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Abstract

Controlling severe outbreaks remains the most important problem in infectious disease area. With time, this problem will
only become more severe as population density in urban centers grows. Social interactions play a very important role in
determining how infectious diseases spread, and organization of people along social lines gives rise to non-spatial networks
in which the infections spread. Infection networks are different for diseases with different transmission modes, but are likely
to be identical or highly similar for diseases that spread the same way. Hence, infection networks estimated from common
infections can be useful to contain epidemics of a more severe disease with the same transmission mode. Here we present a
proof-of-concept study demonstrating the effectiveness of epidemic mitigation based on such estimated infection
networks. We first generate artificial social networks of different sizes and average degrees, but with roughly the same
clustering characteristic. We then start SIR epidemics on these networks, censor the simulated incidences, and use them to
reconstruct the infection network. We then efficiently fragment the estimated network by removing the smallest number of
nodes identified by a graph partitioning algorithm. Finally, we demonstrate the effectiveness of this targeted strategy, by
comparing it against traditional untargeted strategies, in slowing down and reducing the size of advancing epidemics.
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Introduction

Understanding and containing the spread of an infectious

disease has always attracted a lot of interest from the scientific

community, and even more so after the recent SARS and H1N1

outbreaks. Besides their social and healthcare impacts, severe

infectious disease outbreaks also present an important burden to

the economy through the decrease in productivity and high cost of

treatment. As denser populations promote faster spreading, this

problem can only grow in severity and magnitude with the

increasing world population density. Motivated by this, many

works have been done to predict [1,2] or even contain [3–6] the

spread of severe epidemics. In spite of these efforts, effective

control of infectious disease outbreaks continues to elude us.

A recent important advancement in the field is the application

of network theory to study epidemic dynamics. Network-based

models have been shown able to accurately explain complex

phenomena in terms of the relatively-simple interactions between

its small constituents, and are therefore broadly applicable to

various different fields [7]. In the area of infectious diseases,

numerous studies have been done on modeling epidemic using a

network approach - mainly covering sexually-transmitted infec-

tions [8–11], respiratory and flu-like diseases [2], and general

features of infectious disease dynamics [12–17].

From the network point of view, we speculate that different

infectious diseases might have very similar infection networks if

they share the same mode of transmission. In particular, we

believe that severe respiratory infections such as H1N1 and SARS

share an infection network similar to that of the less severe

common cold. Hence, infection network inferred from the latter

can be useful in controlling rare outbreaks of the former.

Estimating the infection network from common infections has

the advantage of a large volume of daily incidences. As we will

show in the Results section, the volume of incidences data

gathered is critical in getting accurate estimation of the network.

Traditional epidemic intervention procedures, such as quaran-

tine and other social distancing measures, involve weakening or

cutting links around the infected nodes. However, these proce-

dures are not systematic from the network point of view. A more

effective intervention strategy would employ understanding the

‘shape’ of the infection network and applying that knowledge to

efficiently tear the network apart. This can be done by targeting

nodes that play important roles in the network (i.e. the ‘hubs’), and

the ‘backbones’ connecting one hub to another.

Based on the above ideas, we proposed a targeted method to

effectively contain infectious disease epidemics. This strategy

involves estimating the infection network of a severe disease using

incidences data from common infections sharing the same

infection network, and fragmenting the network into disconnected

pieces using a graph partitioning method. To test the proposed

strategy in principle, we first generate artificial social networks of

different sizes but with roughly the same clustering characteristics

to serve as our infection networks. Then we simulate multiple SIR

epidemics on the networks to play the role of common infections

circulating in society. We apply censorships on the incidence data

collected to emulate the low reporting rates of common infections,

and use the censored incidences to construct estimates of the

original infection networks. To mitigate new epidemics, we
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fragment the estimated infection networks. To do this, we apply a

graph partitioning method on the estimated networks to identify

the smallest sets of nodes that, when removed, will efficiently break

the networks up into isolated pieces. Finally, we evaluate the

effectiveness of this targeted strategy by comparing against

traditional untargeted methods. While each of the problems has

been studied independently (see for example [8,18] for network

reconstruction and [19–22] for graph partitioning), to the best of

our knowledge no work has been done applying both methods to

control epidemics.

Methods

At this point in time, we know of no available databases of

common infections that (1) are comprehensive enough for

reconstructing the infection network and (2) have relevant on-

going epidemics to test the proposed strategy. Hence, we used

computer simulations to study the proposed method.

2.1 Artificial Infection Network Generation
Many naturally-occurring networks like the Internet, the World

Wide Web, and biological networks are scale-free and are thus

well described by Barabasi’s preferential attachment model [23].

Others argued, however, that social networks are different as they

show strong clustering of nodes (also called community structures)

and their degree distributions are not power laws [24]. To

specifically reproduce the community structures seen in social and

social-like networks, Holme and Kim modified the preferential

attachment model to incorporate clustering [25]. Newman et al.,

on the other hand, started out with random graphs and

progressively build the social-like degree distribution [26], whereas

Boguna et al. and Jin et al. proposed friendship-formation dynamics

models to generate social-like networks from scratch [27,28].

For our proof-of-concept study, we generate social-like networks

to act as our infection networks. We follow the three intuitive rules

described by Jin, Girvan, and Newman (JGN) in Ref. [28]: (1) the

probability of two individuals meeting is high if they have one or

more mutual friends, and low otherwise; (2) the friendship between

two individuals is reinforced by regular meetings, but decays with

time if they rarely meet; and (3) there is a maximum number of

friends one can have.

Following the discrete algorithm presented in Ref. [28], we first

start with a random network of N nodes and m links. The average

degree of the network (average number of links per node) is given

by SkT~
2m

N
. At each time step, we select nm pairs of nodes that

have at least one mutual friend. This is done by first picking nm
intermediate nodes at random, before choosing two neighbours of

each to become the pairs. In addition to this, we choose nr other

pairs of nodes uniformly at random, with nm.nr. For every pair

that is not already connected, we form a new link between them

provided that both nodes have not reached the maximum number

of friends L. At the end of each time step, we randomly break r

existing links to simulate the friendship decay. We then calculate

the clustering coefficient c of the network using the method by

Schank and Wagner [29]. After the clustering coefficient stops

increasing and only fluctuates about a time-independent long-run

average, we say the network has converged and stop the

simulation. As expected, the clustering coefficients of the

converged networks are much higher than cR&
SkT

N
for random

networks with the same N and ,k..

In generating the infection networks, we set L=50 as the

maximum number of friends a node can have. To produce high

clustering coefficients, we ensure that the mutual friend formation

is dominant over the random friend formation by choosing

nm=400 and nr=100. For simplicity, we choose r= nr+nm=500

such that the total number of links (hence the average degree

,k.) of the initial random network remains more or less constant.

This way, we can generate social-like infection networks with

arbitrary size and average degree by simply adjusting N and ,k.

of the initial random network to the desired values.

2.2 SIR Epidemics
After generating the infection network, we simulate S suscep-

tible-infected-recovered (SIR) epidemics. To start the epidemic, we

initialize the network so that all nodes are susceptible. One

random node is then infected to act as seed of the epidemic. At

each time step, every infected node will transmit the disease to its

susceptible neighbours with probability q. After a certain time

interval tR, the infected nodes will recover and become immune to

subsequent infections. This way, the number of infected nodes

grows from the single seed, peaks, and thereafter decreases as more

and more nodes recover and become immune. When there are no

more infected nodes in the network, the epidemic ends and all

nodes are reset to the susceptible state for simulating the next

epidemic.

In this SIR model, the probability q of infecting susceptible

neighbours reflects the characteristic infection rate of the

particular disease over the simulation time step Dt. For a given

time step size Dt, a more infectious disease will have a larger q,

whereas a less infectious disease will have a smaller q. For a given

infectious disease, q will be smaller for a smaller Dt, and larger for a

larger Dt. The simulation time step Dt itself is chosen, for

simplicity, to be roughly equal to the typical incubation and

recovery period of the disease (about 3–5 days for common cold).

This implies that tR<Dt, i.e. the infected nodes recover after one

simulation time step.

When running the simulations, we find that the infection rate q

must be greater than a certain minimum value qmin for the

epidemics to be self-sustaining and cover a large fraction of the

network. We also observe that qmin depends on the network’s

average degree ,k.. A less-connected network with smaller

average degree ,k. requires a larger value of qmin to sustain an

epidemic, as compared to a more highly-connected network with

higher ,k.. Hence, we fine tune the infection probability q so

that 50%–70% of the nodes are infected in one epidemic

simulation. We find that qmin < 0.80 in the case of ,k.=3, qmin
< 0.20 for ,k.=10, and qmin < 0.08 for ,k.=20. Finally, we

note that while it is relatively easy to infect the majority of the

nodes in the network with high ,k., infecting all nodes is

extremely hard. We need q to be very close to one before the

epidemic infects the entire network.

2.3 Censorship and Network Estimation
When collecting incidence data of common and mild diseases,

we expect low incidence reporting rates because: (1) some infected

individuals do not show symptoms (sub-clinical cases); and (2)

some others choose not to consult doctors despite showing

symptoms (unreported cases). In countries where consultation fees

are high, we expect the latter to be dominant. Fortunately, the low

reporting rates are compensated by the large volume of daily

incidences generated by such diseases. We also note that voluntary

reporting rates in Singapore are relatively high because of the low

consultation fees, making the strategy for estimating the infection

network presented below attractive.

To simulate different reporting rates, we censor the incidence

data before using them to estimate the infection network. Here,

the censor rate 0,C,1 is defined as the fraction of incidence data
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discarded randomly, and hence not used in the network

estimation. For our study, we vary C from 50% to 85%.

Our network estimation algorithm is essentially a modified JGN

algorithm. To estimate the unknown infection network from the

incidence data, we note that all newly-infected individuals must

have been infected by individuals that were infected one time step

back, as shown in Figure 1. For the epidemic shown in Figure 1,

the incidences are {9}, {5, 12}, {4, 6, 10, 11, 13}, {3, 8} at time

steps t=0, 1, 2, 3 respectively. Suppose some of these incidences

were censored, and we ended up with the censored incidences {9},

{5}, {4, 11, 13}, {8} at time steps t=0, 1, 2, 3 respectively. Based

on these censored incidences, we then draw a tentative link

between nodes 9 and 5, because the infection of node 9 precedes

the infection of node 5. We then draw tentative links between the

pairs (5, 4), (5, 11), (5, 13) because the infection of node 5 precedes

the infection of nodes 4, 11, 13. Finally, we draw a tentative link

between the pairs (4, 8), (11, 8), (13, 8), because the infection of

nodes 4, 11, 13 precedes the infection of node 8.

As we can see, only the links (4, 5) and (5, 9) are correctly

estimated. The rest of the estimated links are all wrong, partly

because of the algorithm, and partly because of the censorship. To

improve the accuracy of our estimated network, all tentative links

are introduced with a weight of w=1.00. Thereafter, the weight of

all links decay by Dw=20.01 every time step. Tentative links are

removed when their weights fall to zero. In the above example, the

links (5, 9), (4, 5), (5, 11), (5, 13), (4, 8), (8, 11), (8, 13) are

introduced at t=1, 2, 2, 2, 3, 3, 3, and so when the epidemics end

at t=4, their weights would be 0.97, 0.98, 0.98, 0.98, 0.99, 0.99,

0.99 respectively. We then repeat the estimation over more SIR

epidemics. In subsequent epidemics, if an existing estimated link is

reactivated, it is reinforced by adding Dw=1.00 to its weight. We

expect the algorithm to produce mostly wrong links at first.

However, as the weights are decaying with time, most of the

wrongly-estimated links will disappear at the end, because they will

not consistently appear in the estimation process. On the other

hand, correctly-estimated links tend to get constantly reinforced

over multiple epidemics. Hence, we expect the population of

correctly-estimated links to increase over time. More importantly,

we note that existing estimation can always be further refined by

incorporating new incidence data as and when they become

available.

2.4 Network Partitioning
From the network point of view, efficient epidemic mitigation

can be achieved by identifying and targeting the most densely-

connected nodes (also called ‘hubs’) in the infection network.

However, targeting only hubs in the infection network may not be

the most efficient mitigation strategy, because a strongly clustered

network may not break up into fragments after these are removed.

Since we want to fragment the infection network to stop the

epidemic from spreading across the entire network, we perform

equal graph partitioning (EGP) [22] on the estimated network.

EGP identifies the smallest set of nodes which, when removed, will

break the network into isolated chunks of roughly equal sizes.

To start the EGP, we first randomly assign every node into two

groups A and B. We then move all nodes in A that is connected to

B, and all nodes in B that is connected to A, into a third group C

(also called the separator group). Once this is done, there are no

nodes in A that is connected directly to B and vice versa. Following

this we minimize the size of group C by swapping nodes in C with

those in A and B, without introducing direct connections between

A and B. A swap is accepted if it results in a smaller group C. We

perform repeated swaps until no further improvements can be

made. If we then remove this optimal set of nodes in C, the

network will be efficiently broken into two disconnected chunks.

When necessary, the resulting chunks can be further fragmented

into even smaller pieces by applying EGP recursively.

Results

3.1 Preliminary Study
For our preliminary study, we tested our estimation algorithm

on a small social network with N=1,000 nodes, average degree

,k.=3, and clustering coefficient c=0.43 (random network with

the same N and,k. would have clustering coefficient c*<,k./

N=0.003). Besides allowing shorter simulations on a desktop

computer, this smaller network has the advantage that the entire

network, together with the simulated epidemics, can be easily

visualized (see Videos S1 and S2).

We simulated S=100 epidemics and censored 70% of the

incidence data before estimating the infection network. The

estimated network is shown in Figure 2, superimposed onto the

original network. The reconstruction is highly accurate in this test

Figure 1. An SIR epidemic spreading through a small network of N=14 nodes. The epidemic starts on node 9 at t= 0. Thereafter, nodes 5
and 12 are infected at t=1 by node 9, which recovers and become immune to subsequent infection. At t= 2, nodes 4 and 6 are infected by node 5
(which recovers), while nodes 10, 11, and 13 are infected by node 12 (which recovers). Following this, at t= 3, node 3 is infected by node 4 (which
recovers), while node 8 is infected by node 6 (which recovers). Nodes 10, 11, and 13 recover without infecting any other nodes. Finally, at t= 4 (not
shown), nodes 3 and 8 recover and the epidemic ends. In this figure, susceptible nodes are white, infected nodes are red, recovered nodes are green,
and links responsible for the transmission are colored red for the time step they are activated.
doi:10.1371/journal.pone.0022124.g001
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case. From the total 1,584 links in the original network, the

algorithm estimated 738 links correctly and made only 196 wrong

estimates, resulting in 79% estimation accuracy. More important-

ly, the estimation found mostly links between highly connected

‘hubs’ that form the ‘backbones’ of the network. These backbones

play an important role in disease transmissions as they link one

highly-connected cluster (community) to another throughout the

network.

After estimating the infection network, we performed EGP and

found a set of 67 nodes that will efficiently fragment the estimated

network. We then immunized the same 67 nodes on the actual

infection network. To evaluate the effectiveness of the method, we

picked 10 random seeds and ran 500 SIR epidemics each on the

immunized network to find the average number of infected nodes

as a function of time. Using the same seeds, we also ran 500 SIR

epidemics each on the original infection network and found that

EGP immunization reduced the average size of the epidemics by

58%–88% and lowered the average peak incidence rate by 51%–

68% (see Videos S3, S4, S5, and S6).

3.2 Systematic Study
Motivated by the promising result of small network estimation,

we performed systematic studies of larger networks to see how well

these can be estimated. We varied the number of estimated links n,

the censor rate C, the size of the network N, the number of SIR

epidemics S used for estimation, and the average degree of the

network ,k.. The same clustering coefficient of c=0.05 is

maintained across the networks to ensure meaningful compari-

sons.

3.2.1 Accuracy versus number of estimated links. In a

given estimation, there is a trade-off between accuracy and

number of estimated links n. At the end of the estimation,

frequently reinforced links (likely to be the correct ones) will have

weights much higher than those infrequently reinforced links

(likely to be the wrong ones). To determine which tentative links

we would accept as estimated links, we set a cut-off value wC for

the weight. Links with weights above wC will be accepted as

estimated links, otherwise they are rejected. If wC is large, only a

few estimated links are accepted, and most of these will be correct

estimates. On the other hand when wC is small, more estimated

links are accepted but a larger fraction of these will be wrong. Our

simulation results confirmed this and showed that the accuracy

falls off very slowly as a power law in the number of estimated links

n, with power-law exponents much smaller than 1 (Figure 3).

3.2.2 Accuracy versus censor rate C. As common

infections are typically under-reported, it is important to study

how the estimation accuracy varies with censor rate. For a fixed

network with N=10,000 nodes and ,k.=10, we simulated

S=100 SIRs and applied various censor rates C from 50% to

85%. The estimation accuracy is found to decrease as C increases

(Figure 4a). This is expected, as lower censor rate results in more

data available for estimation and thus improves the accuracy.

3.2.3 Accuracy versus number of SIR S. Incidence data

from a single epidemic will not provide a good picture of the

network, because of censorship and history dependence of the

epidemic. For different seeds, the epidemic progresses along

different transmission routes. Thus, even if we could track all

incidences for a given epidemic we are seeing an incomplete

snapshot of the infection network. With censorship, this snapshot is

even more incomplete. This is why we need to accumulate

information from successive epidemics to make consistent and

reliable estimates of the network links that participate in the

Figure 2. Estimation of a small infection network, shown superimposed onto the original network. Blue lines represent correctly
estimated links, whereas red lines represent incorrectly estimated links. Full view of the network (left) and magnified view around the center (right)
are shown, highlighting the highly-connected nodes (hubs) and backbones connecting them. The estimation is based on 100 SIR epidemics and 70%
censor rate. The original infection network has 1,000 nodes, 1,584 links, and average degree ,k.= 3. About 60% of total links are estimated with
79% accuracy.
doi:10.1371/journal.pone.0022124.g002
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transmission. In Figure 4b, we show the estimation accuracy as a

function of the number of different SIR epidemics S used in the

estimation with 50% censor rate. We found the accuracy to

improve with S initially before saturating to 100% as more

incidence data becomes available. It thus appears that faithful

estimation of the infection network is asymptotically possible.

3.2.4 Accuracy versus number of nodes N and average

degree ,k.. Naturally, we expect larger and highly-connected

networks to be more difficult to estimate. To study how the

estimation accuracy varies with N, we performed estimation on

networks with three different sizes N=1,000, 10,000, and 100,000

using data from S=100 epidemics. We also compared the

estimation accuracies for networks with N=10,000 nodes and

two different average degrees ,k.=10 and 20. In Figure 4c–d,

we show that the accuracy falls with increasing network size N and

increasing average degree ,k., as expected.

Summarizing the results of the systematic studies, the estimation

accuracy for a given infection network depends strongly on the

censor rate, the number of epidemics over which incidence data is

accumulated, and the average degree of the network. The

accuracy falls with increasing censor rate, network size, and

average degree, but improves over time as more incidence data

from new epidemics become available.

3.3 Graph Partitioning
3.3.1 Pre-epidemic EGP. Since the preliminary EGP result

in Section 3.1 is encouraging, we tried EGP mitigation on the

larger networks despite the poor estimation accuracy.

We started by estimating an infection network (N=10,000,

,k.=10, and a total of 50,126 links) using incidence data from

100 SIR epidemics and 50% censor rate. The estimated network

has a total of 2,561 nodes and 6,467 estimated links. 1,074 of these

estimated links are correct (16.6% accuracy). Next, we applied

EGP to this estimated network (not to the actual infection network)

and obtained a set of 864 nodes that will efficiently fragment the

estimated network. We then immunized these 864 nodes on the

Figure 3. Log-log plots of estimation accuracy as a function of the number of estimated links n. The censor rates used are (a) 50%, (b)
60%, (c) 70%, and (d) 80%. Red lines show the best linear fits of the data (used to extrapolate and compare accuracies across different censor rates in
Figure 3). The slope a and y-intercept b of the linear fits are: (a) a= (20.2566 0.006) and b= (0.2796 0.046); (b) a= (20.2916 0.008) and b= (0.0386
0.060; (c) a= (20.322 6 0.008) and b= (20.211 6 0.064); (d) a= (20.275 6 0.014) and b= (21.368 6 0.126). The decay exponents (slope in log-log
plot above) are found to be between 20.24 and 20.32, thus implying that the accuracy actually falls off very slowly with the number of estimated
links n. All estimations are based on 100 SIR epidemics. The actual infection network has N= 10,000, ,k.= 10, and c= 0.05.
doi:10.1371/journal.pone.0022124.g003
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actual infection network to test how well this will mitigate

subsequent epidemics. To obtain a non-targeted intervention

benchmark for comparison, we also randomly removed 864 nodes

in the actual infection network. We then ran 100 SIR epidemics

each on the two immunized networks and plot the average

incidence rate as a function of time, as shown in Figure 5a.

Considering the estimated network represents only a small

fraction (0.13) of the actual number of links, and only 16.6% of the

estimated links are correct, the EGP-based mitigation is surprisingly

effective in both slowing down the progress and reducing the peak

incidence rate of the outbreaks. We show that systematic isolation of

only 8.6% of the total population reduced the peak infection rate by

about 40% and delayed the peak infection time by about 20%, as

compared to the unmitigated case. More importantly, even though

random isolation also reduced and delayed the peak, the targeted

intervention is still significantly better.

The 864 separator nodes identified by EGP are clearly special

on the estimated network (and thus also on the actual network).

However, all the 2,561 nodes identified in the estimation process

are important, because they are on the transmission paths for

nearly all epidemics. As suggested by the referee, removing all

these nodes may bring the infection network below its percolation

threshold, thereby completely stopping all epidemics. To test this

idea, we isolated the 2,561 nodes on the actual network and ran

100 SIR simulations. We found that in about 40 simulations, the

‘epidemics’ infected only 2–5 nodes and died off very quickly after

1 or 2 time steps after starting. For the other 60 simulations, we

observe very slowly circulating epidemics that lasted more than 60

time steps and infected 2,580 nodes on average, with the number

of incidences reaching a peak of 116 cases 28 time steps after the

start.

3.3.2 In-epidemic EGP. The results above were obtained

assuming we can partition the network before the start of each

epidemic. Since it is more realistic to assume we intervene only

after an outbreak has been detected, we also investigated the

effectiveness of the EGP intervention enforced at different times

Figure 4. Systematic studies of the estimation accuracy.We plot the estimation accuracy versus: (a) censor rate C, (b) number of SIR epidemics
S, (c) network size N, and (d) censor rate for different value of average degrees,k.. Since we cannot precisely stop at arbitrary number of estimated
links by adjusting wc alone, we extrapolate from the linear fits (Figure 2) to obtain and compare accuracies of n= 100, 1,000, and 10,000 estimated
links in figures above. The error bars are calculated from the error of fitting parameters, where appropriate. The graphs are obtained with the
following simulation parameter: (a) N= 10,000, ,k.= 10, and S= 100; (b) N= 10,000, ,k.=10, and C=50%; (c) ,k.= 10, S= 100, and C= 50%; (d)
N=10,000 and S=100. All networks have c=0.05.
doi:10.1371/journal.pone.0022124.g004
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during the epidemic (Figure 5b). Our simulation shows that the

strategy is still very effective even when it is applied as late as 10

time steps (roughly 30 days) after the start, just 2 time steps away

before the peak. The peak infection rate is reduced by about 20%

and total number of cases by 12%, as compared to the unmitigated

case. Unfortunately, the time of maximum infection rate is not

delayed when EGP is applied at t=10, and is only delayed by

about one time step when intervention is applied at t=2 and t=6

time steps after the start.

Discussion

4.1 Infection network estimation
Based on the results reported in Section 3.3, we have shown that

the proposed intervention based on estimated infection networks is

very effective in limiting the scale and slowing down the spread of

infectious disease epidemics. However, as discussed in Section 3.2,

the estimated infection networks are not always accurate,

especially when the proportion of unreported incidences is high.

Figure 4a suggests that the estimation accuracy goes to zero at

censor rate CT,100%. This implies that it might be difficult to do

network estimation in the US, where censor rates for mild illnesses

are close to 100% because of the expensive medical insurance and

co-payments. However, we stand a better chance of making the

scheme work in Singapore as the low medical cost and the

necessity to obtain medical certificates to stay away from work

promote doctor consultations even for mild symptoms. To further

improve the accuracy, the incidence data can be easily

complemented with other types of relevant data. For instance,

cell-phone and GPS co-location information can be used to rule

out a large proportion of tentative links connecting pairs of

individuals that have never been found in the same location over

the infection time step of about three days. This will reduce the

rate of forming false links significantly, thus improving the

accuracy of the estimation.

Real infection networks are also likely to be dynamic and

changing with time. There are seasonal variations to the infections,

and also seasonal variations to social mobility patterns. For

example, most temperate countries have an annual flu season that

peaks during winter [30–32], whereas tropical countries experi-

ence multiple flu seasons each year [33]. School holidays in June

and December also change the social dynamics drastically, as

students start hanging out more in shopping centers and families

go on vacations [34,35]. With real data, what we are estimating is

effectively the infection network averaged over multiple epidemi-

ological and social seasons. With enough data, it might also be

possible to estimate these seasonal infection networks, and clearly

interventions and mitigations might become more effective with

the added knowledge of how the network varies with time.

However, we believe that even with the averaged infection

network, interventions and mitigations will still be effective enough

to justify its study and estimation.

The N=10,000 network estimated in Section 3.3 for demon-

strating the effectiveness of EGP-based intervention is obtained

from 100 SIR epidemics. In subtropical countries, there is typically

one flu season each year. So if the estimation is based solely on flu,

it would take 100 years to obtain the estimated network. In

Singapore, because of the tropical climate and high population

density, there is anecdotal evidence that epidemics of mild

respiratory infections come around every one or two months.

Assuming there are six epidemics a year, the estimation above will

take a much shorter time of 17 years in this country. The main risk

of using multiple infections to shorten the estimation time is the

increased number of wrong estimates when two epidemics overlap.

However, this is a problem that cell phone and GPS co-location

can help to solve as well.

Finally, we highlight that the estimated network needs not to be

very accurate to be useful. The results of Section 3.3 beautifully

illustrate this, where targeted isolation based on an estimated

network which is only 16.6% accurate is still very effective in

mitigating epidemics (Figure 5a–b). This unexpected effectiveness

of EGP applied on an inaccurately estimated network prompted us

to better understand why this is happening. A deeper look at the

preliminary study which we can visualize suggests that, while the

Figure 5. Effectiveness of EGP-based intervention. (a) 864 nodes identified through EGP on the estimated network were isolated from the
actual network before the start of epidemics. The average infection rate after EGP-based mitigation is compared against average infection rates
without mitigation and with random isolation of 864 nodes. The average number of infected nodes per epidemic after EGP-based mitigation is
decreased to 6,345 nodes, as compared to 7,881 and 6,747 average infected nodes for no mitigation and after random isolation, respectively. (b) The
same EGP-based intervention as in (a), except done at different times after the epidemics have started. The EGP-based strategy is surprisingly
effective on controlling epidemics, with EGP applied even at 10 time step after the start of the epidemics still effective in reducing peak infection
rates and total number of infected nodes.
doi:10.1371/journal.pone.0022124.g005
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predicted links are inaccurate, the nodes that emerged from the

estimation are mostly hubs and are concentrated along the

backbones of the infection network. Hence, removal of these nodes

will effectively slow the advancing epidemic. Naturally, we expect

even better results with a more accurate estimation.

4.2 Equal Graph Partitioning
Effective epidemic control measure is important for mankind as

the problems associated with severe infectious disease can only

increase in severity along with global population growth. To put

this into the proper context, we highlight two most important

features that characterize severe epidemics: (1) the large number of

cases that emerges in relatively short time (surge in hospital load),

and (2) the fast propagation of the disease as compared to

treatment time and development of cure. We will discuss how the

proposed mitigation method addresses these two problems.

For highly-infectious epidemics, the capacities of hospitals are

stretched due to the large number of infected individuals

appearing near the peak of the epidemic. Lack of medical

attention and insufficient resources (medics, vaccines, and

healthcare apparatus) might delay the recovery process and result

to a higher number of casualties than need be. This is why it is

important for an epidemic mitigation strategy to consider peak

load reduction as a primary goal. Delaying the peak infection time,

thus stretching the overall time scale of the epidemic, is also

crucial. When dealing with a deadly epidemic caused by a new

infection agent, chances are we would not have vaccine at hand, or

even a vaccine development program. As development of vaccines

and drugs for new diseases can only begin after cases have been

confirmed and analyzed, the race against the epidemic to develop

and administer such drugs would be inevitable. Delaying the

progress of the epidemic will not only buy time for drug

development, but will also give governments more time in general

to implement other crisis handling measures.

Furthermore, any epidemic mitigation procedure can only be

enforced after the epidemic has started and positive cases have

been confirmed. Mitigation measures applied at the start of

epidemic is ideal but may not be practical. Hence, good

performance when applied late into the epidemic is critical for a

mitigation method to be successful. Figure 5b hints at a the

promising potential our proposed targeted strategy can offer in this

regard, where significant reductions of the peak infection rate and

the total number of infected people are observed even when

applied late into the epidemic. However, the result also suggests

that early implementation is critical in slowing down the epidemic.

Here let us also discuss the impact of the proposed strategy on

privacy as a potential reason to object to its implementation. In a

country like the US, this strategy is unlikely to be adopted no

matter how well it is shown to work in simulation due to privacy

concerns when we selectively isolate individuals according to EGP.

However, the proposed strategy may find a more receptive

audience in a country like Singapore, given that home quarantine

orders have been issued by the Ministry of Health during the

SARS and H1N1 outbreaks. Here we must stress that node

removals as suggested by EGP need not be home quarantine or

any other physical isolation practices. If early vaccine stocks are

available but limited, the EGP nodes should be the ones to receive

it, because of the role they play in disease transmission. We must

nevertheless be wary that this procedure should not be used as a

mean of discrimination.

Finally, we highlight a crucial difference of the proposed

method to traditional strategies. Unlike conventional quarantine,

this intervention involves isolating healthy individuals from the rest

of the infection network. At first this might sounds absurd: ‘‘Why

isolate healthy people and not the infected ones?’’ From network

point of view, however, the reason is clear: by isolating these

people we are intercepting the path of an ongoing epidemic. As

comparison, it is a standard practice in controlling forest fire to cut

or burn down trees ahead of advancing fire to contain it. For

infectious diseases no one has imagined this intervention possible,

but with an estimated infection network our proof-of-concept

results are impressive. If all nodes on the entire estimated network

are isolated, the results are even more impressive: for our

N=10,000 network with ,k.=10, we find propagating epidem-

ics in only 60% of the simulations. In these propagating epidemics,

the epidemic peak with intervention is less than 1/10 the epidemic

peak without intervention, while the total number of infections

with intervention is 1/3 that without intervention. Also, instead of

peaking at t=12 and ending at t=20 without intervention, the

epidemic peaks at t=28 and ends at t=60 with intervention. In

terms of actual durations, removing all nodes on the estimated

network stretches two-month epidemics to over half a year.

However, about 1/4 of the population needs to be isolated,

compared to only about 9% of the population for EGP

intervention. A separate systematic study will be necessary to

understand how effective and efficient this more aggressive

intervention strategy can be.

In conclusions, we have presented in this work a proof-of-

concept study of a novel epidemic mitigation method based on

equal graph partitioning of the estimated infection network. We

used computer simulations to study and show the effectiveness of

the method. First, we followed the intuitive JGN method to

generate artificial social network of various sizes but with roughly

the same clustering characteristic to serve as the infection

networks. We then simulated SIR epidemics on the artificial

infection networks, recorded the incidences, and applied censor-

ship with rates between 50% and 85% to mimic low reporting

rates for mild infections. We then used the remaining incidence

data to construct an estimate of the infection network using a

modified JGN algorithm. We found that the estimation accuracy

falls with increasing censor rate, average degree, and size of the

network, but improves as more data from multiple epidemics are

incorporated.

With the estimated infection networks at hand, we applied the

Equal Graph Partitioning (EGP) algorithm to remove the smallest

sets of nodes that will efficiently fragment the estimated networks.

We then immunized the same set of nodes on the actual infection

network before simulating subsequent epidemics. We compared

the effectiveness of the targeted strategy to an untargeted method

that randomly isolates the same number of nodes, and showed that

the former outperforms the latter in decreasing and delaying the

peak of the epidemics, as well as reducing the total number of

infections. We also applied the proposed strategy at different times

after the epidemic has started and showed that it is still effective in

decreasing the peak infection rate and total number of cases even

when applied late into the epidemic. In particular, we demon-

strated that the EGP based strategy is surprisingly effective in

mitigating epidemics even when the estimated network is not very

accurate. Through visualizing small network, we find that in spite

of the large number of wrongly estimated links, the nodes

appearing in the estimated network are concentrated along the

backbones of the actual network and thus play important roles in

the disease transmission.

Supporting Information

Video S1 SIR epidemic on an artificial social network.

In this video, an SIR epidemic spreads through an artificial social
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network with N=1,000 nodes, 1,584 links, average degree

,k.=3.168 and clustering coefficient C=0.3928. The artificial

social network is generated using the Jin-Girvan-Newman

algorithm (Jin, Girvan, and Newman, 2001). The transmission

probability used for this SIR epidemic is p=0.80, and infected

nodes recover after tR=1 time step.

(WMV)

Video S2 Another SIR epidemic on the artificial social

network. In this video, another SIR epidemic starts from a

different seed on the artificial Jin-Girvan-Newman social network

with N=1,000 nodes, 1,584 links, average degree ,k.=3.168

and clustering coefficient C=0.3928. The transmission probability

for this SIR epidemic remains at p=0.80, and infected nodes

again recover after tR=1 time step.

(WMV)

Video S3 SIR epidemic on the EGP-immunized artifi-

cial social network. I. In this video, an SIR epidemic spreads

through the artificial Jin-Girvan-Newman social network after

EGP immunization. The EGP immunization is based on the 475-

node, 934-link network estimated over S=100 SIR epidemics

from the 1,000-node, 1,584-link network, using the algorithm

described in the text, and a weight cutoff of wc=7. Of the 934

estimated links, 738 are correct, giving an accuracy of 79.01%.

The EGP procedure then identifies 67 separator nodes, and when

these are removed, the immunized network has 1,359 links

remaining.

(WMV)

Video S4 SIR epidemic on the EGP-immunized artifi-

cial social network. II. In this video, we start an SIR epidemic

from a second seed on the EGP-immunized artificial Jin-Girvan-

Newman social network. The original network consists of 1,000

nodes and 1,584 links, whereas the estimated network EGP is

based on consists of 475 nodes and 934 links. 67 separator nodes

identified by the EGP procedure are removed from the original

network, giving an immunized network with 1,359 links.

(WMV)

Video S5 SIR epidemic on the EGP-immunized artifi-

cial social network. III. In this video, we start an SIR epidemic

from a third seed on the EGP-immunized artificial Jin-Girvan-

Newman social network. The original network consists of 1,000

nodes and 1,584 links, whereas the estimated network EGP is

based on consists of 475 nodes and 934 links. 67 separator nodes

identified by the EGP procedure are removed from the original

network, giving an immunized network with 1,359 links.

(WMV)

Video S6 SIR epidemic on the EGP-immunized artifi-

cial social network. IV. In this video, we start an SIR epidemic

from a fourth seed on the EGP-immunized artificial Jin-Girvan-

Newman social network. The original network consists of 1,000

nodes and 1,584 links, whereas the estimated network EGP is

based on consists of 475 nodes and 934 links. 67 separator nodes

identified by the EGP procedure are removed from the original

network, giving an immunized network with 1,359 links.

(WMV)
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