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Equal-Diagonal QR Decomposition and its
Application to Precoder Design for
Successive-Cancellation Detection

Jian-Kang Zhang, Aleksandar Kavčić and Kon Max Wong

Abstract—In multiple-input and multiple-output (MIMO) mul-
tiuser detection theory, the QR decomposition of the channel ma-
trix H can be used to form the back-cancellation detector. In
this paper we propose an optimal QR decomposition, which we
call the equal-diagonal QR decomposition, or shortly the QRS de-
composition. We apply the decomposition to precoded successive-
cancellation detection, where we assume that both the transmitter
and the receiver have perfect channel knowledge. We show that,
for any channel matrix H, there exists a unitary precoder matrix
S, such thatHS = QR, where the non-zero diagonal entries of the
upper triangular matrix R in the QR decomposition ofHS are all
equal to each other. The precoder and the resulting successive-
cancellation detector have the following properties. a) The mini-
mum Euclidean distance between two signal points at the channel
output is equal to the minimum Euclidean distance between two
constellation points at the precoder input up to a multiplicative
factor that equals the diagonal entry in theR-factor. b) The su-
perchannel HS naturally exhibits an optimally ordered column
permutation, i.e., the optimal detection order for the V-BLAST
detector is the natural order. c) The precoderS minimizes the
block error probability of the QR successive cancellation detec-
tor. d) A lower and an upper bound for the free distance at the
channel output is expressible in terms of the diagonal entries of
the R-factor in the QR decomposition of a channel matrix. e) The
precoder S maximizes the lower bound of the channel’s free dis-
tance subject to a power constraint. f) For the optimal precoder
S, the performance of the QR detector is asymptotically (at large
signal-to-noise ratios) equivalent to that of the maximum likeli-
hood detector (MLD) that uses the same precoder. Further, in
this paper we consider two multiplexing schemes: time division
multiple access (TDMA) and orthogonal frequency division multi-
plexing (OFDM). We design the optimal precoder for binary phase
shift keying (BPSK) with these multiplexing schemes, but outline
the procedure to extend the method to non-binary schemes such as
PAM, PSK and QAM. Finally, examples are given that illustrate
the performance of the precoder and the corresponding successive
cancellation detector.

Index Terms— maximum likelihood detection, minimum dis-
tance, multiple-input multiple-output (MIMO) systems, orthog-
onal frequency division multiplexing (OFDM), precoders, QR-
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I. I NTRODUCTION

The QR decomposition [1], [2] is a commonly used tool in
various signal processing applications [3], [4] [5]. The QR de-
composition of a matrixH is a factorizationH = QR, where
Q is a unitary matrix andR is an upper triangular matrix. In
this paper we study the application of the QR decomposition
in precoded successive-cancellation detection and we propose
an optimal QR decomposition. In multiple-input and multiple-
output multiuser detection theory [3], [5], [6], [7], [8], [9]
[10], [11], [12], [13], [14], [15] [16], [17], the QR decomposi-
tion can be used to form the back-cancellation detector. Though
it is easily shown that such a detector is not optimal, the QR
decomposition is still very appealing because of its implemen-
tation simplicity and numerical stability [2].

In [18], Golden et al. introduced an optimally ordered suc-
cessive cancellation detector. We show that this detector may
be equivalently represented by a permutation matrixP followed
by a QR-decomposition-based detector. Thereby, the algorithm
presented by Golden et al. [18] has an equivalent interpretation:
it is an efficient algorithm to determine the permutation matrix
P, such that the QR decomposition ofHP (that is,HP = QR)
gives rise to an optimal back-cancellation detector1. In this pa-
per we extend the work of Golden et al. [18] to a general QR
decompositionHS = QR, whereS is a unitary matrix. We
shall show that for a wide class of detection problems, the opti-
mal matrixS is one that delivers an upper triangular matrixR
whose diagonal entries are allequalto each other. We call this
special matrixR theequal-diagonal R-factor, and the resulting
decompositionHS = QR, theequal-diagonalQR decompo-
sition, or simply theQRS-decomposition.

The paper proceeds to show that the QRS-decomposition has
an important role to play in precoded block transmission over
dispersive channels under the assumption that both the transmit-
ter and the receiver have perfect channel knowledge. The filter-
bank precoding framework by Xia [20], and Scaglione, Gian-
nakis and Barbarossa [21] unifies several existing modulation
schemes, including orthogonal frequency division multiplexing
(OFDM) [22], [23], [24], [25], [26], [27], discrete multitone

1The reader should also see [19] where the link to a fast algorithm involving
QR decompositions is explicitly made.
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(DMT) [28], [29], [30], [31], [32], time division multiplex ac-
cess (TDMA) [33] and code division multiplex access (CDMA)
[3], [33], [34], both for single user and multiuser communica-
tions. Scaglione et al. [35] proposed precoders that maximize
the output signal to noise ratio (SNR) or minimize the mean-
square error under zero-forcing or fixed transmitted power con-
straints. The block transmitter that maximizes the information
rate was derived in [21] by the same authors. Milanovic et
al. [36] studied the design of robust redundant precoding filter
banks with zero-forcing equalization for unknown frequency-
selective channels. Recently, Ding et al. [37] designed a pre-
coder for TDMA systems that minimizes the average bit error
probability when using zero-forcing equalizers.

A universally optimal precoder for detection applications2 is
one that minimizes the detection error probability of the max-
imum likelihood detector [3], [38], [39], [40]. It is known
that at high signal-to-noise ratios (SNRs), the average proba-
bility of error over all blocks is dominated by the free distance
term [39], [40]. This suggests that maximizing the free distance
may be a good precoder design strategy. However, directly
maximizing the free distance results in a precoder design and
a detection strategy that are too complex to be affordable. In
this paper, under some fairly loose assumptions, we derive the
upper and lower bounds on the channel’s free distance in terms
of the diagonal entries of the R-factor in the QR decomposi-
tion [41]. Subject to a power constraint, we design the optimal
precoder that maximizes the lower-bound of the channel’s free
distance. The resulting precoder is exactly theS matrix in the
QRS decomposition,HS = QR.

Curiously, the same optimal precoder matrix can be derived
under a different optimization criterion. Namely, if we design
the precoder to minimize the block error probability of a suc-
cessive cancellation detector that employs QR decomposition,
the optimal precoder is the S-factor of the QRS-decomposition,
HS = QR. For this reason we call the S-factor theQR-
optimalprecoder.

In this paper, we apply the QRS decomposition to derive the
optimal QR-precoder for TDMA and OFDM systems used over
channels with intersymbol interference. Examples are given to
illustrate the performance of the precoder and the correspond-
ing successive cancellation detector.

The paper is structured as follows. In Section II, we review
the QR-decomposition-based successive cancellation detector
and the optimally ordered cancellation algorithm of Golden et
al. [18]. In Section III, we develop the underlying QR de-
composition theory by introducing the QRS decomposition and
proving its properties. In Section IV, we introduce the channel
models. Section V is devoted to deriving the QR-optimal pre-
coder for the successive-cancellation detector. In Section VI,
we show that the optimal precoder can also be derived using a
free-distance criterion. Extensive simulation results, compar-
ing the precoder to other precoders available in the literature,

2When an error correction code is used, it does not make sense to talk about
the optimality of a precoder, because, for example, any invertible precoder
would allow the capacity to be achieved, provided that an optimal code for
that precoder is used. Therefore, to talk about the optimality of a precoder, one
must use constraints other than just capacity achievability.

are presented in Section VII. Section VIII concludes the paper.
Notation: Matrices are denoted by uppercase boldface char-

acters (e.g.,A), while column vectors are denoted by lowercase
boldface characters (e.g.,b). The(i, j)-th entry ofA is denoted
by Ai,j . Thei-th entry ofb is denoted bybi. The columns of
anM ×N matrixA are denoted bya1,a2, · · · ,aN . Notation
Ak denotes a matrix consisting of the firstk columns ofA, i.e.,
Ak = [a1,a2, · · · ,ak]. By convention,A0 = 1. The remain-
ing matrix after deleting columnsak1 ,ak2 , · · · ,aki from A is
denoted byAk1,k2··· ,ki . Thej-th diagonal entry of a matrixA
is denoted by[A]j = Aj,j . NotationA⊥ denotes the orthonor-
mal complement of a matrixA in CN . The transpose ofA is
denoted byAT . The Hermitian transpose ofA (i.e., the con-
jugate and transpose ofA) is denoted byAH . The matrixA+

stands for the pseudo-inverse ofA; i.e.,A+ = (AHA)−1AH .
The notationPA = I − AA+ denotes the projection matrix
(that projects an arbitrary vector to the null space ofAH ).

II. REVIEW OF THE QR DECOMPOSITION FOR SUCCESSIVE

CANCELLATION DETECTION

We first briefly review the successive cancellation detection
algorithm that uses the QR decomposition, then we review the
optimally ordered detector developed by Golden et al. [18], and
finally we show how to equivalently represent this detector as a
precoded QR-decomposition cancellation detector.

Let x = [x1, · · · , xN ]T be anN × 1 vector of symbols to
be transmitted over a noisy channel. Each symbolxi is chosen
from a finite-size alphabetX . Consider a general multiple-input
and multiple-output (MIMO) channel model

r = Hx + ξ, (1)

where H is an M × N full column rank channel matrix
(known to the receiver) withM ≥ N , ξ = [ξ1, · · · , ξM ]T

is a white Gaussian noise vector whereE(ξξH) = σ2I, and
r = [r1, · · · , rM ]T is the observed received vector. Our task is
to detect (estimate) the vectorx ∈ XN given the noisy obser-
vationr. We denote the estimate ofx by x̂ = [x̂1, · · · , x̂N ]T .

A. Successive cancellation detection using QR decomposition

The QR-decomposition-based successive cancellation detec-
tor is captured by the following three steps:

Algorithm 1 (QR-decomposition-based successive cancella-
tion):

1) QR-decomposition. Perform the QR-decomposition,
H = QR, whereQ is a tall3 M × N column-wise or-
thonormal matrix andR is an upper triangular square ma-
trix,

R =




R1,1 R1,2 . . . R1,N

0 R2,2 . . . R2,N

...
...

. . .
...

0 0 . . . RN,N


 ,

3A tall matrix is a matrix whose number of columns does not exceed the
number of rows.
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whereRk,k > 0 for k = 1, 2, · · · , N . Left-multiplying
(1) byQH , we get



r̃1

r̃2

...
r̃N


=




R1,1 R1,2 . . . R1,N

0 R2,2 . . . R2,N

...
...

.. .
...

0 0 . . . RN,N







x1

x2

...
xN


+




ξ̃1

ξ̃2

...
ξ̃N


,

(2)
where r̃ = [r̃1, · · · , r̃N ]T = QHr and ξ̃ =
[ξ̃1, · · · , ξ̃N ]T = QHξ. Equation (2) is equivalently writ-
ten as

r̃k = [R]kxk +
N∑

m=k+1

Rk,mxm + ξ̃k,

where[R]k denotes thek-th diagonal entry ofR.
2) Hard decision. From the last row in (2) we first esti-

mate the symbolxN by making the hard decision̂xN =
Quant [r̃N/[R]N ]. The functionq = Quant(t) setsq to
the element ofX that is closest (in terms of Euclidean
distance) tot.

3) Cancellation. Substitute the estimated symbolx̂N back
into the(N−1)-th row in (2) so as to remove the interfer-
ence term iñrN−1 and then estimatexN−1. Continue this
procedure until we obtain the estimate of the first symbol
x1. The above procedure is described by the following
recursive algorithm,

x̂N = Quant
[

r̃N

[R]N

]
,

x̂k = Quant

[
r̃k −

∑N
m=k+1 Rk,mx̂m

[R]k

]
,

for k = N − 1, N − 2, · · · , 1.

B. Optimally ordered detection

Golden et al. [18] proposed a vertical Bell Laboratories lay-
ered space-time (V-BLAST) system with an optimal ordered
detection algorithm that maximizes the SNR.

Algorithm 2(see Golden et al. [18]):
1) Initial nulling. Find an initial nulling vector with the

smallest norm using zero-forcing. That is, find the in-
dexkN , as the position of the smallest diagonal entry of(
HHH

)−1
,

kN = arg min
1≤j≤N

[(
HHH

)−1
]

j
. (3)

Then, project the received signalr onto the nulling direc-
tion and perform the hard decision to detect the symbol

xkN
. That is, set̂xkN

= Quant
[(

e(N)
kN

)H

r
]
, where

e(N)
kN

is thekN -th column ofE(N) = (H+)H .
2) Cancellation. Subtract the detected signal from the re-

ceived signal to get

r(N−1) = r− hkN x̂kN ,

wherehkN
denotes thekN -th column ofH.

3) Recursion. Repeat the above two steps until all symbols
are detected,

ki=arg min
1≤j≤i

[(
H

H

ki+1,ki+2,··· ,kN
Hki+1,ki+2,··· ,ki

)−1
]

j

,

x̂ki=Quant
[(

e(i)
ki

)H

r(i)

]
,

r(i−1)=r(i) − hki x̂ki for i = N − 1, N − 2, · · · , 1,

where e(i)
ki

denotes theki-th column of E(i) =(
H

+

ki+1,ki+2,··· ,kN

)H

andhki
denotes theki-th column

of Hki+1,ki+2,··· ,kN
.

C. QR interpretation of Algorithm 2

We use the QR decomposition to interpret the algorithm of
Golden et al. [18] given in Section II-B. The first step (3) is
equivalent to finding a subchannel whose SNR is the highest
among allN possible subchannels. If we look at this problem
from the viewpoint of the signal space that is spanned by the
column vectors ofH, then the first step (3) is to maximize the
difference between the column being projected and its projec-
tion. Repeat the above procedure for the remaining columns.
Finally, Algorithm 2 actually finds the optimal order. That is,
it finds a permutation matrixP = [pk1 , · · · ,pkN

], wherepi

denotes anN × 1 vector whosei-th element is one, but others
are zeros, such that the QR decomposition ofHP gives rise to
the optimally ordered successive cancellation detector.

Algorithm 3(QR interpretation of Algorithm 2):
1) Initialization. Find the column vector ofH that has the

longest distance between itself and its projection on the
space spanned by all other columns ofH. The index of
this column is

kN = arg max
1≤k≤N

∥∥∥
(
I−HkH

+

k

)
hk

∥∥∥
2

,

and the column ishkN
. LetαN =

(
I−HkN

H
+

kN

)
hkN

andqN = αN/ ‖ αN ‖.
2) Recursion. Repeat the first step by stripping off the col-

umn vectors one by one

ki =arg max
1≤k≤N

k 6=ki+1,··· ,kN

∥∥∥(I−Hk,ki+1,··· ,kN
H

+

k,ki+1,··· ,kN
)hk

∥∥∥
2

for i = N − 1, N − 2, · · · , 1. Define αi as αi =(
I−Hki,ki+1,··· ,kN

H
+

ki,ki+1,··· ,kN

)
hki and let qi =

αi/ ‖ αi ‖.
3) Permutation matrix formulation. Finally, we obtain

the optimal matrixP = [pk1 , · · · ,pkN ] and Q =
[q1, · · · ,qN ] such thatHP = QR.

It is easily verified that Algorithm 2 is equivalent to apply-
ing Algorithm 1 to r = H′x′ + ξ, whereH′ = HP and
x = Px′. Therefore, if we precode a vectorx′ with the permu-
tation matrixP, and apply Algorithm 1 to detectx′, we get the
optimally ordered successive-cancellation detector of Golden et
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al. [18]. In the remainder of the paper, we donot confine the
precoder matrix to be a permutation matrix, and we derive the
optimal QR decomposition and the corresponding successive-
cancellation detector.

III. E QUAL-DIAGONAL QRSDECOMPOSITION

In this section we develop the equal-diagonal QR decompo-
sition, which we call simply the QRS decomposition. This de-
composition will hold the key to the design of the optimal (not
necessarily permutation) precoder matrix.

A. QRS decomposition

Lemma 1:Let H be anM × N full column rank matrix
(M ≥ N ). Then, the diagonal entries in the R-factorR of
the QR decomposition ofH are

[R]k =

√
det

(
HH

k Hk

)

det
(
HH

k−1Hk−1

) for k = 1, 2, · · · , N. (4)

Proof: The proof follows directly once the following equa-
tion is verified

det(HH
k Hk) = det(RH

k Rk) =
k∏

i=1

[R]2i .

¤
Definition 1: If a full column rank matrixH has a QR de-

compositionH = QR, where the matrixR has equal ele-
ments along the diagonal, then the matrixR is called anequal-
diagonal R-factor.

Theorem 1:Let H be anM × N full column rank matrix
(M ≥ N ). Then,H has an equal-diagonal R-factor if and only
if the submatrixHk of H satisfies

det
(
HH

k Hk

)
= det

(
HHH

) k
N for k = 1, 2, · · · , N.

(5)

Proof. By Lemma 1, the series of equalities[R]1 = [R]2 =
· · · = [R]N is equivalent to

det
(
HH

1 H1

)

det
(
HH

0 H0

) =
det

(
HH

2 H2

)

det
(
HH

1 H1

) = · · · = det
(
HH

NHN

)

det
(
HH

N−1HN−1

) .

This shows thatdet
(
HH

k Hk

)
is a geometric sequence ink.

Sincedet
(
HH

0 H0

)
= 1 anddet

(
HH

NHN

)
= det

(
HHH

)
,

we havedet
(
HH

k Hk

)
= det

(
HHH

)k/N
. ¤

Theorem 1 gives us a necessary and sufficient condition to
check if a matrixH has an equal-diagonal R-factor. But it does
not tell us how to transform an arbitrary matrix into a matrix
with an equal-diagonal R-factor. We next develop the apparatus
that will enable this transformation.

Lemma 2:Let A be a positive definite matrix. Then, the
equations

γHAγ = 1 (6)

γHγ = 1 (7)

have a solution vectorγ if and only if λmin(A) ≤ 1 and
λmax(A) ≥ 1, whereλmax(A) is the maximal eigenvalue of
A, andλmin(A) is the minimal eigenvalue ofA.
Proof: For any unit norm vectorγ, we haveλmin(A) ≤
γHAγ ≤ λmax(A). Hence, equations (6) and (7) have a solu-
tion if and only ifλmin(A) ≤ 1 andλmax(A) ≥ 1. ¤

Employing Lemma 2 we further get the following result.
Corollary 1.1: Let A be aK × K positive definite matrix,

andB be anN ×N positive definite matrix, whereK ≤ N . If
det(A)1/K = det(B)1/N , then, the following equations

γHAγ = det(B)
1
N

γHγ = 1

always have a solution vectorγ.
Proof. Let Ã = A/det(B)1/N . Then,λmin(Ã) ≤ 1 and

λmax(Ã) ≥ 1. Applying Lemma 2 toÃ yields the desired
result. ¤

Canonical equations: The following system of equations
will prove to be crucial for the remainder of the paper. Let
H be a full column rank tallM × N matrix and

√
λk (k =

1, 2, · · · , N ) be its singular values that we arrange into a matrix
Λ = [diag(

√
λ1, · · · ,

√
λN ),0N×(M−N)]T (hereλ1, . . . , λN

are the eigenvalues ofHHH). We seek to find a matrixV of or-
thonormal vectorsV = [v1,v2, · · · ,vN ], such that the vectors
v1,v2, · · · ,vN satisfy the following constraints:

1) The vectorv1 satisfies

vH
1 ΛHΛv1 = det

(
HHH

)1/N
(8)

vH
1 v1 = 1. (9)

2) Fork ≥ 1, the vectorvk+1 may be expressed asvk+1 =
V⊥

k zk+1, wherezk+1 satisfies

zH
k+1A

(k)zk+1 = det
(
HHH

)1/N
(10)

zH
k+1zk+1 = 1, (11)

with
A(k) = (ΛV⊥

k )HPΛVk
ΛV⊥

k . (12)

Theorem 2:Let H be a full column rank tallM ×N matrix
and

√
λk (k = 1, 2, · · · , N ) be its singular values arranged into

a matrix Λ = [diag(
√

λ1,
√

λ2, · · · ,
√

λN ),0N×(M−N)]T .
There always exists a unitary matrixV = [v1,v2, · · · ,vN ]
whose columnsv1,v2, · · · ,vN satisfy the canonical equa-
tions (8)–(12).
The proof of Theorem 2 is given in the Appendix.

We next show that the matrixV in Theorem 2 is comprised
of the eigenvectors ofHHH if and only if H has an equal-
diagonal R-factor.

Theorem 3:Let H be an M × N full column rank
matrix (M ≥ N ) and let H = UΛV be the
singular value decomposition (SVD) ofH with Λ =
[diag(

√
λ1, · · · ,

√
λN ),0N×(M−N)]T , where λ1 ≥ λ2 ≥

· · · ≥ λN > 0. Then,H has an equal-diagonal R-factor if
and only if the vectorsv1,v2, · · · ,vN of the unitary matrixV
and the singular value matrixΛ satisfy the canonical equations
(8)-(12).
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The proof of Theorem 3 is given in the Appendix.
Theorem 3 not only provides a criterion to judge if the di-

agonal elements of the R-factor are equal, but also implicitly
provides a recursive algorithm to construct a matrix with such
R-factor. This recursive algorithm is obtained by successively
constructing the vectorsv1,v2, · · · ,vN to satisfy equations
(8)-(11). We provide the algorithm in Sections III–B and III–C.

Theorem 4:(Equal-diagonal QRS decomposition) For an ar-
bitrary M × N matrix H with rank r, there exists a unitary
matrixS such thatHS has an equal-diagonal R-factor, i.e.

HS = QR, (13)

whereQ is anM×r column-wise orthonormal matrix andR =
[ Rr×r 0r×(N−r) ] with Rr×r being the equal-diagonal R-
factor.
Proof: Let the singular-value decomposition (SVD) of the ma-
trix H beH = UΛV, whereU is anM ×M unitary matrix,
V is anN ×N unitary matrix and

Λ =
(

Λr×r 0r×(N−r)

0(M−r)×r 0(M−r)×(N−r)

)
, (14)

with Λr×r = diag
(√

λ1,
√

λ2, · · · ,
√

λr

)
, λ1 ≥ λ2 ≥ · · · ≥

λr > 0. Let H̃ = H · (VH
)
r
, i.e.,

H̃ = U
(

Λr×r

0(M−r)×r

)
. (15)

Now the key to the proof is to show that there exists a uni-
tary matrix S̃ such that the diagonal entries in the R-factor
of the QR decomposition of̃HS̃ are equal. IfH̃S̃ is to
have an equal-diagonal R-factor, then by Theorem 3, the ma-
trix of its right singular vectors must satisfy the canonical
equations (8)–(12). (Notice that by multiplying̃H by a uni-
tary matrix S̃, we do not change the singular values, so the
equations (8)–(12) keep their form.) Since (by Theorem 2)
the canonical equations (8)–(12) always have a solution, we
conclude that the desired matrix of right singular vectors ex-
ists, and hence the matrix̃S with the designed property must
exist too. Therefore, we can writẽHS̃ = QRr×r with

[Rr×r]1 = [Rr×r]2 = · · · = [Rr×r]r =
√

λ1λ2 · · ·λr
1/r

.
Let S = [(VH)rS̃, (VH)1,2,··· ,r]. Then, S is an N × N

unitary matrix satisfyingHS = [H̃S̃,H(VH)1,2,··· ,r] =
Q[Rr×r,0r×(N−r)] = QR. ¤

B. Construction of the S-factor

Implicitly stated in the proof of Theorem 4 is the following
recursive algorithm to find the S-factor of the QRS decomposi-
tion HS = QR.

Algorithm 4(Construction of the S-factor):
1) SVD. Perform the SVD ofH = UΛV and formH̃ ac-

cording to (15).
2) Initialization. Determine the first column of̃S, i.e., s̃1 =

(S̃1,1, · · · , S̃r,1)T , such that constraints

s̃H
1 H̃HH̃s̃1 = det

(
H̃HH̃

)1/r

(16)

s̃H
1 s̃1 = 1 (17)

are satisfied.
3) Recursion (reduce the dimension and decouple con-

straints). Set̃sk+1 = S̃⊥k zk+1, wherezk+1 is any vector
that satisfies

zH
k+1C

(k)zk+1 = det
(
H̃HH̃

)1/r

(18)

zH
k+1zk+1 = 1, (19)

with C(k) = (H̃S̃⊥k )HPH̃S̃k
H̃S̃⊥k .

4) Complete the S-factor. S = [VrS̃, (VH)1,··· ,r].
Remark: We would like to make some comments on the

recursive algorithm.
• The first column of S̃ must lie both on the hyper-

ellipse and the hyper-sphere, which are determined by the
quadratic equations (16) and (17), respectively. These
equations do have a solution (see Corollary 1.1). In fact,
they have an infinite number of solutions whenr > 2.
Additional constraints may be imposed to narrow the so-
lution space, but we do not pursue this option here. For us,
all possible solutions of (16)-(19) are equally good.

• From Theorem 1 we know thatdet
(
C(k)

)
=

det
(
H̃HH̃

)(r−k)/r

. This, in fact, is equivalent to

det(C(k))1/(r−k) = det(H̃HH̃)1/r. Therefore, in each
recursion, equations (18) and (19) keep the same struc-
ture. This structure ensures (see Corollary 1.1) that the
equations (18) and (19) have a solution for everyk ≥ 1.

• Once we have determined the first columns̃1 of S̃, we
look for the second columñs2 of S̃ in the space orthog-
onal to s̃1 via the transform̃s2 = S̃⊥1 z2. Thereby, the
orthogonality s̃H

1 s̃2 = 0 is automatically satisfied; fur-
ther, the constraints oñs2 are transformed into constraints
(18)-(19) which involve onlyz2. More importantly, we
transform joint constraints oñs1 ands̃2, into disjoint con-
straints: one for̃s1, and the other forz2 alone. Thereby,
we also preserve the structure of the recursive algorithm,
i.e., the constraints (16) and (17) associated withs̃1 have
the same structure as the constraints (18)-(19) associated
with z2, which is the key to the successful design of the
unitary matrixS̃ in question. We continue the procedure
until we determine the last columñsr.

C. An explicit S-factor

In Section III-B we established that the solution for the S-
factor is not unique. In the following we show how to find
an explicit special solution of equations (16)-(19). Since the
recursive step in Algorithm 4 involves two quadratic equations
with the same structure, the key to solving (16)-(19) is to solve
for z the following equations.

zHCz = det(H̃HH̃)1/r (20)

zHz = 1, (21)

whereC is a positive definite matrix. Let the eigenvalue de-
composition ofC beC = V(C)Λ(C)(V(C))H , whereΛ(C) =
diag

(
λ

(C)
1 , · · · , λ

(C)
ρ

)
with λ

(C)
1 ≥ λ

(C)
2 ≥ · · · ≥ λ

(C)
ρ > 0.
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Let z = V(C)y, wherey = [y1, · · · , yρ]T . Substituting this
into (20) and (21), respectively, yields

yHΛ(C)y = det(H̃HH̃)1/r (22)

yHy = 1. (23)

Now we consider two cases:
Case 1ρ = 2. Equations (22) and (23) have four real solu-

tions, one of which is

y =
(

y1

y2

)
=




√
det(H̃HH̃)1/r−λ

(C)
2

λ
(C)
1 −λ

(C)
2

√
λ

(C)
1 −det(H̃HH̃)1/r

λ
(C)
1 −λ

(C)
2


 . (24)

Case 2 ρ > 2. In this case, there is an infinite number of
solutions to equations (22) and (23). We can obtain a special
solution as follows,

y1 =

√√√√det(H̃HH̃)1/r − λ
(C)
ρ

λ
(C)
1 − λ

(C)
ρ

y` = 0 for ` = 2, · · · , ρ− 1 (25)

yρ =

√√√√λ
(C)
1 − det(H̃HH̃)1/r

λ
(C)
1 − λ

(C)
ρ

.

Using the above specific solutions (24) and (25) in each recur-
sion of Algorithm 4, we get the following algorithm to compute
an explicit S-factor.

Algorithm 5(Construction of an explicit S-factor):
1) SVD. Perform the SVD ofH = UΛV and formH̃ ac-

cording to (15).
2) Initialization. An explicit solution for the first column of

S̃, i.e., s̃1 = (S̃1,1, · · · , S̃r,1)T , is

S̃1,1 =

√
det(H̃HH̃)1/r − λr

λ1 − λr

S̃k,1 = 0 for k = 2, · · · , r − 1

S̃r,1 =

√
λ1 − det(H̃HH̃)1/r

λ1 − λr
.

In this case, it is not hard to verify that

S̃⊥1 =




−S̃r,1 01×(r−2)

0(r−2)×1 I(r−2)×(r−2)

S̃1,1 01×(r−2)


 .

3) Form the positive definite matrix for recursion. Set (start-
ing initially with k = 1)

C(k) = (H̃S̃⊥k )HPH̃S̃k
H̃S̃⊥k .

4) Eigenvalue decomposition. Perform the eigenvalue de-
composition ofC(k),

C(k) = V(k)Λ(k)
(
V(k)

)H

,

whereV(k) is a (r − k) × (r − k) unitary matrix and
Λ(k) = diag(λ(k)

1 , · · · , λ
(k)
r−k) with λ

(k)
1 ≥ λ

(k)
2 ≥ · · · ≥

λ
(k)
r−k > 0.

5) Recursion. Set̃sk+1 = S̃⊥k V(k)y(k) for k = 1, · · · , r−2,

wherey(k) =
[
y
(k)
1 , y

(k)
2 , · · · , y

(k)
r−k

]T

is determined by

y
(k)
1 =

√√√√det(H̃HH̃)1/r − λ
(k)
r−k

λ
(k)
1 − λ

(k)
r−k

y
(k)
` = 0 for ` = 2, · · · , r − k − 1

y
(k)
r−k =

√√√√λ
(k)
1 − det(H̃HH̃)1/r

λ
(k)
1 − λ

(k)
r−k

.

Whenk = r − 1, set̃sr = S̃⊥r−2V
(r−2)y(r−1) where

y(r−1) =




−
√

det(H̃HH̃)1/r−λ
(r−2)
2

λ
(r−2)
1 −λ

(r−2)
2

√
λ

(r−2)
1 −det(H̃HH̃)1/r

λ
(r−2)
1 −λ

(r−2)
2


 .

6) Complete the explicit S-factor.
S = [(VH)rS̃, (VH)1,··· ,r].

For example, whenH = diag(
√

λ1,
√

λ2), the S-factor is

S =




√ √
λ2√

λ1+
√

λ2
−

√ √
λ1√

λ1+
√

λ2√ √
λ1√

λ1+
√

λ2

√ √
λ2√

λ1+
√

λ2


 .

D. Properties of equal-diagonal R-factors

Definition 2: Define the minimum distance of the constella-
tionX as

dmin(X ) = min
x,x′∈X ,x6=x′

|x−x′| =
√

min
x,x′∈XN ,x 6=x′

||x− x′||2.
(26)

Definition 3: Define the free distance of anM ×N channel
matrixH as

dfree(H) =
√

min
x,x′∈XN ,x 6=x′

(x− x′)HHHH(x− x′). (27)

The following theorem shows that the free distance can be
bounded in terms of the diagonal entries of the R-factor in the
QR decomposition of a channel matrix.

Theorem 5:LetH be anM×N full column rank tall matrix
andR be the R-factor in the QR decomposition ofH = QR.
Denoting the diagonal elements ofR by [R]k, we have,
[

min
1≤k≤N

[R]k

]
· dmin(X ) ≤ dfree(H) ≤ [R]1 · dmin(X ). (28)

Proof: Consider two different signal vectors:x =
[x1, x2, · · · , xN ]T andx′ = [x′1, x

′
2, · · · , x′N ]T . If xk = x′k

for k = 2, · · · , N , butx1 6= x′1, then

(x− x′)HHHH(x− x′) = [R]21|x1 − x′1|2. (29)
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Hence, by taking the minima of both sides of (29), we get

d2
free(H) ≤ min

x1,x′1∈X ,x1 6=x′1
[R]21 · |x1 − x′1|2 = [R]21 · d2

min(X ),

which leads todfree(H) ≤ [R]1 · dmin(X ). This completes the
proof of the right-hand side of inequality (28). To prove the left
hand side of (28), note that

(x−x′)HHHH(x−x′) =
N∑

i=1

∣∣∣∣∣∣

N∑

j=i

Ri,j · (xj − x′j)

∣∣∣∣∣∣

2

. (30)

Assumex 6= x′. Let k be an integer such thatxi = x′i, for i >
k, butxk 6= x′k. Then, from (30), using the upper triangularity
of R, we have

(x− x′)HHHH(x− x′) =
k∑

i=1

∣∣∣∣∣∣

k∑

j=i

Ri,j(xj − x′j)

∣∣∣∣∣∣

2

≥ [R]2k|xk − x′k|2
≥ [R]2k · d2

min(X ). (31)

Taking the minima of both sides of (31) yieldsdfree(H) ≥[
min

1≤k≤N
[R]k

]
· dmin(X ), which completes the proof. ¤

From Theorem 5 we immediately obtain:
Property 1: LetH be anM×N full column rank tall matrix

that has an equal-diagonal R-factor. Then,

dfree(H) =
(
det

(
HHH

))1/2N
dmin(X ) = [R]k · dmin(X ).

(32)

Property 1 shows that for a channel matrixH with an
equal-diagonal R-factor, the minimum Euclidean distance of
the signal lattice before the channel (dmin(X )) and the mini-
mum Euclidean distance of the signal lattice after the channel
(dfree(H)), are equivalent up to a multiplicative factor[R]k.
We know that the free distance determines the detection per-
formance of the maximum likelihood detector when the signal
to noise ratio is high [39]. From Property 1 we conclude that
if the channelH has an equal-diagonal R-factor, then the free
distance is computed by the QR decomposition. Therefore, this
suggests that if the channel matrix has an equal-diagonal R-
factor, the detection performance of the QR successive cancel-
lation detector is asymptotically equivalent to that of the maxi-
mum likelihood detector as SNR→∞ (which we will demon-
strate in Section V and Section VI).

Suppose we wish to use the VBLAST detector [18] on a
channel that has the equal-diagonal R-factor. A natural ques-
tion is: What is the optimal detection order? The following
property gives the answer.

Property 2: If a channel matrix has an equal-diagonal R-
factor, the optimal detection order (that ensures that the high
SNR components are detected first) is the natural order, i.e.,
xN → xN−1 → · · · → x1, in other words, thei-th symbol to
be detected is the symbolxN+1−i.

Proof of Property 2: The Gram-Schmidt orthogonalization
procedure ofH is described as follows:

β1 = h1 (33)

βj = hj −
j−1∑

k=1

cj,kβk, for j = 2, · · · , N, (34)

cj,k =
hH

j βk

βH
k βk

. (35)

First, we consider theN -th column hN . Suppose
that we exchange an arbitraryK-th column hK of H
with the N -th column hN ,K 6= N . Let H́ =
[HK−1,hN ,hK+1,hK+2, · · · ,hN−1,hK ]. Then, the Gram-
Schmidt orthogonalization procedure of the firstK−1 columns
of H́ is the same as that of the firstK − 1 columns ofH, but
beyond theK-th column, they are different, i.e.,

β́j = βj for j = 1, 2, · · · , K − 1 (36)

β́j = h́j −
j−1∑

k=1

ćj,kβ́k for j =K,K+1,· · ·, N (37)

ćj,k =
h́H

j β́j

β́
H

j β́j

. (38)

Using (37) forj ≥ K, we obtain

β́
H

j β́j = h́H
j h́j −

j−1∑

k=1

|ćj,k|2β́
H

k β́k. (39)

Utilizing (39), once forj = N and again forj = K, yields

[Ŕ]2N = β́
H

N β́N

= hH
KhK −

K−1∑

k=1

|cN,k|2βH
k βk −

N−1∑

k=K

|ćN,k|2β́
H

k β́k

= βH
KβK −

N−1∑

k=K

|ćN,k|2β́
H

k β́k

= [R]2K −
N−1∑

k=K

|ćN,k|2[Ŕ]2k, (40)

where we have usedhj = h́j for 1 ≤ j ≤ K − 1, h́N = hK ,

[R]k =
√

βH
k βk and[Ŕ]k =

√
β́

H

k β́k. Equation (40) implies

that [Ŕ]2N ≤ [R]2K , i.e., [Ŕ]N ≤ [R]K = [R]N , since our
assumption is thatH possesses the equal-diagonal R-factor. We
have thus proved that if theK-th column and theN -th column
of the matrixH are exchanged, then, theN -th diagonal entry
in the R-factor is not increased. Therefore, theN -th symbol
xN should be detected first. By induction, we can complete the
proof of Property 2. ¤

Property 2 essentially characterizes a geometric property of
a channel with the equal-diagonal R-factor. Namely, among
all column vectors ofH, the last column vectorhN has the
maximal distance from the space spanned by all the remaining
column vectors. After we have eliminatedhN , among all re-
maining column vectors ofH, the second to last column vector
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Fig. 1. Equivalent matrix receiver model for a linearly pre-
coded TDMA system.

hN−1 has the maximum distance from the space spanned by all
the remaining column vectors (excepthN ). We continue this
procedure until we reach the first column vectorh1.

Recently, Hassibi [19] derived a fast square root algorithm,
which, just like the algorithm in this paper, is based on a certain
QR decomposition and the Schur decomposition. It is therefore
natural to compare Hassibi’s algorithm [19] to our method. Ba-
sically, the method in [19], just like ours, efficiently implements
the optimal permutation order at the detector. The main differ-
ence between our algorithm and Hassibi’s algorithm is that our
decomposition not only directly gives the optimal ordering, but
also guarantees that the minimum diagonal entry in the R-factor
achieves the upper bound, which in turn reduces the probabil-
ity of error (we prove this in Section V). Hassibi’s decompo-
sition [19] does not have this property. On the other hand, to
implement our decomposition, both the transmitter and the re-
ceiver need to know the channel matrix, whereas Hassibi’s de-
composition requires that the channel matrix be known only to
the receiver. So, there is a tradeoff between the two methods.

IV. PRECODED TRANSMISSION MODEL

In this section, we consider two kinds of transmission tech-
niques with linear precoders: the TDMA system and the OFDM
system.

A. Linearly precoded TDMA

Figure 1 shows the discrete-time equivalent model of the
baseband communication system using filter-bank precoders
proposed by Scaglione, et al. [21], [35]. The signal vector
x = [x1, x2, · · · , xN ]T is precoded by anN × N matrix F(1)

and then transmitted through the channel, where theM × N
channel matrix is

H(1) =




h(0) 0 . . . 0
h(1) h(0) . . . 0

... h(1)
. ..

...

h(L)
. ..

. .. h(0)

0
. ..

. .. h(1)
...

. ..
. ..

...

0
. .. 0 h(L)




.

Here,M = N + L. In this case, the received signalr can be
expressed as

r = H(1)F(1)x + ξ. (41)

)2(F
x x′ IFFT

Prefix
)2(H

De-prefix
FFT

x~

�
y r

Fig. 2. Linearly precoded OFDM system

In this model, we assume that fork < 0 or k > L, the chan-
nel impulse response coefficients areh(k) = 0 andh(0) 6= 0.
Also, we assume that theN ×N matrixF(1) is invertible. It is
not hard to verify that the matrix

(
H(1)

)H
H(1) is anN × N

Toeplitz matrix, whose entries consist of samples of the auto-
correlation function of the channel impulse response.

B. Precoded OFDM system

Figure 2 depicts an OFDM system precoded by a tallM ×N
matrix F(2), see [42], [20]. The serially transmitted symbols
are first converted into a signal vectorx of sizeN . This signal
vector is multiplied by the precoder matrixF(2) to produce an-
other signal vectorx′ of sizeM = N + K. The inverse fast
Fourier transform (IFFT) is performed onx′. Finally, L prefix
symbols are padded to the output of the IFFT to form a new
signal vectorx̃ of sizeM + L − 1 for parallel transmission.
The purpose of introducing redundancy tox is to protect the
signal from channel nulls. Therefore, a requirement is thatK
be greater than or equal to the number of nulls on the interval
[0 2π) of the frequency responseH(ω) =

∑L−1
k=0 h(k)e−jkω,

whereh(k) is the channel’sk-th impulse response coefficient.
The purpose of padding the prefix tox̃ is to transform the orig-
inal Toeplitz intersymbol interference (ISI) channel matrix into
a cyclic matrix, which is diagonalized by the fast Fourier trans-
form (FFT). Hence, the prefix is discarded at the receiver be-
fore the FFT is implemented. Consequently, the ISI channel
with additive white Gaussian noise is transformed into parallel
ISI-free sub-channels, each with gain equal to the channel’s fre-
quency response value at the corresponding FFT bin. The result
of these operations is a discrete-time channel model (for details
see [42], [20])

r = H(2)F(2)x + ξ. (42)

Here, ξ is a white Gaussian noise vector andH(2) =
diag (H0,H1, · · · ,HM−1) is the channel matrix withHk =
H(ω)|ω= 2kπ

M
, k = 0, 1, · · · ,M − 1.

C. Unified model

Models (41) and (42) are both precoded parallel transmission
models. They are unified into a single model as

r = HFx + ξ, (43)

whereH is the channel matrix,F is the precoder,x is the trans-
mitted vector andξ is a white Gaussian noise vector.

V. PRECODER DESIGN FOR MINIMIZING THE PROBABILITY

OF BLOCK ERROR

The purpose of this section is to design the precoder ma-
trix such that the block error probability of the QR successive
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cancellation detector is minimized. We assume that the prod-
uct HHH is known to the transmitter and that the channelH
is known to the receiver. Also, we assume that the elements
of x are independent identically distributed (i.i.d.) equally
likely binary phase-shift keying (BPSK) signal points (the re-
sults are straightforwardly extended to quaternary phase-shift
keying (QPSK) signal constellations). Extensions to other con-
stellations are briefly discussed at the end of the section.

A. Problem formulation

First, we derive an expression forPc(F), the probability of
correctly detecting a block using the QR successive cancellation
detector. By the chain rule, we have

Pc(F) = Pr(xc
1, x

c
2, · · · , xc

N )

=
N∏

k=1

Pr(xc
k|xc

k+1, · · · , xc
N ), (44)

wherexc
k denotes theeventthat thek-th detected symbol is

correct, i.e.,xk = x̂k. If xe
k denotes the event that thek-th

symbol is not detected correctly, then (44) can be rewritten as

Pc(F) =
N∏

k=1

{
1− Pr(xe

k|xc
k+1, · · · , xc

N )
}

. (45)

For the model in (43), we deduce (see, e.g., [38]) that

Pr(xe
k|xc

k+1, · · · , xc
N ) = Q

(
[R]k
σ

)
, (46)

where Q(t) = 1/
√

2π
∫ +∞

t
exp(−z2/2)dz, and (from

Lemma 1)

[R]k =

√
det

(
FH

k HHHFk

)

det
(
FH

k−1HHHFk−1

) (47)

is thek-th diagonal entry in the R-factor of the QR decomposi-
tion of HF. Substituting (46) into (45) yields

Pc(F) =
N∏

k=1

(
1−Q

(
[R]k
σ

))
. (48)

Our problem is now stated as:
Problem 1: Let P > 0 be the power budget. Find the pre-

coder matrixF that minimizes the block error probability of the
QR successive cancellation detector, subject to the power con-
straint,tr

(
FHF

) ≤ P . More precisely, it is formulated as the
following equivalent optimization problems,

F? = arg min
tr(FHF)≤P

Pe(F),

F? = arg max
tr(FHF)≤P

Pc(F),

wherePe(F) = 1− Pc(F).
In the following we show that under a mild SNR constraint,

Problem 1 is equivalent to finding a precoder whose superchan-
nel matrixHF exhibits equal diagonal entries in the R-factor.

In other words, we will show that the optimal precoderF? is
the S-factor in the QRS decomposition ofH (up to a scaling
constant).

Let f(t) = Q
(

1
σ
√

t

)
for t > 0. The second derivative of

f(t) is

d2f(t)
d2t

=
1√

2πσ2t5

(
1

2σ2t
− 3

2

)
exp

(
− 1

2σ2t

)
.

If t < 1/(3σ2), thend2f(t)/d2t > 0, and thus, in this case,
f(t) is a convex function. In addition, we defineF(t) =
ln [1− f(t)]. The second derivative ofF(t) is

d2F(t)
d2t

= −
d2f(t)

d2t (1− f(t)) +
(

df(t)
dt

)2

(1− f(t))2
.

If t < 1/(3σ2), then d2f(t)/d2t > 0, and as a result,
d2F(t)/d2t < 0, sincef(t) < 1. Hence, for small values
of t, the functionF(t) is concave. Therefore, if

[R]2k
σ2

≥ 3 for k = 1, 2, · · · , N, (49)

then, by combining the concavity ofF(t) and (48), we get
(Jenssen’s inequality [43])

ln Pc(F) =
N∑

k=1

F([R]−2
k ) ≤ N · F

(∑N
k=1[R]−2

k

N

)
. (50)

Due to the concavity ofF(t), the equality in (50) holds if and
only if

[R]1 = [R]2 = · · · = [R]N . (51)

On the other hand, from the general relationship between the
arithmetic and the geometric mean, we get

∑N
k=1[R]−2

k

N
≥

(
N∏

k=1

[R]−2
k

)1/N

=
1

(det (FHHHHF))1/N
,

(52)
where we have utilized Lemma 1 to obtain the last equality in
(52). Fortunately, the equality in (52) holds if and only if (51)
also holds. So, the equalities in (50) and (52) both hold under
the same condition (51). Combining (50) with (52), and using
the fact thatF(t) is monotonically decreasing, yields

ln Pc(F) ≤ N ln

(
1−Q

((
det(FHHHHF)

)1/2N

σ

))
. (53)

The equality in (53) holds if and only if (51) holds. Therefore,
we consider the following optimization problem that maximizes
the upper bound in (53).

Formulation 1: Find F̆ such that

F̆ = arg max
F

det
(
FHHHHF

)
, (54)

where the maximum in (54) is taken subject to the power con-
straint,

tr
(
FHF

) ≤ P. (55)
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B. Problem solution

We solve the problem in Formulation 1 for two cases.
Case 1 H = H(1), see Section IV-A. In this case,

F = F(1) is a square matrix anddet
(
FHHHHF

)
=

det
(
HHH

)
det

(
FHF

)
. Thus, maximizingdet

(
FHHHHF

)
over all choices of the matrixF is equivalent to maximizing
det(FHF) over the matrixF. Applying Hadamard’s inequal-
ity [1] leads to

det
(
FHF

) ≤
N∏

k=1

fH
k fk, (56)

wherefk is thek-th column ofF. The equality in (56) holds if
and only ifFHF is a diagonal matrix. Furthermore, under the
power constrainttr(FHF) ≤ P , we have

N∏

k=1

fH
k fk ≤

(∑N
k=1 fH

k fk
N

)N

≤
(

P

N

)N

. (57)

Both equalities in (56) and (57) hold if and only if the diagonal
entries ofFHF are equal, i.e., if and only if

fH
1 f1 = fH

2 f2 = · · · = fH
N fN =

P

N
. (58)

Hence, in this case, we easily obtain the solution of Formula-
tion 1,

F̆(1) =

√
P

N
W̆(1), (59)

whereW̆(1) is an arbitraryN ×N unitary matrix.
Case 2H = H(2), see Section IV-B. In this case, the La-

grangian formulation [44] of this problem admits a closed-form
analytic solutionF = F̆(2). The Lagrangian here is

L(F) = ln
(
det

(
FHHHHF

))− µ
(
tr

(
FHF

)− P
)
,

whereµ is the Lagrange multiplier. The necessary condition
for achieving the maximum is that the gradient ofL(F) with
respect toF equals to zero. After appropriate matrix manipula-
tions [44], this condition yields the following equivalent condi-
tion:

HHHF
(
FHHHHF

)−1 − µF = 0. (60)

Left multiplying the two sides of equation (60) byFH yields
FHF = µ−1I, which shows that the optimal solutionF must
have orthogonal columns. Considering the power constraint
(55), we have thatµ ≥ N

P . Therefore, in this case, the solu-
tion of Formulation 1 is

F̆(2) =

√
P

N
P̆(2)W̆(2). (61)

Here,W̆(2) is an arbitraryN×N unitary matrix, and̆P(2) is an
M × N selection matrixsuch thatH(2)P̆(2) consists of those
N columns ofH(2) that have the largestN magnitudes (note
H(2) is a diagonal matrix).

Regardless which case we consider (Case 1 or Case 2), the
optimal solution of Formulation 1 can always be expressed as

F̆ =

√
P

N
P̆W̆, (62)

whereP̆ is anN ×N identity matrix in Case 1 and̆P = P̆(2)

in Case 2. In the remainder of this section we show that the
optimal choice forW̆ is

W̆ = S, (63)

that is, the unitary factor̆W of the optimal precoder is exactly
the S-factor in the QRS decomposition of the superchannel ma-
trix HP̆.

At this point, a natural question is when is the upper bound
in (53) achieved? If we desire that the maximum probability of
correct decisions

Pc(F) =


1−Q




(
det(F̆HHHHF̆)

)1/2N

σ







N

(64)

be attainable, equations (51) must hold. In other words, the
matrix HF̆ must have an equal-diagonal R-factor. Luckily, in
the solutionF̆ in (62), we have the freedom of choosinğW to
meet constraint (51). An obvious choice is therefore to set

W̆ = S, (65)

where S is the S-factor in the QRS decomposition of√
P/NHP̆, i.e.,

(√
P/NHP̆

)
S = QR. The factorS is

computable using Algorithm 5. The precoder

F? =

√
P

N
P̆S (66)

is also the solution of Problem 1 if the constraint (49) holds as
well. For the precoder matrix given in (66), the diagonal en-
tries [R]k are all equal, and an equivalent formulation of con-
straint (49) is

(
P

N

)N

det
(
P̆HHHP̆

)
= det

(
(F?)H HHHF?

)

=
N∏

k=1

[R]2k =
(
[R]21

)N

≥ (
3σ2

)N
,

which leads to

P

Nσ2
≥ 3

det
(
P̆HHHHP̆

)1/N
. (67)

It is now clear that constraint (49), or equivalently (67), is a
constraint on SNR sinceP is the power budget,σ2 is the noise
variance andP/

(
Nσ2

)
is the SNR. The next theorem (Theo-

rem 6) summarizes these results
Theorem 6:Let the SNR constraint (67) hold. Let̆P = I if

our model is (41); otherwise if our model is (42), letP̆ = P̆(2)

be anM × N selection matrix such thatH(2)P̆(2) consists of
thoseN columns ofH(2) with the largestN magnitudes. De-
note byF? the solution to Problem 1. Let the QRS decompo-

sition of
√

P/NHP̆ be
(√

P/NHP̆
)
S = QR, whereS can

be computed by Algorithm 5. Then, we have:
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1) The optimal solution of Problem 1,F?, has the following
structure

F? =

√
P

N
P̆S. (68)

2) The QR decomposition ofHF? exhibits an equal-
diagonal R-factor.

3) For the optimal precoderF?, the block error probability
of the QR successive-cancellation detector is minimized
and equals

P (min)
e =1−

(
1−Q

(√
snr · det

(
P̆HHHHP̆

)1/2N
))N

,

(69)
wheresnr = P

Nσ2 .
4) The free distance of the precoded channel matrixHF? is

dfree(HF?) =

√
P

N

(
det

(
P̆HHHHP̆

))1/2N

dmin(X ).

(70)

Proof: Most of the proof has already been completed
through the derivation of equations (56)–(67). Statement 1
follows from the derivation of equations (62)–(66). State-
ment 2 is triviality satisfied by the construction ofF? in State-
ment 1. To prove statement 3, we note that by Lemma 1
and Theorem 1 an equal-diagonal R-factor implies[R]k =√

P/Ndet(P̆HHHHP̆)1/2N for k = 1, · · · , N , and the re-
sult follows directly from (48). Statement 4 is proved using
Property 1 in Section III-D. ¤

Remarks: To understand the physical meaning of the solu-
tion F?, we make the following comments.
• Condition (67) is an SNR condition. When it is satisfied,

i.e., when the SNR is relatively high, we can obtain our
optimal solution. Otherwise, when the SNR is low, we do
not know how to solve the problem. In fact, condition (67)
is equivalent to

snr(dB) ≥ 10log3− 10
N

N∑

k=1

logλk, (71)

whereλk are the eigenvalues of the matrix̆PHHHHP̆.

For N large, 1
N

N∑
k=1

logλk tends to 1
2π

π∫
−π

log|H(ω)|2dω.

Hence, using (71), condition (67) becomes

snr(dB) ≥ 6
(
h[3]− h

[|H(ω)|2]) ,

where using Kolmogorov’s result ([43], p. 274), we denote
the entropy rate of a Gaussian process with power spectral
densityS(ω) by h[S(ω)] = 1

4π

∫ π

−π
log2 (2πeS(ω)) dω.

• From the structure of the optimal precoderF? we see that
P̆ selectsN good sub-channels from the existingM sub-
channels. The role ofS is to shape the precoded channel
matrix so as to equalize all the diagonal entries of the up-
per triangular matrixR in the QR decomposition. As a
result, the conditional error probability of each symbol is
equal, which minimizes the block error probability of the
QR successive cancellation detector.

• At high SNRs, the error probability of the maximum like-
lihood detector is dominated by the free distance. A com-
parison of (69) to (70) shows that the detection perfor-
mance of the QR successive cancellation detector with the
optimal precoderF? is asymptotically equivalent to that of
the MLD when the SNRs are large.

C. Sketch of extensions to non-binary constellations

In this subsection, we briefly outline the procedure of how to
extend the results in this paper to some frequently-used non-
binary constellations. The key to generalizing this work to
PAM, PSK and QAM constellations is to evaluate the symbol
error probability, see Simon and Alouini [45]. In the follow-
ing [R]k is thek-th diagonal entry in the R-factor of the QR-
decomposition.
PAM signals: The symbol error probability for q-ary PAM
symbolxk [45] is

PPAM(xe
k|xc

k+1, · · · , xc
N ) =

2(q − 1)
q

Q

(
[R]k

√
3

σ
√

q2 − 1

)
.

PSK signals: The symbol error probability for q-ary PSK sig-
nalxk [45] is

PPSK(xe
k|xc

k+1, · · · , xc
N )

=
1
π

∫ (q−1)π/q

0

exp

(
− [R]2k sin2(π/q)

2σ2 sin2 θ

)
dθ.

QAM signals: The symbol error probability for q-ary QAM
signalxk [45] with q = 2` × 2` is

PQAM(xe
k|xc

k+1, · · · , xc
N ) = 4

(
1− 1√

q

)
Q

(
[R]k

√
3

σ
√

(q−1)

)

−4
(

1− 1√
q

)2

Q2

(
[R]k

√
3

σ
√

(q−1)

)
.

(72)

For our purpose, let

f(t) = Q

(√
a

t

)

g(t) =
∫ (q−1)π/q

0

exp
(
− b

t sin2 θ

)
dθ

h(t) = Q

(√
c

t

)
−

(
1− 1√

q

)
Q2

(√
c

t

)
,

wherea = 3
σ2(q2−1) , b = sin2(π/q)

2σ2 andc = 3
σ2(q−1) . Let x =√

T be the root of following equation,

Q(x) +
x√

2π(x2 − 3)
exp

(
−x2

2

)
−

√
q

2(
√

q − 1)
= 0.

Then,h(t) is convex int for 0 < t ≤ c
T , while it is concave int

for t > c
T . The functionf(t) is convex in the region0 < t ≤ a

3 ,
while it is concave in the regiont > a

3 . Similarly, we can get
the convex/concave regions for the functiong(t). Identifying
the concave/convex region is the key to finding formulations
analogous to Formulation 1, but for non-binary constellations
(see Section IV-A). We do not pursue the details further.
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VI. PRECODER DESIGN FOR OPTIMIZING A FREE

DISTANCE CRITERION

In order to better appreciate the physical meaning of our op-
timal precoder designed in Section V, in this section we take
another point of view. Ideally, an optimal precoder should min-
imize the detection error probability when MLD is used. But
we know that for the MLD, at high SNRs the average proba-
bility of error over all blocks is dominated by the free distance
term [39]. However, directly maximizing the free distance is
too expensive for the complexities of both its design and detec-
tion to be affordable. Here, we are interested in designing the
precoder that maximizes the lower-bound on the free distance.
Utilizing Theorem 5, the lower bound on the free distance is

[
min

1≤k≤N
[R]k

]
· dmin(X ) ≤ dfree(H) (73)

and our problem may now be stated as:
Problem 2: Find the precoder matrixF that maximizes the

lower bound on the free distance (73), that is, maximize
min[R]k, subject to the power constraint,tr

(
FHF

) ≤ P .
More precisely, it is formulated as the following optimization
problem,

F? = arg max
tr(FHF)≤P

[
min

1≤k≤N
[R]k

]
,

where[R]k is determined by equation (47).
First we note that

min
1≤k≤N

[R]k ≤
(

N∏

k=1

[R]2k

)1/2N

= det
(
FHHHHF

)
. (74)

The equality here holds if and only if

[R]1 = [R]2 = · · · = [R]N . (75)

Therefore, Problem 2 is reduced to first solving the optimization
problem in Formulation 1 and then finding a unitary matrixW̆
that enforces condition (75).

Theorem 7:Let P̆ = I if our model is (41); otherwise if our
model is (42), letP̆ = P̆(2) be anM × N selection matrix
such thatH(2)P̆(2) consists of thoseN columns ofH(2) with
the largestN magnitudes. Denote the QRS decomposition of√

P/NHP̆ by
(√

P/NHP̆
)
S = QR, where the S-factorS

is computed by Algorithm 5. The solutionF? to Problem 2 is

F? =

√
P

N
P̆S. (76)

Moreover, for this optimal precoder, we have

dfree(HF?) =

√
P

N

(
det

(
P̆HHHHP̆

))1/2N

dmin(X ).

(77)

Proof: Combining (74) and (75) with the proof of Statement
1 in Theorem 6, we can complete the proof of equation (76).
Statement (77) is proved using Property 1 in Section III-D.¤

The only difference between Theorem 6 and Theorem 7 is
that in Theorem 7 the SNR condition (67) need not hold. Essen-
tially, the two theorems are equivalent when the SNR is high.
This equivalence is justified as follows. We derive from (48)
that
(
1−Q

(
min [R]k

σ

))N

≤ Pc(F) ≤ 1−Q

(
min [R]k

σ

)
, (78)

which, utilizingPc(F) = 1− Pe(F), is equivalent to

Q

(
min [R]k

σ

)
≤ Pe(F) ≤ 1−

(
1−Q

(
min [R]k

σ

))N

≤ N ·Q
(

min [R]k
σ

)
. (79)

This shows that when the SNR is high, the minimum diago-
nal entry in the R-factor of the QR decomposition of the chan-
nel matrix determines (up to a constant of proportionality) the
block error probability of the QR successive cancellation de-
tector. In other words, the minimal diagonal entry accounts for
the dominant term of the QR detector error probability just as
the free distance is the dominant term of the MLD error prob-
ability. (See Varanasi [6] for an analysis of the performance
of the cancellation detector.) Hence, increasing the minimum
diagonal entry can decrease the block error probability of the
QR successive cancellation detector. Consequently, when the
minimum diagonal entry becomes equal to the maximum diag-
onal entry, i.e., when the precoded channel matrix exhibits an
equal-diagonal R-factor, the block error probability reaches its
minimum. Using Property 1 in Section III-D, we conclude that
for BPSK (and QPSK) signals the detection performance of the
QR successive cancellation detector is asymptotically equiva-
lent to that of the maximum likelihood detector when the signal
to noise ratio (SNR) is large.

VII. S IMULATIONS

A. Comparison of the precoders for the TDMA system

In this subsection we adopt the model in equation (41) and
compare our QR-optimal precoder (QR-OP) followed by a
successive-cancellation detector to other precoders and detec-
tors available in the literature. We compare the following pre-
coders/detectors:

1) The zero-forcing minimum mean square error (ZF-
MMSE ) precoder, followed by a threshold detector. The
precoder in this scenario was determined in [21] to be

F =

√
P

tr
(
D1/2

)WD1/4U, (80)

where
(
(H(1))HH(1)

)−1
= WDWH is the eigen de-

composition of
(
(H(1))HH(1)

)−1
andU is an arbitrary

unitary matrix. In our simulation,U is taken as the iden-
tity matrix I.

2) The minimum bit error rate zero-forcing precoder
(MBER-ZF ), followed by a threshold detector. In [37],
it was shown that this precoder has the same structure as
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Fig. 3. Performance comparison of the optimal QR precoder
with other precoders for Example 1. (a) Block error rate perfor-
mance comparison. (b) Bit error rate performance comparison.

in (80), where the unitary matrixU = Uopt is the nor-
malizedN ×N the discrete Fourier transform matrix. If
N is a power of2, Uopt can be the normalized Hadamard
matrix.

3) The unprecoded mean square error detector [46]
(UMMSE ).

4) The unprecoded V-BLAST detector [18] (UVBLAST ).

We compare the performance of these precoders to the block
error rate for the QR-optimal precoder given in equation (68).
Note that some of these comparisons are not really fair. For
example, it is not fair to compare precoded to unprecoded de-
tectors. Similarly, it is not fair to compare the V-BLAST detec-
tor (which operates under the assumption that the transmitter
does not know the channel coefficients) to other precoders that
utilize the knowledge of the channel coefficients at the trans-
mitter. Nonetheless, we still conduct the comparisons because
they give insight into the performances of methods available in
the literature.

Example 1:. We consider a finite impulse response (FIR)
channel of orderL = 3, whose impulse response coeffi-
cients areh(0) = 0.0838 − 0.0633j, h(1) = 0.6028j, h(2) =
−0.8709 − 0.7320j, h(3) = 1. The channel hasL = 3 ze-
ros at0.7, 0.5exp(j2π0.256) and0.3exp(j2π0.141). The block
length of the precoder was chosen to beN = 32, resulting in
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Fig. 4. Performance comparison of the optimal QR precoder
with other precoders for Example 2. (a) Block error rate perfor-
mance comparison. (b) Bit error rate performance comparison.

M = N + L = 35. Simulatedblock error rates andbit error
rates are shown in Figures 3 (a) and (b), respectively. We ob-
serve that our QR-optimal precoder (QR-OP) performs about
3dB better than best precoder/detector known.

Example 2:. The scenario of this example is similar to
that of Example 1. An FIR channel of orderL = 4 is
considered, where channel response coefficients areh(0) =
−0.7920, h(1) = 0.0523 − 0.1580j, h(2) = 0.2526 −
0.0395j, h(3) = −0.5129 + 0.1975j, h(4) = 1. The zeros of
this channel response arez1 = 1, z2 = 0.9exp(j9π/20), z3 =
1.1exp(−j9π/20), z4 = −0.8. Notice that this channel has a
spectral null at zero-frequency (sincez1 = 1), while the other
roots are also very close to the unit circle. For this channel, the
block length was chosen to beN = 32 andM = N + L =
35. The block and bit error rates are plotted in Figures 4 (a)
and (b), respectively, showing that the QR-optimal precoder
(QR-OP) outperforms the minimum bit error zero-forcing pre-
coder (MBER-ZF ) by 2dB and outperforms the unprecoded V-
BLAST detector (UVBLAST ) by 0.5 dB.

B. Comparison of the precoders for the OFDM system

In this subsection, we compare the QR-optimal pre-
coder (QR-OP) to other known precoder/detectors for the
OFDM system. Thereby, we adopt the transmission model
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Fig. 5. Performance comparison of the optimal QR precoder
with other precoders for Example 3. (a) Block error rate perfor-
mance comparison. (b) Bit error rate performance comparison.

given in equation (42). We compare the following pre-
coders/detectors

1) The truncated DFT precoder [42], followed by the V-
BLAST detector [18], which we abbreviate by (T-DFT-
VBLAST ).

2) The non-maximally decimated multirate filterbank pre-
coder (NDMFP) [20], followed by the V-BLAST detec-
tor [18],which we abbreviate by (NDMFP-VBLAST ).

We also show comparisons to the theoretical performance of the
QR-optimal precoder followed by the successive cancellation
detector, given in equation (69).

Example 3:. An FIR channel of orderL = 4 is as-
sumed. The channel coefficients areh(0) = 0.1000 +
0.1732j, h(1) = −0.5550 − 0.5550j, h(2) = 1.0131 +
0.5849j, h(3) = −0.7581 − 0.2031j, h(4) = 0.2000 with ze-
ros zk = exp(j2πk/M), k = 0, 1, 2, 3. For this scenario, we
choseN = 8,K = 4 andM = N + K = 12. The block and
bit error rate simulations are given in Fig. 5(a) and Fig. 5(b),
respectively.

Example 4:. The scenario in this example is a bit more
realistic than Example 3 in that we choose a longer block
lengthN = 32. We choose an FIR channel of orderL = 4
with channel coefficientsh(0) = −0.1895 + 0.1432j, h(1) =
0.3535−1.1414j, h(2) = 0.6179+2.2021j, h(3) = −1.7115−
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Fig. 6. Performance comparison of the optimal QR precoder
with other precoders for Example 4. (a) Block error rate perfor-
mance comparison. (b) Bit error rate performance comparison.

1.2342j, h(4) = 0.9428, and channel zeros atz1 = 0.9, z2 =
0.7, z3 = exp(j2π0.256), z4 = 0.4exp(j2π0.141). We take
K = 1, to getM = N +K = 35. The block and bit error rates
are plotted in Figures 6(a) and 6(b), respectively.

C. Comparison of the optimal QR detector with MLD

In the discussion that followed equation (79), we asserted
that the block error rate of the QR-optimal precoder followed
by the successive cancellation detector is asymptotically (as
SNR→ ∞) equivalent (up to a constant of proportionality) to
the block error rate of the maximum likelihood detector when
using the same precoder. In this subsection we test this asser-
tion through a simulation as well as by an upper-bound error-
rate analysis.

Example 5:. The scenario of this example is similar to Ex-
ample 2, with the only difference being that we now choose
the block length to be smaller (N = 8) so that we can actu-
ally simulate the maximum likelihood detector. We determine
the QR-optimal precoder and simulate the performance of two
detectors for this precoder: 1) The successive-cancellation de-
tector, and 2) the maximum likelihood detector, which can be
efficiently implemented using the sphere decoder if the radius
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Fig. 7. Performance comparison of the optimal QR detector
with MLD for the optimally precoded channel under the sce-
nario in Example 5.

is properly set (see [47] and the references therein). The re-
sults are shown in Figure 7. Notice that at very high SNRs, the
two curves (QR-OP and MLD) are parallel, which confirms the
assertion that the two error rates differ only by a constant of
proportionality. Also, notice that there is a gap of about 0.3dB
between the two curves at error rates of10−6. We next propose
a quick method to analytically estimate this gap.

It is not hard to show that the union bound of the probability
of error of the maximum likelihood detector at high SNRs is
approximated by (we omit the derivation)

P (MLD-A )
e (F?) ≈ κ ·Q

(
dfree(HF?)

2σ

)

= κ ·Q
(√

snr · det
(
HHH

)1/2N
)

,

(81)

whereκ is the number of weakest subchannels in the optimally
precoded channelHF?. On the other hand, we have from (79)
that the probability of error of the successive cancellation de-
tector (SCD) for the QR-optimal precoder is

P (QR-OP)
e (F?) ≤ N ·Q

(√
snr · det

(
HHH

)1/2N
)

= P (QR-OP-UB)
e . (82)

Assuming that the equalities in (81) and (82) hold, and further
requiring thatP (QR-OP)

e = P
(MLD)
e , we can compute that the

SNR difference between the two detectors is approximated by

SNR(QR-OP)[dB]− SNR(MLD)[dB]
≈ SNR(QR-OP-UB)[dB]− SNR(MLD-A )[dB]

= 20 log10

Q−1
(

Pe

κ

)

Q−1
(

Pe

N

) , (83)

where Q−1(·) is the inverse of theQ(·) function, i.e.,
Q−1 (Q(x)) = x. Now, for our Example 5, we haveN = 8
andκ = 3. If we now substitutePe = 10−6 into (83), we
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Fig. 8. Comparison of the successive cancellation detec-
tor with optimal precoding (QR-OP) to other precoders in a
stochastic channel scenario.

get the SNR gap to be SNR(QR-OP)[dB] − SNR(MLD)[dB] ≈
SNR(QR-OP-UB)[dB] − SNR(MLD-A )[dB] = 0.3205 dB, which
agrees with the simulation results shown in Figure 7. Note that
in Figure 7, the notation QR-OP-UB denotes the upper bound
of the optimal QR detector on the right hand side of (82) and
MLD-A denotes the approximation of the MLD in (81).

D. Comparison in stochastic channel scenarios

The method derived in this paper applies only to channels
that are simultaneously known to the transmitter and the re-
ceiver. Often the channel is stochastic, i.e., the channel is a re-
alization of a random process (e.g., fading channels). We com-
pare the performance of our precoded successive-cancellation
detector to other detectors in stochastic channel scenarios.
Thereby, we have to make the assumption that both the trans-
mitter and the receiver instantaneously receive the knowledge
of the channel realization immediately after the realization oc-
curs.

Example 6: The channel model was chosen as a TDMA
channel model, which corresponds to the scenario in Ex-
ample 1, but the channel coefficients are complex random
i.i.d. white Gaussian variables with unit variance. The precoder
and detector performance comparison is shown in Figure 8. The
results show that the average performance of the precoder pro-
posed here outperforms the best precoder-based cancellation
detector known in the literature by about 1dB.

Example 7: The channel model is a MIMO flat fading
channel with four transmitter and six receiver antennas. The
channel coefficients are complex random i.i.d. white Gaussian
variables with unit variance. In Figure 9, the performance of
our precoder-based successive cancellation detector (QR-OP)
is compared to the performances of the maximum likelihood
detector without precoding (MLD-UP), and the maximum like-
lihood detector after our optimal precoder is applied at transmit-
ter (MLD-OP). Interestingly, the QR-OP detector outperforms
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Fig. 9. Comparison of the successive cancellation detector
with optimal precoding (QR-OP) to the maximum likelihood
detector that uses the same precoder (MLD-OP) and the maxi-
mum likelihood detector that uses no precoder (MLD-UP) in a
stochastic MIMO channel scenario.

the MLD-UP detector, which shows that there are advantages to
applying the precoder. Naturally, the MLD-OP detector outper-
forms the QR-OP detector, but asymptotically they are equiv-
alent as seen by their equal slopes in Figure 9, which was of
course predicted by our (crude) analysis in Sections VI and VII-
C. This suggests that the derived optimal precoder for cancella-
tion detection, may be optimal even if used in conjunction with
the MLD.

VIII. C ONCLUSION AND DISCUSSION

In this paper, we proposed the QRS decomposition of a ma-
trix H. The decomposition has the following formHS = QR,
whereS is a unitary matrix, andQ andR are the factors of
the QR-decomposition [1], [2] of the matrixHS. The special
property of the QRS decomposition is that it exhibits anequal-
diagonalR-factor, that is, the diagonal entries of the upper tri-
angular factorR are all equal to each other. We proved that for
any matrixH, there exists a QRS decomposition. However, the
S-factorS is not unique. We also provided a recursive algo-
rithm to compute an explicit solution for the factorS.

We further revealed that the QRS decomposition has an
important role to play in precoded MIMO detection theory.
Namely, the S-factorS is the optimal precoder for the succes-
sive cancellation detector that uses the QR decomposition. We
showed the following properties of the precoder and the result-
ing QR-detector

1) The precoderS minimizes the block error probability of
the QR successive cancellation detector.

2) The superchannelHS naturally exhibits an optimally or-
dered column permutation, i.e., the optimal detection or-
der for the V-BLAST detector [18] is the natural order.

3) The minimum Euclidean distance between two signal
points at the channel output is equal to the minimum Eu-
clidean distance between two constellation points at the

precoder input up to a multiplicative factor that equals
the diagonal entry in theR-factor.

4) A lower and an upper bound for the free distance at the
channel output is expressible in terms of the diagonal en-
tries of the R-factor in the QR decomposition of a channel
matrix.

5) The precoderS maximizes the lower bound of the chan-
nel’s free distance subject to a power constraint.

6) The detection performance of the QR detector for a chan-
nel with the equal-diagonal R-factorR is asymptotically
equivalent to that of the maximum likelihood detector
used over the same channel when the signal to noise ratio
(SNR) is large.

We applied the QRS decomposition to design the optimal
QR-precoder for BPSK signals transmitted using two multi-
plexing schemes, TDMA and OFDM, and we presented sim-
ulation results to demonstrate the superior performance of the
optimal precoder.

The presented technique for solving the optimization prob-
lem in this paper can be universally applied to zero-forcing
decision-feedback equalization (ZF-DFE). Consider the follow-
ing class of optimization problems involving ZF-DFE. Given
are a matrixB, a constraintP and a positive constantp.
We need to find a matrixF that achieves the maximum

max
tr(FHF)≤P

∑N
k=1 G([R]−p

k ) with [R]k being thek-th diagonal

entry of the R-factor of QR decomposition of the matrixBF,
where the functionG(t) has two key properties: (a)G(t) is
monotonically decreasing witht; (b) G(t) is concave with re-
spect to the variablet. This class of optimization problems has
a closed form solution, which is exactly the S-factor of the QRS
decomposition ofB. Thus, the solution technique depends only
on the features of ZF-DFE itself, but does not depend on the
specifics of the functionG(·).

In this paper, we assumed that the autocorrelation sequence
of the channel coefficients (i.e., the matrixHHH) is known
to the transmitter. However, this assumption is not realistic in
many wireless communication systems. Extending the design
method that was presented here for a deterministic channel to
the design of a precoder for a statistical (i.e., fading) channel
model (for which only the second order statistics of the chan-
nel coefficients are available at the transmitter site) is still an
open problem. Recently, however, progress has been made by
Wang, Ma and Giannakis [48], who have shown that the trun-
cated DFT precoders minimize the average symbol error rate
at high SNR for i.i.d. Rayleigh distributed multipath channels,
among a certain class of precoded OFDM transmissions.
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IX. A PPENDIX

A. Proof of Theorem 2

Proof: The proof consists of the following three steps.
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• First we show thatv1 exists. Since
√

λk are the

singular values ofH, we have det
(
ΛHΛ

)1/N

=

det
(
HHH

)1/N
. SubstitutingA = ΛHΛ,B = HHH

andK = N into Corollary 1.1, we obtain that there exists
a vectorv1 that satisfies (8) and (9).

• Next we show thatv2 exists. The key here is to
show that the(N − 1) × (N − 1) matrix A(1) satisfies

det
(
A(1)

)1/(N−1)
= det

(
HHH

)1/N
. Then, by substi-

tuting A = A(1),B = HHH,K = N − 1 andγ = z2

into Corollary 1.1, we conclude that (10)–(12) have a so-
lution for z2, and thereforev2 exists. So all we need to
prove is

det
(
A(1)

)1/(N−1)

= det
(
HHH

)1/N
. (84)

To prove (84), we note that
[
v1,V⊥

1

]H
ΛHΛ

[
v1,V⊥

1

]

=
(

vH
1 ΛHΛv1 vH

1 ΛHΛV⊥
1

(V⊥
1 )HΛHΛv1 (V⊥

1 )HΛHΛV⊥
1

)
.

Hence, by Schur decomposition ([1], pp. 21-22) we get

det
(
HHH

)
=det(ΛHΛ)

=det
([

v1,V⊥
1

]H
ΛHΛ

[
v1,V⊥

1

])

=(vH
1 ΛHΛv1)det

(
(V⊥

1 )HΛHPΛV1ΛV⊥
1

)

=(vH
1 ΛHΛv1)det(A(1)). (85)

Now, since we proved thatv1 exists such that (8) and
(9) are satisfied, we get from (8) thatv1ΛHΛv1 =
det

(
HHH

)1/N
. Substituting this into (85) yields (84).

• By induction we easily prove thatvk exists fork > 2.
Again, what is needed is to show that

det
(
A(k)

)1/(N−k)

= det
(
HHH

)1/N
, (86)

and then apply Corollary 1.1. The proof is similar to prov-
ing (84), so we omit the details. ¤

B. Proof of Theorem 3

Proof: We first derive an expression that hods for any ma-
trix H (not just for those matrices that have an equal-diagonal
R-factor). SinceHk = UΛVk, we havedet

(
HH

k Hk

)
=

det
(
VH

k ΛHΛVk

)
. Now applying Schur’s decomposi-

tion ([1], pp. 21-22) to

VH
n+1Λ

HΛVn+1 = [Vn,vn+1]
H ΛHΛ [Vn,vn+1]

=
(

VH
n ΛHΛVn VH

n ΛHΛvn+1

vH
n+1Λ

HΛVn vH
n+1Λ

HΛvn+1

)
,

we get

det
(
HH

n+1Hn+1

)
=det

(
VH

n+1Λ
HΛVn+1

)

=det(VH
n ΛHΛVn)vH

n+1Λ
HPΛVnΛvn+1

=det
(
HH

n Hn

)
vH

n+1Λ
HPΛVnΛvn+1.

(87)

Denote by V⊥
n the orthonormal complement ofVn =

[v1,v2, . . .vn]. Note that the vectors that comprise the ma-
trix V⊥

n are not necessarily the eigenvectorsvn+1 through
vN , but they do span the same subspace, and are orthonor-
mal. Since the columns ofV⊥

n span the same subspace as
[vn+1,vn+2, . . .vN ], there must exist a unit-norm vector, call
it zn+1, such thatvn+1 = V⊥

n zn+1. Substituting this into
equation (87), and utilizing (12) yields

zH
n+1A

(n)zn+1 =
det

(
HH

n+1Hn+1

)

det (HH
n Hn)

. (88)

Note that so far we made no assumption on the equal-diagonal
properties of the R-factor ofH, i.e., there exist unit-norm vec-
torszn+1 such that (88) holds foranymatrixH. We next con-
centrate on matrices with equal-diagonal R-factors.

By Theorem 1, the right-hand side of (88) equals
det(HHH)1/N if an only if the matrixH has an equal-diagonal
R-factor, which completes the proof. ¤
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