Equality Saturation: a New Approach to Optimization

Ross Tate Michael Stepp

Department of Computer

Zachary Tatlock Sorin Lerner
Science and Engineering

University of California, San Diego

{rtate, mstepp, ztatlock,

Abstract

Optimizations in a traditional compiler are applied sediadly,
with each optimization destructively modifying the progréo pro-
duce a transformed program that is then passed to the next op
timization. We present a new approach for structuring the- op
mization phase of a compiler. In our approach, optimizatitake
the form of equality analyses that add equality informatiora
common intermediate representation. The optimizer wogkseb
peatedly applying these analyses to infer equivalenceseest
program fragments, thus saturating the intermediate septation
with equalities. Once saturated, the intermediate reptaten en-
codes multiple optimized versions of the input program. His t
point, a profitability heuristic picks the final optimizedogram
from the various programs represented in the saturateégepr
tation. Our proposed way of structuring optimizers has &waof
benefits over previous approaches: our approach obviatesetd
to worry about optimization ordering, enables the use ofaball
optimization heuristic that selects among fully optimizedgrams,
and can be used to perform translation validation, even arpde
ers other than our own. We present our approach, formaliaad
describe our choice of intermediate representation. \Weptssent
experimental results showing that our approach is prddticarms
of time and space overhead, is effective at discoveringcate op-
timization opportunities, and is effective at performimgrtslation
validation for a realistic optimizer.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guage§ Processors — Compilers; Optimization

General Terms Languages, Performance

Keywords Compiler Optimization, Equality Reasoning, Interme-
diate Representation

1. Introduction

In a traditional compilation system, optimizations are legapse-
quentially, with each optimization taking as input the piog pro-
duced by the previous one. This traditional approach to daiqm
has several well-known drawbacks. One of these drawbadkatis
the order in which optimizations are run affects the quaditghe

* Supported in part by NSF CAREER grant CCF-0644306.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’09, January 18-24, 2009, Savannah, Georgia, USA.
Copyright(© 2009 ACM 978-1-60558-379-2/09/01. . . $5.00

lerner} @cs.ucsd.edu

generated code, a problem commonly known agptiase ordering
problem Another drawback is that profitability heuristics, which
decide whether or not to apply a given optimization, tend &ken
_their decisions one optimization at a time, and so it is diffiéor
these heuristics to account for the effect of future tramsédions.

In this paper, we present a new approach for structuringrapti
ers that addresses the above limitations of the traditiapptoach,
and also has a variety of other benefits. Our approach cerist
computing a set of optimized versions of the input program an
then selecting the best candidate from this set. The sehdfidate
optimized programs is computed by repeatedly inferringivegu
lences between program fragments, thus allowing us to septe
the effect of many possible optimizations at once. This,uim,t
enables the compiler to delay the decision of whether or naipa
timization is profitable until it observes the full ramifigais of that
decision. Although related ideas have been explored indh&egt
of super-optimizers, as Section 8 on related work will paint,
super-optimizers typically operate on straight-line codbereas
our approach is meant as a general-purpose compilatiodigara
that can optimize complicated control flow structures.

At its core, our approach is based on a simple change to the tra
ditional compilation model: whereas traditional optintinas op-
erate by destructively performing transformations, in approach
optimizations take the form adquality analyseshat simply add
equality information to a common intermediate repres@mdtR),
without losing the original program. Thus, after each eigyahal-
ysis runs, both the old program and the new program are repre-
sented.

The simplest form of equality analysis looks for ways toamst
tiate equality axioms likex x 0 = 0, ora * 4 = a << 2. How-
ever, our approach also supports arbitrarily complicateth$ of
equality analyses, such as inlining, tail recursion eletion, and
various forms of user defined axioms. The flexibility with wHni
equality analyses are defined makes it easy for compileexsrib
port their traditional optimizations to our equality-besaodel: op-
timizations can work as before, except that when the opétion
would have performed a transformation, it now simply resadfte
transformation as an equality.

The main technical challenge that we face in our approach
is that the compiler’s IR must now use equality information t
represent not just one optimized version of the input progra
but multiple versions at once. We address this challengmugitr
a new IR that compactly represents equality informatiord as
a result can simultaneously store multiple optimized ersiof
the input program. After a program is converted into our IR, w
repeatedly apply equality analyses to infer new equalitigd no
more equalities can be inferred, a process known as saturati
Once saturated with equalities, our IR compactly reprasémt
various possible ways of computing the values from the oabi
program modulo the given set of equality analyses (and noodul

some bound in the case where applying equality analyses tead
unbounded expansion).

Our approach of having optimizations add equality inforiorat
to a common IR until it is saturated with equalities has aetsirof
benefits over previous optimization models.

Optimization order does not matter. The first benefit of our ap-
proach is that it removes the need to think about optiminaiioler-
ing. When applying optimizations sequentially, orderiagiprob-
lem because one optimization, sdy may perform some transfor-
mation that will irrevocably prevent another optimizaticay B,
from triggering, when in fact running first would have produced
the better outcome. This so-callptlase ordering probleris ubig-
uitous in compiler design. In our approach, however, thegitan
writer does not need to worry about ordering, because opaimi
tions do not destructively update the program — they simply a
equality information. Therefore, after an optimizatidns applied,
the original program is still represented (along with tleasformed
program), and so any optimizatids that could have been applied
beforeA is still applicable afterd. Thus, there is no way that apply-
ing an optimizationA can irrevocably prevent another optimization
B from applying, and so there is no way that applying optimiza-
tions will lead the search astray. As a result, compilerevsitvho
use our approach do not need to worry about the order in which
optimizations run. Better yet, because optimizations hogvad to
freely interact during equality saturation, without anynsilera-
tion for ordering, our approach can discover intricate roj#ation
opportunities that compiler writers may not have anti@gatand
hence would not have implemented in a general purpose cempil

Global profitability heuristics. The second benefit of our ap-
proach is that it enablegobal profitability heuristicsEven if there
existed a perfect order to run optimizations in, compileitevs
would still have to design profitability heuristics for detening
whether or not to perform certain optimizations such asing.
Unfortunately, in a traditional compilation system wheptimiza-
tions are applied sequentially, each heuristic decidesadtaiion
whether or not to apply an optimization at a particular pairthe
compilation process. The local nature of these heuristigkes it
difficult to take into account the effect of future optimizats.

Our approach, on the other hand, allows the compiler writer t
design profitability heuristics that are global in naturephrticu-
lar, rather than choosing whether or not to apply an optitidna
locally, these heuristics choose between fully optimizedsions
of the input program. Our approach makes this possible bg-sep
rating the decision of whether or not a transformatioagplicable
from the decision of whether or not it grofitable Indeed, using
an optimization to add an equality in our approach does rdit in
cate a decision to perform the transformation — the addedligégu
just represents theption of picking that transformation later. The
actual decision of which transformations to apply is perfed by
a global heuristiafter our IR has been saturated with equalities.
This global heuristic simply chooses among the variouswipéd
versions of the input program that are represented in theatatl
IR, and so it has a global view of all the transformations thate
tried and what programs they generated.

There are many ways to implement this global profitability
heuristic, and in our prototype compiler we have chosen fem
ment it using a Pseudo-Boolean solver (a form of Integer &ine
Programming solver). In particular, after our IR has bedarated
with equalities, we use a Pseudo-Boolean solver and a stadic
model for every node to pick the lowest-cost program that-com
putes the same result as the original program.

Translation validation. The third benefit of our approach is that
it can be used not only to optimize programs, but also to prove
programs equivalent: intuitively, if two programs are fduequal

after equality saturation, then they are equivalent. Oyar@gch
can therefore be used to perfortnanslation validation a tech-
nique that consists of automatically checking whether drthe
optimized version of an input program is semantically egjgint
to the original program. For example, we can prove the ctress
of optimizations performed by existing compilers, evenuf prof-
itability heuristic would not have selected those optirtiaas.

Contributions. The contributions of this paper can therefore be
summarized as follows:

e We present a new approach for structuring optimizers. In our
approach optimizations add equality information to a commo
IR that simultaneously represents multiple optimized ioe1s
of the input program. Our approach obviates the need to worry
about optimization ordering, it enables the use of a glopal o
timization heuristic (such as a Pseudo-Boolean solved,itn
can be used to perform translation validation for any coempil
Sections 2 and 3 present an overview of our approach and its ca
pabilities, Section 4 makes our approach formal, and Seé&tio
describes the new IR that allows our approach to be effective

¢ We have instantiated our approach in a new Java bytecode opti

mizer called Peggy (Section 6). Peggy uses our approach not
only to optimize Java methods, but also to perform transla-
tion validation for existing compilers. Our experimentasults
(Section 7) show that our approach (1) is practical bothrimse

of time and space overhead, (2) is effective at discoverotg b
simple and intricate optimization opportunities and (3ffec-

tive at performing translation validation for a realistjationizer

— Peggy is able to validate 98% of the runs of the Soot opti-
mizer [36], and within the remaining 2% it uncovered a bug in
Soot.

2. Overview

Our approach for structuring optimizers is based on the mfea
having optimizations propagate equality information taaxmon
IR that simultaneously represents multiple optimized io@rs of
the input program. The main challenge in designing this IR
it must make equality reasonimgffectiveandefficient

To make equality reasoningffective our IR needs to support
the same kind of basic reasoning that one would expect fram si
ple equality axioms like * (b + ¢) = a * b + a * ¢, but with more
complicated computations such as branches and loops. We hav
designed a representation for computations called ProBseqres-
sion Graphs (PEGSs) that meets these requirements. Simithet
gated SShepresentation [35, 19], PEGs aederentially transpar-
ent which intuitively means that the value of an expression de-
pends only on the value of its constituent expressions,ouithny
side-effects. As has been observed previously in many xtmte
referential transparency makes equality reasoning siampleeffec-
tive. However, unlike previous SSA-based representatiBEGs
are alsocomplete which means that there is no need to maintain
any additional representation such as a control flow graptG(C
Completeness makes it easy to use equality for performargsir
formations: if two PEG nodes are equal, then we can pick eithe
one to create a well-formed program, without worrying abtat
implications on any underlying representation.

In addition to being effective, equality reasoning in oumiiast
be efficient The main challenge is that each added equality can
potentially double the number of represented programs, tinak-
ing the number of represented programs exponential in thretwo
case. To address this challenge, we record equality infiiomaf
PEG nodes by simply merging PEG nodes into equivalenceadass
We call the resulting equivalence graph an E-PEG, and iissEh
PEG representation that we use in our approach. Using dgnoa

i :=0; i :=0;

while (...) { while (...) {
use(i * 5); use(i);
i:=1+ 1 i =1+ b5;
if (...) { if (...) {

i::=1i+ 3; i =1 + 15;

} }

} }

(@) (b)

Figure 1. Loop-induction-variable strength reduction: (a) shows
the original code, and (b) shows the optimized code.

classes allows E-PEGs to efficiently represent exponéntizny
ways of expressing the input program, and it also allows thmke

ity saturation engine to efficiently take into account poesly dis-
covered equalities. Among existing IRs, E-PEGs are uniqtlesir
ability to represent multiple optimized versions of theunjpro-
gram. A more detailed discussion of how PEGs and E-PEG®relat
to previous IRs can be found in Section 8.

We illustrate the main features of our approach by showing ho
it can be used to implement loop-induction-variable sttemgduc-
tion. The idea behind this optimization is that if all assigants to a
variablei in a loop are increments, then an expresdion cin the
loop (with c being loop invariant) can be replaced withprovided
all the increments of in the loop are appropriately scaled by

As an example, consider the code snippet from Figure 1(&. Th
use ofi*5 inside the loop can be replaced wittas long as the two
increments in the loop are scaled fyThe resulting code is shown
in Figure 1(b).

2.1 Program Expression Graphs

A Program Expression Graph (PEG) is a graph containing: (1)
operator nodes, for example “plus”, “minus”, or any of ouiltun
nodes for representing conditionals and loops (2) “datdfemiges
that specify where operator nodes get their arguments fAenan
example, the PEG for the use d%5 in Figure 1(a) is shown in
Figure 2(a). At the very top of the PEG we see node 1, which
represents th@*5 multiply operation from inside the loop. Each
PEG node represents an operation, with the children nodeg be
the arguments to the operation. The links from parents tiolren
are shown using solid (non-dashed) lines. For example, ode
represents the multiplication of node 2 by the constant 55E
follow the notational convention used in E-graphs [26, 23],dnd
Abstract Syntax Trees (ASTs) of displaying operators aktbvee
arguments that flow into them, which is the opposite coneenti
typically used in Dataflow Graphs [11, 2]. We use the E-grAgii7
orientation because we think of PEGSs as recursive expressio
Node 2 in our PEG represents the value of variablieside
the loop, right before the first instruction in the loop is exted.
We usef nodes to represent values that vary inside of a loop.
Intuitively, the left child of a# node computes the initial value,
whereas the right child computes the value at the currematits in
terms of the value at the previous iteration. In our exanthle]eft
child of thed node is the constant 0, representing the initial value
of i. The right child of théd node uses nodes 3, 4, and 5 to compute
the value ofi at the current iteration in terms of the valueidfom
the previous iteration. The two plus nodes (nodes 4 and Bsept
the two increments of in the loop, whereas th@ node (node 3)
represents the merging of the two values gfroduced by the two
plus nodes. As in gated SSA [35, 19], abinodes are executable:
the first (left-most) argument o is a selector that is used to select
between the second and the third argument. Our example 'loesn
use the branch condition in an interesting way, and so wdgust
represent the PEG sub-graph that computes the branch icondit

From a more formal point of view, eadh node produces a
sequencef values, one value for each iteration of the loop. The
first argument of @ node is the value for the first iteration, whereas
the second argument is a sequence that represents the fealtres
remaining iterations. For example, in Figure 2, the nodbsl&d 3
through 5 compute this sequence of remaining values in tefms
the sequence produced by #heode. In particular, nodes 3, 4 and
5 have been implicitly lifted to operate on this sequence.

PEGs are well-suited for equality reasoning because all PEG
operators, even those for branches and loops, are matlcamati
functions with no side effects. As a result, PEGs @&ferentially
transparent which allows us to perform the same kind of equality
reasoning that one is familiar with from mathematics. Evenugh
all PEG operators are pure, PEGs can still represent pragwatin
state by using heap summary nodes. Section 6 explains how our
Peggy compiler uses such heap summary nodes to represent the
state of Java objects.

2.2 Encoding equalities using E-PEGs

A PEG by itself can only represent a single way of expresdieg t
input program. To represenultiple optimized versions of the in-
put program, we need to encode equalities in our represamtat
To this end, an E-PEG is a graph that groups together PEG nodes
that are equal into equivalence classes. As an examplereFagh)
shows the E-PEG that our engine produces from the PEG of Fig-
ure 2(a). We display equalities graphically by adding a ddstge
between two nodes that have become equal. These dashed edges
are only a visualization mechanism. In reality, PEG nodas dine
equal are grouped together into an equivalence class.

Reasoning in an E-PEG is done through the application of opti
mizations, which in our approach take the form of equalitglgn
ses that add equality information to the E-PEG. An equalityl-a
ysis consists of two components: a trigger, which is an esgioa
pattern stating the kinds of expressions that the analgsistér-
ested in, and a callback function, which should be invoked@mwh
the trigger pattern is found in the E-PEG. The saturationreng
continuously monitors all the triggers simultaneously &vokes
the necessary callbacks when triggers match. When invekesl)-
back function adds the appropriate equalities to the E-PEG.

The simplest form of equality analysis consists of instting
axioms such ag*0 = 0. In this case, the trigger would lae:0, and
the callback function would add the equality0 = 0. Even though
the vast majority of our reasoning is done through such dative
axiom application, our trigger and callback mechanism icimu
more general, and has allowed us to implement equality aealy
such as inlining, tail-recursion elimination, and consfaiding.

The following three axioms are the equality analyses regito
perform loop-induction-variable strength reduction. ¥ktate that
multiplication distributes over additiofl, and¢:

(a+b)sm=axm+bxm (1)
O(a,b) *xm =6(a+m,bxm) (2)
¢(a,b,c) xm = ¢(a,b*xm,cxm) 3)

After a program is converted to a PEG, a saturation engine
repeatedly applies equality analyses until either no mqualkties
can be added, or a bound is reached on the number of expression
that have been processed by the engine. As Section 7 wiltidesc
in more details, our experiments show that 84% of method$ean
completely saturated, without any bounds being imposed.

Figure 2(b) shows the saturated E-PEG that results fronyappl
ing the above distributivity axioms, along with a simple stamt
folding equality analysis. In particular, distributivity applied four
times: axiom (2) adds equality edge A, axiom (3) edge B, aXibm
edge C, and axiom (1) edge D. Our engine also applies theaztnst
folding equality analysis to show thatx 5 = 0, 3 x5 = 15 and

Figure 2. Loop-induction-variable Strength Reduction using PE@$:shows the original PEG, (b) shows the E-PEG that our engine
produces from the original PEG and (c) shows the optimize@ Rihich results by choosing nodes 6, 8, 10, and 12 from (b).

1x5 = 5. Note that when axiom (2) adds edge A, italso adds node forming i * 5 to i << 2 + i disables loop-induction-variable

7, which then enables axiom (3). Thus, equality analysesnéisdly
communicate with each other by propagating equalitiestyinahe
E-PEG. Furthermore, note that the instantiation of axiojra¢lds
node 12 to the E-PEG, but it does not add the right child of i&je
namelyd(...) = 5, because it is already represented in the E-PEG.

Once saturated with equalities, an E-PEG compactly reptese
multiple optimized versions of the input program — in fattom-
pactly represents all the programs that could result froplyapg
the optimizations in any order to the input program. For eplam
the E-PEG in Figure 2(b) encodes 128 ways of expressing tge or
inal program (because it encodes 7 independent equalitesely
the 7 dashed edges). In general, a single E-PEG can efficiept!
resent exponentially many ways of expressing the inputrarag

After saturation, a global profitability heuristic can piakich
optimized version of the input program is best. Becauseptto&
itability can inspect the entire E-PEG at once, it has a dloleav
of the programs produced by various optimizaticafter all other
optimizations were also run. In our example, starting aienbdby
choosing nodes 6, 8, 10, and 12, we can construct the grapg-in F
ure 2(c), which corresponds exactly to performing loopdictebn-
variable strength reduction in Figure 1(b).

More generally, when optimizing an entire function, one twas
pick a node for the equivalence class of the return value adds
for all equivalence classes that the return value depend$hmre
are many plausible heuristics for choosing nodes in an E-REG
our Peggy implementation, we have chosen to select nodeg usi
a Pseudo-Boolean solver, which is an Integer Linear Progniam
solver where variables are constrained to 0 or 1. In pagicue
use a Pseudo-Boolean solver and a static cost model for euesy
to compute the lowest-cost program that is encoded in th&&:P
In the example from Figure 2, the Pseudo-Boolean solverspick
the nodes described above. Section 6.3 describes our geehfar
selecting nodes in more detail.

2.3 Benefits of our approach

Optimization order does not matter. To understand how our ap-
proach addresses the phase ordering problem, considerpéesim
peephole optimization that transforms#* 5 into i << 2 + i.
On the surface, one may think that this transformation shai
ways be performed if it is applicable — after all, it replaeasulti-
plication with the much cheaper shift and add. In realityvéeer,
this peephole optimization may disable other more profitadains-
formations. The code from Figure 1(a) is such an examplestra

strength reduction, and therefore generates code thatrsewioan
the one from Figure 1(b).

The above example illustrates the ubiquitqusase ordering
problem In systems that apply optimizations sequentially, thd-qua
ity of the generated code depends on the order in which opdimi
tions are applied. Whitfield and Soffa [41] have shown experi-
tally that enabling and disabling interactions betweemoigations
occur frequently in practice, and furthermore that thegra#t of in-
teraction vary not only from program to program, but alsdnita
single program. Thus, no one order is best across all cotigpila

A common partial solution consists of carefully considgrail
the possible interactions between optimizations, pogsilith the
help of automated tools, and then coming up with a carefuligd
sequence for running optimizations that strives to enalietrof
the beneficial interactions. This technique, however, puteavy
burden on the compiler writer, and it also does not accounthi®
fact that the best order may vary between programs.

At high levels of optimizations, some compilers may even run
optimizations in a loop until no more changes can be maden Eve
so, if the compiler picks the wrong optimization to start it
then no matter what optimizations are applied later, in ame
any number of times, the compiler will not be able to revetse t
disabling consequences of the first optimization.

In our approach, the compiler writer does not need to worry
about the order in which optimizations are applied. The pre-
vious peephole optimization would be expressed as the axiom
i * 5 =1 << 2 + i. However, unlike in a traditional compi-
lation system, applying this axiom in our approach does met r
move the original program from the representation — it ordlgsa
information — and so it cannot disable other optimizatidrtsere-
fore, the code from Figure 1(b) would still be discoveredereif
the peephole optimization was run first. In essence, ouroagpr
is able to simultaneously explore all possible sequencesptf
mizations, while sharing work that is common across theovasri
sequences.

In addition to reducing the burden on compiler writers, rgmo
ing the need to think about optimization ordering has twdtaafthl
benefits. First, because optimizations interact freeljr wi regard
to order, our approach often ends up combining optimization
unanticipated ways, leading to surprisingly complicatptmiza-
tions given how simple our equality analyses are — Sectionesg
such an example. Second, it makes it easier for end-usergmmeg
mers to add domain-specific axioms to the compiler, becaese t

' sum: = 0; ! for (i :=0; i < 10; i++) {
for (i :=0; i <29; i +=2) { ' for (i :=0; i <10; i++) { ' for (j :=0; j <10; j++) {
use(i) E for (j :=0; j < 10; j++) { E use(i*10 + j);
! use(sumt+) ; ! }
use(i) ! |
(a) I (b) P (c)
eval E | ¥
\ ' SUMjpner 92 ; / \
pass 5 SN pass, 5 * 0,
| 1 5"”"’011/,6:/‘9 / £ H / AN / 2\
0/\/2 E y 1 1 _\ E 10 01 0 +
4 N : 0 eval, 10 ! 7N /
0 29 i 1 0 1
+ : 7 ! /
7 e ") !
(d) E (e) 1 E (f)

Figure 3. Various loops and their PEG representations.

don’t have to think about where exactly in the compiler thmax
should be run, and in what order relative to other optimareti

Global profitability heuristics. Profitability heuristics in tradi-
tional compilers tend to be local in nature, making it diffi¢a take
into account the effect of future optimizations. For exaenmlon-
sider inlining. Although it is straightforward to estimdtee direct
costof inlining (the code-size increase) and thieect benefiof in-
lining (the savings from removing the call overhead), it@smore
difficult to estimate the potentially largémdirect benefit namely
the additional optimization opportunities that inliningpeses.

To see how inlining would affect our running example, con-
sider again the code from Figure 1(a), but assume that mhstea
use(i * 5), there was a call to a functiafy and the use of x5
occurredinside £. If £ is sufficiently large, a traditional inliner
would not inline £, because the code bloat would outweigh the
call-overhead savings. However, a traditional inliner ldooniss
the fact that it may still be worth inlining, despite its size, be-
cause inlining would expose the opportunity for loop-initue-
variable strength reduction. One solution to this problemsists
of performing aninlining trial [12], where the compiler simulates
the inlining transformation, along with the effect of sutpgent op-
timizations, in order to decide whether or not to actuallinia
However, in the face of multiple inlining decisions (or mayen-
erally multiple optimization decisions), there can be exgrttially

translation validation for any compiler (not necessarily own),
by checking that each function in the input program is edaiva
to the corresponding optimized function in the output pangr
For example, our approach would be able to show that the
two program fragments from Figure 1 are equivalent. Further
more, it would also be able to validate a compilation run iriclth
i * 5 =i << 2 + iwas applied firstto Figure 1(a). This shows
that we are able to perform translation validation regasitef what
optimized program our own profitability heuristic would dse.
Although our translation validation technique is intragedu-
ral, we can use interprocedural equality analyses sucHiamgto
enable a certain amount of interprocedural reasoning. dltos/s
us to reason about transformations like reordering funatls.

3. Reasoning about loops

This section shows how our approach can be used to reasassacro
nested loops. The example highlights the fact that a simptama

set can produce unanticipated optimizations which trawiti com-
pilers would have to explicitly search for.

We start in Sections 3.1 and 3.2 by describing all PEG con-
structs used to represent loops. We then show in Sectiondsv3 h
our approach can perform an inter-loop strength reductiatit o
mization.

many possible outcomes, each one of which has to be compiled3.1 Single loop

separately.

In our approach, on the other hand, inlining simply adds an
equality to the E-PEG stating that the call to a given functi®
equal to its body instantiated with the actual arguments.résult-
ing E-PEG simultaneously represents the program whergniglis
performed and where it is not. Subsequent optimizations tpe
erate on both of these programs at the same time. More gbneral
our approach can simultaneously explore exponentiallyynpas-
sibilities in parallel, while sharing the work that is rediamt across
these various possibilities. In the above example witimint, once
the E-PEG is saturated, a global profitability heuristic nzake a
more informed decision as to whether or not to pick the inliner-
sion, since it will be able to take into account the fact thdihing
enabled loop-induction-variable strength reduction.

Translation Validation. Unlike traditional compilation frame-
works, our approach can be used not only to optimize programs
but also to establish equivalences between programs. ticyiar,

Consider the simple loop from Figure 3(a). This loop itesat&
times, incrementing the value efeach time by 2. Assume that the
variablei is used inside the loop, and it is also used after the loop
(as indicated by the twase annotations). The PEG for this code is
shown in Figure 3(d). The value afinside the loop is represented
by a# node. Intuitively, thi®) node produces the sequence of values
thati takes throughout the loop, in this cd6e2, 4, .. .]. The value

of i after the loop is represented by theul node at the top of the
PEG. Given a sequeneeand an index:, eval(s,n) produces the
n'" element of sequence To determine which element to select
from a sequence, our PEG representation yags nodes. Given

a sequence of booleans,pass(s) returns the index of the first
element in the sequence that is true. In our example>thede
uses the result of th@ node to produce the sequence of values
taken on by the boolean expressibn> 29 throughout the loop.
This sequence is then sentgass, which in this case produces the
value 15, since thel5*" value (counting from 0) of. in the loop

if we convert two programs into an E-PEG, and then saturate it (which is30) is the first one to make > 29 true. Theeval node

with equalities, then we can conclude that the two prograras a
equivalent if they belong to the same equivalence classersét-

then selects thé5™ element of the sequence produced by ghe
node, which is30. In our previous example from Section 2, we

urated E-PEG. In this way, our approach can be used to perform omitted eval/pass from the PEG for clarity — because we were not

Figure 4. E-PEG that results from running the saturation engine
on the PEG from Figure 3(f). By picking the nodes that are khec
marked, we get the PEG from Figure 3(e).

interested in any of the values after the loop, thel/pass nodes
would not have been used in any reasoning.

3.2 Nested loops

We now illustrate, through an example, how nested loops ean b
encoded in our PEG representation. Consider the code $fiippe
Figure 3(b), which has two nested loops. We are interestdein
value of sum inside the loop, as indicated by thee annotation.
The PEG for this code snippet is shown in Figure 3(e). Each
eval and pass node is labeled with a subscript indicating what
loop depth it operates on (we previously omitted these sigisc
for clarity). The node labeleglum;,..- represents the value sfim

at the beginning of the inner loop body. Similarkymute- is the
value of sum at the beginning of the outer loop body. Looking
at suminner, We can see that: (1) on the first iteration (the left
child of suminner), suminner gets the value ofum from the outer
loop; (2) on other iterations, it gets one plus the valueseh
from the previous iteration of the inner loop. Lookingsatnuzer,

we can see that: (1) on the first iteratioymouter gets0; on
other iterations, it gets the value sfim right after the inner loop
terminates. The value afum after the inner loop terminates is
computed using a similarvall/pass pattern as in Figure 3(d).

3.3

Our approach allows an optimizing compiler to perform dte
optimizations of looping structures. We present such amgi&
here, with a kind of inter-loop strength reduction. Consitie code
snippet from Figure 3(c), which is equivalent to one we'veatly
seen in Figure 3(b). However, the code in 3(b) is faster berau
sum++ is cheaper thath « 10 + j. We show how our approach can
transform the code in Figure 3(c) to the code in Figure 3(b).

Figure 3(f) shows the PEG far*10 + j, which will be the
focus of our optimization. We omitval and pass in this PEG
because they are not used in this example, except in onelegtep t
we will make explicit.

Figure 4 shows the saturated E-PEG that results from running
the saturation engine on the PEG from Figure 3(f). The checksn
indicate which nodes will eventually be selected — they can b
ignored for now. To make the graph more readable, we somgtime

Inter-loop strength reduction

Function Optimize(cfg : CFG) : CFG

1: let ir = ConvertTolR(cfyg)

2: let saturated_ir = Saturate(ir, A)
3: let best = SelectBest(saturated_ir)
4: return Convert ToCFG (best)

Figure 5. Optimization phase in our approach. We assume a global
setA of equality analyses to be run.

Figure 3(f). In particular, this left child has been repldceith a
new nodei, wherei = 6,(0, 10 + i). We skip the steps in doing
this because they are similar to the ones described in $ez?o

Figure 4 shows the relevant equalities that our saturatigine
would add. We describe each in turn.

e Edge A is added by distributing over,:
i+602(0,1+j)=02(14+0,i+ (1+73))

e Edge B is added becau8es the identity of+, i.e.:i + 0 = i.
e Edge C is added because addition is associative and commuta-
tiveri +(1+j)=1+(1+3])
e Edge D is added becau8gincrementech times, produces:
evaly(ide, pass,(ide > n)) = n whereid, = 0¢(0,1 + idy)

This is an example of a loop optimization expressible as a
simple PEG axiom.

e Edge E is added by distributing over the first child ofevals:
eval2(j, k) + i = eval2(j + 1,k)
e Edge Fis added because addition is commutajivet = i+ j

We use checkmarks in Figure 4 to highlight the nodes thatyegg
would select using its Pseudo-Boolean profitability heimiThese
nodes constitute exactly the PEG from Figure 3(e), meartiag t
Peggy optimizes the code in Figure 3(c) to the one in Figuog 3(

Summary. This example illustrates several points. First, it shows
how a transformation that locally seems undesirable, natreshs-
forming the constant 10 into an expensive loop (edge D), & th
end leads to much better code. Our global profitability tetieris
perfectly suited for taking advantage of these situati@econd,

it shows an example of amnanticipated optimizatigmmamely an
optimization that we did not realize would fall out from tHemple
equality analyses we already had in place. In a traditionsipi-
lation system, a specialized analysis would be requirectiopm
this optimization, whereas in our approach the optimizaton-
ply happens without any special casing. In this way, our aggn
essentially allows a few general equality analyses to dontbue

of many specialized transformations. Finally, it shows fwaw ap-
proach is able to reason about complex loop interactionseso
thing that is beyond the reach of current super-optimizesed
techniques.

4. Formalization of our Approach
Having given an intuition of how our approach works through

label nodes, and then connect an edge directly to a label ,name examples, we now move to a formal description. Figure 5 shows

rather than connecting it to the node with that label. Fongxa,
consider nodg in the E-PEG, which reads @s(0, 1 + j). Rather
than explicitly drawing an edge fromt to j, we connectt to a
new copy of labe}j.

In drawing Figure 4, we have already performed loop-indurcti
variable strength reduction on the left child of the topmedtom

the Optimize function, which embodies our approadbptimize

takes four steps: first, it converts the input CFG into arrirgkrep-
resentation of the program; second, it saturates thisnateepre-
sentation with equalities; third, it uses a global profiliapheuris-
tic to select the best program from the saturated represamtéi-

nally, it converts the selected program back to a CFG.

An instantiation of our approach therefore consists of ghre
components: (1) an IR where equality reasoning is effectilang
with the translation functionSonvert ToIR andConvert ToCFG,

(2) a saturation engin8aturate, and (3) a global profitability
heuristicSelect Best. Future sections will show how we instantiate
these three components in our Peggy compiler.

Saturation Engine. The saturation engir@aturate infers equal-
ities by repeatedly running a sdt of equality analyses. Given an
equality analysis € A, we defineir; % ir, to mean thair, pro-
ducesir; when the equality analysisruns and adds some equali-
ties toir:. If a chooses not to add any equalities, thenis simply
the same asr;.

We define a partial order on IRs, based on the equalities they
encode:ir; C ire iff the equalities inir; are a subset of the
equalities inir2. Immediately from this definition, we get:

(ir1 % ira) = iry C irs

4
We define an equality analysisto be monotonic iff:

(ir1 Cire) A (ir1 = irh) A (irs 5 irh) = (ir] C irh)
Intuitively, our approach addresses the phase orderinggaro

because applying an equality analysiseforeb cannot make less
effective, as stated in the following non-interferenceotiaen.

THEOREML1. If a andb are monotonic then:
(ir1 2 ira) A (ira > irs) A (ir1 > irg) = (ira C irs)

The above follows immediately from monotonicity and Prapdr
We now defingir; — irs as:

iry — irg <= Ja € A. (ir L drg ANy # ir2)

The — relation formalizes one step taken by the saturation engine
We also define~™ to be the reflexive transitive closure ef. The
—* relation formalizes an entire run of the saturation engine.

Given a setA of monotonic equality analyses, if the saturation
engine terminates, then it is canonizing, where canoniriegns
that for anyiry, there is a uniquers with the following properties:

(1) ir1 —* ire and (2) there is nars such thatiro — irs. In
this case the saturation engine computes this canonioaiased
IR, which means thaDptimize returns the same result no matter
what order optimizations run in.

Because in general saturation may not terminate, we bownd th
number of times that analyses can run. In this case we canoot p
vide the same canonizing property, but the non-interfexeheo-
rem (Theorem 1) still implies that no area of the search spaone
be made unreachable by applying an equality analysis (sepsop
that traditional compilation systems lack).

5. PEGs and E-PEGs

The first step in instantiating our approach from the previseic-
tion is to pick an appropriate IR. To this end, we have designe
new IR called the E-PEG which can simultaneously represeitt m
tiple optimized versions of the input program. We first givioa
mal description of our IR (Section 5.1), then we presentetsdfits
(Section 5.2), and finally we give a high-level descriptidhaw to
translate from CFGs to our IR and back (Section 5.3).

5.1 Formalization of PEGs and E-PEGs

APEGisatriplegN, L, C'), whereN isasetof noded, : N — F

is a labeling that maps each node to a semantic function freet a
of semantic functiong”, andC : N — list[N] is a function that
maps each node to its children (i.e. arguments).

Types. Before giving the definition of semantic functions, we first
define the types of values that these functions operate \Gaieres
that flow through a PEG are lifted in two ways. First, they are
1 -lifted, meaning that we add the special vallieto each type
domain. Thel value indicates that the computation fails or does
not terminate. Formally, for each type we definer = U {L}.
Second, values are loop-lifted, which means that instead of
representing the value at a particular iteration, PEG nogl@gsent
values for all iterations at the same time. Formally, weddte a
set of loop identifiers, with each € L representing a loop from
the original code (in our previous examples we used int¢g@rs
assume a partial ordet that represents the loop nesting structure:
¢ < ¢ means that’ is nested withiné. An iteration indexi
captures the iteration state of all loops in the PEG. In paldr,
iis a function that maps each loop identiflee £ to the iteration
that loop ¢ is currently on. Suppose for example that there are
two nested loops in the program, identified/asand/-. Then the
iteration indexi = [¢; — 5,¢2 — 3] represents the state where
loop ¢; is on the5t" iteration and loops is on the3™? iteration.
We letl = £ — N be the set of all loop iteration indices (where
N denotes the set of non-negative integers). Fa& I, we use
the notationi[¢ — v] to denote a function that returns the same
value asi on all inputs, except that it returns on input¢. The
output of a PEG node is a map from loop iteration indiceg ia
values. In particular, for each typewe define a loop-lifted version
7 =1— 7. PEG nodes operate on these loop-lifted types.

Semantic Functions. The set of semantic functior’s is divided
into two: F' Prims U Domain where Prims contains the
primitive functionslike ¢ and 6, which are built into the PEG
representation, whered3omain contains semantic functions for
particular domains like arithmetic.

Figure 6 gives the definition of the primitive functioRgims =
{®, ¢, evaly, pass, }. These functions are polymorphicinin that
they can be instantiated for various, ranging from basic types
like integers and strings to complicated types like the haap-
mary nodes that Peggy uses to represent Java objects. The defi
tions of eval, and pass, make use of the functiomonotonize,,
whose definition is given in Figure 6. Theonotonize, function
transforms a sequence so that, once an indexed value is nediefi
all following indexed values are undefined. Theonotonize,
function formalizes the fact that once a value is undefined at
given loop iteration, the value remains undefined at subegqu
iterations.

The domain semantic functions are definedasnain = {op |
op € DomainOp}, whereDomainOp is a set of domain operators
(like +, x and— in the case of arithmetic), angh is a_L -lifted, and
then loop-lifted version obp. Intuitively, the_L -lifted version of an
operator works like the original operator except that itines L if
any of its inputs arel, and the loop-lifted version of an operator
applies the original operator for each loop index.

As an example, the semantic function-gfin a PEG is+, and
the semantic function of is 1 (since constants liké are simply
nullary operators). However, to make the notation less dealy
we omit the tildes on all domain operators.

Node Semantics. For a PEG node € N, we denote its semantic
value by[[n]. We assume thdt] is lifted to sequence&st[N] in
the standard way. The semantic value:a§ defined as:

[n] = L(n)(TC(n)]))

Equation 5 is essentially the evaluation semantics foresgions.
The only complication here is that our expression graphsesmer-
sive. In this setting, one can think of Equation 5 as a setafrsve
equations to be solved. To guarantee that a unique solutistsg
we impose some well-formedness constraints on PEGs.

| ¢:Bx7x7>7

if cond(i) =L then L
if cond(i) =true then t(i)
if cond(i) = false then f(i)

¢(cond, t, f)(i)

‘evalz:?XN—HN"

evaly(loop, idz)(i) = {

if idz(i) =L then L
elsemonotonize(loop)(i[l — idz(i)])

wheremonotonize, : T — T is defined as:

monotonize;(value) (i) = {

0¢(base, loop)(i)

if 30<1i<i(l).value(ill — i) =
if V0<i<i(l).value(ilf — i]) # L then value(i)

if
if

i(£) = 0 then base(i
i(£) > 0 then loop(i

)
[0 —i(€) —1])

{

if Z=10
if Z+#0
whereZ = {i € N | monotonizey(cond)(i[¢ — i]) = true}

pass,(cond)(i) = {

then L
then minZ

1 then L

Figure 6. Definition of primitive PEG functions. The important notati
Bisthe setofbooleand] =L - N, 7=7U{Ll}, andT=1—T7.

DEFINITION 1. A PEG is well-formed iff:

1. All cycles pass through the second child edge &f a

2. A path from &, evaly, or pass, to a6, implies¢’ < ¢ or the
path passes through the first child edge ofeanl, or pass,,

3. All cycles containingeval, or pass, contain somed,, with
<t

Condition 1 states that all cyclic paths in the PEG are duedpihg
constructs. Condition 2 states that a computation in anr-doog
cannot reference a value from inside an inner-loop. Caoli8
states that the final value produced by an inner-loop canaot b
expressed in terms of itself, except if it's referencing va&ie of
the inner-loop from greviousouter-loop iteration.

THEOREM2. If a PEG is well-formed, then for each noden the
PEG there is a unique semantic valpxg] satisfying Equation 5.

The proofis by induction over the strongly-connected-congnt
DAG of the PEG and the loop nesting structute

Evaluation Semantics. The meaning functior{-] can be eval-
uated on demand, which provides an executable semantics for
PEGs. For example, suppose we want to know the result of
evale(z, pass,(y)) at some iteration state To determine which
case ofeval,’s definition we are in, we must evaluggess,(y) on

i. From the definition ofpass,, we must compute the minimuin
that makegy true. To do this, we iterate through values oitil we

find an appropriate one. The valueioive've found is the number

of times the loop iterates, and we can use thigck in theeval,
function to extract the appropriate value outzaf This example
shows how an on-demand evaluation of @aml/pass sequence
essentially leads to the traditional operational semarfiticloops.

E-PEG Semantics. An E-PEG is a PEG with a set of equalities
E between nodes. An equality betweenand n’ denotes value
equality: [n] = [n]. The setE forms an equivalence relation,
which in turn partitions the PEG nodes into equivalenceseas

Built-in Axioms. We have developed a set of PEG built-in axioms
that state properties of the primitive semantic functiohkese
axioms are used in our approach as a set of equality analyaes t
enable reasoning about primitive PEG operators. Some taupor

L is the set of loop identifierdy is the set of non-negative integers,

built-in axioms are given below, whesedenotes “don’t care™:

QZ(A B) = Gg(evalg(A, 0), B)
evale(0c(A,0),0) = evale(A,0)
evale(evale(A, B) C) = evaly(A,evale(B,C))
pass,(true) = 0
pass,(Oe(true, o)) = 0
) =

)
pass,(0¢(false, A) pass,(A) +1

One of the benefits of having a well-defined semantics foriprim
tive PEG functions is that we can reason formally about thase
tions. In particular, using our semantics, we have provédhal
axioms presented in this paper.

5.2 How PEGs enable our approach

The key feature of PEGs that makes our equality-saturagmn a
proach effective is that they are referentially transpganehich in-
tuitively means that the value of an expression dependsamtje
values of its constituent expressions [5]. In our PEG regpregion,
referential transparency can be formalized as follows:

L(n) = L(n")A
[Cm)] =[C(n

This property follows from the definition in Equation (5),cathe
fact that for anyn, L(n) is a pure mathematical function.
Referential transparency makes equality reasoning afécloe-
cause it allows us to show that two expressions are equal lyy on
considering their constituent expressions, without hgemworry
about side-effects. Furthermore, referential transpgrdras the
benefit that a single node in the PEG entirely captures thee\al
a complex program fragment, enabling us to record equicaken
between program fragments by using equivalence classeslefn
Contrast this to CFGs, where to record equality between tmp
program fragments, one would have to record subgraph éguali
Finally, PEGs allow us to record equalities at the grantylarf
individual values, for example the iteration count in a lpogther
than at the level of the entire program state. Again, conhtras
to CFGs, where the simplest form of equality between program
fragments would record program-state equality.

V(n,n') € N*. (Nl) = [n] =[]

5.3 Translating between CFGs and PEGs

To incorporate PEGs and E-PEGs into our approach, we have

developed th&€onvertTolR andConvert ToCFG functions from
Figure 5. We give only a brief overview of these algorithmghw
more details in a technical report [34].

Transforming a CFG into a PEG. The key challenge in con-
structing a PEG from a CFG is determining the branching sirac
of the CFG. We perform this task with a function that, givethga
from one CFG basic block to another, produces a PEG expressio
with ¢, eval, and pass operations, specifying which path is taken
under which conditions. We use this to determine the breaklico
tions of loops and the general branching structure of the GRH&
also identify nesting depth, entry points, and back-edddeaps
to construct nodes. We piece these components together with the
instructions of each basic block to produce the PEG. Lastyap-
ply some basic simplifications to remove conversion arsfa©ur
conversion algorithm from CFG to PEG handles arbitrary @int
flow, including irreducible CFGs (by first converting themtbey
become reducible).

Transforming a PEG into a CFG. Intuitively, our algorithm
first groups parts of the PEG into sub-PEGs; then it recussive
converts these sub-PEGs into CFGs; and finally it combineseth
sub-CFGs into a CFG for the original PEG. The grouping is dme

follows: ¢ nodes are grouped together whose conditions are equal,

thus performing branch fusiod; nodes are grouped together that
have equapass conditions, thus performing loop fusion. The pure
mathematical nature of PEGs makes it easy to identify when tw
conditions are equal, which makes branch/loop fusion snipl
implement.

PEGs follow the insight from Click of separating code place-
ment issues from the IR [9]. In particular, PEGs do not regmes
code placement explicitly. Instead, placement is perfarichgring
the translation back to a CFG. As a result, the translatiomfa
CFG to a PEG and back (without any saturation) ends up pefform
ing a variety of optimizations: Constant Propagation, CBpyp-
agation, Common Subexpression Elimination, Partial Rddnoy
Elimination, Unused Assignment Elimination, UnreachaBlade
Elimination, Branch Fusion, Loop Fusion, Loop InvariantBch
Hoisting/Sinking, Loop Invariant Code Hoisting/Sinkiramnd Loop
Unswitching.

6. The Peggy Instantiation

We have instantiated our approach in a Java bytecode optimiz
called Peggy. Recall from Figure 5 that an instantiation of o
approach consists of three components: (1) an IR where equal
ity reasoning is effective, along with the translation fiioas
ConvertToIR andConvert ToCFG, (2) a saturation engirféaturate,
and (3) a global profitability heuristigelect Best. We now describe
how each of these three components work in Peggy.

6.1 Intermediate Representation

Function Saturate(peg : PEG, A : set of analysgs: EPEG

1: let epeg = Createlnitial EPEG (peg)

2: while 3(p, f) € A, subst € S . subst = Match(p, epeg) do
3: epeg := AddEqualities(epeg, f(subst, epeg))

4: return epeg

Figure 7. Peggy’s Saturation Engine. We uSeto denote the set
of all substitutions from pattern nodes to E-PEG nodes.

we have simply chosen one where all objects are put into desing
summarization object.

Exceptions. In order to maintain the program state at points
where exceptions are thrown, we bundle the exception stabe i
our abstraction of the heap, namely thesummary nodes. As a
result, operations like division which may throw an exceptibut
do not otherwise modify the heap, now take and returmade (in
addition to their regular parameters and return values foinces
the observable state at the point where an exception is thtow
be preserved by our optimization process. Furthermoragsegove
Java semantics, Peggy does not perform any optimizatiowssac
tryl/catch boundaries or synchronization boundaries.

6.2 Saturation Engine

The saturation engine’s purpose is to repeatedly dispajohliey
analyses. In our implementation an equality analysis isra(paf)
wherep is a trigger, which is an E-PEG pattern with free variables,
and f is a callback function that should be run when the pattern
p is found in the E-PEG. While running, the engine continugusl
monitors the E-PEG for the presence of the patierand when it

is discovered, the engine constructsiatching substitutiarwhich

is a map from each node in the pattern to the corresponding E-
PEG node. At this point, the engine invokgaith this matching
substitution as a parameter, afideturns a set of equalities that
the engine adds to the E-PEG. In this way, an equality arglysi
will be invoked only when events of interest to it are disaqede
Furthermore, the analysis does not need to search the ERREEG
because it is provided with the matching substitution.

Figure 7 shows the pseudo-code for Peggy’s saturation engin
The call toCreatelnitial EPEG on the first line takes the input
PEG and generates an E-PEG that initially contains no dguali
information. TheMatch function invoked in the loop condition
performs pattern matching: if an analysis trigger occursida
an E-PEG, theMatch returns the matching substitution. Once a
match occurs, the saturation engine uddslEqualities to add the
equalities computed by the analysis into the E-PEG.

A remaining concern in Figure 7 is how to efficiently implerhen
the existential check on line 2. To address this challengeadapt
techniques from the Al community. In particular, the tasKioél-
ing the matches on line 2 is similar to the task of determimithgn
rules fire in rule-based expert or planning systems. Thesess
make use of an efficient pattern matching algorithm callecRbte

Peggy uses the PEG and E-PEG representations which, as exalgorithm [17]. Intuitively, the Rete algorithm stores thate of

plained in Section 5, are well suited for our approach. Bseau
Peggy is a Java bytecode optimizer, an additional challertgeen-
code Java-specific concepts like the heap and exceptiorsGis P
Heap. We model the heap using heap summaries which we call
o nodes. Any operation that can read and/or write some olijgtet s
may have to take and/or return additiomalalues. Because Java
stack variables cannot be modified except by direct assigtene
operations on stack variables are precise in our PEGs anatdo n
involve o nodes. None of these decisions of how to represent the
heap are built into the PEG representation. As with any haap s
marization strategy, one can have different levels of abstin, and

partially completed matches in a set of FSMs, and when newv-inf
mation is added to the system, it transitions the apprapf&M.
Our saturation engine uses an adaptation of the Rete digofdr
the E-PEG domain to efficiently implement the check on line 2.
In general, equality saturation may not terminate. Tertiona
is also a concern in traditional compilers where, for exanipllin-
ing recursive functions can lead to unbounded expansiomsByg
triggers to control when equality edges are added (a teabratso
used in automated theorem provers), we can often avoidtisx:
pansion. The trigger for an equality axiom typically looks the
left-hand-side of the equality, and then makes it equal éaripht-

hand-side. On occasion, though, we use more restrictiygers to
avoid expansions that are likely to be useless. For exarti@erig-
ger for the axiom equating a constant with a loop expresssad u
to add edge D in Figure 4 also checks that there is an apptepria
“pass” expression. In this way, it does not add a loop to tHREEG
if there wasn't some kind of loop to begin with. Using our @mntr
axioms and triggers, our engine completely saturates 84#eof
methods in our benchmarks.

In the remaining cases, we impose a limit on the number of ex-
pressions that the engine fully processes (where fully gssiog
an expression includes adding all the equalities that theession
triggers). To prevent the search from running astray antbexyg
a single infinitely deep branch of the search space, we diynese
a breadth-first order for processing new nodes in the E-PBG. T
traversal strategy, however, can be customized in the imghéa-
tion of the Rete algorithm to better control the searchingtegy in
those cases where an exhaustive search would not terminate.

6.3 Global Profitability Heuristic

Peggy’sSelectBest function uses a Pseudo-Boolean solver called
Pueblo [32] to select which nodes from an E-PEG to includéén t
optimized program. A Pseudo-Boolean problem is an integeat
programming problem where all the variables have beenictsdr

to 0 or 1. By using these 0-1 variables to represent whetheoor
nodes have been selected, we can encode the constraimsutbiat
hold for the selected nodes to be a well-formed computation.
particular, for each node or equivalence classe define a pseudo-
boolean variable that takes on the value 1 (true) if we chaose
evaluater, and O (false) otherwise. The constraints then state that:
(1) we must select the equivalence class of the return véR)ef

an equivalence class is selected, we must select one ofdesno
(3) if a node is selected, we must select its children’s exjeiwce
classes; (4) the chosen PEG is well-formed.

The cost model that we use assigns a constant@pgb each
node n. In particular,C,, = basic_cost(n) - k""" where
basic_cost(n) accounts for how expensive is by itself, and
E4et(™) accounts for how oftem is executed. We uséepth(n)
to denote the loop nesting depth-ef andk is simply a constant,
which we have chosen as 20. Usifig, the objective function we
want to minimize isy_, - Bn - Cr, WhereN is the set of nodes
in the E-PEG, and3,, is the pseudo-boolean variable for node
Peggy asks Pueblo to minimize this objective function sutkije
the well-formedness constraints described above. Thesnasge
signed 1 in the solution that Pueblo returns are selecteatto the
PEG thatSelectBest returns. This PEG is the lowest-cost PEG that
is represented in the E-PEG, according to our cost model.

7. Evaluation

In this section we use our Peggy implementation to validateet
hypotheses about our approach for structuring optimizarsap-
proach is practical both in terms of space and time (Sectitjy 7
it is effective at discovering both simple and intricateioyzation
opportunities (Section 7.2), and it is effective at perfomgntrans-
lation validation (Section 7.3).

7.1 Time and space overhead

To evaluate the running time of the various Peggy componems
compiled SpecJVM, which comprises 2,461 methods. For 1% of
these methods, Pueblo exceeded a one minute timeout weethpos
on it, in which case we just ran the conversion to PEG and back.
We imposed this timeout because in some rare cases, Pueislo ru
too long to be practical.

The following table shows the average time in milliseconds
taken per method for the 4 main Peggy phases (for Pueblo, a
timeout counts as 60 seconds).
CFG to PEG| Saturation

13.9ms 87.4ms

Pueblo
1,499 ms

PEG to CFG
52.8 ms

Time

All phases combined take slightly over 1.5 seconds. An end-
to-end run of Peggy is on average 6 times slower than Soot with
all of its intraprocedural optimizations turned on. Neallyof our
time is spent in the Pseudo-Boolean solver. We have not éotcus
our efforts on compile-time, and we conjecture there isifigant
room for improvement, such as better pseudo-boolean emgedi
or other kinds of profitability heuristics that run faster.

Since Peggy is implemented in Java, to evaluate memory foot-
print, we limited the JVM to a heap size of 200 MB, and observed
that Peggy was able to compile all the benchmarks withoutingn
out of memory.

In 84% of compiled methods, the engine ran to complete satu-
ration, without imposing bounds. For the remaining cadesen-
gine limit of 500 was reached, meaning that the engine raih unt
fully processing 500 expressions in the E-PEG, along witlthal
equalities they triggered. In these cases, we cannot pravitbm-
pleteness guarantee, but we can give an estimate of thefdize o
explored state space. In particular, using just 200 MB ophear
E-PEGs represented more th2i® versions of the input program
(using geometric average).

7.2 Implementing optimizations

The main goal of our evaluation is to demonstrate that common
as well as unanticipated, optimizations result in a natway
from our approach. To achieve this, we implemented a setsitba
equality analyses, listed in Figure 8(a). We then manuathwbked
through the code that Peggy generates on a variety of bemkbma
(including SpecJVM) and made a list of the optimizationd the
observed. Figure 8(b) shows the optimizations that we ebser
fall out from our approach using equality analyses 1 throfigdnd
Figure 8(c) shows optimizations that we observed fall corfliour
approach using equality analyses 1 through 7.

With effort similar to what would be required for a compiler
writer to implement the optimizations from part (a), our eggrh
enables the more advanced optimizations from parts (b) end (
Peggy performs some optimizations (for example 15 through 1
that are quite complex given the simplicity of its equalityaby-
ses. To implement such optimizations in a traditional cdenpihe
compiler writer would have to explicitly design a pattermttlis
specific to those optimizations. In contrast, with our appfothese
optimizations fall out from the interaction of basic eqtaknaly-
ses without any additional developer effort, and withowtcsfying
an order in which to run them. Essentially, Peggy finds thhtrig
sequence of equality analyses to apply for producing trexetf
these complex optimizations.

In terms of generated-code quality, Peggy generates codsenh
performance is comparable to the code generated by Soet’s in
traprocedural optimizations, which include: common skpression
elimination, lazy code motion, copy propagation, consfaopa-
gation, constant folding, conditional branch folding, desssign-
ment elimination, and unreachable code elimination. H@ren-
traprocedural optimizations on Java bytecode generalyglyire
only small gains (on the order of a few percent). In the rasesa
where significant gains are to be had from intraprocedurét op
mizations, Peggy excelled. Soot can also perform integuoal
optimizations, such as class-hierarchy-analysis, poeamalysis,
and method-specialization. We did not enable these opitinizs
when performing our comparison against Soot, because we hav
not yet attempted to express any interprocedural optinoizat We

(a) Equality Analyses

Description

A

Built-in E-PEG axioms
Basic Arithmetic Axioms
Constant Folding
Java-specific Axioms

Axioms from Section 5.1 stating properties of primitive PR&les &, 0, eval, pass)
Axioms stating properties of arithmetic operators like—, *, /, <<, >>

Equates a constant expression with its constant value

Axioms stating properties of Java-specific operators ligkelfand array accesses

Tail-recursion Elimination
Method Inlining
Domain-specific Axioms

Nouokrwd

Replaces the body of a tail-recursive procedure with a loop
Inlining based on intraprocedural class analysis to disguatte dynamic dispatch
User-provided axioms about certain application domaipsig¢oal)

(b) Optimizations Description

8. Constant Propagation and Folding
9. Algebraic Simplification

. Entire-loop Strength Reduction
. Loop-operation Factoring

. Loop-operation Distributing

. Partial Inlining

Traditional Constant Propagation and Folding

Various forms of traditional algebraic simplifications

Various forms of traditional peephole optimizations

Replace read of an array element by the expression it wagpsy assigned

Optimization described in Section 2, namely Loop-induth@riable Strength Reductior]

10. Peephole Strength Reduction

11. Array Copy Propagation

12. CSE for Array Elements Remove redundant array accesses
13. Loop Peeling Pulls the first iteration

14. LIVSR

15. Interloop Strength Reduction Optimization described in Section 3

Transforms entire loop into one operation, e.g. loop deimgrs becomes “plus’

Factors expensive operations out of a loop, for exampleipticktion

Distributes an expensive operation into a loop, where itenout with another operatio
Inlines part of a method in the caller but keeps the call ferrést of the computation

of a loop outside of the loop

-

(c) Domain-specific Optimizations Description

20. Domain-specific LIVSR

. Domain-specific code hoisting

. Domain-specific Redundancy Remo
. Temporary Object Removal

. Specialization of Math Libraries

. Design-pattern Optimizations

. Method Outlining

. Specialized Redirection

LIVSR, but with domain operations like matrix/vector adlolit and multiply
Code hoisting based on domain-specific invariance axioms

aRemoves redundant computations based on domain axioms
Removes temporary objects created by calls to matrix/vditi@ries
Specializes vector/matrix algorithms based on, for exantpk size of the vector/matrix
Removes overhead of certain design patterns, like thedatiim or interpreter pattern
Replaces code by call to a method performing the same cotigouthut more efficiently
Replaces method call with call to a more efficient versioredasm the calling context

Figure 8. Optimizations performed by Peggy

conjecture that interprocedural optimizations can be esged as
equality analyses, and leave this exploration to futurekwor

With the addition of domain-specific axioms, our approach en
ables even more optimizations, as shown in part (c). To gilavar
for these domain-specific optimizations, we describe tvamples.

The firstis aray tracer application (5 KLOCs) that one of the a
thors had previously developed. To make the implementatizen
and easy to understand, the author used immutable vectectsbj
in a functional programming style. This approach howevémomn
duces many intermediate objects. With a few simple vectiamas;,
Peggy is able to remove the overhead of these temporarytspjec
thus performing a kind of deforestation optimization. Tiriakes
the application 7% faster, and reduces the number of aédaalb-
jects by 40%. Soot is not able to recover any of the overheamh e
with interprocedural optimizations turned on. This is astémce of
a more general technique where user-defined axioms allogyPeg
to remove temporary objects (optimization 23 in Figure 8).

Our second example targets a common programming idiom in-
volving Lists, which consists of checking thatlast contains
an elementk, and if it does, fetching and using the index of the
element. If written cleanly, this pattern would be implertgehwith
a branch whose guardisntains(e) and a call taindex0f£ (¢) on
the true side of the branch. Unfortunatedgntains andindex0f
would perform the same linear search, which makes this clean
way of writing the code inefficient. Using the equality axiom
l.contains(e) = (l.index0f(e) # —1), Peggy can convert the
clean code into the hand-optimized code that programmeis ty
cally write, which storesindex0£(e) into a temporary, and then
branches if the temporary is netl. An extensible rewrite system
would not be able to provide the same easy solution: alth@ugh

rewrite ofl.contains(e) to (I.index0f (e) # —1) would remove
the redundancy mentioned above, it could also degrade rperfo
mance in the case where the listimplements an efficient baskd
contains. In our approach, the equality simply adds information
to the E-PEG, and the profitability heuristic can deciderafatura-
tion which option is best, taking the entire context into@aat. In
this way our approach transformsntains to index0f, but only

if index0f would have been called anyway.

These two examples illustrate the benefits of user-defined ax
ioms. In particular, the clean, readable, and maintainalalg of
writing code can sometimes incur performance overheadsr-Us
defined axioms allow the programmer to reduce these oveshead
while keeping the code base clean of performance-relatekisha
Our approach makes domain-specific axioms easier to adtidor t
end-user programmer, because the programmer does notaeed t
worry about what order the user-defined axioms should berrun i
or how they will interact with the compiler’s internal optimations.

7.3 Translation Validation

We used Peggy to perform translation validation for the St
mizer [36]. In particular, we used Soot to optimize a set ofdbe
marks with all of its intraprocedural optimizations turnea. The
benchmarks included SpecJVM, along with other programs-co
prising a total of 3,416 methods. After Soot finished compilifor
each method we asked Peggy’s saturation engine to showhthat t
original method was equivalent to the corresponding methad
Soot produced. The engine was able to show that 98% of methods
were compiled correctly.

Among the cases that Peggy was unable to validate, we found
three methods that Soot optimizedorrectly. In particular, Soot

incorrectly pulled statements outside of an intricate |omans-

forming a terminating loop into an infinite loop. It is a tasnt to

the power of our approach that it is able not only to perforri-op

mizations, but also to validate a large fraction of Soot ramsl that

in doing so it exposed a bug in Soot. Furthermore, becausé mos

false positives are a consequence of our coarse heap madel (s

gle o node), a finer-grained model can increase the effectiveafess

translation validation, and it would also enable more ojgétions.
Our equality saturation engine can easily be extended €p tha

after each translation validation, it generates a mactivezkable

proof of equivalence. With this in place, the trusted cormgubase

for our translation validator would only be: (1) the proofcker,

(2) the built-in axioms used in translation validation, mafswvhich

we have proved by hand, and (3) the conversion from Javadygec

to PEG.

8. Related Work

Superoptimizers. Our approach of computing a set of programs
and then choosing from this set is related to the approaamtak
by super-optimizers [24, 18, 4, 16]. Superoptimizers sttw pro-
duce optimal code, rather than simply improve programsidlgh
super-optimizers can generate (near) optimal code, they$mfar
scaled only to small code sizes, mostly straight line code. &p-
proach, on the other hand, is meant as a general purposegrarad
that can optimize branches and loops, as shown by the mgr-I
optimization from Section 3.

Our approach was inspired by Denali [21], a super-optimizer
for finding near-optimal ways of computing a given basic kloc
Denali represents the computations performed in the bémik las
an expression graph, and applies axioms to create an E-gedph
structure representing the various ways of computing tteega
in the basic block. It then uses repeated calls to a SAT sabver
find the best way of computing the basic block given the etjaali
stored in the E-graph. The biggest difference between ouk wo
and Denali is that our approach can perform intricate opétinns
involving branches and loops. On the other hand, the Denali ¢
model is more precise than ours because it assigns costsit® en
sequences of operations, and so it can take into accounfftiutse
of scheduling and register allocation.

Rewrite-based optimizersAxioms or rewrite-rules have been
used in many compilation systems, for example TAMPR [6],
ASF+SDF [37], the ML compilation system of Visset al. [38],
and Stratego [7]. These systems, however, perform tramsfions
in sequence, with each axiom or rewrite rule destructivglgiai-
ing the IR. Typically, such compilers also provide a mechani
for controlling the application of rewrites through buiitt-or user-
definedstrategiesOur approach, in contrast, does not use strategies
— we instead simultaneously explore all possible optinnabor-
derings, while avoiding redundant work. Furthermore, ewetn
no strategies, we can perform a variety of intricate optatians.

Optimization Ordering. Many research projects have been
aimed at mitigating the phase ordering problem, includiotpa
mated assistance for exploring enabling and disablinggtigs of
optimizations [40, 41], automated techniques for genegagjood
sequences [10, 1, 22], manual techniques for combiningyanal
ses and optimizations [8], and automated techniques fosdhee
purpose [23]. However, we tackle the problem from a differen
perspective than previous approaches, in particular, bl&h-
neously exploring all possible sequences of optimizatiapsto
some bound. Aside from the theoretical guarantees froniddett
our approach can do well even if every part of the input pnogra
requires a different ordering.

Translation Validation. Although previous approaches to
translation validation have been explored [31, 30, 25, d3i,ap-

proach has the advantage that it can perform translatiotaain
by using the same technique as for program optimization.

Intermediate RepresentationsOur main contribution is an
approach for structuring optimizers based on equalityratian.
However, to make our approach effective, we have also dedign
the E-PEG representation. There has been a long line of work
on developing IRs that make analysis and optimizationseeasi
perform [11, 2, 35, 19, 15, 39, 9, 33, 29]. The key distingungh
feature of E-PEGs is that a single E-PEG can represent many
optimized versions of the input program, which allows us s$e u
global profitability heuristics and to perform translatialidation.

We now compare the PEG component of our IR with previous
IRs. PEGs are related to SSA [11], gated SSA [35] and thinned-
gated SSA [19]. The: function from gated SSA is similar to our
0 function, and then function is similar to oureval/pass pair.
However, unlike PEGs, all these variants of SSA are triedno a
underlying CFG representation.

Program Dependence Graphs [15] and the Program Dependence
Web [28] represent control information by grouping togetbger-
ations that execute in the same control region. Howevesgtlies
are still statement based, and maintain explicit contrgesd

Like PEGs, the Value Dependence Graph [39] (VDG) is a com-
plete functional representation. VDGs u&enodes (i.e. regular
function abstraction) to represent loops, whereas we useiap
ized 0, eval and pass nodes. These specialized nodes, combined
with simple axioms about them, allow us to perform intricapsi-
mizations across loops, such as the optimization from Se&i

Dependence Flow Graphs [29] (DFGs) are a complete and ex-
ecutable representation of programs based on dependeroies
ever, DFGs employ a side-effecting storage model with areimp
ative store operation, whereas our representation is entirely func-
tional, making equational reasoning more natural.

Dataflow Languages.Our PEG intermediate representation is
related to the broad area of dataflow languages [20]. The most
closely related is the Lucid programming language [3], inclh
variables are maps from iteration counts to possibly unddfiral-
ues, as in our PEGs. Lucidfsst/next operators are similar to our
nodes, and Lucid’as soon a®perator is similar to ou¢val/pass
pair. However, Lucid and PEGs differ in their intended use ap-
plication. Lucid is a programming language designed to niake
mal proofs of correctness easier to do, whereas Peggy usieseq
lences of PEG nodes to optimize code expressed in existipgrim
ative languages. Furthermore, we incorporaieaotonize func-
tion into our semantics and axioms, which guarantees theasr
ness of our conversion to and from CFGs with loops.

Theorem Proving. Because most of our reasoning is performed
using simple axioms, our work is related to the broad areaitaf-a
mated theorem proving. The theorem prover that most indjoioe
work is Simplify [13], with its E-graph data structure fopresent-
ing equalities [27]. Our E-PEGs are in essence specializghfhs
for reasoning about PEGs. Furthermore, the way our anatyses
municate through equality is conceptually similar to theay
propagation approach used in Nelson-Oppen theorem pr[2&irs

Execution Indices. Execution indices identify the state of
progress of an execution [14, 42]. The call stack typicaliysa
as the interprocedural portion, and the loop iteration t®imour
semantics can act as the intraprocedural portion. As atreme
of the benefits of PEGs is that they make intraproceduralugiaet
indices explicit.

9. Conclusion and future work

We have presented a new approach to structuring optimizatsst
based on equality saturation. Our approach has a varietgraflis
over previous compilation models: it addresses the phateriag

problem, it enables global profitability heuristics, anghérforms
translation validation.

There are a variety of directions for future work. One dii@tt
is to extend Peggy so that it generates a proof of correcfoetise
optimizations it performs. Each step in this proof would be &p-
plication of an equality analysis. Since the majority of analyses
are axiom applications, these proofs would be similar tadzied
mathematical proofs. We would then like to use these prosfa a
way of automatically generating optimizations. In paréecuby de-
termining which nodes of the original PEG the proof depemns o
and what properties of these nodes are important, we wilbegp
how one can generalize not only the proof but also the tramsfo
tion. Using such an approach, we hope to develop a compiér th
can learn optimizations as it compiles.

References

[1] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Res,
D. Subramanian, L. Torczon, and T. Waterman. Finding effect
compilation sequences. LCTES 2004.

[2] B. Alpern, M. Wegman, and F. Zadeck. Detecting equalftyasiables
in programs. IrPOPL, January 1988.

[3] E. A. Ashcroft and W. W. Wadge. Lucid, a nonproceduralgiaage
with iteration. Communications of the ACN0(7):519-526, 1977.

[4] S. Bansal and A. Aiken. Automatic generation of peephole
superoptimizers. IMSPLOS$2006.

[5] R. Bird and P. Wadler.Introduction to Functional Programming
Prentice Hall, 1988.

[6] James M. Boyle, Terence J. Harmer, and Victor L. WintetheT
TAMPR program transformation system: simplifying the depe
ment of numerical softwareModern software tools for scientific
computing pages 353-372, 1997.

[7] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser
Stratego/XT 0.17. A language and toolset for program tamsétion.

Science of Computer Programmirig2(1-2):52—70, 2008.

K. D. Cooper C. Click. Combining analyses, combining iopt
mizations. Transactions on Programming Languages and Systems
17(2):181-196, 1995.

[9] C. Click. Global code motion/global value numbering.AhDI, June
1995.

[10] K. D. Cooper, P. J. Schielke, and Subramanian D. Optirgifor
reduced code space using genetic algorithmd.dmES 1999.

[11] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadémn
efficient method for computing static single assignmentforin
POPL, January 1989.

[12] Jeffrey Dean and Craig Chambers. Towards better mgimiecisions
using inlining trials. InConference on LISP and Functional
Programming 1994.

[13] D. Detlefs, G. Nelson, and J. Saxe. Simplify: A theorerover
for program checking.Journal of the Association for Computing
Machinery 52(3):365-473, May 2005.

[14] E. Dijkstra. Go to statement considered harmful. p&ges33, 1979.
[15] J. Ferrante, K. Ottenstein, and J. Warren. The progrepeddence

graph and its use in optimizationTransactions on Programming
Languages and Systen®3):319-349, July 1987.

[16] Christopher W. Fraser, Robert R. Henry, and Todd A. Bstiag.
BURG - fast optimal instruction selection and tree parsBIGPLAN
Notices 27(4):68-76, April 1992.

[17] J. Giarratano and G. Riley.Expert Systems — Principles and
Programming PWS Publishing Company, 1993.

—

8

—_

[18] Torbjorn Granlund and Richard Kenner. Eliminatingrirhes using
a superoptimizer and the GNU C compiler.RaDI, 1992.

[19] P. Havlak. Construction of thinned gated single-assignt form.

In Workshop on Languages and Compilers for Parallel Computing
1993.

[20] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advancetaflow
programming languageACM Computing Survey86(1):1-34, 2004.

[21] R. Joshi, G. Nelson, and K. Randall.
superoptimizer. [iPLDI, June 2002.

Denali: a goalatezd

[22] L. Torczon K. D. Cooper, D. Subramanian. Adaptive ofiting
compilers for the 21st centurfhe Journal of Supercomputingages
7-22, 2002.

[23] S. Lerner, D. Grove, and C. Chambers. Composing dataflmlyses
and transformations. IROPL, January 2002.

[24] Henry Massalin. Superoptimizer: a look at the smalfgsgram. In
ASPLOS$1987.

[25] G. Necula. Translation validation for an optimizingnapiler. In
PLDI, June 2000.

[26] G. Nelson and D. Oppen. Simplification by cooperatingisien
proceduresTransactions on Programming Languages and Systems
1(2):245-257, October 1979.

[27] G. Nelson and D. Oppen. Fast decision procedures based o
congruence closure.Journal of the Association for Computing
Machinery 27(2):356-364, April 1980.

[28] K. Ottenstein, R. Ballance, and A. MacCabe. The program
dependence web: a representation supporting control;,datd
demand-driven interpretation of imperative languageUBI, June
1990.

[29] K. Pengali, M. Beck, and R. Johson. Dependence flow graph
algebraic approach to program dependenciesP@PL, January
1991.

[30] A. Pnueli, M. Siegel, and E. Singerman. Translatioridatlon. In
TACAS 1998.

[31] H. Samet. Proving the correctness of heuristicallyimjzied code.
Communications of the ACN1(7):570-582, July 1978.

[32] H. Sheini and K. Sakallah. Pueblo: A hybrid pseudo-kaal SAT
solver.Journal on Satisfiability, Boolean Modeling and Computatio
2:61-96, 2006.

[33] B. Steffen, J. Knoop, and O. Ruthing. The value flow grafah
program representation for optimal program transfornmatio In
European Symposium on Programmiti§90.

[34] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorimé&e
Translating between PEGs and CFGs. Technical Report C$2008
0931, University of California, San Diego, November 2008.

[35] P. Tuand D. Padua. Efficient building and placing of gafiunctions.
In PLDI, June 1995.

[36] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, Egriea, and
P. Co. Soot - a Java optimization framework. JASCON 1999.

[37] M. G. J. van den Brand, J. Heering, P. Klint, and P. A. @livCom-
piling language definitions: the ASF+SDF compil@ransactions on
Programming Languages and Syste2#(4), 2002.

[38] E. Visser, Z. Benaissa, and A Tolmach. Building progrgptimizers
with rewriting strategies. IhCFP, 1998.

[39] D. Weise, R. Crew, M. Ernst, and B. Steensgaard. Valypedéence
graphs: Representation without taxation.P@PL, 1994.

[40] Debbie Whitfield and Mary Lou Soffa. An approach to ordgr
optimizing transformations. IRPOPR 1990.

[41] Deborah L. Whitfield and Mary Lou Soffa. An approach fapkring
code improving transformationsTransactions on Programming
Languages and Systeni®9(6):1053—1084, November 1997.

[42] B. Xin, W. N. Sumner, and X. Zhang. Efficient program exton
indexing. InPLDI, June 2008.

[43] Lenore Zuck, Amir Pnueli, Yi Fang, and Benjamin GoldipeNOC:
A methodology for the translation validation of optimizingmpilers.
Journal of Universal Computer Scienc®3):223-247, March 2003.

