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The self-consistent method of Umezawa is applied to a model with mass and coupling 
constant renormalizations. The equal-time commutation relation (E.T.C.R.) for Heisenberg 
fields is derived and not assumed. Light is shed on the interrelationship between the 
microscopic causality condition and the existence of a bound state of an earlier paper. 

§ I. Introduction 

The self-consistent method proposed by Umezawa and developed by him and 
his collaborators1>~4> has been successfully applied to problems in both high energy 
physics5> and the area of many-body problems, particularly in superconductivity6> 

and ferromagnetism.7> In this paper we apply this method to the solvable Dirac
Lee model which, unlike the pair model considered in Ref. 3), has mass and 
coupling constant renormalizations. The equal-time commutation relations among 
Heisenberg fields are derived and not assumed. Further we show that the wave
function renormalization constant is determined from microcausality. This result 
sheds light on the question why in Ref. 3) the existence of the~ bound state was 
found to be closely connected with microcausality. 

The self-consistent method exploits the duality between basic fields and 
observed particles concretely exhibited in the presence of interactions. The basic 
Heisenberg fields obey nonlinear field equations which reflect the laws of nature, 
while the physical particles are the ones that appear in observations. These 
physical fields obey free field equations and define the physical Fock space. The 
field equations for the Heisenberg fields are to be regarded as operator equations 
in this physical Fock space. The Heisenberg field is related to the physical 
field by means of a mapping known as the dynamical map.4> The set ?f physical 
fields is taken to form an irreducible operator ring. Therefore, any operator of 
the Fock space can be written as a sum of normal products of physical flelds. 
The ability of this method to predict new particles rests on this postulate. The 
asymptotic condition may tell us that the physical fields are not complete. The 
completion of this set of fields then requires the existence of other particles at 
the level of observation and should be incorporated.8>· 8> The success of this 
method therefore rests on the proper choice of the set of physical fields. 

*> C.S.I.R. Pool Officer. 
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E.T.C.R. for Heisenberg Fields in the. Lee Model 843 

Another ingredient in the self-consistent method which assists us in writing 
down the dynamical map is that the invariance properties of the field equations 
obeyed by the Heisenberg fields cannot dissappear but should remain at every 
stage of the calculation if we want the theory to be internally consistent. How
ever due to nonlinearity of the field equations it may happen that the transforma
tion generating the invariance appea"rs in a new form when written in terms of 
physical fields. The underlying philosophy here is that the basic invariance of 
the equations is sacrosanct but the symmetry can manifest in a different shape . 

. This view is termed as the "dynamical rearrangement" of symmetries.4J,SJ, 9l 

It should be noted here that since the expansion of the Heisenberg field is 
in terms of "in fields", the coefficients of the dynamical map are "retarded" in 
nature. Also we do not need the equal time commutation relations of the 
Heisenberg fields as in conventional quantum field theory. However for the 
Heisenberg fields we shall assume the condition of microcausality that two local 
operators on a spa.ce"like surface (anti-) commute with each other. We thus require 
that the equal-time commutation relation (E.T.C.R.) among Heisenberg operators 
are made up of only terms proportional to the ~-function and its space der,ivatives 
of finite order: 

(I) 

Here P is a finite (matrix) polynomial in r, with no a priori conditions on its 
coefficients. As a matter of fact, when the coefficients of the dynamical map 
are determined, the structure of P is also completely determined. Thus in the 
self-consistent method, unlike in c;;nventional QFT, the E.T.C.R.'s are to be 
computea. 

§ 2. Description of model 

We postulate the following set of equations10l for the Lee-Dirac model: 

(! +i~o)¢(y) = -ig J d4xa(x-y)fJf(x) V(y), (1) 

(! + iMo) V(y) = -ig sd4xa(x-y)fJ(x)cp(y), (2) 

(:t +i..ftJ.o2 -r2 )6(y)= -ig sd4xa(y-x)¢t(x)V(x). (3) 

Here a(x) is the cutoff function 

and 

( ) ~( ) J d 8k a((l)k) e'lkl·l"'l a x = t., . ..; (2-rr)s ..; 2(1)k (4) 
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844 M. Seetharaman and V. Srinivasan 

To effect the dynamical mapping we now choose a set of free fields (¢in, yin, 8in) 
with Fourier expansions 

(5) 

(6) 

' J d 8k8kin exp{i(k·~-wkt)}, (7) 

and we shall assume that 

[N in N. in'] = [V in V in'] = [8 in 8 in'] =,~(p-q) p>q+ P•q+ p,q u . (8)' 

It may be noted that the masses occurring in Eqs. (5)"-'(7) are also to be 
determined from the dynamical map with the help of the field equations. 

As pointed out in the Introduction we shall now expand ¢, V, 8 in terms 
of normal products of ¢in, 8in and yin and then determine the coefficients of the 
expansion by using (8) and the equations ofmotion. To write the map we note 
that Eqs. (1) ""'(3) are invariant under the transformation 

(9) 

Considering a special solution where the transformation (9) 1s induced by 

¢in(x) ~¢in(x)e;q,' 

8in(x) ~8in(x) eiq,, 

yin(x) ~ yin(x)ez;q,' 

the dynamical map is written as*l 

¢(x) =¢in(x) + S d 3pd3qd 8rap(q, r)N~";,+q+.,NqinN~n 

X exp{ip·x-i(mr+ mq-m-pH+r)t} + S d 8pd 8qdp(q)8qin' 

X V~n+q exp{ip·x+i(wq-Mp+q)t} + s d 3pd 3qd 8rcp(q, r) 

X 8qin '8;+q-rN~n exp{ip·x-i(wpH-r+ mr-Wq)t} + · · · , 

V(x) = .Jzvin(x) + J d 8pd 3qhp(q)N~n-q8~ 

X exp{ip·x-i(wq+mp-q)t} + ···, 

(10) 

(11) 

(12) 

*J There is a factor appearing in front of V1n only. This is because in the field equations 
(1)'"'-(3) a chang~ in scale V---?aV, (}-?a(}, </J---?a</J merely changes the ,coupling constant g into ag, 
so we are free to choose the factors in front of the tJ;ln, '()in as unity. See also Ref. 3). 
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(}(x) =(}in(x) + s dapdsqdarfp(q, r)e!:;q-p(}q;n(}rin 

X exp{ip·x-i(a>q+ a>r-alr+q-p)t} + S d 8pd 3qd 3r 

X gp(q, r)Nqin 'N~n+q-r(}rin exp{ip ·x-i(mp+q-r+ alr- mq) t} 

+ S d3pd8qKp(q)Nqin•v~n+q exp{ip·x -i(Mp+q-mq)t} + ···. (13) 

Here the d.ots stand for higher products. 

a) Mass determination 

Let us feed (11), (12) and (13) into the matrix element (01 Eq. (1) IN/0 ). 

This gives (8/8t+im0)(01¢in(x)IN/0 )=0, which tells us that m=m0 =m1. Simi
larly (01 Eq. (3) I e/n) shows that f.L = f.Lo = f.L1• By considering the matrix elements 
(OI Eq. (2) I V/0 ) and (e .• inl Eq. (1) ·1 vr), one easily finds. that M 1 is given by 

Ml=Mo+ g2 Jdak a2(a>k) 1 . 
2a>k M 1 -a>k-m 

(14) 

It is clear that M 1 is independent of l and hence we shall drop its subscript. 

b) Coefficients of the map 

The coefficients of the map are determined by considering the matrix elements 
of Eqs. (1) '"'-' (3) between the states I 0), I ein), I Nin), I vin> and I einNin). The 
derivation proceeds _parallel to that given in Ref. 3) and so we present below 
only the final results giving the explicit forms of the coefficients which we need 
in the next subsection: 

ap(q, r) =0, fp(q, r) =0, 

c (s t) =~_1 __ (a>'")lf2 a(a> .• ) 
u+t-.. ' (2nY12 ws a Cwu) 

f(a>u) 

vZ ga(a>s) 
(2nY12 (2wsi12 (M- a>s- m) ' 

fCwS 

h (u) __ 1~ f(a>u) (2w ... Y12 
tH< - ( 2.,;.)8/2 ( ) " ga a>.,. 

(15) 

K (s) = .jz ga(a>z- .• ) 1 
l-.• (2.,.,.)8;2 ( )1;2 M " a>1-.• - m - a>z- .• 

Here g', f(a> ... ) and I(a>u) are defined by 

2 

g' = g' (a> .. ) = g 
. a>u+m-Mo 
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846 M. Seetharaman and V. Srinivasan 

1((J)u) = Jdak cC((J)k) 
- 2(J)k((J)u-(J)k+iE) 

(16) 

and the if factor in the denominators 1s due to the retarted nature of the 
coefficients of the dynamical map. 

c) Microcausality and Z 

We have thus determined all the coefficients of the expansion in terms of. Z, 
to obtain which the microscopic causality condition will be us·ed now. For this, 
consider 

On evaluating this matrix element it is found that the microscopic causality 
condition (I) demands that 

{ (2~tfll [gp(l+k, k) +c;+~(k, l +k)] + J d 8rgp(l+k, r)c;+Z(k,p+l+k-r)} 

+Kp(l+k)d;+z(k) =a finite polynomial in p. (17) 

By substituting the explicit forms of the coefficients obtained in the previous 
subsection, we can simplify the l.h.s. of (17). For instance, the termS' inside the 
curly bracket in (17) can be reduced to the form 

(18) 
with 

A(p,k) 
a((J)k)a((J)p) 1 

(2rct(4(J)p(J)kyfll ((J)k-(J)p+iE) 

and 

The contour C is the cut-plane, cut along the positive real axis from (J) =/f. to 
(J)=oo. The contour encloses a pole at _(J)= (M-m) as 11 -g'(M-m) =0. 
Evaluation of the residue at this pole 11 is easily obtained. Using this value of 
11 in (18), we see that the l.h.s. of (17) takes the form 

* A(p,k) ((J)p-(J)k) 
Kp(l+k)dp+z(k) + (M-m-(J)P)(M-m-(J)k) 

xff[1+gsJdak cC((J)k) s]-1. 
2(J)k (M -m-(J)k) 

Finally substituting the expressions for Kp(l+k) and dp*(l+k) in this equation, 
we find that the microcausality condition (Eq. (17)) will be satisfied if 
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Z=[1+g2sdsk a2(wk) 2]-1. 
, 2wk (M -m-wk) 

Thus we have obtained all the coefficients of the map in the lowest sector. If 

we now compute the equal-time commutators in the subspace under consideration, 

the result is found to be the same as the usual canonical equal-time commutators. 

Equations (11) """'(13) show that 

H=mfdskNkin'Nkin+ sdskwkekin•ekin+M s dskykin'ykin, (19) 

which acts as the Hamiltonian*l 

. 8¢(x) z [cp(x),H], 
at 

i aB(x)- [B(x), H], 
at 

i fJY(x) = [Y(x), H]. 
at 

§ 3. Discussion 

(20) 

We have thus demonstrated that the self-consistent method can be carried 

out with satisfactory- results in a solvable model with mass and coupling constant 

renormalization. In this model Z was determined by microcausality. In Ref. 3) 

it was found that in the pair model, microscopic causality leads to the existence 

of a bound state. In the model under consideration if we invert the mapping 

(this is possible now since the E.T.C.R.'s of ¢, Y and e have been calculated) 

for yin, ¢in and ein in terms of Y, ¢, e and consider the limit z~o, Mo~oo, 

g~ oo such that gr = .,J Z g is finite, we find that yin is just the bound state found 

in Ref. 3), and the expansion for yin is identical with the expansion of the bound 

state. This is perhaps the reason why we have found the existence of the bound 

state closely connected with microcausality. 
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