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eQTL mapping identifies insertion- and
deletion-specific eQTLs in multiple tissues
Jinyan Huang1,2, Jun Chen3,4, Jorge Esparza5, Jun Ding6, James T. Elder7,8, Goncalo R. Abecasis9, Young-Ae Lee5,

G. Mark Lathrop10, Miriam F. Moffatt11, William O.C. Cookson11 & Liming Liang2,3

Genome-wide gene expression quantitative trait loci (eQTL) mapping have been focused on

single-nucleotide polymorphisms and have helped interpret findings from diseases mapping

studies. The functional effect of structure variants, especially short insertions and deletions

(indel) has not been well investigated. Here we impute 1,380,133 indels based on the latest

1,000 Genomes Project panel into three eQTL data sets from multiple tissues. Imputation of

indels increased 9.9% power and identifies indel-specific eQTLs for 325 genes. We find

introns and vicinities of UTRs are more enriched of indel eQTLs and 3.6 (single-tissue)–

9.2%(multi-tissue) of previous identified eSNPs were taggers of eindels. Functional analyses

identifies epigenetics marks, gene ontology categories and disease GWAS loci affected

by SNPs and indels eQTLs showing tissue-consistent or tissue-specific effects. This study

provides new insights into the underlying genetic architecture of gene expression across

tissues and new resource to interpret function of diseases and traits associated structure

variants.
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I
n the past decade, most common single-nucleotide poly-
morphism (SNP) with allele frequency 45% have been
identified and genome-wide association studies (GWAS) have

been focusing on these common variants. As of February 2014,
1,785 studies have detected disease susceptibility loci at
genome-wide significant level1 (www.genome.gov/GWAStudies).
However, discovery has only explained a modest portion of
disease risk2. The undetected variants could be due to common
SNPs but without sufficiently large effect, structure variants such
as short insertion and deletion (indel) or low-frequency SNP not
covered by genotyping platforms or imputation3,4 based on
previous releases of the HapMap5 and the 1,000 Genomes pilot
projects6.

The latest release (phase 1) of the 1,000 Genomes Project
(1,000G) haplotypes consists of 39.7 million genetic markers
including 1.4 million indels. By applying genotype imputation
techniques3,4 on this high-quality reference panel from 1,000G
(ref. 7), we can assess the genetic effect of indels as well as low-
frequency SNPs on disease phenotypes and gene expression.
Indels are the second-most abundant category of genetic variants
and are widely distributed in the human genome. Comparing
with SNPs, it is still unknown whether this type of structural
variant has a larger causal effect on traits of interest, or serves as
better tags of the causal genetic variants. A recent study based on
179 sequenced samples from the 1,000G has shown that indels are
generally subject to stronger purifying selection than SNPs and
they are enriched in associations with gene expression8.
Imputation of these newly identified genetic variants into
existing GWAS may help identifying novel disease loci not
discovered by previous genotyping platforms and imputation. But
it is not known how much unidentified disease heritability is due
to indels and to what extent previously identified disease-
associated SNPs are due to linkage disequilibrium with indels
of bigger impact on disease phenotype.

Interindividual variation in gene expression levels has a
significant heritable component9–13, and studies have mapped
individual genetic variants associated with gene expression levels,
known as expression quantitative trait locus (eQTL), in diverse
cell types9,14–20. Large-scale gene expression data, which provide
complex traits with full spectrum of heritability and genetic
architecture, is ideal for evaluation of the power of association
study using imputation of the newly identified indels. This
information will be useful to the research community as to what
should be expected from the imputation of indels and guide
the design of genotyping platforms for the next-generation
association studies.

Functional annotations generated from eQTL mapping, most
of which available to the public, is an important resource to
interpret variants of human genome21. It is well known that
eQTLs can be a useful tool to characterize the function of a
disease-associated variant and point to the underlying biological
pathways22–47. With the available 1,000G indel reference panel,
existing GWAS are doing imputation on these indels. Once
disease-associated indels are identified, their functional
interpretation will become essential. We expect that indel eQTL
will be a useful tool to characterize the findings of GWAS based
on indels, either by imputation or genotyping experiments.

Tissue-specific effects of small insertions and deletions on gene
expression have not been examined before. Whether the tissue
specificity of eQTL effects shows different patterns in SNPs and
structure variants is unknown. In this study, we use 1,000G
imputed indels from 718 samples of multiple tissue types to answer
the above questions and discussed their implication for disease
mapping studies. It helps to understand the underlying genetic
architecture of gene expression across tissues and interpret the
function of disease- and trait-associated structure variants.

Results
Indel imputation. We collected tissue gene expression data from
three studies: (1) gene expression in lymphoblastoid cell lines
(LCLs) from the MRCA family panel of 206 siblings of British
descent13. A total of 368 children were genotyped using the
Illumina Sentrix HumanHap300 BeadChip (ILMN300K) and the
Illumina Sentrix Human-1 Genotyping BeadChip (ILMN100K);
(2) gene expression in peripheral blood mononuclear cells
(PBMC) from 47 Germany eczema nuclear families48. A total
of 240 individuals (107 children, 133 parents) were genotyped
using Affy500K and Affy 6.0 SNP array; and (3) normal skin
tissues of 57 unrelated healthy controls and unaffected skin of 53
patients from a Psoriasis GWAS49. A total of 110 individuals were
genotyped with Perlegen 400K array. Gene expression was
measured using the Affymetrix HG-U133 Plus 2.0 GeneChip.
After quality control on genotypes and expression, 376,877 SNPs
from the LCL expression data set, 687,364 from the PBMC
expression data set, 433,964 from the skin expression data set, as
well as 51,190 gene expression probe sets remain for downstream
analysis (see Methods section for details).

A total of 39.7 million genetic markers including 1.4 million
indels from the phase 1 release of 1,000G (ref. 7) were imputed3

into these three data sets, separately. Among these variants,
814,715 indels and 10,129,531 SNPs have high-quality score
(imputation R240.3 in all three studies). Across the entire allele
frequency spectrum, indel imputation quality was generally
comparable to that of SNPs but showed a slightly smaller
fraction with extremely high imputation score (R240.95, for
common variants, Supplementary Fig. 1). Imputation quality for
both SNPs and indels were similar across studies based on
different genotype platforms (Pearson correlation between quality
score (MACH Rsq) from PBMC and skin data sets were 0.727
(SNP) and 0.811 (indel); 0.696 (SNP) and 0.786 (indel) between
PBMC and LCL data sets; 0.736 (SNP) and 0.814 (indel) between
LCL and skin data sets). All downstream analyses were based on
SNPs and indels with imputation quality R240.3 across all three
studies.

eQTL meta-analysis. Within each individual study, we tested for
association between the gene expression and imputed SNPs and
indels using MERLIN package50,51 accounting for family
relatedness and including sex and expression principal
components in the model52. The number of expression
principal components was chosen to maximize the number of
transcription probes that can be mapped by a variant within 1Mb
of the probe set with false discovery rate (FDR)o5%. Results
from individual studies were then combined using weighted
Z-score meta-analysis with sample size and imputation R2 as
weights. We corrected for multiple testing using the Benjamini–
Hochberg FDR53,54 accounting for all probe set-variant
pairs ((814,715 indelþ 10129531 SNP)*51190 probe set). At
FDRo5%, a total of 5,898 unique genes (corresponding to 10,364
unique probe sets) were mapped by both SNP and indel; 325
unique genes (428 unique probe sets) can only be mapped by
indels and 3,186 unique genes (6,663 unique probe sets) can only
be mapped by SNPs (Fig. 1a). Of the 9,409 genes mapped by
SNPs or indels or both, 3,024 (32.1%) genes have indel as the
most significant eQTL. We summarized our results based on the
eQTLs that passed the45% FDR threshold. For genes that have
both significant SNP and indel, the heritability explained by the
eQTL is apparently larger than the genes mapped by only SNP or
indel (Fig. 1b).

Previous studies have shown that the power to detect eQTL
increases with total additive heritability of gene expression
estimated from pedigree data13. In Fig. 1c, we compared the
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power to detect association (FDRo5%) across different strategies.
The overall heritability is the narrow-sense heritability estimated
based on previous study using the MRCA family panel52. Within
each heritability bin, the red bar shows the per cent of expression
probes mapped by using the MRCA LCL data alone with
imputation of the 1,000G pilot release (eight million SNPs). Using
the same MRCA sample but with imputation of the 1,000G phase
1 SNPs and indels (green bars), we observed that 9.90% more
probes were mapped at the same FDR (green versus red bars). By
combining the results from multiple tissues, we observed that
41.9% more probe sets can be mapped by at least one genetic
variant (orange versus red bars).

Disease- or trait-associated genetic variants identified from
GWAS were usually not the causal variants but markers in
linkage disequilibrium with the causal variants. Almost all GWAS
used SNPs as genetic markers to tag underlying causal genetic
variants of the disease or trait of interest. By contracting the
results based on different imputation strategies, we estimated how
many previously identified associations might be tagging the
association between the trait and indel. The blue bar in Fig. 1c
shows the per cent of probes mapped by 1,000G phase 1 SNPs
after removing the probes with indel as the top eQTL. Comparing
the red and the blue bars, we found that 3.62% of previously
identified SNP QTL (eSNP) in LCL were likely to be tagging the
indel eQTL (eindel) of the same gene in LCL. The dash bar on top
of the blue bar shows the per cent of probes mapped by 1,000G
phase 1 SNPs before removing the probes with indel as the top
eQTL, indicating a small gain of power by using the phase 1
SNPs. After combining multiple tissues to increase sample size,
this difference increased to 9.20% (purple versus orange)
indicating that indels are more likely to be the causal genetic
variants for these genes.

Comparison of SNP and indel eQTLs. To better understand the
eQTLs due to SNP and indel effect, we sought to characterize the
difference in indel eQTL and SNP eQTL by effect size, allele
frequency spectrum and genomic distribution. We first tested
whether indels were enriched with eQTL by randomly selecting
100,000 SNP and 100,000 indel with high imputation quality
(R240.3) from the 1000 Genomes reference. There were 7,987
eSNPs and 11,386 eindels in the selected set of SNPs and indels.
The enrichment of eQTLs in indels was significantly more than
among SNPs (w2-test for homogeneity, P valueo2.2*10� 16).

Of the 5,898 genes mapped by both SNPs and indel that passed
the 5% FDR threshold, the effect size (H2 explained by the
variant) of eindel was similar to eSNP (mean difference¼
� 0.007, s.d.¼ 0.048, Fig. 2a).
Among all eSNPs and eindels that passed 5% FDR, allele

frequency of eindels were higher than eSNPs (mean minor allele
frequency (MAF) of eindel¼ 0.25, mean MAF of eSNP¼ 0.21,
Fig. 2b, main panel). This difference is not due to the distribution
of SNPs and indels with good imputation quality, where most
low-frequency indels were not eQTL (Fig. 2b, small panel).

Next we examined the genomic distribution of eSNPs and
eindels by focusing on the peak eQTL (either SNP or indel, cis or
trans) for each probe set with at least one significant eQTL (5%
FDR) and divided the genome into 11 regions: upstream TSS
4100 kb (cis� 4100 k), upstream TSS o100 kb (cis�
o100 k), intron between TSS and translation start sites (tx� /
intron), exon between TSS and translation start sites (tx� /exon),
intron in translation region(coding/intron), exon in translation
region (coding/exon), intron between translation stop sites and
TES (txþ /intron), exon between translation stop sites and TES
(txþ /exon), downstream of TES o100 kb (cisþ o100 k), the
downstream TES 4100 kb (cisþ 4100 k) and on different
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Figure 1 | Meta-analysis result for association between gene expression and imputed indels and SNPs. (a) Venn diagram for unique number of genes

only mapped by SNP or indel or both. (b) Density curve of heritability of gene expression (H2) explained by the top SNP and indel. Red: H2 of the top indel

for the 5,898 genes in a. Green: H2 of the top indel for the 325 genes in a. Blue: H2 of the top SNP for the 5,898 genes in a. Purple: H2 of the top SNP for the

3,186 genes in a. (c) Per cent of probes mapped by eQTL (o5% FDR) by total narrow-sense heritability for 51,190 transcription probes. Probes were

categorized by total narrow-sense heritability previously estimated based on the MRCA family panel. The red bar shows the per cent of probes mapped by

eQTL using the MRCA LCL data alone with imputation of the 1,000G pilot releases. The blue bar shows the per cent of probes mapped using imputation of

1,000G phase 1 variants in MRCA data set excluding probes with indel as the top eQTL. The dash box on top of the blue bar indicates the per cent of

mapped probes before excluding probes with indel as top eQTL. The green bar shows the per cent of probes mapped using imputation of 1,000G phase 1

variants in the MRCA data set. The purple bar shows the per cent of probes mapped using meta-analysis across three tissues excluding the probes with

indel as the top associated variants. The orange bar shows the per cent of probes mapped using meta-analysis across three tissues. The numbers on top of

each group of bars are the number of probes in each heritability category.
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chromosomes (trans). We found that eindels were significantly
enriched in intron in translation region, upstream 50 untranslated
region, UTR (cis� o100 k) and downstream 30UTR (cisþ
o100 k) of the associated gene, and were depleted in exon, distal
cis effect (cis� 4100 k and cisþ 4100 k, Fig. 2c). This pattern
did not change after restricting to common SNPs and indels.
(Supplementary Fig. 2a) and eindels seem to show larger effect
size and more significant evidence (larger LOD score) than eSNPs
in these three regions (Supplementary Fig. 2b,c). Except for the
well-known depletion of indel in exons7, the enrichment and
depletion in other regions cannot be explained by genomic
distribution of available SNPs and indels with high imputation
quality (Supplementary Data 1). We hypothesized that eindels are
more likely to be causal eQTLs in intron in translation region and
regions close to 50 and 30UTR, but this remains to be confirmed
by experiments.

Tissue-specific eQTLs. For a particular SNP-probe set pair, the
eQTL effect may present (coded as 1) in a particular tissue or not
(coded as 0). For the three tissues we studied, this resulted in
eight possible scenarios (from not being an eQTL in any tissues
000 to being eQTL in all the three tissues 111, corresponding
to the order of LCL, PBMC and SKIN). We investigated
tissue-specific eQTL effects for each SNP-probe set pair by

estimating the posterior probability of each of the eight possible
scenarios (see Methods for detail). We denoted P111 as the
posterior probability that the eQTL effect presented in all three
tissues and Ptissue-specific eQTL (tse)¼ 1� P000�P111 as the prob-
ability that eQTL effect presented in at least one but not all tis-
sues. We found that for cis eQTLs (defined as SNP/indel and
probe set are within 1Mb of each other), the mean of Ptse across
all 930,775 SNP-probe set pairs from meta-analysis (o5% FDR)
were 0.448 (s.d. 0.369), the mean of P111 were 0.552 (s.d. 0.369)
and the mean of P000 was 6.15� 10� 5. This suggests that cis
eQTLs are more likely to be shared between tissues but still many
were tissue specific. On the contrary, the mean Ptse for trans
eQTLs (defined as SNP and probe set being either on different
chromosomes or 4500 kb apart) was 0.806 (s.d. 0.121) and the
mean of P111 was 0.192 (s.d. 0.121; Supplementary Fig. 3a–d).
Results for eindels were similar (Supplementary Fig. 3 e-h). This
clearly showed that trans eQTLs are much less likely to be shared
between tissues.

Genes with shared genetic regulators across tissues might have
different functions than genes with tissue-specific regulators.
Characterizing gene pathways and functional groups by tissue
sharing of genetic regulators would help understand the under-
lying regulation of such pathways and help prioritizing genetic
studies using related tissues. We used gene ontology (GO)
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biological process to characterize the functions of genes based on
annotation information downloaded from the manufacture’s
website. For each scenario of eQTL sharing (P000, y, P111), both
Z-score and permutation-based P values were used to assess
significance. For each GO category, we focused on the peak eQTL
on the same chromosome of the probes belonging to genes in this
category. We then asked whether eQTLs for this GO category
showed significant high level of posterior probability for each of
the eight sharing scenarios, respectively. Accounting for 199 GO
terms (number of genes420) and a 5% family-wise false-positive
rate, the Bonferroni correction gave a significant P value
threshold of 2.5� 10� 4 (Supplementary Table 2). We found
that genetic regulators for genes involved in ‘translation’
(Po1.62� 10� 5), ‘oxidation–reduction’ (Po1.65� 10� 4) and
‘proton transport’ (Po2.89� 10� 4) were likely shared between
all three tissues (P111). Genes involved in ‘response to protein
stimulus’ (Po6.57� 10� 7) were likely sharing similar genetic
regulation in PBMC and skin (P011). Genes involved in
‘oxidation–reduction’ (Po2.29� 10� 7) and ‘metabolic process’
(Po4.18� 10� 6) were likely sharing similar genetic regulation in

LCL and skin (P101). ‘tRNA processing’ (Po6.30� 10� 4) were
marginal significantly shared between LCL and PBMC (P110;
Supplementary Data 2).

Potential epigenetic driving factors for eQTLs. Genetic reg-
ulatory variants may affect the gene expression level by different
functional mechanisms. To identify the potential functional role
of eQTLs, functional elements predicted by using ENCODE data
were downloaded from UCSC genome browser (hg19)55. We
pooled the annotation data from the tracks for skin (NHEK) and
blood (GM12878) for mapping and analysis of chromatin state
dynamics of peak eQTLs (either eSNPs or eindels in cis or trans)
identified from this study. This strategy has been shown to be a
powerful way to interpret the function of eQTLs and generate
specific hypothesis for gene expression regulation, as demon-
strated in the Crohn’s disease and PEGER4 gene eQTL
example56.

We divided the peak eSNPs and eindels into three
groups according toMAF: MAFo0.05, 0.05rMAFo0.10 and
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within heterochromatin marks (Ernst et al.55) by different ranges of MAF (MAFo0.05, 0.05rMAFo0.1, 0.1rMAFr0.5). A star on the top of bar

indicates significant depletion (Po10�4, Bonferroni correction for 12� 3 categories is 0.05/36¼ 1.39� 10� 3). (b–d) The fraction of eindel (red bars) and

eindel (blue bars) in functional elements (Ernst et al55) by different ranges of MAF (b: MAFo0.05, c: 0.05rMAFo0.1, d: 0.1rMAFr0.5) compared with

randomly selected SNPs from the same MAF category and genome within ±500 kb of any genes (grey colour). Statistically different between eindels

and eSNPs are also compared. A star on the top of bar indicates significant enrichment (Po10�4, Bonferroni correction for 12� 3 categories is

0.05/36¼ 1.39� 10� 3). A star with solid lines connecting the SNP and indel bars indicates significant difference between the SNP and indel categories

(Po10�4).
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0.10rMAFr0.50, and examined the overlap with each available
functional element. Across all three MAF groups, we found that
both types of eQTLs (eSNP and eindel) were significantly
enriched (P valueo10� 4 by permutation test comparing with
MAF-matched and distance-to-gene-matched SNPs and indels
chosen from 1,000G) in functional elements, including active
promoter, weak promoter, transcriptional elongation and weak
transcribed (Fig. 3b–d). They were both significantly depleted in
heterochromatin marks (Fig. 3a). Both types of eQTLs showed
non-significant overlap with functional elements for inactive/
poised promoter, insulator, polycomb-repressed and common
copy-number variation (Fig. 3b-d), and were marginally sig-
nificant for rare CNVs (P¼ 0.0012 for both eSNP and eindel). For
strong enhancer and weak/poised enhancer, common eQTLs
were enriched in these two functional elements while rare eQTLs
were marginally significantly enriched (P ranges from 0.0011 to
0.0015). Finally, for transcriptional transition, both common and
low-frequent eindels were enriched but only common eSNPs
(MAF45%) were enriched in this functional element (rare eSNP
P value¼ 0.58). To compare between indels and SNPs, we found
that transcriptional elongation and weak transcribed were
significant different between indels and SNPs (P valueo1� 10
� 4). Active promoter was significantly different in common
eSNPs (MAF45%; P valueo1� 10� 4). Transcriptional transi-
tion was significantly different in rare eSNPs (MAFo10%;
P valueo1� 10� 4 ). P value was calculated using simulation by
randomly selected SNPs or indels from the same MAF category
and genome within ±500Kb of any genes. These functional
annotations for individual peak eQTLs that passed the 5% FDR
threshold are available in Supplementary Data 3. Association
results (effect size, LOD score, P value and so on) for these eQTLs
were also provided in this table.

Comparison of eQTLs with known GWAS loci. SNP eQTLs
have been widely used to characterize the function of a disease-
associated variant and point to the underlying biological path-
ways22–47. The newly identified eSNPs and in particular eindels
may continue to help interpret the function of GWAS loci that
could not be explained before. We examined the disease- and
trait-associated loci from the NHGRI GWAS category
(downloaded from http://www.genome.gov/GWAStudies/ on 15
March 2013). Considering the diseases and traits with more than
10 reported genes (Supplementary Table 4) and all cis and trans
eQTLs that passed the 5% FDR threshold, we found that top
diseases or traits enriching genes with significant eSNPs include
mean corpuscular haemoglobin concentration, response to
amphetamines and red blood cell count, while top diseases or
traits enriching genes with significant eindelS include tonometry,
IgE levels, mean corpuscular haemoglobin concentration, coeliac

disease and rheumatoid arthritis. We also examined tissue-
specific eQTLs among GWAS variants and found that tonometry
was among the top list with Z50% trait-associated genes were
regulated by tissue-specific eindels, while temperament (bipolar
disorder), adiponectin levels and glycated haemoglobin levels
were among the top list with Z60% disease or trait-associated
genes regulated by tissue-specific eSNPs (Supplementary Data 4).

Discussion
This is the first study to impute short insertion and deletion
(indel) genome-wide in eQTL mapping study, which provided
unique opportunities to answer several important questions. Our
results suggested that imputation of indels can increase the power
of GWAS for complex traits by about 10%. Although this was an
estimate based on gene expression traits with complex genetic
architecture and full spectrum of heritability, the power gain for
particular disease or traits would vary by their specific genetic
background. After the completion of the 1,000G, many more
high-quality indels will be available for imputation and the
reference panel will be increased from the current 1,092 to 2,500
subjects. We expected that the power gain by imputation of indel
will be even larger.

Our results also suggested that a substantial fraction of
previous identified disease- and trait-associated SNPs were
markers in linkage disequilibrium of indels with larger effect.
Imputation of indels into GWAS would help fine map the causal
variants that were tagged by previous studies. As seen in our
study, this fraction of SNPs tagged by indel would increase as
power increases. In our case, it increases from 3.62 to 9.20% as
sample size increases from 368 to 718.

Previous studies and this study has shown that SNP eQTLs
were enriched in intron and regions closed to UTRs; our study is
the first one to show that indel eQTLs were even more enriched
in these three regions (defined as intron in translation region,
100 kb upstream of 50 UTR and 100 kb of downstream of 30

UTR). We hypothesized that this is because indel is more likely to
be causal regulator as they are more likely to destruct splice sites
and promoter regions but further experiments are required to
validate these hypotheses.

Finally, this study showed that cis eQTLs were more likely to be
shared across tissues, while trans eQTLs were more likely to be
tissue specific. This is consistent with previous findings10. Indel
eQTLs and SNP eQTLs showed similar pattern for tissue
specificity for cis and trans. It suggested that the tissue-
differentiated genetic regulation is not related to the size of the
genetic variants.

All significant SNP and indel eQTLs identified from this study
are freely accessible to the public. We expect that it will be an
important resource for GWAS to interpret function of genetic
variants for complex diseases and traits, particular for structure
variants.

Methods
Data resources. This study includes data from three former studies: (1) MRCA
contained 206 siblings of British descent13. A total of 368 children were genotyped
using the Illumina Sentrix HumanHap300 BeadChip (ILMN300K) or the Illumina
Sentrix Human-1 Genotyping BeadChip (ILMN100K) or both. Global gene
expression in LCLs was measured using Affymetrix HG-U133 Plus 2.0 GeneChip
(including 54,675 transcript probes). (2) Two hundred and forty individuals from
47 Germany eczama families were genotyped with Affy500K and Affy 6.0 SNP
array. The gene expression level of their PBMC was evaluated with Affymetrix
U133 Plus 2.0 GeneChip. (3) Normal skin tissues of 110 subjects from a former
Psoriasis GWAS were genotyped with Perlegen 400K array and the RNA
expression level was evaluated with the same Affymetrix GeneChip. 3,423 probe set
which can be mapped to multiple genome position (based on HG-U133 Plus_2
annotations file, release 34) and 62 Affymetrix control probes were removed in our
analysis.

Table 1 | Definition of all different tissue-specific eQTLs.

Case LCL PBMC SKIN Probability

C1 0 0 0 P(000)
C2 1 0 0 P(100)
C3 0 1 0 P(010)
C4 0 0 1 P(001)
C5 1 1 0 P(110)
C6 1 0 1 P(101)
C7 0 1 1 P(011)
C8 1 1 1 P(111)

eQTL, expression quantitative trait loci; LCL, lymphoblastoid cell line; PBMC, peripheral blood
mononuclear cells.
Note: here we use ‘1’ to indicate the eQTL is present in the corresponding tissue and ‘0’ to
indicate eQTL is absent in that tissue.
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SNP quality control and imputation. SNPs were excluded from further analysis
with the following criteria: (1) the SNP has more than two alleles; (2) the SNP is
not presented in the 1,000G phase 1 release; (3) the SNPs were genotyped ino95%
samples; (4) the Hardy–Weinberg test is significant with P valueo10� 6; (5)
the MAF of the SNP o0.01. SNPs and indels from the 1,000G phase 1 release
(2012-03-14 haplotypes) were imputed using MINIMAC57. A total of 814,715
indels and 10,129,531 SNPs had high-quality score (R240.3 in three studies).

Meta-analysis. We used a weighted z-score in meta-analysis. To account for
different imputation qualities and sample sizes in the three studies, we used a

weighted scheme: Mi ¼
P

j
oj

iz
j
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j
oj

ið Þ2
q and here the weight is a combination of

sample size and imputation quality: oj
i ¼ rji

ffiffiffiffiffi
Nj

p
, where rji is as defined in Li et al.3

To control for multiple testing, a cutoff of FDRo0.05 accounting for all SNP/indel-
probe set pairs were used, corresponding to a P value of o2.58� 10� 6.

Inference of tissue-specific effect. Following Wakefield58, we used y to denote
the observed data and H1 the alternative hypothesis, then for the quantitative trait:
y¼ xTgþZy, where b¼ (g,y) are parameters corresponding to the effects of
covariates x and SNP z. According to Wakefield58, when calculating asymptotic
Bayesian factor (ABF), we only need to consider the sampling distribution of the
MLE: ŷ y � N y;Vð Þj and the prior for yBN(0,W), which gives:

ABF ¼ V þW
V

� �1
2

exp � ŷ2

2
W

V V þWð Þ

 !
ð1Þ

An advantage of using ABF is that the calculation only involves ŷ and its s.e.
from individual studies. And from the above we can calculate ABF1, ABF2 and
ABF3 for the three tissues, respectively. We defined all possible scenarios for tissue
sharing as in Table 1. Then the posterior probability of each scenario can be
calculated.

We defined probability of being tissue-specific eQTL (Ptse ) as:

Ptse¼ 1� P000 � P111 ð2Þ
Here P111 is the posterior probability of sharing eQTLs across all three tissues,

while P000 is the probability that the eQTL does not occur in any tissue. Bayesian
factor for each scenario in Table 1 can be computed based on Bayesian factors from
individual studies, for example, BFc1 is given in formula.

BFc1 ¼
P Data j H1¼ 0H2¼ 0;H3¼ 0ð Þ
P Data j H1¼ 1;H2¼ 1;H3¼ 1ð Þ

¼ P Data j H1¼ 0ÞPðD j H2¼ 0ÞPðD j H3¼ 0ð Þ
P Data j H1¼ 1ÞPðD j H2¼ 1ÞPðD j H3¼ 1ð Þ¼ ABF1�ABF2�ABF3

ð3Þ

Then the posterior probability of P111 is calculated as:
P111 ¼ PðData j 111Þp111P8

i
PðData jpiÞpi

¼ BFC8P8

i
BFCi

, assuming equal prior probabilities pi¼ 1/8,

i¼ 000 to 111. The posterior probability of the other seven scenarios can be
computed in a similar way.

GO enrichment analysis. The Affymetrix expression probes were grouped into
GO categories using annotation information downloaded from the manufacturer’s
website. For each GO category, we focused on the peak eQTL (FDRo5%) on the
same chromosome of the probes belonging to genes in this category and calculated
the mean of P(000), y, P(111) of these eQTLs, denoted as Gi for the ith GO
category for each of the eight scenarios, respectively. The Z-score for the ith GO
category is Zi¼ Gi � m

s=
ffiffi
n

p
i
, where m is the overall mean of P(000), y, P(111) for all

probes annotated to the 9,409 genes, respectively, s is the corresponding s.d. and ni
is the number of probes for the ith GO category that mapped by eQTL. The P value
is computed by comparing the Z-score with a standard normal distribution for
one-sided test.

We also computed the permutation-based P value by shuffling the
correspondence between probes and GO categories while maintaining the same
number of genes for each GO term. From 10,000 permutations, we counted how
many times (Mi) the Gi based on permutated data were larger than Gi based on
observed data. The permutation-based P value is Mi/10,000.

Genomic distribution of SNP and indel eQTLs. Genome annotation was
obtained from the UCSC genome browser (hg19). To examine the distribution of
the physical location of cis and trans eSNPs and eindels, we focused on peak eQTLs
(cis or trans) for each probe set. For a particular SNP-probe pair or indel-probe
pair, we divided the genome into 11 regions related to the gene: upstream TSS
4100 kb (cis� 4100 k), upstream TSS o100 kb (cis� o100 k), intron between
TSS and translation start sites (tx� /intron), exon between TSS and translation
start sites (tx� /exon), intron in translation region (coding/intron), exon in
translation region (coding/exon), intron between translation stop sites and TES
(txþ /intron), exon between translation stop sites and TES (txþ /exon), down-
stream of TES o100 kb (cisþ o100 k), the downstream TES 4100 kb (cisþ
4100 k) and on different chromosomes (trans). We then assigned the peak eSNP

or eindel into one of these categories, respectively, for SNP and indel, and reported
the percentage of peak eSNP or eindel fell into each category.

Distribution of SNP and indel eQTLs related to epigenetic factors. Functional
elements predicted by using ENCODE data were downloaded from UCSC genome
browser (hg19)55. We pooled the data from the skin (NHEK) and blood
(GM12878) tracks for mapping and analysis of chromatin state dynamics. SNPs
and indels located within these functional elements were considered as related to
epigenetic factors. For this analysis, we focused on peak eQTLs (either eSNPs or
eindels in cis or trans). For each MAF category (MAFr0.05, 0.05oMAFr0.1,
0.1oMAFr0.5), we calculated the fraction of eSNPs or eindels fell into each
functional element category. The significance of enrichment was determined by
randomly selecting the same number of SNPs or indels from the same MAF
category and computed the fraction of random SNPs or indels fell into these
functional regulatory regions. We counted how many times (M) the fraction of
random SNP or indel as larger than the fraction based on eSNPs or eindels.
Enrichment P value (Fig. 3b-d) was calculated as M/10,000 for 10,000
permutations. Depletion P value (Fig. 3a) was calculated as 1�M/10,000.

Overlapping with known GWAS-reported genes. GWAS results were obtained
from the NHGRI GWAS database (downloaded from http://www.genome.gov/
admin/gwascatalog.txt on 10 January 2014). GWAS-reported genes were obtained
from the ‘Reported Gene’ column in gwascatalog.txt file. For each disease or trait,
we calculated the per cent of reported genes associated with at least one SNP or
indel, respectively. We also calculated the percentage of reported genes associated
with eSNP or eindel that showed tissue-specific effects (Ptse40.5)

Online resources. On our website (http://eqtl.rc.fas.harvard.edu/indeleQTL/), we
provided flat tables (csv files) for all eQTL results with meta-analysis FDRo0.05.
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