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Equal-Diagonal QR Decomposition and its
Application to Precoder Design for
Successive-Cancellation Detection

Jian-Kang Zhang, Aleksandar K&é and Kon Max Wong

Abstract—In multiple-input and multiple-output (MIMO) mul- decomposition, successive cancellation detection, time-division
tiuser detection theory, the QR decomposition of the channel ma- multiple access (TDMA)
trix H can be used to form the back-cancellation detector. In
this paper we propose an optimal QR decomposition, which we
call the equal-diagonal QR decomposition, or shortly the QRS de- |. INTRODUCTION
composition. We apply the decomposition to precoded successive-
cancellation detection, where we assume that both the transmitter ~ The QR decomposition [1], [2] is a commonly used tool in
and the receiver have perfect channel knowledge. We show that, various signal processing applications [3], [4] [5]. The QR de-
for any channel matrix H, there exists a unitary precoder matrix composition of a matriH is a factorizationl = QR,, where
S, such thatHS = QR, where the non-zero diagonal entries of the : ; : . . :
upper triangular matrix R in the QR decomposition ofHS are all Q_ is a unitary matrix and® is _an _upper triangular matrix. I_n_
equal to each other. The precoder and the resulting successive-this paper we study the application of the QR decomposition
cancellation detector have the following properties. a) The mini- in precoded successive-cancellation detection and we propose
mum Euclidean distance between two signal points at the channel an optimal QR decomposition. In multiple-input and multiple-
output is equal to the minimum Euclidean distance between two output multiuser detection theory [3], [5], [6], [7], [8], [9]

constellation points at the precoder input up to a multiplicative s
factor that equals the diagonal entry in the R-factor. b) The su- [10], [11], [12], [13], [14], [15] [16], [17], the QR decomposi

perchannel HS naturally exhibits an optimally ordered column  tion can be used to form the back-cancellation detector. Though
permutation, i.e., the optimal detection order for the V-BLAST it is easily shown that such a detector is not optimal, the QR

detector is the natural order. c) The precoderS minimizes the decomposition is still very appealing because of its implemen-
block error probability of the QR successive cancellation detec- {ation simplicity and numerical stability [2].

tor. d) A lower and an upper bound for the free distance at the : : g
channel output is expressible in terms of the diagonal entries of In [18], Golden et al. introduced an optimally ordered suc

the R-factor in the QR decomposition of a channel matrix. €) The Cessive cancellation detector. We show that this detector may
precoder S maximizes the lower bound of the channel’s free dis- be equivalently represented by a permutation m&rizllowed

tance subject to a power constraint. f) For the optimal precoder by a QR-decomposition-based detector. Thereby, the algorithm
S, the performance of the QR detector is asymptotically (at large  presented by Golden et al. [18] has an equivalent interpretation:

signal-to-noise ratios) equivalent to that of the maximum likeli- . . . . . . .
hood detector (MLD) that uses the same precoder. Further, in it is an efficient algorithm to determine the permutation matrix

this paper we consider two multiplexing schemes: time division P such thatthe QR decompositionld# (thatis, HP = QR)
multiple access (TDMA) and orthogonal frequency division multi- ~ gives rise to an optimal back-cancellation detefctan this pa-
plexing (OFDM). We design the optimal precoder for binary phase per we extend the work of Golden et al. [18] to a general QR
shift keying (BPSK) with these multiplexing schemes, but outline decompositiorIS = QR, whereS is a unitary matrix. We

the procedure to extend the method to non-binary schemes such as . . .
PAM, PSK and QAM. Finally, examples are given that illustrate shall show that for a wide class of detection problems, the opti-

the performance of the precoder and the corresponding successive Mal matr_ixS is one that delivers an upper triangular maﬂﬂx_
cancellation detector. whose diagonal entries are afjualto each other. We call this

Index Terms— maximum likelihood detection, minimum dis- special ma.triXR theequal-diagonal R-factorand the resulting
tance, multiple-input multiple-output (MIMO) systems, orthog- decompositiorHS = QR, theequal-diagonalQR decompo-
onal frequency division multiplexing (OFDM), precoders, QR- sition, or simply theQRS-decomposition
The paper proceeds to show that the QRS-decomposition has
an important role to play in precoded block transmission over
dispersive channels under the assumption that both the transmit-
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(DMT) [28], [29], [30], [31], [32], time division multiplex ac- are presented in Section VII. Section VIII concludes the paper.
cess (TDMA) [33] and code division multiplex access (CDMA) Notation: Matrices are denoted by uppercase boldface char-
[3], [33], [34], both for single user and multiuser communicaacters (e.g.A), while column vectors are denoted by lowercase
tions. Scaglione et al. [35] proposed precoders that maximilzeldface characters (e.d). The(z, j)-th entry ofA is denoted
the output signal to noise ratio (SNR) or minimize the meatwy A; ;. Thei-th entry ofb is denoted by;. The columns of

square error under zero-forcing or fixed transmitted power coamn M x N matrix A are denoted by, a5, --- ,ay. Notation
straints. The block transmitter that maximizes the informatiol;, denotes a matrix consisting of the fikstolumns ofA, i.e.,
rate was derived in [21] by the same authors. Milanovic &; = [a;,as,--- ,a;]. By convention, Ay = 1. The remain-
al. [36] studied the design of robust redundant precoding filterg matrix after deleting columnsy, , ay,, - - - , ax, from A is

banks with zero-forcing equalization for unknown frequencydenoted byAy, i,... x,. Thej-th diagonal entry of a matriA
selective channels. Recently, Ding et al. [37] designed a pis-denoted byA]; = 4; ;. NotationA+ denotes the orthonor-
coder for TDMA systems that minimizes the average bit erranal complement of a matriA in CV. The transpose oA is
probability when using zero-forcing equalizers. denoted byA”. The Hermitian transpose o (i.e., the con-
A universally optimal precoder for detection applicatibiss jugate and transpose &) is denoted byA . The matrixA *
one that minimizes the detection error probability of the mastands for the pseudo-inverseAfi.e., At = (AFA)"1AH,
imum likelihood detector [3], [38], [39], [40]. It is known The notationP, = I — AA™ denotes the projection matrix
that at high signal-to-noise ratios (SNRs), the average prolgdrat projects an arbitrary vector to the null spacedf).
bility of error over all blocks is dominated by the free distance

term [39], [40]. This suggests that maximizing the free distangg¢ Review or THE QR DECOMPOSITION FOR SUCCESSIVE
may be a good precoder design strategy. However, directly CANCELLATION DETECTION

maximizing the free distance results in a precoder design an . . . . . .
g P g c{/Ve first briefly review the successive cancellation detection

a detection strategy that are too complex to be affordable. In" o .
this paper, under some fairly loose assumptions, we derive f%rgj[?rggr ;?jléruezeg;the itgrR dgsg%mggsgt“gﬁ::gf;“ﬁ;vv;:g
upper and lower bounds on the channel’s free distance in terms y . b y . ' '

. . . inally we show how to equivalently represent this detector as a
of the diagonal entries of the R-factor in the QR decomposi- L :
. . : . ._precoded QR-decomposition cancellation detector.
tion [41]. Subject to a power constraint, we design the optim

= .. T
precoder that maximizes the lower-bound of the channel’s frggl_t?;:s;itgg OVG;ZNAOiSbeC?IZJI’\Ifn; 1EV;CCP:C§ zibsénl?g:etr?
distance. The resulting precoder is exactly $hmatrix in the y ' y

QRS decompositiortIS — QR from afinite-size alphabet. Consider a general multiple-input

Curiously, the same optimal precoder matrix can be derivgad multiple-output (MIMO) channel mode
under a different optimization criterion. Namely, if we design r=Hx £ 1)
the precoder to minimize the block error probability of a suc- ’
cessive cancellation detector that employs QR decompositigfhere H is an M x N full column rank channel matrix
the optimal precoder is the S-factor of the QRS-decompositiqRnown to the receiver) with/ > N, £ = (€1, &m]T
HS = QR. For this reason we call the S-factor th@R- s a white Gaussian noise vector wher¢¢¢”) = 421, and
optimalprecoder. r=[ry,---,ru7 is the observed received vector. Our task is
In this paper, we apply the QRS decomposition to derive thg detect (estimate) the vectere XV given the noisy obser-
optimal QR-precoder for TDMA and OFDM systems used oV&fationr. We denote the estimate gfby x = [Z1,--,&n]T.
channels with intersymbol interference. Examples are given to
illustrate the performance of the precoder and the corresponAd—
ing successive cancellation detector. ' . . )
The paper is structured as follows. In Section II, we review T_he QR—decompOS|t|on-b.ased successive cancellation detec-
the QR-decomposition-based successive cancellation detef26S captured by the following three steps: _
and the optimally ordered cancellation algorithm of Golden et Algorithm 1(QR-decomposition-based successive cancella-
al. [18]. In Section Ill, we develop the underlying QR delion):
composition theory by introducing the QRS decomposition and1) QR-decompositian Perform the QR-decomposition,
proving its properties. In Section IV, we introduce the channel H = QR, whereQ is a talf M x N column-wise or-
models. Section V is devoted to deriving the QR-optimal pre-  thonormal matrix and is an upper triangular square ma-
coder for the successive-cancellation detector. In Section VI, X,
we show that the optimal precoder can also be derived using a

Successive cancellation detection using QR decomposition

free-distance criterion. Extensive simulation results, compar- R(l)’l 21’2 gl’N
ing the precoder to other precoders available in the literature, R — 22 e TN
0 0 .. Rywn

2When an error correction code is used, it does not make sense to talk about
the optimality of a precoder, because, for example, any invertible precoder
would allow the capacity to be achieved, provided that an optimal code for
that precoder is used. Therefore, to talk about the optimality of a precoder, onA tall matrix is a matrix whose number of columns does not exceed the
must use constraints other than just capacity achievability. number of rows.
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2)

3)

whereRy, , > 0fork = 1,2,.-- | N. Left-multiplying
(1) by Q¥ we get

71 Ri1 Rio Rin 1 5:1
T 0 Ryp Ry n T &

. = . : . + . )
fN 0 0 RN,N N éN

Y%

where r = [f,---,7n]T = Qffr and & =

[€1,---,&n]T = QY ¢. Equation (2) is equivalently writ-
ten as

N

TR = [R}kl’k + Z Rk,mxm + gka
m=k+1

where[R]; denotes thé-th diagonal entry oR.

Hard decision From the last row in (2) we first esti-
mate the symbat y by making the hard decisiatyy =
Quant [Fx /[R]n]. The functiong = Quant(¢) setsg to
the element ofY that is closest (in terms of Euclidean
distance) ta.

Cancellation Substitute the estimated symbgl back
into the(INV —1)-th row in (2) so as to remove the interfer
ence term iy _; and then estimatey _;. Continue this
procedure until we obtain the estimate of the first symb P
x1. The above procedure is described by the followin
recursive algorithm,

wherehy,, denotes thé y-th column ofH.

3) Recursion Repeat the above two steps until all symbols

are detected,

k;=arg min
1<5<e

NH
T, =Quant {(e,&?) r(z)} ,

r=D—p@@) _ hy, @,

(Hk/i+17ki+27"' 7kNHki+17ki+27“‘ sz) ]

J

fori=N—-1,N—-2,--- 1,

where e,(fi) denotes thek;-th column of E®

— H
(H;+1,k7¢+2,--- ,kN) andhy, denotes the;-th column
of ﬁk |

it+1,kiqt2, kN

C. QR interpretation of Algorithm 2

We use the QR decomposition to interpret the algorithm of
Golden et al. [18] given in Section 1I-B. The first step (3) is
equivalent to finding a subchannel whose SNR is the highest
among allN possible subchannels. If we look at this problem
from the viewpoint of the signal space that is spanned by the
_column vectors oH, then the first step (3) is to maximize the
difference between the column being projected and its projec-

n.

Repeat the above procedure for the remaining columns.

inally, Algorithm 2 actually finds the optimal order. That is,
it finds a permutation matrif =

[pk'm e 7pk1\7]! Wherepi

denotes arlV x 1 vector whose-th element is one, but others

in = Quant |

~ N N
Tk — Zm:k—i—l Rkﬂn£m]
3

T = Quantl Rl

fork=N-1,N—-2,--- 1.

B. Optimally ordered detection

Golden et al. [18] proposed a vertical Bell Laboratories lay-
ered space-time (V-BLAST) system with an optimal ordered
detection algorithm that maximizes the SNR.

Algorithm 2(see Golden et al. [18]):

1)

2)

2)
Initial nulling. Find an initial nulling vector with the
smallest norm using zero-forcing. That is, find the in-
dexky, as the position of the smallest diagonal entry of
(|H)
kn

= arg mi
1<G<N

-1
[C3 VP
Then, project the received signabnto the nulling direc-
tion and perform the hard decision to detect the symbol 3)

- A I\
Tiy- Thatis, setty, = Quant (ekN) r|, where

e](CJZ\V’) is thek n-th column of EY) = (H+)H_

are zeros, such that the QR decompositioBId&* gives rise to
the optimally ordered successive cancellation detector.
Algorithm 3(QR interpretation of Algorithm 2):
1) Initialization. Find the column vector oH that has the

longest distance between itself and its projection on the
space spanned by all other columnskbf The index of
this column is

2

kx = arg max ,

1<k<N H (I B ﬁkﬁ;) hk‘

and the column ity . Letay = (I — ﬁkNﬁ:N> hy,

anqu = aN/ H oN ||
Recursion Repeat the first step by stripping off the col-
umn vectors one by one

ki =arg max H (I_ﬁk,k
1<k<N

k#kiy1, kN

IS PR 7kNHl€7ki+17"' kN )hk H

fori = N—-—1,N —2,---,1. Definea; asa; =
=+

(I — Hk'i7ki+17"' ,kNHki7ki+17--- 7kN) hki and let q;
a;/ | a |.

Permutation matrix formulation Finally, we obtain
the optimal matrixP [Pkys- - »Pry] and Q
[q1,--- ,qn] such thaHP = QR.

It is easily verified that Algorithm 2 is equivalent to apply-

Cancellation Subtract the detected signal from the ren9 Algorithm 1 tor = H'x’ + ¢, whereH' = HP and

ceived signal to get

x = Px’. Therefore, if we precode a vectef with the permu-

tation matrixP, and apply Algorithm 1 to detest’, we get the

(N-1)

r :I'fhkNC%kN,

optimally ordered successive-cancellation detector of Golden et
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al. [18]. In the remainder of the paper, we dot confine the have a solution vectoty if and only if A\,;,(A) < 1 and
precoder matrix to be a permutation matrix, and we derive the,..(A) > 1, where),.x(A) is the maximal eigenvalue of

optimal QR decomposition and the corresponding successiverandA,i,(A) is the minimal eigenvalue oA. |
cancellation detector. Proof: For any unit norm vectory, we have,i,(A) <
~H Ay < Muax(A). Hence, equations (6) and (7) have a solu-

tion if and only if Ayin (A) < 1 andAyax(A) > 1. O

Il1. EQUAL-DIAGONAL QRSDECOMPOSITION ) )
. . . Employing Lemma 2 we further get the following result.
In this section we develop the equal-diagonal QR decompo'COrollary 1.1: Let A be aK x K positive definite matrix,

sition, which we call simply the QRS decomposition. This deandB be anN x N positive definite matrix, wher& < N. If
composition will hold the key to the design of the optimal (nof,, H(A)/E = det(B)/Y, then, the following equations
necessarily permutation) precoder matrix.

~YTAy = det(B)%
A. QRS decomposition ~y =1
Lemma 1l:Let H be anM x N full column rank matrix
(M > N). Then, the diagonal entries in the R-facBrof always have a solution vectar. ~ u
the QR decomposition & are Proof. Let A = A/det(B)'/VN. Then, Apin(A) < 1and
/\Imx(A) > 1. Applying Lemma 2 toA yields the desired
det (Hgﬂk) result. O
R = det (HF Hj_1) fork=1,2,---,N. (4  canonical equations: The following system of equations
k—1

will prove to be crucial for the remainder of the paper. Let

Proof: The proof follows directly once the following equa—H be a full column rank tallMf x N matrix andv/A, (k =

tion is verified 1,2,---, N) be its singular values that we arrange into a matrix
A = [diag(\/x, SN m)»ONx(M—N)]T (here)\l, L AN
k are the eigenvalues 17 H). We seek to find a matri¥ of or-
det(H{'Hy) = det(Ry'R;) = [[[R]?. thonormal vectory” = [vy, v, - - , vy], such that the vectors
i=1 vy, Ve, -, vy satisfy the following constraints:
0 1) The vectorv, satisfies

Definition 1: If a full column rank matrixH has a QR de- 1/N
compositionH = QR, where the matrixR has equal ele- vilA"Av, = det (H"H) / (8)
ments along the diagonal, then the maRixs called arequal- viv, = 1. 9

diagonal R-factor |
Theorem 1:Let H be anM x N full column rank matrix ~ 2) Fork > 1, the vectorv,., may be expressed &g, =
(M > N). Then,H has an equal-diagonal R-factor if and only Vi-zj41, Wherez,, ., satisfies

if the submatrixH,, of H satisfies 1N

. zkHHA(k)zk_,_l = det (HHH) (20)
det (HiHy) = det (H'H)~  fork=1,2,--- ,N. 2l = 1, (11)
®)
| with
Proof. By Lemma 1, the series of equalitifR]; = [R]z = A = (AVHIPAy, AV, (12)

= [R]y is equivalent to Theorem 2:Let H be a full column rank tall/ x N matrix

det (H{IHl) det (H?Hz) det (HﬁHN) and\//\!C (k=1,2, s , IN) be its singular values arrangec;into
det (FIH,)  det (ML)~ det (HE_ Hy_,) & MaXA = [diag/d iz, VAN, Onxr-m]
00 1 N-1-EN—1 There always exists a unitary mat = [vi, v, -+, vy]

. g . . whose columnsvy, vy, -+, vy satisfy the canonical equa-
This shows thatlet (Hf7H,,) is a geometric sequence in tions (8)—(12). n

Sincedet (H(%{HO) = 1 anddet (H%HN) = det (HHH) The proof of Theorem 2 is given in the Appendix.

we havedet (H'Hy,) = det (H7H)"/". 0 We next show that the matri¥ in Theorem 2 is comprised
Theorem 1 gives us a necessary and sufficient conditiondpthe eigenvectors cH”H if and only if H has an equal-

check if a matrixtH has an equal-diagonal R-factor. But it doegliagonal R-factor.

not tell us how to transform an arbitrary matrix into a matrix Theorem 3:Let H be an M x N full column rank

with an equal-diagonal R-factor. We next develop the apparawmsatrix (\/ > N) and let H = UAV be the
that will enable this transformation. singular value decomposition (SVD) oH with A =
Lemma 2:Let A be a positive definite matrix. Then, the[diag(v/ Ay, - - - 7m)>ON><(JW—N)]Ty where \; > Ay >
equations -+~ > Ay > 0. Then,H has an equal-diagonal R-factor if
= and only if the vectorsy, vo, - - - , vy Of the unitary matrixv’
YAy = 1 (6) and the singular value matrix satisfy the canonical equations

Ay =1 7)) (8)-(12). u
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The proof of Theorem 3 is given in the Appendix. are satisfied.

Theorem 3 not only provides a criterion to judge if the di- 3) Recursion(reduce the dimension and decouple con-
agonal elements of the R-factor are equal, but also implicitly  straints). Se§,,; = Sﬁzkﬂ, wherez, 1 is any vector
provides a recursive algorithm to construct a matrix with such  that satisfies
R-factor. This recursive algorithm is obtained by successively

constructing the vectorsy, vs, -+, vy to satisfy equations zl’j+1c(k)zk+1 = det (f{Hﬁ)m (18)
(8)-(11). We provide the algorithm in Sections 11I-B and I1I-C. "
Theorem 4:(Equal-diagonal QRS decomposition) For an ar- Zpy1Zk+1 = 1, (19)
bitrary M x N matrix H with rank r, there exists a unitary e o
matrix S such thaS has an equal-diagonal R-factor, i.e. with C) = (HS;) " Pyg HS;.
4) Complete the S-factoB = [V,.S, (V) . ]. [
HS = QR, (13) o

Remark: We would like to make some comments on the

whereQ is anM x r column-wise orthonormal matrix ail =  'ecursive a_Igorithm. ~ _
[ Rixr O,x(n—p) ] With R, being the equal-diagonal R- ¢ The first column of S must lie both on the hyper-

factor. ] ellipse and the hyper-sphere, which are determined by the
Proof: Let the singular-value decomposition (SVD) of the ma-  quadratic equations (16) and (17), respectively. These
trix H beH = UAV, whereU is anM x M unitary matrix, equations do have a solution (see Corollary 1.1). In fact,
VisanN x N unitary matrix and they have an infinite number of solutions when> 2.
Additional constraints may be imposed to narrow the so-
A= ( Arxr 0y (=) > (14) lution space, but we do not pursue this option here. For us,
Or—ryxr O@r—ryx(N—r) )’ all possible solutions of (16)-(19) are equally(good.
k
With Ay = diag (VAL VG, - V&) g 2 g 2 o> T 1O Theorem 1owe know thatdet (G1F)
A\ >0. LetH=H- (VH)T' ie., det (HHH> This, in fact, is equivalent to
det(CW)L/(r=k) — qet(HTH)'/". Therefore, in each
H=U < Arscr > ) (15) recursion, equations (18) and (19) keep the same struc-
O(ar—ryxr ture. This structure ensures (see Corollary 1.1) that the

Now the key to the proof is to show that there exists a uni- ~€quations (18) and (19) have a solution for every 1.

tary matrix S such that the diagonal entries in the R-factor « Once we have determined the first colugnof S, we

of the QR decomposition oHS are equal. IfHS is to look for the second columg, of S in the space orthog-
have an equal-diagonal R-factor, then by Theorem 3, the ma- ©nal tos; via the transforms, = Sizo. Thereby, the
trix of its right singular vectors must satisfy the canonical ~©rthogonalitysi’s, = 0 is automatically satisfied; fur-
equations (8)—(12). (Notice that by multiplyird by a uni- ther, the constraints o are transformed into constraints
tary matrix S, we do not change the singular values, so the (18)-(19) which involve onlyz,. More importantly, we
equations (8)—(12) keep their form.) Since (by Theorem 2) transform joint constraints a& ands,, into disjoint con-
the canonical equations (8)—(12) always have a solution, we Straints: one fos;, and the other foe, alone. Thereby,
conclude that the desired matrix of right singular vectors ex- We also preserve the structure of the recursive algorithm,

ists, and hence the matr with the designed property must ~ i-€., the constraints (16) and (17) associated withave

exist too. Therefore, we can writllS = QR,., with the same structure as the constraints (18)-(19) associated
_ _ e v w VAL with z,, which is the key to the successful design of the

I[_lzjcﬁg]l[([\l}g;:ls?, (W)l,g,,.FﬁTXﬂ;en, M )i\sl)\;n N)\; N unitary matrixS in question. We continue the procedure

) i AT e T T until we determine the last coluns.
unitary matrix satisfyingHS = [HS,H(V#),, | =

R xr,0, -nl=QR. s
QlRrxr, Orxcv—n] = Q C. An explicit S-factor

B. Construction of the S-factor In Section 1lI-B we established that the solution for the S-
Implicitly stated in the proof of Theorem 4 is the foIIowingfaCtor 'S .”0‘ unique. In. the followmg we show how .to find

) : : an explicit special solution of equations (16)-(19). Since the
recursive algorithm to find the S-factor of the QRS decomposi- . . : . g :
tion HS — QR. recursive step in Algorithm 4 involves two quadratic equations

Algorithm 4(Construction of the S-factor): with the same structure, the key to solving (16)-(19) is to solve
1) SVD Perform the SVD oH = UAV and formH ac- for z the following equations.

co.r.dir_1g to (15). . ' L z"Cz = det(HTH)Y" (20)
2) Initialization. Determine the first column &, i.e.,s; = H, _ 1 21
(S11,---,5.1)7T, such that constraints 2T @D

whereC is a positive definite matrix. Let the eigenvalue de-

PP ~ . ~\1/7
s{H"Hs, det (HHH) (16) composition ofC be C = V(@ AC)(V(©)H whereA(©) =
(©) (©)

s = 1 (17) diag ()\gc), e ,/\f;c)) with /\gc) >Nz 2 Ay > 0.
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Letz = V(©y, wherey = [y1,---,y,|T. Substituting this whereV¥) is a (r — k) x (r — k) unitary matrix and
into (20) and (21), respectively, yields AP = diag\P ... ,/\f_)k) with A% > A > .. >
~ o~ (k)
yHA(C)y _ det(HHH)l/'r‘ (22) )\T—k > 0. _
vy = 1. (23) 5) RecursionSets;; = Sy V*y k) fgrk =1, ,r=2,
. wherey (%) = [y§k),y§k), e ,yﬁk,)k} is determined by
Now we consider two cases:
Case 1p = 2. Equations (22) and (23) have four real solu- — =
tions, one of which is (k) det(HHH)V/™ — X"
i = *) _ \®)
A=A
\/det(ﬁHﬁ)l/rAgC) 1 r—k
TP (k) _ fort=2,--- r—k—1
y:(zl): : : (24) v ’ o
2 © o FHED L % e
\/)\1 )\:ic;f(_li:;})l) d y(k) _ /\§ ) det(HAH)Y/
= W,

Case 2 p > 2. In this case, there is an infinite number of
solutions to equations (22) and (23). We can obtain a special whenk = r — 1, sets, = S1 ,Vr=2y (=1 where
solution as follows,

— _\/det(ﬁHﬁ)l/"‘AgTz)
_ det(HHH)l/r _ )‘SJC) (1) /\(lr—2)_)\;r—z)
o= ©) _ \(©) - i
AT =N \/)\Yz)det(HHH)l/T
ye = 0 fort=2-- p—1 (25) NN
/\gc) — det(HHH)/7 6) Complete the explicit S-factor
Yo = )\(c) _ )\(C) . S = [(VH)TS, (VH) .. |
! r For example, whell = diag(v/A1, v/ \2), the S-factor is
Using the above specific solutions (24) and (25) in each recur- T e
sion of Algorithm 4, we get the following algorithm to compute \/erf/g ERVAvsveriysvs
an explicit S-factor. =
Algorithm 5(Construction of an explicit S-factor): \/\/ﬁ/f/g \/\/ﬁ/ff/g
1) SVD Perform the SVD ol = UAYV and formH ac-
cording to (15). D. Properties of equal-diagonal R-factors
2) Initialization. An explicit solution for the first column of Definition 2: Define the minimum distance of the constella-
S,i.e, 81 = (51,1, ,51)7, is tion X’ as
§1,1 = \/det(ﬁ;\{ff);/r - )\T dmin(X) - z,x’én)gg?ém’ ‘x - m/| N \/X,x/EIPIKIE{X?'fx’ ||X B X/HQ'
N 1 r (26)
Sgp = 0 fork=2..-,r—1 Definition 3: Define the free distance of a1 x N channel
s \/)\1 _ det(ﬁHﬁ)l/" matrix H as
rl = .
AL = Ar diree(H) = min  (x—x)PHIH(x —x'). (27)
. o . x,x'€XN x#x’
In this case, it is not hard to verify that The following theorem shows that the free distance can be
~ bounded in terms of the diagonal entries of the R-factor in the
<~ —Sr1 01x(r—2) QR decomposition of a channel matrix.
St = O0p—2)x1 Ir—2)xer—2) |- Theorem 5:Let H be anM x N full column rank tall matrix
S1a 01 (r—2) andR be the R-factor in the QR decompositiondf = QR.

3) Form the positive definite matrix for recursio8et (start- Denoting the diagonal elementsBfby [R],, we have,

ing initially with £ = 1)
S | (R - () < (1) < (R - (). (28)
Cc®) = (HS;)"Pgg, HS . =r= m
4) Eigenvalue decompositionPerform the eigenvalue de- Proof: Con::‘}lder two_different signal Tvectors:x -
x1, %9, ,en] andx’ = [zf, 25, - 2] If a2y = 2,

composition ofC*),
P fork=2,--- N, butz; # z], then

H
C® = vIA® (V) (x—x)TH"H(x ~x) = [Rff]a1 - 2} (29)
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Hence, by taking the minima of both sides of (29), we get Proof of Property 2 The Gram-Schmidt orthogonalization
procedure oH is described as follows:
2 : 2 /12
dfree<H) < zl,z'lg.%,r;:l#cc/l[Rh “/I"l xl‘ [R]l mln(X)7 /81 _ h1 (33)
which leads t_alfm(H) < [R]1 :dmm(X). This completes the B, = h;- Z ¢ kB forj=2,---,N, (34)
proof of the right-hand side of inequality (28). To prove the left =
hand side of (28), note that hil g,
Cik = jHi (35)
N | N 2 B B
(x—x)"H"H(x-x) => |3 Ri;-(x; —2})| . (30) First, we consider theN-th column hy.  Suppose
i=1 | j=i that we exchange an arbitrar)k-th column hx of H
with the N-th column hy,K # N. Let H =
Assumex # x'. Letk be an integer such that = z/, fori > [Hg_1,hy,hgi1,hgio,--- ,hy_1,hg]. Then, the Gram-
k, butzy # ;.. Then, from (30), using the upper triangularitySchmidt orthogonalization procedure of the fifSt- 1 columns
of R, we have of H is the same as that of the fir&t — 1 columns ofH, but

beyond thei-th column, they are different, i.e.,

k k . .
(X—X/)HHHH(X—X/) _ Z ZRi,j(wj_-T/) /Bj = ﬂj vfor]_lvzv"'aK_l (36)
i=1 |j=i . A 2
= h =Y ¢ forj=K,K+1,--,N (37
> [RJiler — 2 & ’ ;Cj’kﬁ’“ ’ 7
> [R]} - dn(X). (31) hi 3.
bik = o (38)
Taking the minima of both sides of (31) yieldgg..(H) > B; B,
Lg’lcigN[R]k} - dmin (X), which completes the proof. O Using (37) forj > K, we obtain
From Theorem 5 we immediately obtain: i o . JH
Property 1: Let H be anM x N full column rank tall matrix B; B; =hi"h; = ¢k By By (39)
that has an equal-diagonal R-factor. Then, k=1
LN Utilizing (39), once forj = NV and again forj = K, yields

divee(H) = (det (H"H)) Ainin (X) = [R] - dinin (X).

32) R = ByBy

| K-1 N—-1
, + H ,

Property 1 shows that for a channel matii% with an = hithg — ) lenil’B By — Y lénil*By By
equal-diagonal R-factor, the minimum Euclidean distance of k=1 k=K
the signal lattice before the channél.{,(X)) and the mini- N-1 JH

. ) . i H . 124"

mum Euclidean distance of the signal lattice after the channel = BiBr — > lénil’By By
(diree (H)), are equivalent up to a multiplicative factfR]y. k=K
We know that the free distance determines the detection per- N1
formance of the maximum likelihood detector when the signal = én i [R (40)

>~

to noise ratio is high [39]. From Property 1 we conclude that =K

if_the Cha_nne[H has an equal-diagonal R-fg(_:tor, then the fre\ﬁzhere we have usel; = ﬁj forl1<j<K-—1, hy = hg,
distance is computed by the QR decomposition. Therefore, this . I

suggests that if the channel matrix has an equal-diagonal [R]r = \/B 3, and[R], = \/B, B,. Equation (40) implies
factor, the detection performance of the QR successive canQﬁht[ R]% < [R]%, ie.,[R]xy < [R]x = [R]n, since our

lation detector is asymptotically equivalent to that of the maxissumption is thail possesses the equal-diagonal R-factor. We
mum likelihood detector as SNR- oo (which we will demon-  haye thus proved that if th&-th column and theV-th column
strate in Section V and Section VI). of the matrixH are exchanged, then, thé-th diagonal entry
Suppose we wish to use the VBLAST detector [18] on i the R-factor is not increased. Therefore, thieth symbol
channel that has the equal-diagonal R-factor. A natural ques; should be detected first. By induction, we can complete the
tion is: What is the optimal detection order? The followingroof of Property 2. 0
property gives the answer. Property 2 essentially characterizes a geometric property of
Property 2: If a channel matrix has an equal-diagonal Ra channel with the equal-diagonal R-factor. Namely, among
factor, the optimal detection order (that ensures that the high column vectors ofH, the last column vectoh, has the
SNR components are detected first) is the natural order, imaximal distance from the space spanned by all the remaining
TNy — xry_1 — --- — x1, in other words, thé-th symbol to column vectors. After we have eliminatédy, among all re-
be detected is the symbol 1 _;. B maining column vectors df, the second to last column vector
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3 g
X X | IFFT [ X /+\ Y | De-prefix| r
- > —»

X r Prefix H® U7 FFT
—_— F(l) - H(l)

Fig. 2. Linearly precoded OFDM system

Fig. 1. Equivalent matrix receiver model for a linearly pre-
coded TDMA system. In this model, we assume that fbr< 0 or k > L, the chan-

nel impulse response coefficients &rg) = 0 andh(0) # 0.
Also, we assume that th¥ x N matrix F(!) is invertible. It is
hy_; has the maximum distance from the space spanned byradk hard to verify that the matri(<H(1>)H HD isanN x N
the remaining column vectors (except;). We continue this Toeplitz matrix, whose entries consist of samples of the auto-
procedure until we reach the first column vedtgr correlation function of the channel impulse response.
Recently, Hassibi [19] derived a fast square root algorithm,
which, just like the algorithm in this paper, is based on a certai) pracoded OEDM system

QR decomposition and the Schur decomposition. It is therefore i
natural to compare Hassibi's algorithm [19] to our method. Ba- Figure 2 depicts an OFDM system precoded by altalk V

sically, the method in [19], just like ours, efficiently implement§at"x F(®), see [42], [20]. The serially transmitted symbols
the optimal permutation order at the detector. The main diffef[€ first converted into a signal vectorof S|22eN. This signal
ence between our algorithm and Hassibi's algorithm is that o{ffctor is multiplied l/)y the precoder matd¥?) to produce an-
decomposition not only directly gives the optimal ordering, b@her signal vectox” of sizeM = N + K. The inverse fast
also guarantees that the minimum diagonal entry in the R-factdpurier transform (IFFT) is performed od. Finally, L prefix
achieves the upper bound, which in turn reduces the probal5yMPols are padded to the output of the IFFT to form a new
ity of error (we prove this in Section V). Hassibi's decompoS!9nal vectorx of size M + L — 1 for parallel transmission.
sition [19] does not have this property. On the other hand, 1§18 Purpose of introducing redundancyxds to protect the
implement our decomposition, both the transmitter and the &9"a! from channel nulls. Therefore, a requirement is fiat
ceiver need to know the channel matrix, whereas Hassibi's di 9réater than or equal to the number of nulls on the interval

— L-1 —jkw
composition requires that the channel matrix be known only t8 27) Of the frequency responsé(w) = >, h(k)e™ 7™,

the receiver. So, there is a tradeoff between the two methodd/nereh (k) is the channel's:-th impulse response coefficient.
The purpose of padding the prefix%ds to transform the orig-

inal Toeplitz intersymbol interference (1SI) channel matrix into
IV. PRECODED TRANSMISSION MODEL a cyclic matrix, which is diagonalized by the fast Fourier trans-

In this section, we consider two kinds of transmission tecform (FFT). Hence, the prefix is discarded at the receiver be-

niques with linear precoders: the TDMA system and the OFDf@re the FFT is implemented. Consequently, the ISI channel
system. with additive white Gaussian noise is transformed into parallel

ISI-free sub-channels, each with gain equal to the channel’s fre-

) guency response value at the corresponding FFT bin. The result

A. Linearly precoded TDMA of these operations is a discrete-time channel model (for details
Figure 1 shows the discrete-time equivalent model of tteee [42], [20])

baseband communication system using filter-bank precoders r=HPF®x 4 ¢ (42)
proposed by Scaglione, et al. [21], [35]. The signal vect
X = [1,20, -, 2| is precoded by av x N matrix F(1)
and then transmitted through the channel, whereMhex N
channel matrix is

Yere, ¢ is a white Gaussian noise vector afd(® —
diag (Hy, Hy,- -+ ,Hpy—1) is the channel matrix with, =
H(W@)l o2z k= 0,1, M — 1.

h(0O) 0 ... 0 C. Unified model
h(1) h(O) ... 0 Models (41) and (42) are both precoded parallel transmission
h(1) . : models. They are unified into a single model as
HO — | A(L) R 1(0) . r = HFx + £, (43)

whereH is the channel matrid' is the precoder is the trans-
mitted vector and is a white Gaussian noise vector.

0 0 h(L)
V. PRECODER DESIGN FOR MINIMIZING THE PROBABILITY
Here,M = N 4+ L. In this case, the received signatan be OF BLOCK ERROR
expressed as The purpose of this section is to design the precoder ma-

r=HVFWDx 4 ¢ (41) trix such that the block error probability of the QR successive
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cancellation detector is minimized. We assume that the prdd-other words, we will show that the optimal precod#r is
uct H#H is known to the transmitter and that the chanHel the S-factor in the QRS decomposition Hf (up to a scaling
is known to the receiver. Also, we assume that the elemewtnstant).

of x are independent identically distributed (i.i.d.) equally Let () = Q (%/g) fort > 0. The second derivative of
likely binary phase-shift keying (BPSK) signal points (the re 7

sults are straightforwardly extended to quaternary phase- srﬁ

keying (QPSK) signal constellations). Extensions to other con- g2 f(¢) 1 1 3 1
stellations are briefly discussed at the end of the section. 2t Vorots \ 202t D) P\ 75,2

If t < 1/(30?), thend?f(t)/d*t > 0, and thus, in this case,

A. Problem formulation £(t) funcii In addit defing(s
i nvex function. In ition, w i =
First, we derive an expression fé}.(F), the probability of rll _S e o Thee sgcocng denvati/e 6;2 t) is e defing(t)

correctly detecting a block using the QR successive cancellatio

detector. By the chain rule, we have d&2f ar )\ 2
de(t) dz(t) (1 - f(t)) + (%)

P.F) = Pr(a$,a5, - ,2%) et (1= f(t)?

Pr(zg|af g, 2%), (44) If t < 1/(30?%), thend?f(t)/d*t > 0, and as a result,
d*F(t)/d*t < 0, sincef(t) < 1. Hence, for small values

. oft, the functionF(t) is concave. Therefore, if
where z§, denotes theeventthat thek-th detected symbol is )

correct, i.e.,x, = . If xf denotes the event that theth [R)?

Il
=P

k —
symbol is not detected correctly, then (44) can be rewritten as o2 =3 fork=1,2,---, N, (49)
N then, by combining the concavity of(¢t) and (48), we get
P(F) =[] {1 - Pr(aflag .- a%)}- (45) (Jenssen’s inequality [43])
k=1
For the model in (43), we deduce (see, e.g., [38]) that In P.( Z}‘ )< N-F (Z" }\[f i > (50)
e C (63 _ [R]k . . . .
Pr(@ileii, - 2n) =Q (== ), (46) ' Due to the concavity ofF(¢), the equality in (50) holds if and
only if
where Q(t) = 1/v2x [ exp(—22/2)dz, and (from [R]1 =[R]o =+ =[R]n. (51)
Lemma 1) On the other hand, from the general relationship between the
arithmetic and the geometric mean, we get
det (FITHHHF},)
R = T i (47) N -2
det (F_ ,HYHF_,) SRR

N 1/N )
> (H [R],ﬁ) = ;
/N’
is thek-th diagonal entry in the R-factor of the QR decomposi- k=1 (det (FHHHYHF))

) o : . (52)

tion of HF'. Substituting (46) into (45) yields where we have utilized Lemma 1 to obtain the last equality in
N ] (52). Fortunately, the equality in (52) holds if and only if (51)

= H <1 -Q ( >> (48) also holds. So, the equalities in (50) and (52) both hold under

k=1 g the same condition (51). Combining (50) with (52), and using

Our problem is now stated as: the fact thatF(¢) is monotonically decreasing, yields

Problem 1: Let P > 0 be the power budget. Find the pre- (d?t(FHHHHF))1/2N

coder matrixE that minimizes the block error probability of theln P,(F) < N In
QR successive cancellation detector, subject to the power con-

; 7 ) .
et (F ‘F)| ~ I More precisely. 1t s formulated as e equaiity in (53) holds if and only if (51) holds. Therefore,
oflowing equivalent optimization problems, we consider the following optimization problem that maximizes

g

F*=arg min P.(F), the upper b_ound in_ (53).
tr(FEF)<P Formulation 1: Find F such that
F* = P.(F F= det (FTHYHF 54
arg  nax (F), arg max det ( ) (54)
whereP,(F) =1 — P.(F). B where the maximum in (54) is taken subject to the power con-

In the following we show that under a mild SNR constrainsstraint,
Problem 1 is equivalent to finding a precoder whose superchan- H
nel matrix HF exhibits equal diagonal entries in the R-factor. tr (F F) < P (55)
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B. Problem solution whereP is anN x N identity matrix in Case 1 an® = P(?)
We solve the problem in Formulation 1 for two cases. in Case 2. In the remainder of this section we show that the
Case1H = HU, see Section IV-A. In this case,0ptimal choice foW is

F = FW is a square matrix andet (FAH?HF) =
det (HH) det (FF). Thus, maximizinglet (F7H” HF)
over all choices of the matri¥' is equivalent to maximizing that is, the unitary factoW of the optimal precoder is exactly

det(F'F) over the matrixF. Applying Hadamard's inequal- the S-factor in the QRS decomposition of the superchannel ma-

W =S8, (63)

ity [1] leads to trix HP.
N At this point, a natural question is when is the upper bound
det (FHF) < H £, (56) in (53) achigyed? If we desire that the maximum probability of
Pt} correct decisions
wheref}, is thek-th column ofF. The equality in (56) holds if (d f(FHHHHF))1/2N N
and only ifFF is a diagonal matrix. Furthermore, under the PF) =|1-0 “ (64)
power constraintr(FF) < P, we have ¢ o
N N N
H £Hg, < D pe B < <P) ) (57 be attainable, equations (51) must hold. In other words, the
et N TN matrix HF must have an equal-diagonal R-factor. Luckily, in

the solutionF in (62), we have the freedom of choosiky to

Both equalities in (56) and (57) hold if and only if the diagongheet constraint (51). An obvious choice is therefore to set
entries of F F are equal, i.e., if and only if

p W =8, (65)
fHf =16 = = fllfy = —. 58
LT NN 8) where S is the S-factor in the QRS decomposition of
Hence, in this case, we easily obtain the solution of Formulg/P/NHP, i.e., (N/P/NHIU’) S = QR. The factorS is
tion1, computable using Algorithm 5. The precoder
y P
FO = ﬂ/ﬁwm, (59) Iz
§ F* =/ —PS (66)
whereW () is an arbitraryN x N unitary matrix. [ ] N

Case 2H = H(_z), see Section IV-B. In this case, the Lajs also the solution of Problem 1 if the constraint (49) holds as
grangian formulation [44] of this problem admits a closed-forfell. For the precoder matrix given in (66), the diagonal en-
analytic solutionF' = F(*). The Lagrangian here is tries [R]; are all equal, and an equivalent formulation of con-

L(F) = In (det (FPHIHF)) — p (tr (FIF) — p),  Straint(49)is

N
wherey is the Lagrange multiplier. The necessary condition (P> det (f)HHHf)) = det ((F*)H HHHF*)
for achieving the maximum is that the gradient®fF) with N
respect td" equals to zero. After appropriate matrix manipula- N ) SN
tions [44], this condition yields the following equivalent condi- = [[RJ; = (R])
tion: k=1
HYHF (FPHYHF) ' — uF = 0. (60) > (302",

Left multiplying the two sides of equation (60) By yields
FHZF = ;~'1, which shows that the optimal solutid® must
have orthogonal columns. Considering the power constraint P 3

which leads to

I > (67)
(55), we have that, > %. Therefore, in this case, the solu- No? .
tion of Formulation 1 is det (P H HP)
g P ooy It is now clear that constraint (49), or equivalently (67), is a
@ — /| —_p@Ww® . ) . . g
F7= NP WH. (61) constraint on SNR since is the power budget;? is the noise

. 5 variance and”/ (No?) is the SNR. The next theorem (Theo-
Here,W2) is an arbitraryV x N unitary matrix, and®® isan  rem 6) summarizes these results

M x N selection matrixsuch thatH(®? P consists of those  Theorem 6:Let the SNR constraint (67) hold. LBt = I if

N columns ofH® that have the largesV magnitudes (note our model is (41); otherwise if our model is (42), Iet= P(2)

H® is a diagonal matrix). _ B be anM x N selection matrix such th&(? P consists of
Regardless which case we consider (Case 1 or Case 2), ti®&seN columns ofH?) with the largestV magnitudes. De-

optimal solution of Formulation 1 can always be expressed agote byF* the solution to Problem 1. Let the QRS decompo-

§ o sition of /P/NHP be («/P/NHf’) S = QR, wheresS can
F= \/ NPWv (62) pe computed by Algorithm 5. Then, we have:
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1) The optimal solution of Problem E*, has the following  « At high SNRs, the error probability of the maximum like-

structure lihood detector is dominated by the free distance. A com-
F* \/> PS (68) parison of (69) to (70) shows that the detection perfor-
N mance of the QR successive cancellation detector with the
2) The QR decomposition ofF* exhibits an equal- optimal precodeF* is asymptotically equivalent to that of
diagonal R-factor. the MLD when the SNRs are large.

For th imal pr *, the block error pr ili . . .
3) For the optimal p epodeF L epoc error p oba}b. ty C. Sketch of extensions to non-binary constellations

of the QR successive-cancellation detector is minimized _ _ ) _

and equals In this subsection, we briefly outline the procedure of how to

extend the results in this paper to some frequently-used non-
(min) L oNL/2N N bpinary constellations. The key to generalizing this work to
P = 1(1Q (\/% -~ det (P H HP) >) > PAM, PSK and QAM constellations is to evaluate the symbol
(69) error probability, see Simon and Alouini [45]. In the follow-
wheresnr = -£5. ing [R],, is the k-th diagonal entry in the R-factor of the QR-

4) The free distance of the precoded channel m&i#x- is decomposition. N
PAM signals: The symbol error probability for g-ary PAM

. UNA\1/2N symbolz;, [45] is
dfree(HF*):,/%(det(PHHHHP)) doin(X). Y £ 149]

Peam (75| T5 41, 5 X))

2(‘1*1)@ [R]k\/g
q o2 —1)

Proof: Most _Of .the proof hgs already been completegSK signals: The symbol error probability for g-ary PSK sig-
through the derivation of equations (56)—(67). Statementha| 21, [45] is

follows from the derivation of equations (62)—(66). State-

ment 2 is triviality satisfied by the construction Bf in State- Pesk(Zg|Thi1, -+ 7N)
ment 1. To prove statement 3, we note that by Lemma 1 1 fla=Dr/q [R]2 sin2(7r/q)
and Theorem 1 an equal-diagonal R-factor impliBg, = = f/ exp (—M) de.
V/P/Ndet(PPHTHP)/2N for k = 1,--- , N, and the re- TJo 207 sin
sult follows directly from (48). Statement 4 is proved usin@AM signals: The symbol error probability for g-ary QAM
Property 1 in Section IlI-D. O signalxy, [45] with ¢ = 2¢ x 2¢is
Remarks. To understand the physical meaning of the solu-
tion F*, we make the following comments. Poam (25|26 41, -+, x%) = 4 (1_1> Q < [R], V3 )
« Condition (67) is an SNR condition. When it is satisfied, Vi oy/(g—1)
i.e., when the SNR is relatively high, we can obtain our 1\2 R], V3
optimal solution. Otherwise, when the SNR is low, we do —4 (1—) Q? k) .
not know how to solve the problem. In fact, condition (67) V4 ay/(a-1)
is equivalent to (72)
o0& For our purpose, let
snr(dB) > 10log3 — - > loghr, (71) a
k=1 t = Q ( n )
where )\, are the eigenvalues of the mat#x? HHP. o(0) /(ql)”/q . < b >
0 t Sil’l2 0

N T
For N large, 3 > log)y, tends toz- [ log|H (w)|*dw.
k=1 -7
Hence, using (71), condition (67) becomes h(t)

c 1 9 c
°(Vi)-(-F)e )
wherea = Gg(qiil),b = Sinzg’g/‘” andc =
where using Kolmogorov's result ([43], p. 274), we denote’T be the root of following equation,
the entropy rate of a Gaussian process with power spectral r 22 NG
densityS(w) by h[S(w)] = 1= |7 logs (2meS(w)) dw. Q(z) + = XD (—2) T 0.

« From the structure of the optimal precod®r we see that Vam(a® - 3) (Va-1)
P selectsN good sub-channels from the existing sub- Then,h(t) is convex int for 0 < ¢ < %, while itis concave irt
channels. The role d is to shape the precoded channefor ¢ > . The functionf(t) is convex in the regioft < t < £,
matrix so as to equalize all the diagonal entries of the upile it is concave in the regioh > £. Similarly, we can get
per triangular matrixR in the QR decomposition. As athe convex/concave regions for the functigft). Identifying
result, the conditional error probability of each symbol ithe concave/convex region is the key to finding formulations
equal, which minimizes the block error probability of theanalogous to Formulation 1, but for non-binary constellations
QR successive cancellation detector. (see Section IV-A). We do not pursue the details further.

snr(dB) > 6 (h[?’] —h [|H(W)|2]) )

3 —
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VI. PRECODER DESIGN FOR OPTIMIZING A FREE The only difference between Theorem 6 and Theorem 7 is
DISTANCE CRITERION that in Theorem 7 the SNR condition (67) need not hold. Essen-
In order to better appreciate the physical meaning of our of2!ly. the two theorems are equivalent when the SNR is high.
timal precoder designed in Section V, in this section we takdlis equivalence is justified as follows. We derive from (48)
another point of view. Ideally, an optimal precoder should miribat
imize the detection error probability when MLD is used. But min [R] N min [R]
we know that for the MLD, at high SNRs the average proba(l—Q()) <P(F)<1-Q (), (78)
bility of error over all blocks is dominated by the free distance g g
term [39]. _However, directly r_n_aximizing t.he freg distance i§vhich, utilizing P.(F) = 1 — P,(F)
too expensive for the complexities of both its design and detec-

tion to be affordable. Here, we are interested in designing the<min [R]k> <PE) < 1- (1 0 <min [R]k>)N

, IS equivalent to

precoder that maximizes the lower-bound on the free distané

Utilizing Theorem 5, the lower bound on the free distance is in [R] 7
< v (M)
g
. e <
[1£?N[R}k} dmm(X) = dfree(H) (73)

This shows that when the SNR is high, the minimum diago-
and our problem may now be stated as: nal entry in the R-factor of the QR decomposition of the chan-

Problem 2: Find the precoder matriF that maximizes the nel matrix determines (up to a constant of proportionality) the
lower bound on the free distance (73), that is, maximizdock error probability of the QR successive cancellation de-
min[R];, subject to the power constrainty (FHF) < p. tector. In other words, the minimal diagonal entry accounts for

More precisely, it is formulated as the following optimizatiorihe dominant term of the QR detector error probability just as

problem, the free distance is the dominant term of the MLD error prob-
ability. (See Varanasi [6] for an analysis of the performance

F* — ar max { min [R}k:| of the cancellation detector.) Hence, increasing the.r_ninimum

tr(FHF)<P |1<k<N ’ diagonal entry can decrease the block error probability of the

QR successive cancellation detector. Consequently, when the
where[R];; is determined by equation (47). B minimum diagonal entry becomes equal to the maximum diag-
First we note that onal entry, i.e., when the precoded channel matrix exhibits an
N 1/2N equal-diagonal R-factor, the block error probability rTaghers] its
. 2 HerH minimum. Using Property 1 in Section IlI-D, we conclude that
15?%1N[R]’“ = (H [R]k> = det <F H HF) - (714) for BPSK (and QPSK) signals the detection performance of the
QR successive cancellation detector is asymptotically equiva-
The equality here holds if and only if lent to that of the maximum likelihood detector when the signal
to noise ratio (SNR) is large.

k=1

[R]: =[R]z =+ =[R]n. (75)

Therefore, Problem 2 is reduced to first solving the optimization VIl SIMULATIONS
problem in Formulation 1 and then finding a unitary maWx A. Comparison of the precoders for the TDMA system
that enforces condition (75). In this subsection we adopt the model in equation (41) and

Theorem 7:Let P = I if our model is (41); otherwise if our compare our QR-optimal precode®R-OP) followed by a
model is (42), letP = P2 be anM x N selection matrix successive-cancellation detector to other precoders and detec-
such thatH(? P2 consists of thoséV columns ofH®) with  tors available in the literature. We compare the following pre-
the largestV magnitudes. Denote the QRS decomposition @bders/detectors:

A /P/NHf’ by ( /P/NHf’> S = QR, where the S-facto 1) The zero-forcing minimum mean square erraF{

is computed by Algorithm 5. The solutid®* to Problem 2 is MMSE) precoder, followed by a threshold detector. The
precoder in this scenario was determined in [21] to be
P
F*=,/—=PS. (76)
N = LWDWU, (80)
tr (D1/2)

Moreover, for this optimal precoder, we have

P s ) 2N where (HO)PH®) ™' = WDW is the eigen de-
diree(HF ) = \/; (det (P H HP)) i (). composition of(HM)7H®) ™" andU is an arbitrary
(77) unitary matrix. In our simulationyJ is taken as the iden-

| tity matrix L.

Proof: Combining (74) and (75) with the proof of Statement 2) The minimum bit error rate zero-forcing precoder
1 in Theorem 6, we can complete the proof of equation (76). (MBER-ZF), followed by a threshold detector. In [37],
Statement (77) is proved using Property 1 in Section IlI-DL it was shown that this precoder has the same structure as
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a) Block error rate performance comparison
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Fig. 3. Performance comparison of the optimal QR precodeig. 4. Performance comparison of the optimal QR precoder

with other precoders for Example 1. (a) Block error rate perfowith other precoders for Example 2. (a) Block error rate perfor-
mance comparison. (b) Bit error rate performance comparisanance comparison. (b) Bit error rate performance comparison.

in (80), where the unitary matrikj = U,,, is the nor- M = N + L = 35. Simulatedblock error rates andit error
malizedN x N the discrete Fourier transform matrix. Iffates are shown in Figures 3 (a) and (b), respectively. We ob-

Nisa power OQ, Uopt can be the normalized Hadamar(ﬁerve that our QR'Opt|mal pl’ecod@R-OP) perfOI’mS about
matrix. 3dB better than best precoder/detector known.

(UMMSE). that of Example 1. An FIR channel of orddr = 4 is

4) The unprecoded V-BLAST detector [18)YBLAST). considered, where channel responge coefficientshéig =
We compare the performance of these precoders to the b:i‘?c%mm’ h(1) = 0.0523 — 0.15804,h(2) = 0.2526 —
t

: : : . 03957, h(3) = —0.5129 4 0.1975j, h(4) = 1. The zeros of
error rate for the QR-optimal precoder given in equation (68).. ’ ’
QR-op b g d ( s channel response ate = 1,29 = 0.9exp(j97/20),23 =

Note that some of these comparisons are not really fair. . i )

example, it is not fair to compare precoded to unprecoded c}elextp(rjgﬁﬂto)’z‘* o« —0.8. Notice trlatlthlshc_ratnhnel thhas a

tectors. Similarly, it is not fair to compare the V-BLAST detecSPectral null at zero-requency (S'T‘E? =1, w ie the other
g;)ts are also very close to the unit circle. For this channel, the

tor (which operates under the assumption that the transmitg
does not know the channel coefficients) to other precoders t ck length was chosen to b€ = 32 andM = N + L =

utilize the knowledge of the channel coefficients at the tran%-' The block and bit error rates are plotted in Figures 4 (a)

mitter. Nonetheless, we still conduct the comparisons becaf&i (([))?3 restpec;uvely, t?]how_ln_g thatbt_?e QR-opteraI _precoder
they give insight into the performances of methods available it ) outperforms the minimum bit error zera-forcing pre-

the literature. coder MBER-ZF) by 2dB and outperforms the unprecoded V-
Example 1. We consider a finite impulse response (FIR?LAST detector UVBLAST) by 0.5 dB.

channel of orderL. = 3, whose impulse response coeffi- .

cients areh(0) = 0.0838 — 0.06337, h(1) = 0.60285, h(2) = B- Comparison of the precoders for the OFDM system

—0.8709 — 0.73204, h(3) = 1. The channel hag = 3 ze- In this subsection, we compare the QR-optimal pre-

ros at0.7, 0.5exp(j270.256) and0.3exp(j270.141). The block coder QR-OP) to other known precoder/detectors for the

length of the precoder was chosen to/e= 32, resulting in OFDM system. Thereby, we adopt the transmission model
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a) Block error rate performance comparison .
! ! ; , a) Block error rate performance comparison

Block Error Rate
Block Error Rate
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b) Bit error rate performance comparison
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b) Bit error rate performance comparison
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Bit Error Rate
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Fig. 5. Performance comparison of the optimal QR precoder

with other precoders for Example 3. (a) Block error rate perforig. 6. Performance comparison of the optimal QR precoder
mance comparison. (b) Bit error rate performance comparisafith other precoders for Example 4. (a) Block error rate perfor-

mance comparison. (b) Bit error rate performance comparison.

6
SNR[dB]

given in equation (42). We compare the following pre-

coders/detectors
1.2342j5, h(4) = 0.9428, and channel zeros af = 0.9, 25 =
1) The truncated DFT precoder [42], followed by the V'O.7, 2y = exp(j2m0.256), 24 — 0.dexp(j2r0.141). We take

BLAST detector [18], which we abbreviate by-DFT- K =1,togetM = N + K = 35. The block and bit error rates

VBLAST). i )
2) The non-maximally decimated multirate filterbank pre‘§lre plotted in Figures 6(a) and 6(b), respectively.

coder NDMFP) [20], followed by the V-BLAST detec-

tor [18],which we abbreviate byNDMFP-VBLAST). C. Comparison of the optimal QR detector with MLD
We also show comparisons to the theoretical performance of thén the discussion that followed equation (79), we asserted
QR-optimal precoder followed by the successive cancellatitimat the block error rate of the QR-optimal precoder followed

detector, given in equation (69). by the successive cancellation detector is asymptotically (as
Example 3. An FIR channel of orderl. = 4 is as- SNR— oo) equivalent (up to a constant of proportionality) to

sumed. The channel coefficients ak¢0) = 0.1000 + the block error rate of the maximum likelihood detector when

0.17324,h(1) = —0.5550 — 0.5550j,h(2) = 1.0131 4+ using the same precoder. In this subsection we test this asser-

0.58497, h(3) = —0.7581 — 0.20314, h(4) = 0.2000 with ze- tion through a simulation as well as by an upper-bound error-
ros z, = exp(j2rk/M),k = 0,1,2, 3. For this scenario, we rate analysis.
choseN =8, K =4andM = N + K = 12. The blockand  Example 5. The scenario of this example is similar to Ex-
bit error rate simulations are given in Fig. 5(a) and Fig. 5(baymple 2, with the only difference being that we now choose
respectively. the block length to be smaller\{ = 8) so that we can actu-
Example 4. The scenario in this example is a bit morally simulate the maximum likelihood detector. We determine
realistic than Example 3 in that we choose a longer blodke QR-optimal precoder and simulate the performance of two
length N = 32. We choose an FIR channel of order= 4 detectors for this precoder: 1) The successive-cancellation de-
with channel coefficientd(0) = —0.1895 + 0.14325, k(1) = tector, and 2) the maximum likelihood detector, which can be
0.3535—1.14145, h(2) = 0.6179+2.20215, h(3) = —1.7115— efficiently implemented using the sphere decoder if the radius
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Average block error rate performance comparison
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Fig. 7. Performance comparison of the optimal QR detector SNR [dB]

with MLD for the optimally precoded channel under the scelf_ 8 c ) f th . llation d
nario in Example 5. ig. 8. omparison of the successive cancellation detec-

tor with optimal precoding (QR-OP) to other precoders in a

stochastic channel scenario.

is properly set (see [47] and the references therein). The re-

sults are shown in Figure 7. Notice that at very high SNRs, the

two curves (QR-OP and MLD) are parallel, which confirms thget the SNR gap to be SNfk.op[dB] — SNRuip)[dB] ~

assertion that the two error rates differ only by a constant 8NRqr-op-ug[dB] — SNRumip-4)[dB] = 0.3205dB, which

proportionality. Also, notice that there is a gap of about 0.3d&jrees with the simulation results shown in Figure 7. Note that

between the two curves at error rated0f 6. We next propose in Figure 7, the notation QR-OP-UB denotes the upper bound

a quick method to analytically estimate this gap. of the optimal QR detector on the right hand side of (82) and
It is not hard to show that the union bound of the probabilitylLD-A denotes the approximation of the MLD in (81).

of error of the maximum likelihood detector at high SNRs is

approximated by (we omit the derivation . _ . .
bp y( ) D. Comparison in stochastic channel scenarios

PMDA) (B k. Q (dfree<HF*)> The method derived in this paper applies only to channels
© 20 that are simultaneously known to the transmitter and the re-
_ ) . H 1/2N> ceiver. Often the channel is stochastic, i.e., the channel is a re-

= n@Q ( snr - det (H H) ’ alization of a random process (e.g., fading channels). We com-

(81) pare the performance of our precoded successive-cancellation

detector to other detectors in stochastic channel scenarios.

wherek is the number of weakest subchannels in the optimal-lphereby, we have to make the assumption that both the trans-

precoded channdllF*. On the other hand, we have from (79)yjtter and the receiver instantaneously receive the knowledge
that the probability of error of the successive cancellation dgf the channel realization immediately after the realization oc-

tector (SCD) for the QR-optimal precoder is curs.
(QR-OP /g Hon 1/2N Example 6: The channel model was chosen as a TDMA
P (F) < N-Q (\/snr-det (H"H) ) channel model, which corresponds to the scenario in Ex-
p(QROP-UB 82) ample 1, but the channel coefficients are complex random
o :

i.i.d. white Gaussian variables with unit variance. The precoder

Assuming that the equalities in (81) and (82) hold, and furth@pd detector performance comparison is shown in Figure 8. The
requiring thatPQROP _ pMLD) e can compute that theresults show that the average performance of the precoder pro-

SNR difference between the two detectors is approximated sed here outperforms the best precoder-based cancellation
etector known in the literature by about 1dB.
SNRgr.0p [0B] — SNRyip)[dB] Examplg 7. The chan.nel model' is a MIMO flat fading
~ SN [dB] — SN (] channel with _fo_ur transmitter and six receiver ant_ennas. T_he
Rior-op-ug Roio-a) channel coefficients are complex random i.i.d. white Gaussian
— 20log Q1 (P?) variables with unit variance. In Figure 9, the performance of
10 Q1! (%)’ our precoder-based successive cancellation detector (QR-OP)
is compared to the performances of the maximum likelihood
where Q~!(-) is the inverse of theQ(:) function, i.e., detector without precoding (MLD-UP), and the maximum like-
Q1 (Q(z)) = x. Now, for our Example 5, we havd = 8 lihood detector after our optimal precoder is applied at transmit-
andx = 3. If we now substituteP, = 10~° into (83), we ter (MLD-OP). Interestingly, the QR-OP detector outperforms

(83)
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0 Average block error rate performance comparison precoder input up to a multiplicative factor that equals

10 ; | ‘ ; . .
the diagonal entry in thR-factor.

4) A lower and an upper bound for the free distance at the
channel output is expressible in terms of the diagonal en-

E tries of the R-factor in the QR decomposition of a channel
matrix.

5) The precodeB maximizes the lower bound of the chan-
nel’s free distance subject to a power constraint.

6) The detection performance of the QR detector for a chan-
nel with the equal-diagonal R-fact®® is asymptotically
equivalent to that of the maximum likelihood detector

5 used over the same channel when the signal to noise ratio

(SNR) is large.

We applied the QRS decomposition to design the optimal
QR-precoder for BPSK signals transmitted using two multi-
10 plexing schemes, TDMA and OFDM, and we presented sim-

ulation results to demonstrate the superior performance of the

Fig. 9. Comparison of the successive cancellation detectgstimal precoder.

with optimal precoding (QR-OP) to the maximum likelihood The presented technique for solving the optimization prob-

detector that uses the same precoder (MLD-OP) and the maain in this paper can be universally applied to zero-forcing

mum likelihood detector that uses no precoder (MLD-UP) in @ecision-feedback equalization (ZF-DFE). Consider the follow-
stochastic MIMO channel scenario. ing class of optimization problems involving ZF-DFE. Given
are a matrixB, a constraintP and a positive constant.

) We need to find a matrixF that achieves the maximum
the MLD-UP detector, which shows that there are advantages to,,, Efc\’:l G([R],;p) with [R], being thek-th diagonal

applying the precoder. Naturally, the MLD-OP detector outpen(F“¥)<pr

forms the QR-OP detector, but asymptotically they are equi@Dtry of the R-factor of QR decomposition of the matB¥,
alent as seen by their equal slopes in Figure 9, which was'$pere the functioni(¢) has two key properties: (aj(t) is
course predicted by our (crude) analysis in Sections VI and ViRonotonically decreasing with (b) G(t) is concave with re-
C. This suggests that the derived optimal precoder for cancefR€ct to the variable This class of optimization problems has

tion detection, may be optimal even if used in conjunction with closed form solution, which is exactly the S-factor of the QRS
the MLD. decomposition oB. Thus, the solution technique depends only

on the features of ZF-DFE itself, but does not depend on the

VIII. CONCLUSION AND DISCUSSION specifri]cs of the functiot#(-). d et I
. " In this paper, we assumed that the autocorrelation sequence
In this paper, we proposed the QRS decomposition of a mg- . . iy
trix H. The decomposition has the following foiHiS = QR, c% the channel coefficients (i.e., the matdik H) is known

where§ is a unitary matrix, andQ and R are the factors of to the trgnsmitter. Howejver., this assumption is qot realistic.in
the QR-decomposition [1], [2] of the matriS. The special many wireless communication systems. Extending the design

PR : " method that was presented here for a deterministic channel to

property of the QRS decomposition is that it exhibitsegual- . . ) .
. i ; . . he design of a precoder for a statistical (i.e., fading) channel
diagonalR-factor, that is, the diagonal entries of the upper trf odel (for which only the second order statistics of the chan-

angular factoR are all equal to each other. We proved that fol. | Hicient ilable at the t itter site) is still
any matrixH, there exists a QRS decomposition. However, gEs COetncients are available at tne transmitter si €) is sill an
en problem. Recently, however, progress has been made by

. . . . 0
S-factorS is not unique. We also provided a recursive alg({i\?ang Ma and Giannakis [48], who have shown that the trun-

rithm to compute an explicit solution for the fact8r S
We further revealed that the QRS decomposition has gﬁte_d DFT precp(_jers minimize _the_ average symbol error rate
important role to play in precoded MIMO detection theorft high SNR fo_r i.i.d. Rayleigh distributed mult|pat.h ghannels,
Namely, the S-facto8 is the optimal precoder for the succes2Mong a certain class of precoded OFDM transmissions.
sive cancellation detector that uses the QR decomposition. We
showed the following properties of the precoder and the result- ACKNOWLEDGMENT
ing QR-detector
1) The precodeS minimizes the block error probability of
the QR successive cancellation detector.
2) The superchann@lS naturally exhibits an optimally or-
dered column permutation, i.e., the optimal detection or-
der for the V-BLAST detector [18] is the natural order. IX. APPENDIX
3) The minimum Euclidean distance between two signal
points at the channel output is equal to the minimum Ed Proof of Theorem 2

clidean distance between two constellation points at theProof: The proof consists of the following three steps.

Average Block Error Rate

SNR [dB]
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Dr. T. N. Davidson and Dr. A. Gershman for helpful discus-
sions.
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o First we show thatv; exists.
1/N
singular values ofH, we have det (AHA> =

Sincey/)\;, are the Denote by V' the orthonormal complement oV,
[v1,Vva,...v,]. Note that the vectors that comprise the ma-
trix V- are not necessarily the eigenvectors,; through

17

det (HHH)l/N. SubstitutingA = AYA,B = H?YH vy, but they do span the same subspace, and are orthonor-
andK = N into Corollary 1.1, we obtain that there existsnal. Since the columns oV;- span the same subspace as

a vectorv; that satisfies (8) and (9).
« Next we show thatv, exists.

[vn-‘rla Vnt2,.--
The key here is toit z,,1, such thatv,,,; = V;z,,;. Substituting this into

v ], there must exist a unit-norm vector, call

show that the’N — 1) x (N — 1) matrix A(!) satisfies equation (87), and utilizing (12) yields

1/(N—1 1/N

det (AW) ) = det (H"H) ™. Then, by substi-
tutingA = AW B =HYH, K = N — 1 andy = z,
into Corollary 1.1, we conclude that (10)—(12) have a so-

det (HE, H, 1)
det (HEH,,)

Zg+1A(n)Zn+l = (88)

lution for z, and thereforev, exists. So all we need to Note that so far we made no assumption on the equal-diagonal

prove is

N—
det(A(1)>1/( Vo e @ )Y, ()

To prove (84), we note that
[vi, V] A A [vy, V]
- ( vIIAT Av, vIIATAVE >
T\ (VHHAR AV, (VH)HAPAVE
Hence, by Schur decomposition ([1], pp. 21-22) we get
det(H7H)=det(A"A)
—det([v1, V{]" APA [vi, VT])

(1]
[2

(3]

—(vIAH AV, )det ((Vf)HAHPAleVf)
[5]
[6]
Ul

=(vIIATAv,)det(AM). (85)
Now, since we proved that; exists such that (8) and
(9) are satisfied, we get from (8) that A7 Av,
det (HHH)l/N. Substituting this into (85) yields (84).
« By induction we easily prove that; exists fork > 2.
Again, what is needed is to show that

det (A<k>) =R

and then apply Corollary 1.1. The proof is similar to prov-
ing (84), so we omit the details. O

(8]
[9]
[10]

1/N

=det (H'H) '~ , (86)

[11]
B. Proof of Theorem 3

Proof: We first derive an expression that hods for any mét?!
trix H (not just for those matrices that have an equal-diagonal
R-factor). SinceH;, = UAV,, we havedet (Hf H) [13]
det (VAT AV,).
tion ([1], pp. 21-22) to

Now applying Schur's decomposi-
[14]

Vf+1AHAV7L+1 = [Vn7 Vn+1}H APA [Vn» Vn+1] [15]
~( VHARAV, VHAPAv, .,
T\ VELAPAV, vE AYAv, )7 6]
we get [17]

det (!, | H,, 1) =det (V{j HAHAVnH)
=det(VEAPAV, W AT PAy, Av, i1
=det (HI'H,) v A" Pav, Av,ii.
(87)

(18]

[19]

properties of the R-factor dil, i.e., there exist unit-norm vec-
torsz, 1 such that (88) holds faany matrix H. We next con-
centrate on matrices with equal-diagonal R-factors.

By Theorem 1,
det(H"H)'/N if an only if the matrixH has an equal-diagonal
R-factor, which completes the proof.

the right-hand side of (88) equals

O
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