large number of eQTL studies, we designed a modular and robust data 

analysis workflow (Figure 1A). First, we performed extensive quality control and imputed 

missing genotypes using the 1000 Genomes Phase 3 reference panel (30) (Supplementary 

Table 3). For RNA-seq datasets, we performed QTL mapping for the four molecular traits 

described above (Figure 1A, Supplementary Figure 1). The QTL analysis was performed 

separately in each dataset (i.e. separately for each cell type or tissue within each study). We 

found the largest number of QTLs at the level of gene expression, but for all molecular traits the 

number of significant associations scaled approximately linearly with the sample size (Figure 

2D, Supplementary Material 1). For microarray datasets, we performed the analysis only at the 

gene level but found the same linear trend (Figure 2D, Supplementary Material 1). Our 

remaining analyses focus on the RNA-seq-based eQTL datasets as they cover a more 

comprehensive range of cell types and tissues, and account for most of the samples in the 

eQTL Catalogue. 

Biological and technical variability between studies and datasets 

First, we assessed if the gene expression and eQTL signals were dominated by technical 

differences between studies (Supplementary Tables 2-3) rather than true biological differences 

between cell types and tissues. We visualised median transcripts per million (TPM) gene 

expression estimates from each dataset using multidimensional scaling (MDS). Reassuringly, 

we found that the datasets clustered predominantly by cell type or tissue of origin, rather than by 

studies or other technical factors (Figure 3A). Notably, except for brain tissues, whole blood and 

testis, most other bulk tissues had relatively similar gene expression profiles (Figure 3A). In 

contrast, datasets from purified cell types such as lymphoblastoid cell lines (LCLs), monocytes, 

neutrophils, induced pluripotent stem cells (iPSCs), and B and T lymphocytes had more distinct 

gene expression profiles (Figure 3A).  

Next, we performed the same similarity analysis on eQTL effect sizes. To overcome the high 

uncertainty associated with effect size estimates, especially in datasets with small sample sizes, 

we used the recently developed multiple adaptive shrinkage (mash) model (19). Mash improves 

eQTL effect size estimates by sharing information both across datasets as well as individual 

eQTLs. We limited our analysis to 54,733 fine mapped eQTLs (see Methods) and defined two 

eQTLs to be shared between a pair datasets if they had the same sign and their effect sizes did 

not differ more than two-fold. We calculated pairwise eQTL sharing estimates for all 95 RNA-

seq datasets (including 48 tissues from GTEx v7) and projected those onto two dimensions 

using MDS. Reassuringly, we found that if the same cell type or tissue was profiled in multiple 
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studies, then their eQTL effect sizes often showed a high degree of concordance (Figure 3B, 

Supplementary Figures 2-3). For example, LCLs from TwinsUK, GENCORD and GEUVADIS 

clustered together with LCLs from GTEx (Figure 3B) and exhibited median sharing of ~80% 

(Figure 3C, Supplementary Figures 2-3). The same was also true for the brain (GTEx, ROSMAP 

and BrainSeq studies), whole blood (GTEx, TwinsUK and Lepik_2017 studies), muscle (GTEx 

and FUSION), skin (GTEx and TwinsUK) and adipose tissues (GTEx, TwinsUK and FUSION), 

which all had median intra-tissue sharing of ~70% (Figure 3C). Moreover, the two-dimensional 

MDS plot of pairwise eQTL similarity (Figure 3B) was broadly similar to the pairwise gene 

expression similarity plot presented above (Figure 3A), suggesting that high gene expression 

similarity and a high degree of eQTL sharing both reflect similarity in the underlying regulatory 

state of cells.  

 

Finally, we focussed on the patterns of sharing between different cell types and tissues. We 

found that 46-80% (median 62%) of the eQTLs were shared between most pairs of bulk tissues 

(Figure 3C). The exception to this pattern were the brain tissues and whole blood that formed 

separate clusters in the MDS analysis (Figure 3B) and shared a median of 45% and 35% of the 

eQTLs with other tissues, respectively (Figure 3C). In contrast, purified immune cell types 

(LCLs, neutrophils, monocytes, macrophages and lymphocytes) formed distinct clusters on the 

MDS plot (Figure 3B) and had much lower eQTL sharing both with whole blood as well as other 

bulk tissues (Figure 3C). Thus, although our results reconfirm the generally high level of cis-

eQTL sharing between bulk tissues, they also reveal a much greater cis-eQTL diversity between 

purified cell types and especially immune cells. Importantly, this diversity is missed when 

analysing highly tissue-focused eQTL studies such as GTEx.  
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Figure 3. Gene expression similarity between datasets predicts eQTL similarity. (A) 

Multidimensional scaling (MDS) analysis of median gene expression across datasets. The 

pairwise similarity between datasets was calculated using Pearson’s correlation. Datasets from 

GTEx and BLUEPRINT studies have been highlighted to demonstrate that they cluster with 

other matching cell types and tissues. (B) MDS analysis of eQTL sharing across datasets. 

Pairwise eQTL sharing between datasets was estimated using the Mash model (19). The 

complete matrix is presented in Supplementary Figure 2. (C) Visualisation of eQTL sharing 
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estimates between selected representative tissues (x-axis) and all other cell types and tissues in 

the eQTL Catalogue. The individual points have been coloured according to the major cell type 

and tissue groups from panel A. (D) Matrix factorisation of the eQTL effect sizes across all 

eQTL Catalogue datasets. Only datasets with non-zero loading on one or more cell-type- and 

tissue-specific factors (excluding the universal factor) are shown. 

Matrix factorisation identifies cell-type- and tissue-specific latent 

factors shared across datasets 

To better understand the eQTL sharing patterns between cell types and tissues, we turned to a 

recently developed semi-nonnegative sparse matrix factorisation (sn-spMF) model that can 

directly identify latent factors from eQTL summary statistics (31). When applied to the fine 

mapped eQTL Catalogue summary statistics, sn-spMF detected 16 independent factors (Figure 

3D). The largest universal factor was broadly shared between all datasets and accounted for 

~37.5% of the independent fine mapped eQTLs (Supplementary Figure 4). The remaining 15 

factors captured cell-type- and tissue-specific effects (Figure 3D). Overall, matrix factorisation 

identified many of the same patterns detected in the pairwise eQTL sharing analysis (Figure 

2B). For example, lymphocytes, LCLs, iPSC, monocytes, macrophages, neutrophils, stimulated 

T cells as well as brain and blood tissues all had their individual factors. Notably, these cell-

type- and tissue-specific factors were shared across multiple studies (Figure 3D). 

 

Although most eQTLs were highly shared between bulk tissues (Figure 3B-C), our factor 

analysis still detected independent factors capturing eQTLs that were specific to muscle, skin 

and adipose tissues from the FUSION (32), GTEx (1) and TwinsUK (33) studies. Brain, blood, 

adipose, muscle and skin tissues had larger sample sizes than other bulk tissues and purified 

cell types (Figure 2A), allowing us to obtain more accurate eQTL effect size estimates. Thus, we 

expect to detect additional tissue-specific factors as the sample sizes of the respective tissues 

increase (31). Finally, only two of the 16 factors were specific to a single dataset (BLUEPRINT 

CD4+ T cells and ROSMAP brain samples), suggesting that although batch effects between 

datasets exist, they are not a major factor confounding our analysis.  
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Figure 4. CD4+ T cell-specific eQTL at the RBMS1 locus colocalises with a GWAS hit for 

lymphocyte count. (A) Effect sizes and 95% confidence intervals for the RBMS1 eQTL across 

all eQTL Catalogue datasets (naive conditions only). (B) Factor loadings for the RBMS1 lead 

variant (rs6753933) from the sn-spMF model. (C) Regional association plot for lymphocyte 

count (top panel) and RBMS1 eQTL in the BLUEPRINT CD4+ T cells. The fine mapped eQTL 

credible set is highlighted in red. (D) Colocalisation posterior probabilities of a shared causal 

variant (PP4) and two distinct causal variants (PP3) for the fine mapped RBMS1 lead variant 

(rs6753933) across all eQTL Catalogue datasets. 

 

A major advantage of the matrix factorisation is that it allows us to focus on a small number of 

biologically meaningful factors shared between one or more datasets rather than comparing the 

eQTL effect sizes in 95 individual datasets. This level of summarisation is going to be 

increasingly important as the number of datasets included in the eQTL Catalogue increases. For 

example, a cis-eQTL for RBMS1 had large effects in both BLUEPRINT and Schmiedel_2018 

CD4+ T cell datasets and smaller significant effects in multiple other T cell subsets from 

Schmiedel et al. (Figure 4A). Consequently, the two factors with the largest loadings for this 

eQTL were the BLUEPRINT CD4+ T cell factor and the general lymphocyte factor (Figure 4B). 

The RBMS1 eQTL also colocalised with a GWAS signal for lymphocyte count (34) in 

BLUEPRINT CD4+ T cells (PP4 = 0.94) (Figure 4C), illustrating how a lymphocyte-specific 

eQTL might contribute to the regulation of lymphocyte count in whole blood. Notably, we did not 

detect this colocalisation in any of the 49 GTEx tissues. 
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eQTL Catalogue finds novel colocalisations missed in GTEx 

Our eQTL sharing analysis demonstrated that the eQTL Catalogue contains many additional 

eQTLs not present in GTEx. To quantify how these novel eQTLs might improve the 

interpretation of complex trait and disease associations, we performed colocalisation between 

GWAS summary statistics for 14 traits and either the eQTL Catalogue datasets or all GTEx v8 

tissues. To ensure that each independent GWAS locus was counted only once, we first 

partitioned GWAS summary statistics into approximately independent LD blocks (35). Overall, 

we detected at least one colocalising eQTL (PP4 > 0.8) for 4,429 independent loci across 14 

traits, 373 (8.4%) of which were only detected in one of the eQTL Catalogue datasets and not 

captured by GTEx v8 (max PP4 < 0.8). The fraction of novel colocalising loci varied from 5% for 

height to 14% for lupus (Supplementary Figure 5), suggesting that a substantial fraction of trait 

colocalisations might be missed if the analysis is only restricted to GTEx. 

 

However, we often detected many novel colocalisations even in those eQTL Catalogue datasets 

that were already captured by GTEx (e.g. blood, skin, muscle, adipose and brain tissues, Figure 

2A). These additional colocalisations could be either due to thresholding effects (just below or 

above the PP4 > 0.8 threshold), increased sample sizes in the eQTL Catalogue, and biological 

and population differences between datasets or other technical factors. For example, we found 

that the number of novel colocalisations detected for height GWAS increased linearly with the 

eQTL sample size with no particular dataset standing out (Figure 5A). In contrast, for some trait 

and eQTL dataset pairs, we detected considerably more colocalisations than we would have 

expected at the given sample size. For example, we observed six novel colocalisations with 

lymphocyte count in BLUEPRINT CD4+ T cells (including the RBMS1 example in Figure 4C), 

which was three times more than in any other dataset of comparable sample size (Figure 5B).  
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Figure 5. Additional GWAS colocalisations detected in the eQTL Catalogue relative to GTEx v8. 

(A) The number of novel height GWAS loci that colocalise with eQTLs in each cell type or 

tissues as a function of eQTL dataset size. (B) The number of novel lymphocyte count GWAS 

loci that colocalise with eQTLs in each cell type or tissues as a function of eQTL dataset size. 

(C) The number of novel colocalising loci detected for the 14 GWAS traits in each cell type and 

tissue from eQTL Catalogue divided by the eQTL sample sizes. The eQTL Catalogue cell types 

and tissues were grouped according to whether they were present in GTEx (blood, LCL, 

adipose, muscle, skin, brain) or not (T cells, B cells, monocytes, macrophages, neutrophils and 

iPSCs). GWAS traits: PLT - platelet count, MPV - mean platelet volume, MC - monocyte count, 

LC - lymphocyte count, UC - ulcerative colitis, SLE - systemic lupus erythematosus, RA - 

rheumatoid arthritis, IBD - inflammatory bowel disease, CD - Crohn's disease, T2D - type 2 

diabetes, height, CAD - coronary artery disease, BMI - body mass index, LDLC - LDL 

cholesterol.  

 

To assess if some eQTL datasets were particularly relevant for specific GWAS traits, we 

assigned each dataset a ‘novelty score’ by dividing the number of novel colocalisations detected 

in that dataset by its sample size. For each GWAS trait, we then asked if the novelty scores 

were higher for datasets from cell types and tissues missing in GTEx compared to the datasets 
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that were already well captured by GTEx. While there was considerable overlap between the 

two distributions (Figure 5C), we detected several trait-dataset pairs where the number of novel 

colocalisations observed was higher than expected for a given sample size. For example, the 

largest number of novel colocalisations for platelet count (PLT) and mean platelet volume (MPV) 

was detected in the CEDAR (36) platelet dataset (Figure 5C). Similarly, we observed most novel 

colocalisations for monocyte and lymphocyte count in BLUEPRINT monocyte and CD4+ T cell 

datasets, respectively. These results suggest that many novel colocalisations detected in the 

eQTL Catalogue relative to GTEx cannot be explained by sampling or technical variation alone 

and are likely to reflect cell-type-specific genetic effects.  

A subset of colocalisations manifest at the transcript level 

Multiple studies have demonstrated that some colocalisations between QTLs and complex traits 

only manifest at the level of RNA splicing and transcript usage (37, 38). To quantify this in the 

eQTL Catalogue, we performed colocalisation analysis between the 14 complex traits 

mentioned above and all QTLs detected with the three transcript-level quantification methods 

(Supplementary Figure 1). We found that 586/3394 (17.2%) colocalisations in independent LD 

blocks were only detected using one of the three transcript-level traits and not by traditional 

eQTLs in any of the 95 RNA-seq datasets (Figure 6A). However, this is likely to be 

underestimated because transcript and gene-level QTLs could be colocalising with independent 

GWAS signals within the same LD block (1). Furthermore, our gene expression quantification 

was based on the total read count, which can also capture larger splicing changes, especially as 

the number of datasets and sample sizes increase.  

 

To illustrate this, we looked at the colocalisation between LDL cholesterol and an exon 

expression QTL for HMGCR. The gene product of HMGCR is a known target for statins, and the 

link between exon 13 inclusion and circulating LDL cholesterol levels has been reported 

previously (38, 39). Our analysis detected colocalisation (PP4 > 0.8) between the expression of 

exon 13 of the HMGCR gene and LDL cholesterol in 51/95 datasets. We saw the strongest 

association in the HipSci (6) induced pluripotent stem cell dataset, where we were able to fine 

map the exon QTL to a single causal variant (rs3846662, posterior probability = 1) (Figure 6B). 

The same colocalisation was also detected by transcript usage in 18/95 datasets and by 

txrevise in 29/95 datasets. Although the colocalisation was also seen at the level of gene 

expression in the FUSION (32) muscle dataset (PP4 = 0.99, Supplementary Figure 6), the 95% 

credible set contained a total of 46 variants. Furthermore, the standardised effect size of the fine 

mapped variant on exon expression (Figure 6C) was considerably larger than on gene 

expression (Figure 6D) in all datasets (Figure 6C-D). Thus, even though some transcript-level 

QTLs can manifest as standard eQTLs in large datasets, having access to summary statistics 

from different quantification methods can inform on the identity and functional impact of the 

causal variant as well as provide stronger genetic instruments for future Mendelian 

randomisation applications. 
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Figure 6. Colocalisation between transcript-level QTLs and complex traits. (A) Complex trait 

colocalisations (independent LD blocks) stratified by the quantification methods that they were 

detected with. In addition to gene-level eQTLs, we also used three transcript-level quantification 

methods (exon expression (exon), transcript usage (tx), and promoter, splicing and 3’ end 

usage events (txrevise)). (B) Regional association plot for LDL cholesterol (top panel) and 

HMGCR exon 13 QTL in the HipSci iPSC dataset. SuSiE fine mapped the exon QTL to a single 

intronic variant (rs3846662, represented by the red dot) which was missing from the GWAS 

summary statistics. (C) Exon 13 expression QTL effect sizes and 95% confidence intervals for 
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the fine mapped causal variant (rs3846662) across eQTL Catalogue datasets. (D) Gene 

expression QTL effect sizes and 95% confidence intervals for the fine mapped causal variant 

(rs3846662) across eQTL Catalogue datasets. 

Discussion 

We believe that the main value of the eQTL Catalogue lies in the uniformly processed gene-

level and transcript-level QTL summary statistics and statistical fine mapping results. We have 

thus sought to make the data as easy to use as possible. By mapping cell and tissue types to 

standard ontology terms, we make it easy to discover which studies contain the tissues and cell 

types of interest to the users. We have further re-imputed genotypes using the 1000 Genomes 

Phase 3 reference panel for all studies using genotyping microarrays, ensuring that the same 

set of genetic variants is present in most studies. We have used a consistent set of molecular 

trait identifiers (genes, exons, transcripts, events) across all datasets, ensuring that genetic 

effects can directly be compared across datasets (e.g. Figures 4A and 6C-D). Finally, we have 

released credible sets from statistical fine mapping analysis, which can help to further 

characterise loci with multiple independent signals and paves the way for fine-mapping-based 

colocalisation approaches (25). We will progressively expand the resource to all accessible 

human datasets. 

 

The relationship between gene expression similarity and eQTL sharing has been noticed before. 

For example, two studies conducted in stimulated monocytes and macrophages found that the 

number of differentially expressed genes between cell states correlates with the number of 

state-specific eQTLs (38, 40). This correlation raises an exciting prospect that once a sufficient 

sample size has been reached in a given cell type or tissue, the discovery of novel eQTL can be 

maximised by focussing on cell types and cell states with low gene expression similarity to 

existing eQTL datasets. Of course, the definition of what is sufficient depends on the 

downstream use case of interest. While many cell-type- and tissue-specific cis-eQTLs can be 

detected with a sample size of a few hundred individuals (Figure 3D), other applications such as 

expression-mediated heritability analysis (4), Mendelian randomisation (18) and trans-eQTL 

analysis (2) benefit from much larger sample sizes.  

 

A limitation of our automated RNA-seq processing and eQTL mapping workflow is that we have 

not tailored our analyses to specific studies. For example, although the TwinsUK (33) and 

HipSci (6) studies collected samples from multiple related individuals, we used only a subset of 

samples (TwinsUK: 1,364 of 2,505 total, HipSci: 322 of 513 total) from unrelated individuals to 

avoid pseudoreplication when using linear regression. Similarly, for the six studies containing 

individuals from non-European and admixed populations (Supplementary Table 1), we jointly 

analysed all samples with six genotype principal components as covariates. However, stratified 

analyses (41) or approaches taking into account local ancestry (42, 43) might be more 

appropriate in this specific setting. Access to individual-level data will enable us to revisit these 

decisions as new analytical approaches and computational workflows become available.  
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To ensure that the eQTL Catalogue is a comprehensive resource that encompasses tissue and 

human population diversity, we encourage researchers to contribute their eQTL datasets 

(contact eqtlcatalogue@ebi.ac.uk). Unfortunately, we have been unable to include some 

existing datasets due to consent limitations or restrictions on sharing individual-level genetic 

data. These limitations could be overcome in the future by federated data analysis approaches, 

where the eQTL analysis is performed at remote sites using our analysis workflows, and only 

summary statistics are shared with the eQTL Catalogue. To this end, we will continue to 

improve the usability and portability of our data analysis workflows and will make them available 

via community efforts such as the nf-core (44) repository.  

Methods 

Data access and informed consent 

Gene expression and genotype data from two studies (GEUVADIS and CEDAR) were available 

for download without restrictions from ArrayExpress (45). For all other datasets, we applied for 

access via the relevant Data Access Committees. The database accessions and contact details 

of the individual Data Access Committees can be found on the eQTL Catalogue website 

(http://www.ebi.ac.uk/eqtl/Studies/). In our applications, we explained the project and our intent 

to share the association summary statistics publicly. Ethical approval for the project was 

obtained from the Research Ethics Committee of the University of Tartu (approval 287/T-14). 

Genotype data 

Pre-imputation quality control. We aligned the strands of the genotyped variants to the 1000 

Genomes Phase 3 reference panel using Genotype Harmonizer (46). We excluded genetic 

variants with Hardy-Weinberg p-value < 10-6, missingness > 0.05 and minor allele frequency < 

0.01 from further analysis. We also excluded samples with more than 5% of their genotypes 

missing. 

 

Genotype imputation and quality control. We pre-phased and imputed the genotypes to the 

1000 Genomes Phase 3 reference panel (30) using Eagle v2.4.1 (47) and Minimac4 (48). After 

imputation, we converted the coordinates of genetic variants from the GRCh37 reference 

genome to the GRCh38 using CrossMap v0.4.1 (49). We used bcftools v1.9.0 to exclude 

variants with minor allele frequency (MAF) < 0.01 and imputation quality score R2 < 0.4 from 

downstream analysis. The genotype imputation and quality control steps are implemented in 

eQTL-Catalogue/genimpute (v20.11.1) workflow available from GitHub (see URLs). 

 

Assigning individuals to reference populations. We used PLINK (50) v1.9.0 with ‘--indep-

pairwise 50000 200 0.05’ to perform LD pruning of the genetic variants and LDAK (51) to project 

new samples to the principal components (PCs) of the 1000 Genomes Phase 3 reference panel 

(30). To assign each genotyped sample to one of four superpopulations, we calculated the 

Euclidean distance in the PC space from the genotyped individual to all individuals in the 
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reference dataset. Distance from a sample to a reference superpopulation cluster is defined as 

a mean of distances from the sample to each reference sample from the superpopulation 

cluster. We explored distances between samples and reference superpopulation clusters using 

different numbers of PCs and found that using 3 PCs worked best for inferring the 

superpopulation of a sample. Then, we assigned each sample to a superpopulation if the 

distance to the closest superpopulation cluster was at least 1.7 times smaller than to the second 

closest one (Supplementary Figure 7). We used this relatively relaxed threshold because our 

aim was to get an approximate estimate of the number of individuals belonging to each 

superpopulation. Performing a population-specific eQTL analysis would probably require a 

much more stringent assignment of individuals to populations. The population assignment steps 

are implemented in the eQTL-Catalogue/qcnorm (v20.12.1) workflow available from GitHub (see 

URLs). 

Microarray data 

Data normalisation. All five microarray studies currently included in the eQTL Catalogue 

(CEDAR (36), Fairfax_2012 (52), Fairfax_2014 (53), Kasela_2017 (54), Naranbhai_2015 (55)) 

used the same Illumina HumanHT-12 v4 gene expression microarray. The database accessions 

for the raw data can be found on the eQTL Catalogue website 

(http://www.ebi.ac.uk/eqtl/Studies/). Batch effects, where applicable, were adjusted for with the 

function removeBatchEffect from the limma v.3.40.6 R package (56). The batch adjusted log2 

intensity values were quantile normalized using the lumiN function from the lumi v.2.36.0 R 

package (57). Only the intensities of 30,353 protein-coding probes were used. The raw intensity 

values for the five microarray datasets have been deposited to Zenodo (doi: 

https://doi.org/10.5281/zenodo.3565554). 

 

Detecting sample mixups. We used Genotype harmonizer (46) v1.4.20 to convert the imputed 

genotypes into TRITYPER format. We used MixupMapper (58) v1.4.7 to detect sample swaps 

between gene expression and genotype data. We detected 155 sample swaps in the CEDAR 

dataset, most of which affected the neutrophil samples. We also detected one sample swap in 

the Naranbhai_2015 dataset.  

RNA-seq data 

Studies. eQTL Catalogue contains RNA-seq data from the following 16 studies: ROSMAP (59), 

BrainSeq (60), TwinsUK (33), FUSION (32), BLUEPRINT (20, 61), Quach_2016 (62), 

Schmiedel_2018 (21), GENCORD (63), GEUVADIS (64), Alasoo_2018 (65), Nedelec_2016 

(66), Lepik_2017 (67), HipSci (6), van_de_Bunt_2015 (68), Schwartzentruber_2018 (69), GTEx 

v7 (1). 

 

Pre-processing. For each study, we downloaded the raw RNA-seq data from one of the six 

databases (European Genome-phenome Archive (EGA), European Nucleotide Archive (ENA), 

Array Express, Gene Expression Omnibus (GEO), Database of Genotypes and Phenotypes 

(dbGaP), Synapse). If the data were already in fastq format, then we proceeded directly to 
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quantification. If the raw data were shared in BAM or CRAM format, we used the samtools 

collate command (70) to collate paired-end reads and then used samtools fastq command 

with ‘-F 2816 -c 6’ flags to convert the CRAM or BAM files to fastq. Since samples from GEO 

and dbGaP were stored in SRA format, we used the fastq-dump command with ‘--split-

files --gzip --skip-technical --readids --dumpbase --clip’ flags to convert those to 

fastq. The pre-processing scripts are available from the eQTL-Catalogue/rnaseq GitHub 

repository (see URLs).   

Quantification. We quantified transcription at four different levels: (1) gene expression, (2) 

exon expression, (3) transcript usage and (4) transcriptional event usage (Supplementary 

Figure 1). Quantification was performed using a custom Nextflow (71) workflow that we 

developed by adding new quantification methods to nf-core/rnaseq pipeline (44). Before 

quantification, we used Trim Galore v0.5.0 to remove sequencing adapters from the fastq files. 

For gene expression quantification, we used HISAT2 v2.1.0 (72) to align reads to the GRCh38 

reference genome (Homo_sapiens.GRCh38.dna.primary_assembly.fa file downloaded from 

Ensembl). We counted the number of reads overlapping the genes in the GENCODE V30 (73) 

reference transcriptome annotations with featureCounts v1.6.4 (74). To quantify exon 

expression, we first created an exon annotation file (GFF) using GENCODE V30 reference 

transcriptome annotations and dexseq_prepare_annotation.py script from the DEXSeq (75) 

package. We then used the aligned RNA-seq BAM files from the gene expression quantification 

and featureCounts with flags ‘-p -t exonic_part -s ${direction} -f -O’ to count the 

number of reads overlapping each exon. 

We quantified transcript and event expression with Salmon v0.13.1 (76). For transcript 

quantification, we used the GENCODE V30 (GRCh38.p12) reference transcript sequences 

(fasta) file to build the Salmon index. For transcriptional event usage, we downloaded pre-

computed txrevise (38) alternative promoter, splicing and alternative 3ʹ end annotations 

corresponding to Ensembl version 96 from Zenodo (https://doi.org/10.5281/zenodo.3232932) in 

GFF format. We then used gffread (77) to generate fasta sequences from the event annotations 

and built Salmon indices for each event set as we did for transcript usage. Finally, we quantified 

transcript and event expression using salmon quant with ‘--seqBias --useVBOpt --gcBias 

--libType’ flags. All expression matrices were merged using csvtk v0.17.0. All of these 

quantification methods are implemented in the eQTL-Catalogue/rnaseq workflow available from 

GitHub (see URLs). Our reference transcriptome annotations are available from Zenodo 

(https://doi.org/10.5281/zenodo.3366280).  

Detecting outliers from gene expression data. The quality of the RNA-seq samples was 

assessed using the gene expression counts matrix. In all downstream analyses, we only 

included 35,367 protein-coding and non-coding RNA genes belonging to one of the following 

Ensembl gene types: lincRNA, protein_coding, IG_C_gene, IG_D_gene, IG_J_gene, 

IG_V_gene, TR_C_gene, TR_D_gene, TR_J_gene, TR_V_gene, 3prime_overlapping_ncrna, 

known_ncrna, processed_transcript, antisense, sense_intronic, sense_overlapping. For PCA 

and MDS analyses, we first filtered out invalid gene types (23,458) and genes on the sex 

chromosomes (1,247), TPM normalised (78) the gene counts, filtered out genes having median 
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normalised expression value less than 1 and log2 transformed the matrix. We performed 

principal component analysis with the prcomp R package (center = true, scale = true). For 

multidimensional scaling (MDS) analysis, we used the isoMDS method from the MASS R 

package with k=2 dimensions. As a distance metric for isoMDS, we used 1 - Pearson’s 

correlation as recommended previously (79). We plotted these two-dimensional scatter plots to 

visually identify outliers (Supplementary Figure 8A-B).  

Sex-specific gene expression analysis. Previous studies have successfully used the 

expression of XIST and Y chromosome genes to ascertain the genetic sex of RNA samples 

(80). In our analysis, we extracted all protein-coding genes from the Y chromosome, and the 

XIST gene (ENSG00000229807) expression values and TPM normalised them. Then, we 

calculated the mean expression level of the genes on the Y chromosome. Finally, we plotted the 

log2 of XIST expression level (X-axis) against the mean expression level of the genes on the Y 

chromosome (Y-axis) (Supplementary Figure 8C). In addition to detecting samples with 

incorrectly labelled genetic sex, this analysis also allowed us to identify cross-contamination 

between samples (XIST and Y chromosome genes expressed simultaneously, Supplementary 

Figure 8C).  

Concordance between genotype data and RNA-seq samples. We used the Match Bam to 

VCF (MBV) method from QTLtools (81) which directly compares the sample genotypes in VCF 

format to an aligned RNA-seq BAM file. MBV can detect sample swaps, multiple samples from 

the same donor, and cross-contamination between RNA-seq samples. In some cases, such 

cross-contamination was confirmed by both the sex-specific gene expression and MBV 

analyses (Supplementary Figure 8D). 

Normalisation. We filtered out samples which failed the QC step. We normalised the gene and 

exon-level read counts using the conditional quantile normalisation (cqn) R package v1.30.0 

(82) with gene or exon GC nucleotide content as a covariate. We downloaded the gene GC 

content estimates from Ensembl biomaRt and calculated the exon-level GC content using 

bedtools v2.19.0 (83). We also excluded lowly expressed genes, where 95 per cent of the 

samples within a dataset had TPM-normalised expression less than 1. To calculate transcript 

and transcriptional event usage values, we obtained the TPM normalised transcript (event) 

expression estimates from Salmon. We then divided those transcript (event) expression 

estimates by the total expression of all transcripts (events) from the same gene (event group). 

Subsequently, we used the inverse normal transformation to standardise the transcript and 

event usage estimates. Normalisation scripts together with containerised software are publicly 

available at https://github.com/eQTL-Catalogue/qcnorm. 

Metadata harmonisation 

We mapped all RNA-seq and microarray samples to a minimal metadata model. This included 

consistent sample identifiers, information about the cell type or tissue of origin, biological 

context (e.g. stimulation), genetic sex, experiment type (RNA-seq or microarray) and properties 

of the RNA-seq protocol (paired-end vs single-end; stranded vs unstranded; poly(A) selection vs 

total RNA). To ensure that cell type and tissue names were consistent between studies and to 
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facilitate easier integration of additional studies, we used Zooma 

(https://www.ebi.ac.uk/spot/zooma/) to map cell and tissue types to a controlled vocabulary of 

ontology terms from Uber-anatomy ontology (Uberon) (84), Cell Ontology (85) or Experimental 

Factor Ontology (EFO) (86). We opted to use an ad-hoc controlled vocabulary to represent 

biological contexts as those often included terms and combinations of terms that were missing 

from ontologies. 

Association testing 

We performed association testing separately in each dataset and used a +/- 1 megabase cis 

window centred around the start of each gene. First, we excluded molecular traits with less than 

five genetic variants in their cis window, as these were likely to reside in regions with low 

genotyping coverage. We also excluded molecular traits with zero variance across all samples 

and calculated phenotype principal components using the prcomp R stats package (center = 

true, scale = true). We calculated genotype principal components using plink2 v1.90b3.35. We 

used the first six genotype and phenotype principal components as covariates in QTL mapping. 

We calculated nominal eQTL summary statistics using the GTEx v6p version of the FastQTL 

(87) software (https://github.com/francois-a/fastqtl) that also estimates standard errors of the 

effect sizes. We used the ‘--window 1000000 --nominal 1’ flags to find all associations in 1 

Mb cis window. For permutation analysis, we used QTLtools v1.1 (88) with  ‘--window 1000000 

--permute 1000 --grp-best’ flags to calculate empirical p-values based on 1000 

permutations. The ‘--grp-best’ option ensured that the permutations were performed across 

all molecular traits within the same ‘group’ (e.g. multiple probes per gene in microarray data or 

multiple transcripts or exons per gene in the exon-level and transcript-level analysis) and the 

empirical p-value was calculated at the group level. The steps described above are 

implemented in the eQTL-Catalogue/qtlmap v20.07.2 Nextflow workflow available from GitHub 

(see URLs). 

Statistical fine mapping 

We performed QTL fine mapping using the Sum of Single Effects Model (SuSiE) (23) 

implemented in the susieR v0.9.0 R package. We converted the genotypes from VCF format to 

a tabix-indexed dosage matrix with bcftools v1.10.2. We imported the genotype dosage matrix 

into R using the Rsamtools v1.34.0 R package. We used the same normalised molecular trait 

matrix used for QTL mapping and further applied a rank-based inverse normal transformation to 

each molecular trait to ensure that they were normally distributed. We regressed out the first six 

phenotype and genotype PCs separately from the phenotype and genotype matrices. We 

performed fine mapping with the following parameters: L = 10, estimate_residual_variance = 

TRUE, estimate_prior_variance = TRUE, scaled_prior_variance = 0.1, 

compute_univariate_zscore = TRUE, min_abs_corr = 0. Finally, we extracted the 95% credible 

sets and the 95% posterior inclusion probabilities for each variant belonging to the credible set. 

The steps described above are implemented in the eQTL-Catalogue/susie-workflow v20.08.3 

Nextflow workflow available from GitHub (see URLs).  
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Quantifying eQTL sharing between tissues, cell types and 

conditions 

Identifying independent signals based on fine mapping. We extracted independent signals 

from the variants included in fine-mapped credible sets. At first, we selected credible sets with 

less than 50 variants in size and with a univariate z-score of at least 3. For every gene, we built 

connected components of credible sets to represent independent signals. From every 

connected component, we picked the lead variant – the variant with the smallest p-value across 

all eQTL datasets. As a result, 54,733 eQTLs remained. 

Calculating Spearman’s correlation. We aggregated the eQTL data into a matrix of effect 

sizes, where each row represents a lead variant and each column an eQTL dataset. We noticed 

that this matrix contained many missing values. While most of the missing values were caused 

by the gene not being expressed in a particular cell type or tissue, some of the missing values 

were also caused by low allele frequency or low imputation quality score. Thus, we substituted 

all missing values with 0. We then calculated pairwise Spearman’s correlation between the 

columns of the matrix to estimate the eQTL similarity between datasets. 

Running Mash. As an alternative to Spearman's correlation, we used the multiple adaptive 

shrinkage (Mash) (19) model to estimate the pairwise sharing of eQTLs between datasets. 

Betas and standard errors of lead effects were input to the Mash model as Bhat and Shat. We 

set missing eQTL effect sizes to 0 and standard errors to 1. The model was fitted with alpha = 1 

(exchangeable effects model). To find candidate covariance matrices, we discovered strong 

effects that are significant in at least one dataset with the get_significant_results method. 

Then we performed PCA on identified strong effects to obtain covariance matrices with cov_pca 

function and applied extreme deconvolution to them with cov_ed. Resulting matrices were set 

as a candidate covariance matrices into the model fitting. We estimated pairwise eQTL sharing 

between datasets with get_pairwise_sharing method by magnitude (factor of 0.5) and sign of 

posterior effect estimates.  

Factor analysis 

We performed factor analysis using the semi-nonnegative sparse matrix factorisation (sn-spMF) 

model (31). We included the 54,733 independent gene-variant pairs detected using statistical 

fine mapping (see above). The input files contained effect sizes and standard errors as 

reciprocal of weights of lead effects. The missing values made up 27% of the input effect size 

matrix. If the effect size estimate was missing in a given cell type or tissue then the effect size 

and weight were set to zero. To find hyper-parameter K (initial number of factors), and 

regularization parameters alpha and lambda, we performed a two-level grid search. In the first 

level, K was set to 20, 30, 40, 50, lambda and alpha were set in a range of 800 to 1800 with 

optimisation number of iterations = 10. In the second level, we fine-tuned the parameters by 

narrowing the search space to those values that lead to higher sparsity of the loading and factor 

matrices in the first level. At the second level, we ran the parameter optimization for 50 

iterations. We picked the final matrix with a very high cophenetic coefficient (0.99) and 16 

factors.  
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Colocalisation 

We performed colocalisation analysis on QTLs in the eQTL Catalogue against GWAS summary 

statistics from 14 studies downloaded from the IEU OpenGWAS database in VCF format (89, 

90). Our analysis included summary statistics for inflammatory bowel disease (IBD) and its two 

subtypes (Crohn's disease (CD) and ulcerative colitis (UC)) (91); rheumatoid arthritis (RA) (92), 

systemic lupus erythematosus (SLE) (93), type 2 diabetes (T2D) (94), coronary artery disease 

(CAD) (95), LDL cholesterol (96), four blood cell type traits (lymphocyte count (LC), monocyte 

count (MC), platelet count (PLT), mean platelet volume (MPV)) (34) and two anthropometric 

traits (height, body mass index (BMI)) from the UK Biobank (96). The variant coordinates of the 

GWAS summary statistics were lifted to the GRCh38 reference genome using CrossMap (49). 

Allele frequencies of variants in five of the GWAS (IBD, CD, UC, RA, SLE) were extracted from 

the 1000 Genomes Phase 3 reference panel (30). For all eQTL and GWAS dataset pairs, we 

performed colocalisation in a ± 200,000 window around each of the 54,733 fine mapped eQTL 

credible set lead variants (see fine mapping above). This ensured that colocalisation was also 

performed separately for multiple independent eQTLs of the same gene and colocalisation 

results were obtained in datasets in which no significant eQTL was detected for a particular 

gene. However, since we did not use masking or conditional analysis, many secondary eQTL 

colocalisations could still have been missed (18, 97). Since transcript usage, exon expression 

and txrevise contained many more redundant phenotypes (e.g. multiple exons of the same 

gene), we limited colocalisation analysis for those molecular traits to the significant lead QTL 

variants in each dataset only (FDR < 0.01), using the same ± 200,000 cis window as above. We 

used version 3.1 of the coloc R package (98). All analysis steps are implemented in the eQTL-

Catalogue/colocalisation (v20.11.1) workflow (see URLs). 

 

Quantification of novel colocalisations at the transcript level. We only included QTL and 

complex trait pairs with strong evidence of colocalisations (PP4 > 0.8) in our analysis. Inspired 

by the study by Barbeira et al. (3), we summarised colocalisations at the level of approximately 

independent LD blocks (35). Positions of approximately independent LD blocks were obtained 

from Berisa and Pickrell (35) and converted to GRCh38 coordinates using CrossMap (49). If the 

colocalisation cis window overlapped two or more LD blocks, then the colocalising QTL was 

assigned to the LD block where the QTL lead variant was located. The number of LD blocks for 

which we detected at least one colocalising QTL with each quantification method was visualised 

using the upsetR R package (99). 

  

Comparative analysis with GTEx V8. Current version of the eQTL Catalogue (release 3) 

contains two versions of the GTEx summary statistics: uniformly processed summary statistics 

from GTEx v7 and the official GTEx v8 summary statistics downloaded from Google Cloud 

(gs://gtex-resources/GTEx_Analysis_v8_QTLs/GTEx_Analysis_v8_eQTL_all_associations). 

Since the sample size of GTEx v8 is approximately two times larger than GTEx v7, we decided 

to use the official GTEx v8 summary statistics in our comparative colocalisation analysis. This 

ensured that we were as conservative as possible when identifying novel colocaliations. For 

each GWAS trait, we summarised colocalisation signals at the level of independent LD blocks 

and defined an LD block to harbour a novel colocalisation signal if there was no colocalisation 
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detected within that LD block in any of the GTEx v8 tissues. We further excluded datasets with 

small sample sizes (n < 150) due to their low power to detect colocalisations. 

URLs 

Data analysis workflows: 

● RNA-seq quantification: https://github.com/eQTL-Catalogue/rnaseq 

● Normalisation and QC: https://github.com/eQTL-Catalogue/qcnorm 

● Genotype imputation: https://github.com/eQTL-Catalogue/genimpute 

● Association testing: https://github.com/eQTL-Catalogue/qtlmap 

● Statistical fine mapping: https://github.com/eQTL-Catalogue/susie-workflow 

● Colocalisation: https://github.com/eQTL-Catalogue/colocalisation 

 

Example use cases: 

● Accessing eQTL Catalogue summary statistics with tabix: 

https://github.com/eQTL-Catalogue/eQTL-Catalogue-

resources/blob/master/tutorials/tabix_use_case.md 

● Python example for querying the HDF5 files:  

https://github.com/eQTL-Catalogue/eQTL-

SumStats/blob/master/querying_hdf5_basics.ipynb 

Data availability 

All eQTL Catalogue summary statistics are available under the Creative Commons Attribution 

4.0 International License. The full association summary statistics and fine mapped credible sets 

in HDF5 and TSV format can be downloaded from the eQTL Catalogue website 

(https://www.ebi.ac.uk/eqtl/Data_access/). Slices of the TSV files can be accessed using tabix 

(100) and seqminer (101). All of the summary statistics are also available via the REST API 

(https://www.ebi.ac.uk/eqtl/api-docs/). Fine mapped credible sets can be browsed using our 

interactive web interface (https://elixir.ut.ee/eqtl/). Database accessions for the raw gene 

expression and genotype datasets are listed on the eQTL Catalogue website 

(https://www.ebi.ac.uk/eqtl/Studies/). Our summary statistics have also been integrated into third 

party services such as the Open Targets Genetics Portal (102) and FUMA (13). The gene 

expression matrices will be made available via the EMBL-EBI Expression Atlas (103). 
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Supplementary Materials 

 

Supplementary Table 1. Samples assigned to the 1000 Genomes Phase 3 reference 

populations in each study. Note that three studies based on HipSci samples (HipSci, 

Alasoo_2018, Schwartzentruber_2018) and two studies based on Estonian Biobank samples 

(Kasela_2017, Lepik_2017) share a subset of donors by design. Furthermore, Fairfax_2012 and 

Naranbhai_2015 studies have been excluded because donors in these two studies are a subset 

of donors in Fairfax_2014. Thus, the total number of donors (n = 5,714) in this table slightly 

exceeds the number of unique donors. Superpopulation codes: EUR - European, AFR - African, 

SAS - South Asian, EAS - East Asian. 

Study Donors EUR AFR SAS EAS Unassigned 

Alasoo_2018 84 84 0 0 0 0 

BLUEPRINT 197 197 0 0 0 0 

BrainSeq 479 231 195 1 0 52 

CEDAR 322 322 0 0 0 0 

Fairfax_2014 423 421 0 0 0 2 

FUSION 297 297 0 0 0 0 

GENCORD 196 192 0 0 0 4 

GEUVADIS 445 358 87 0 0 0 

GTEx 507 421 61 1 6 18 

HipSci 322 318 0 1 0 3 

Kasela_2017 295 295 0 0 0 0 

Lepik_2017 471 471 0 0 0 0 

Nedelec_2016 168 96 52 0 0 20 

Quach_2016 200 100 100 0 0 0 

ROSMAP 576 576 0 0 0 0 

Schmiedel_2018 91 48 3 3 20 17 

Schwartzentruber_2018 98 98 0 0 0 0 

TwinsUK 433 432 0 0 0 1 

van_de_Bunt_2015 117 117 0 0 0 0 

Total 5714 5066 498 6 26 118 
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Supplementary Table 2. Overview of the transcriptomic samples included in the eQTL 

Catalogue. The samples have been classified according to RNA-seq type (single-end vs paired-

end), strandedness (unstranded vs stranded), read length (50bp, 75bp, 100bp, 250bp), assay 

type (microarray vs RNA-seq) and genotype data type (whole-genome sequencing (WGS) vs 

genotyping array). Only genotyping array samples have been re-imputed by us.    

Group 

N 

samples 

N 

studies List of studies 

Single-end 3180 4 

BLUEPRINT, Nedelec_2016, Quach_2016, 

Schmiedel_2018 

Paired-end 14023 13 

Alasoo_2018, BLUEPRINT, BrainSeq, GTEx, FUSION, 

GENCORD, GEUVADIS, HipSci, Lepik_2017, ROSMAP, 

Schwartzentruber_2018, TwinsUK, van_de_Bunt_2015 

Unstranded 12367 6 

GTEx, GENCORD, GEUVADIS, Nedelec_2016, 

Quach_2016, TwinsUK 

Stranded 4836 10 

Alasoo_2018, BLUEPRINT, BrainSeq, FUSION, HipSci, 

Lepik_2017, ROSMAP, Schmiedel_2018, 

Schwartzentruber_2018, van_de_Bunt_2015 

100bp 3751 8 

BLUEPRINT, BrainSeq, GTEx, FUSION, Nedelec_2016, 

Quach_2016, ROSMAP, van_de_Bunt_2015 

250bp 4 1 GTEx 

50bp 3726 4 GENCORD, Lepik_2017, Schmiedel_2018, TwinsUK 

75bp 9722 5 

Alasoo_2018, GTEx, GEUVADIS, HipSci, 

Schwartzentruber_2018 

microarray 4631 5 

CEDAR, Fairfax_2014, Kasela_2017, Naranbhai_2015, 

Fairfax_2012 

RNA-seq 17203 16 

Alasoo_2018, BLUEPRINT, BrainSeq, GTEx, FUSION, 

GENCORD, GEUVADIS, HipSci, Lepik_2017, 

Nedelec_2016, Quach_2016, ROSMAP, 

Schmiedel_2018, Schwartzentruber_2018, TwinsUK, 

van_de_Bunt_2015 

WGS 10006 4 BLUEPRINT, GTEx, GEUVADIS, Lepik_2017 

Genotyping 

array 

(imputed) 11828 17 

Alasoo_2018, BrainSeq, FUSION, GENCORD, HipSci, 

Nedelec_2016, Quach_2016, ROSMAP, 

Schmiedel_2018, Schwartzentruber_2018, TwinsUK, 

van_de_Bunt_2015, CEDAR, Fairfax_2014, 

Kasela_2017, Naranbhai_2015, Fairfax_2012 
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Supplementary Table 3. Overview of the studies included in the eQTL Catalogue. For four 

studies based on whole genome sequencing (BLUEPRINT, GTEx, GEUVADIS and 

Lepik_2017), we relied on final genotype files provided by the authors. All of the other 

genotypes were imputed using the 1000 Genomes Phase 3 reference panel (see Methods). 
1TwinsUK and HipSci studies contain related individuals by design. These were excluded in the 

quality control step to enable eQTL analysis with a linear model. 
2Small fraction GTEx samples have RNA-seq read lengths of 100 and 250 bp. 

 

Study 

Dataset 

Type Imputed 

Paired-

end Stranded 

Read 

length 

Pre-QC 

sample 

size 

Post-QC 

sample 

size 

Alasoo_2018 RNA-seq YES YES YES 75bp 336 336 

BLUEPRINT_PE RNA-seq NO YES YES 100bp 221 167 

BLUEPRINT_SE RNA-seq NO NO YES 100bp 387 387 

BrainSeq RNA-seq YES YES YES 100bp 495 479 

FUSION RNA-seq YES YES YES 100bp 575 559 

GENCORD RNA-seq YES YES NO 50bp 567 560 

GEUVADIS RNA-seq NO YES NO 75bp 462 445 

GTEx_v7 RNA-seq NO YES NO 75bp2 8879 8536 

HipSci1 RNA-seq YES YES YES 75bp 513 322 

Lepik_2017 RNA-seq NO YES YES 50bp 508 471 

Nedelec_2016 RNA-seq YES NO NO 100bp 503 493 

Quach_2016 RNA-seq YES NO NO 100bp 970 969 

ROSMAP RNA-seq YES YES YES 100bp 581 576 

Schmiedel_2018 RNA-seq YES NO YES 50bp 1544 1331 

Schwartzentruber_2018 RNA-seq YES YES YES 75bp 130 98 

TwinsUK1 RNA-seq YES YES NO 50bp 2505 1364 

van_de_Bunt_2015 RNA-seq YES YES YES 100bp 118 117 

CEDAR microarray YES NA NA NA 2967 2337 

Fairfax_2012 microarray YES NA NA NA 296 281 

Fairfax_2014 microarray YES NA NA NA 1384 1371 

Kasela_2017 microarray YES NA NA NA 576 549 

Naranbhai_2015 microarray YES NA NA NA 101 93 

 RNA-seq samples 19294 17210 
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Microarray 

samples 5324 4631 

Total samples 24618 21841 
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Supplementary Figure 1. 

Quantification methods of 

molecular traits in the eQTL 

Catalogue. Symbolic 

representation of 23 read 

fragments assigned to 1 

gene (aligned with HISAT2 

(72), quantified with 

featureCounts (74)) 

consisting of 2 transcripts 

(quantified with Salmon (76)) 

and 6 exonic parts 

(annotated with DEXSeq 

(75), quantified with 

featureCounts). The gene 

also has 5 distinct introns 

which are identified and 

quantified by Leafcutter 

(104). Transcriptional event 

usage is quantified with 

txrevise (38). Txrevise uses 

shared exons as a scaffold 

to identify independent 

transcriptional events 

corresponding to alternative 

promoters, internal exons 

and 3ʹ ends. Leafcutter 

splice junction QTLs will be 

included in a future version 

of the eQTL Catalogue. 
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Supplementary Figure 2. Pairwise eQTL sharing between 95 datasets estimated with the 

Mash model. We used 54,733 independent gene variant pairs from the fine mapping analysis 

(see Methods) and used the Mash model to estimate eQTL sharing between all pairs of the 95 

datasets measured with RNA-seq.  
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Supplementary Figure 3. Pairwise eQTL similarity between 95 datasets estimated with 

Spearman correlation. We used 54,733 independent gene variant pairs from the fine mapping 

analysis (see Methods) and used the Spearman correlation of eQTL effect sizes to estimate 

eQTL sharing between all pairs of the 95 datasets measured with RNA-seq. 
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Supplementary Figure 4. The fraction of fine mapped eQTLs assigned to each of the 16 

factors detected by the sn-spMF method.  
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Supplementary Figure 5. The number of shared and novel colocalisations detected for the 14 

traits and diseases. 
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Supplementary Figure 6. Regional association plot for LDL cholesterol (top panel) and 

HMGCR eQTL in the FUSION muscle dataset (bottom panel). The eQTL signal was fine 

mapped to 46 variants represented by red dots on both panels. 
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Supplementary Figure 7. Assigning genotyped samples to the four 1000 Genomes 

superpopulations. (A) Density plot of distances between each sample in BrainSeq (60) dataset 

and each superpopulation cluster in the 1000 Genomes Phase 3 reference dataset (30). First 

three principal components of the genotype data are used to calculate distances. The majority 

of samples in the BrainSeq dataset are close to either European (EUR) or African (AFR) 

superpopulations. (B) Histogram of distances between each sample in the BLUEPRINT (20) 

dataset and each superpopulation cluster in the reference dataset. All samples are close to the 

European (EUR) superpopulation cluster of the 1000 Genomes reference dataset. (C) 

Projection of the BrainSeq dataset to the first two principal components of the 1000 Genomes 

Phase 3 reference dataset. Most samples are assigned to either European or African 

superpopulations. Red samples are too far from all four superpopulations and thus remain 

unassigned. These samples are likely to represent recent admixture. (D) Projection of the 

BLUEPRINT dataset to the first two principal components of the 1000 Genomes Phase 3 

reference panel. All samples are assigned to the European superpopulation. Superpopulation 

codes: EUR - European, AFR - African, SAS - South Asian, EAS - East Asian. 
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Supplementary Figure 8. Overview of the Quality Control (QC) measures applied to all of the 

datasets in the eQTL Catalogue. QC reports for individual datasets can be found on the eQTL 

Catalogue website (https://www.ebi.ac.uk/eqtl/Studies/). (A) Principal component analysis of the 

TwinsUK dataset. (B) Multidimensional scaling analysis of the TwinsUK dataset. Four outlier 

samples (highlighted in yellow) from the PCA and MDS analysis were excluded from QTL 

mapping. (C) Sex-specific gene expression analysis. Expression of the female-specific XIST 

gene is plotted against the mean expression of the protein-coding genes on the Y chromosome. 

Samples from two donors (S003P5 (male) and S003Q3 (female)) expressed both XIST and 

genes from the Y chromosome, indicating potential cross-contamination with RNA from a 

sample of the opposite genetic sex. (D) Genetic similarity of S003Q3B1 RNA sample to all of 

the genotyped donors in the BLUEPRINT VCF file as calculated by the QTLtools mbv command 

(81). As expected, the genotypes of the S003Q3B1 RNA sample are most similar to the 

genotype data from the same donor (S003Q3) and most other donors are equally dis-similar, 
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forming a separate cluster in the bottom left corner. However, the S003Q3B1 RNA sample also 

displays higher-than-expected genetic similarity with genotype data from the S003P5 donor. 

Together with the evidence presented in panel C, this suggests that cross-contamination has 

occurred between the S003Q3B1 and S003P5B1 RNA samples. As a result, we decided to 

remove these two samples from downstream analysis.   
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