
Equality Saturation: a New Approach to Optimization ∗

Ross Tate Michael Stepp Zachary Tatlock Sorin Lerner
Department of Computer Science and Engineering

University of California, San Diego
{rtate, mstepp, ztatlock, lerner} @cs.ucsd.edu

Abstract
Optimizations in a traditional compiler are applied sequentially,
with each optimization destructively modifying the program to pro-
duce a transformed program that is then passed to the next op-
timization. We present a new approach for structuring the opti-
mization phase of a compiler. In our approach, optimizations take
the form of equality analyses that add equality informationto a
common intermediate representation. The optimizer works by re-
peatedly applying these analyses to infer equivalences between
program fragments, thus saturating the intermediate representation
with equalities. Once saturated, the intermediate representation en-
codes multiple optimized versions of the input program. At this
point, a profitability heuristic picks the final optimized program
from the various programs represented in the saturated represen-
tation. Our proposed way of structuring optimizers has a variety of
benefits over previous approaches: our approach obviates the need
to worry about optimization ordering, enables the use of a global
optimization heuristic that selects among fully optimizedprograms,
and can be used to perform translation validation, even on compil-
ers other than our own. We present our approach, formalize it, and
describe our choice of intermediate representation. We also present
experimental results showing that our approach is practical in terms
of time and space overhead, is effective at discovering intricate op-
timization opportunities, and is effective at performing translation
validation for a realistic optimizer.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors – Compilers; Optimization

General Terms Languages, Performance

Keywords Compiler Optimization, Equality Reasoning, Interme-
diate Representation

1. Introduction
In a traditional compilation system, optimizations are applied se-
quentially, with each optimization taking as input the program pro-
duced by the previous one. This traditional approach to compilation
has several well-known drawbacks. One of these drawbacks isthat
the order in which optimizations are run affects the qualityof the
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generated code, a problem commonly known as thephase ordering
problem. Another drawback is that profitability heuristics, which
decide whether or not to apply a given optimization, tend to make
their decisions one optimization at a time, and so it is difficult for
these heuristics to account for the effect of future transformations.

In this paper, we present a new approach for structuring optimiz-
ers that addresses the above limitations of the traditionalapproach,
and also has a variety of other benefits. Our approach consists of
computing a set of optimized versions of the input program and
then selecting the best candidate from this set. The set of candidate
optimized programs is computed by repeatedly inferring equiva-
lences between program fragments, thus allowing us to represent
the effect of many possible optimizations at once. This, in turn,
enables the compiler to delay the decision of whether or not an op-
timization is profitable until it observes the full ramifications of that
decision. Although related ideas have been explored in the context
of super-optimizers, as Section 8 on related work will pointout,
super-optimizers typically operate on straight-line code, whereas
our approach is meant as a general-purpose compilation paradigm
that can optimize complicated control flow structures.

At its core, our approach is based on a simple change to the tra-
ditional compilation model: whereas traditional optimizations op-
erate by destructively performing transformations, in ourapproach
optimizations take the form ofequality analysesthat simply add
equality information to a common intermediate representation (IR),
without losing the original program. Thus, after each equality anal-
ysis runs, both the old program and the new program are repre-
sented.

The simplest form of equality analysis looks for ways to instan-
tiate equality axioms likea ∗ 0 = 0, or a ∗ 4 = a << 2. How-
ever, our approach also supports arbitrarily complicated forms of
equality analyses, such as inlining, tail recursion elimination, and
various forms of user defined axioms. The flexibility with which
equality analyses are defined makes it easy for compiler writers to
port their traditional optimizations to our equality-based model: op-
timizations can work as before, except that when the optimization
would have performed a transformation, it now simply records the
transformation as an equality.

The main technical challenge that we face in our approach
is that the compiler’s IR must now use equality information to
represent not just one optimized version of the input program,
but multiple versions at once. We address this challenge through
a new IR that compactly represents equality information, and as
a result can simultaneously store multiple optimized versions of
the input program. After a program is converted into our IR, we
repeatedly apply equality analyses to infer new equalitiesuntil no
more equalities can be inferred, a process known as saturation.
Once saturated with equalities, our IR compactly represents the
various possible ways of computing the values from the original
program modulo the given set of equality analyses (and modulo



some bound in the case where applying equality analyses leads to
unbounded expansion).

Our approach of having optimizations add equality information
to a common IR until it is saturated with equalities has a variety of
benefits over previous optimization models.

Optimization order does not matter.The first benefit of our ap-
proach is that it removes the need to think about optimization order-
ing. When applying optimizations sequentially, ordering is a prob-
lem because one optimization, sayA, may perform some transfor-
mation that will irrevocably prevent another optimization, sayB,
from triggering, when in fact runningB first would have produced
the better outcome. This so-calledphase ordering problemis ubiq-
uitous in compiler design. In our approach, however, the compiler
writer does not need to worry about ordering, because optimiza-
tions do not destructively update the program – they simply add
equality information. Therefore, after an optimizationA is applied,
the original program is still represented (along with the transformed
program), and so any optimizationB that could have been applied
beforeA is still applicable afterA. Thus, there is no way that apply-
ing an optimizationA can irrevocably prevent another optimization
B from applying, and so there is no way that applying optimiza-
tions will lead the search astray. As a result, compiler writers who
use our approach do not need to worry about the order in which
optimizations run. Better yet, because optimizations are allowed to
freely interact during equality saturation, without any considera-
tion for ordering, our approach can discover intricate optimization
opportunities that compiler writers may not have anticipated, and
hence would not have implemented in a general purpose compiler.

Global profitability heuristics. The second benefit of our ap-
proach is that it enablesglobal profitability heuristics. Even if there
existed a perfect order to run optimizations in, compiler writers
would still have to design profitability heuristics for determining
whether or not to perform certain optimizations such as inlining.
Unfortunately, in a traditional compilation system where optimiza-
tions are applied sequentially, each heuristic decides in isolation
whether or not to apply an optimization at a particular pointin the
compilation process. The local nature of these heuristics makes it
difficult to take into account the effect of future optimizations.

Our approach, on the other hand, allows the compiler writer to
design profitability heuristics that are global in nature. In particu-
lar, rather than choosing whether or not to apply an optimization
locally, these heuristics choose between fully optimized versions
of the input program. Our approach makes this possible by sepa-
rating the decision of whether or not a transformation isapplicable
from the decision of whether or not it isprofitable. Indeed, using
an optimization to add an equality in our approach does not indi-
cate a decision to perform the transformation – the added equality
just represents theoptionof picking that transformation later. The
actual decision of which transformations to apply is performed by
a global heuristicafter our IR has been saturated with equalities.
This global heuristic simply chooses among the various optimized
versions of the input program that are represented in the saturated
IR, and so it has a global view of all the transformations thatwere
tried and what programs they generated.

There are many ways to implement this global profitability
heuristic, and in our prototype compiler we have chosen to imple-
ment it using a Pseudo-Boolean solver (a form of Integer Linear
Programming solver). In particular, after our IR has been saturated
with equalities, we use a Pseudo-Boolean solver and a staticcost
model for every node to pick the lowest-cost program that com-
putes the same result as the original program.

Translation validation. The third benefit of our approach is that
it can be used not only to optimize programs, but also to prove
programs equivalent: intuitively, if two programs are found equal

after equality saturation, then they are equivalent. Our approach
can therefore be used to performtranslation validation, a tech-
nique that consists of automatically checking whether or not the
optimized version of an input program is semantically equivalent
to the original program. For example, we can prove the correctness
of optimizations performed by existing compilers, even if our prof-
itability heuristic would not have selected those optimizations.

Contributions. The contributions of this paper can therefore be
summarized as follows:

• We present a new approach for structuring optimizers. In our
approach optimizations add equality information to a common
IR that simultaneously represents multiple optimized versions
of the input program. Our approach obviates the need to worry
about optimization ordering, it enables the use of a global op-
timization heuristic (such as a Pseudo-Boolean solver), and it
can be used to perform translation validation for any compiler.
Sections 2 and 3 present an overview of our approach and its ca-
pabilities, Section 4 makes our approach formal, and Section 5
describes the new IR that allows our approach to be effective.

• We have instantiated our approach in a new Java bytecode opti-
mizer called Peggy (Section 6). Peggy uses our approach not
only to optimize Java methods, but also to perform transla-
tion validation for existing compilers. Our experimental results
(Section 7) show that our approach (1) is practical both in terms
of time and space overhead, (2) is effective at discovering both
simple and intricate optimization opportunities and (3) iseffec-
tive at performing translation validation for a realistic optimizer
– Peggy is able to validate 98% of the runs of the Soot opti-
mizer [36], and within the remaining 2% it uncovered a bug in
Soot.

2. Overview
Our approach for structuring optimizers is based on the ideaof
having optimizations propagate equality information to a common
IR that simultaneously represents multiple optimized versions of
the input program. The main challenge in designing this IR isthat
it must make equality reasoningeffectiveandefficient.

To make equality reasoningeffective, our IR needs to support
the same kind of basic reasoning that one would expect from sim-
ple equality axioms likea ∗ (b+ c) = a ∗ b+ a ∗ c, but with more
complicated computations such as branches and loops. We have
designed a representation for computations called ProgramExpres-
sion Graphs (PEGs) that meets these requirements. Similar to the
gated SSArepresentation [35, 19], PEGs arereferentially transpar-
ent, which intuitively means that the value of an expression de-
pends only on the value of its constituent expressions, without any
side-effects. As has been observed previously in many contexts,
referential transparency makes equality reasoning simpleand effec-
tive. However, unlike previous SSA-based representations, PEGs
are alsocomplete, which means that there is no need to maintain
any additional representation such as a control flow graph (CFG).
Completeness makes it easy to use equality for performing trans-
formations: if two PEG nodes are equal, then we can pick either
one to create a well-formed program, without worrying aboutthe
implications on any underlying representation.

In addition to being effective, equality reasoning in our IRmust
be efficient. The main challenge is that each added equality can
potentially double the number of represented programs, thus mak-
ing the number of represented programs exponential in the worst
case. To address this challenge, we record equality information of
PEG nodes by simply merging PEG nodes into equivalence classes.
We call the resulting equivalence graph an E-PEG, and it is this E-
PEG representation that we use in our approach. Using equivalence



i := 0;
while (...) {

use(i * 5);
i := i + 1;
if (...) {

i := i + 3;
}

}

i := 0;
while (...) {

use(i);
i := i + 5;
if (...) {

i := i + 15;
}

}
(a) (b)

Figure 1. Loop-induction-variable strength reduction: (a) shows
the original code, and (b) shows the optimized code.

classes allows E-PEGs to efficiently represent exponentially many
ways of expressing the input program, and it also allows the equal-
ity saturation engine to efficiently take into account previously dis-
covered equalities. Among existing IRs, E-PEGs are unique in their
ability to represent multiple optimized versions of the input pro-
gram. A more detailed discussion of how PEGs and E-PEGs relate
to previous IRs can be found in Section 8.

We illustrate the main features of our approach by showing how
it can be used to implement loop-induction-variable strength reduc-
tion. The idea behind this optimization is that if all assignments to a
variablei in a loop are increments, then an expressioni * c in the
loop (withc being loop invariant) can be replaced withi, provided
all the increments ofi in the loop are appropriately scaled byc.

As an example, consider the code snippet from Figure 1(a). The
use ofi*5 inside the loop can be replaced withi as long as the two
increments in the loop are scaled by5. The resulting code is shown
in Figure 1(b).

2.1 Program Expression Graphs

A Program Expression Graph (PEG) is a graph containing: (1)
operator nodes, for example “plus”, “minus”, or any of our built-in
nodes for representing conditionals and loops (2) “dataflow” edges
that specify where operator nodes get their arguments from.As an
example, the PEG for the use ofi*5 in Figure 1(a) is shown in
Figure 2(a). At the very top of the PEG we see node 1, which
represents thei*5 multiply operation from inside the loop. Each
PEG node represents an operation, with the children nodes being
the arguments to the operation. The links from parents to children
are shown using solid (non-dashed) lines. For example, node1
represents the multiplication of node 2 by the constant 5. PEGs
follow the notational convention used in E-graphs [26, 27, 13] and
Abstract Syntax Trees (ASTs) of displaying operators abovethe
arguments that flow into them, which is the opposite convention
typically used in Dataflow Graphs [11, 2]. We use the E-graph/AST
orientation because we think of PEGs as recursive expressions.

Node 2 in our PEG represents the value of variablei inside
the loop, right before the first instruction in the loop is executed.
We useθ nodes to represent values that vary inside of a loop.
Intuitively, the left child of aθ node computes the initial value,
whereas the right child computes the value at the current iteration in
terms of the value at the previous iteration. In our example,the left
child of theθ node is the constant 0, representing the initial value
of i. The right child of theθ node uses nodes 3, 4, and 5 to compute
the value ofi at the current iteration in terms of the value ofi from
the previous iteration. The two plus nodes (nodes 4 and 5) represent
the two increments ofi in the loop, whereas theφ node (node 3)
represents the merging of the two values ofi produced by the two
plus nodes. As in gated SSA [35, 19], ourφ nodes are executable:
the first (left-most) argument toφ is a selector that is used to select
between the second and the third argument. Our example doesn’t
use the branch condition in an interesting way, and so we justlet δ
represent the PEG sub-graph that computes the branch condition.

From a more formal point of view, eachθ node produces a
sequenceof values, one value for each iteration of the loop. The
first argument of aθ node is the value for the first iteration, whereas
the second argument is a sequence that represents the valuesfor the
remaining iterations. For example, in Figure 2, the nodes labeled 3
through 5 compute this sequence of remaining values in termsof
the sequence produced by theθ node. In particular, nodes 3, 4 and
5 have been implicitly lifted to operate on this sequence.

PEGs are well-suited for equality reasoning because all PEG
operators, even those for branches and loops, are mathematical
functions with no side effects. As a result, PEGs arereferentially
transparent, which allows us to perform the same kind of equality
reasoning that one is familiar with from mathematics. Even though
all PEG operators are pure, PEGs can still represent programs with
state by using heap summary nodes. Section 6 explains how our
Peggy compiler uses such heap summary nodes to represent the
state of Java objects.

2.2 Encoding equalities using E-PEGs

A PEG by itself can only represent a single way of expressing the
input program. To representmultipleoptimized versions of the in-
put program, we need to encode equalities in our representation.
To this end, an E-PEG is a graph that groups together PEG nodes
that are equal into equivalence classes. As an example, Figure 2(b)
shows the E-PEG that our engine produces from the PEG of Fig-
ure 2(a). We display equalities graphically by adding a dashed edge
between two nodes that have become equal. These dashed edges
are only a visualization mechanism. In reality, PEG nodes that are
equal are grouped together into an equivalence class.

Reasoning in an E-PEG is done through the application of opti-
mizations, which in our approach take the form of equality analy-
ses that add equality information to the E-PEG. An equality anal-
ysis consists of two components: a trigger, which is an expression
pattern stating the kinds of expressions that the analysis is inter-
ested in, and a callback function, which should be invoked when
the trigger pattern is found in the E-PEG. The saturation engine
continuously monitors all the triggers simultaneously, and invokes
the necessary callbacks when triggers match. When invoked,a call-
back function adds the appropriate equalities to the E-PEG.

The simplest form of equality analysis consists of instantiating
axioms such asa∗0 = 0. In this case, the trigger would bea∗0, and
the callback function would add the equalitya∗0 = 0. Even though
the vast majority of our reasoning is done through such declarative
axiom application, our trigger and callback mechanism is much
more general, and has allowed us to implement equality analyses
such as inlining, tail-recursion elimination, and constant folding.

The following three axioms are the equality analyses required to
perform loop-induction-variable strength reduction. They state that
multiplication distributes over addition,θ, andφ:

(a+ b) ∗m = a ∗m+ b ∗m (1)

θ(a, b) ∗m = θ(a ∗m, b ∗m) (2)

φ(a, b, c) ∗m = φ(a, b ∗m, c ∗m) (3)

After a program is converted to a PEG, a saturation engine
repeatedly applies equality analyses until either no more equalities
can be added, or a bound is reached on the number of expressions
that have been processed by the engine. As Section 7 will describe
in more details, our experiments show that 84% of methods canbe
completely saturated, without any bounds being imposed.

Figure 2(b) shows the saturated E-PEG that results from apply-
ing the above distributivity axioms, along with a simple constant
folding equality analysis. In particular, distributivityis applied four
times: axiom (2) adds equality edge A, axiom (3) edge B, axiom(1)
edge C, and axiom (1) edge D. Our engine also applies the constant
folding equality analysis to show that0 ∗ 5 = 0, 3 ∗ 5 = 15 and
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Figure 2. Loop-induction-variable Strength Reduction using PEGs: (a) shows the original PEG, (b) shows the E-PEG that our engine
produces from the original PEG and (c) shows the optimized PEG, which results by choosing nodes 6, 8, 10, and 12 from (b).

1 ∗ 5 = 5. Note that when axiom (2) adds edge A, it also adds node
7, which then enables axiom (3). Thus, equality analyses essentially
communicate with each other by propagating equalities through the
E-PEG. Furthermore, note that the instantiation of axiom (1) adds
node 12 to the E-PEG, but it does not add the right child of node12,
namelyθ(. . .) ∗ 5, because it is already represented in the E-PEG.

Once saturated with equalities, an E-PEG compactly represents
multiple optimized versions of the input program – in fact, it com-
pactly represents all the programs that could result from applying
the optimizations in any order to the input program. For example,
the E-PEG in Figure 2(b) encodes 128 ways of expressing the orig-
inal program (because it encodes 7 independent equalities,namely
the 7 dashed edges). In general, a single E-PEG can efficiently rep-
resent exponentially many ways of expressing the input program.

After saturation, a global profitability heuristic can pickwhich
optimized version of the input program is best. Because thisprof-
itability can inspect the entire E-PEG at once, it has a global view
of the programs produced by various optimizations,after all other
optimizations were also run. In our example, starting at node 1, by
choosing nodes 6, 8, 10, and 12, we can construct the graph in Fig-
ure 2(c), which corresponds exactly to performing loop-induction-
variable strength reduction in Figure 1(b).

More generally, when optimizing an entire function, one hasto
pick a node for the equivalence class of the return value and nodes
for all equivalence classes that the return value depends on. There
are many plausible heuristics for choosing nodes in an E-PEG. In
our Peggy implementation, we have chosen to select nodes using
a Pseudo-Boolean solver, which is an Integer Linear Programming
solver where variables are constrained to 0 or 1. In particular, we
use a Pseudo-Boolean solver and a static cost model for everynode
to compute the lowest-cost program that is encoded in the E-PEG.
In the example from Figure 2, the Pseudo-Boolean solver picks
the nodes described above. Section 6.3 describes our technique for
selecting nodes in more detail.

2.3 Benefits of our approach

Optimization order does not matter.To understand how our ap-
proach addresses the phase ordering problem, consider a simple
peephole optimization that transformsi * 5 into i << 2 + i.
On the surface, one may think that this transformation should al-
ways be performed if it is applicable – after all, it replacesa multi-
plication with the much cheaper shift and add. In reality, however,
this peephole optimization may disable other more profitable trans-
formations. The code from Figure 1(a) is such an example: trans-

forming i * 5 to i << 2 + i disables loop-induction-variable
strength reduction, and therefore generates code that is worse than
the one from Figure 1(b).

The above example illustrates the ubiquitousphase ordering
problem. In systems that apply optimizations sequentially, the qual-
ity of the generated code depends on the order in which optimiza-
tions are applied. Whitfield and Soffa [41] have shown experimen-
tally that enabling and disabling interactions between optimizations
occur frequently in practice, and furthermore that the patterns of in-
teraction vary not only from program to program, but also within a
single program. Thus, no one order is best across all compilation.

A common partial solution consists of carefully considering all
the possible interactions between optimizations, possibly with the
help of automated tools, and then coming up with a carefully tuned
sequence for running optimizations that strives to enable most of
the beneficial interactions. This technique, however, putsa heavy
burden on the compiler writer, and it also does not account for the
fact that the best order may vary between programs.

At high levels of optimizations, some compilers may even run
optimizations in a loop until no more changes can be made. Even
so, if the compiler picks the wrong optimization to start with,
then no matter what optimizations are applied later, in any order,
any number of times, the compiler will not be able to reverse the
disabling consequences of the first optimization.

In our approach, the compiler writer does not need to worry
about the order in which optimizations are applied. The pre-
vious peephole optimization would be expressed as the axiom
i * 5 = i << 2 + i. However, unlike in a traditional compi-
lation system, applying this axiom in our approach does not re-
move the original program from the representation — it only adds
information — and so it cannot disable other optimizations.There-
fore, the code from Figure 1(b) would still be discovered, even if
the peephole optimization was run first. In essence, our approach
is able to simultaneously explore all possible sequences ofopti-
mizations, while sharing work that is common across the various
sequences.

In addition to reducing the burden on compiler writers, remov-
ing the need to think about optimization ordering has two additional
benefits. First, because optimizations interact freely with no regard
to order, our approach often ends up combining optimizations in
unanticipated ways, leading to surprisingly complicated optimiza-
tions given how simple our equality analyses are — Section 3 gives
such an example. Second, it makes it easier for end-user program-
mers to add domain-specific axioms to the compiler, because they



for (i := 0; i < 29; i += 2) {
use(i)

}
use(i)

sum := 0;
for (i := 0; i < 10; i++) {

for (j := 0; j < 10; j++) {
use(sum++);

}
}

for (i := 0; i < 10; i++) {
for (j := 0; j < 10; j++) {

use(i*10 + j);
}

}(a) (b) (c)

(d) (e) (f)
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Figure 3. Various loops and their PEG representations.

don’t have to think about where exactly in the compiler the axiom
should be run, and in what order relative to other optimizations.

Global profitability heuristics. Profitability heuristics in tradi-
tional compilers tend to be local in nature, making it difficult to take
into account the effect of future optimizations. For example, con-
sider inlining. Although it is straightforward to estimatethedirect
costof inlining (the code-size increase) and thedirect benefitof in-
lining (the savings from removing the call overhead), it is far more
difficult to estimate the potentially largerindirect benefit, namely
the additional optimization opportunities that inlining exposes.

To see how inlining would affect our running example, con-
sider again the code from Figure 1(a), but assume that instead of
use(i * 5), there was a call to a functionf, and the use ofi*5
occurredinside f. If f is sufficiently large, a traditional inliner
would not inlinef, because the code bloat would outweigh the
call-overhead savings. However, a traditional inliner would miss
the fact that it may still be worth inliningf, despite its size, be-
cause inlining would expose the opportunity for loop-induction-
variable strength reduction. One solution to this problem consists
of performing aninlining trial [12], where the compiler simulates
the inlining transformation, along with the effect of subsequent op-
timizations, in order to decide whether or not to actually inline.
However, in the face of multiple inlining decisions (or moregen-
erally multiple optimization decisions), there can be exponentially
many possible outcomes, each one of which has to be compiled
separately.

In our approach, on the other hand, inlining simply adds an
equality to the E-PEG stating that the call to a given function is
equal to its body instantiated with the actual arguments. The result-
ing E-PEG simultaneously represents the program where inlining is
performed and where it is not. Subsequent optimizations then op-
erate on both of these programs at the same time. More generally,
our approach can simultaneously explore exponentially many pos-
sibilities in parallel, while sharing the work that is redundant across
these various possibilities. In the above example with inlining, once
the E-PEG is saturated, a global profitability heuristic canmake a
more informed decision as to whether or not to pick the inlined ver-
sion, since it will be able to take into account the fact that inlining
enabled loop-induction-variable strength reduction.

Translation Validation. Unlike traditional compilation frame-
works, our approach can be used not only to optimize programs,
but also to establish equivalences between programs. In particular,
if we convert two programs into an E-PEG, and then saturate it
with equalities, then we can conclude that the two programs are
equivalent if they belong to the same equivalence class in the sat-
urated E-PEG. In this way, our approach can be used to perform

translation validation for any compiler (not necessarily our own),
by checking that each function in the input program is equivalent
to the corresponding optimized function in the output program.

For example, our approach would be able to show that the
two program fragments from Figure 1 are equivalent. Further-
more, it would also be able to validate a compilation run in which
i * 5 = i << 2 + iwas applied first to Figure 1(a). This shows
that we are able to perform translation validation regardless of what
optimized program our own profitability heuristic would choose.

Although our translation validation technique is intraprocedu-
ral, we can use interprocedural equality analyses such as inlining to
enable a certain amount of interprocedural reasoning. Thisallows
us to reason about transformations like reordering function calls.

3. Reasoning about loops
This section shows how our approach can be used to reason across
nested loops. The example highlights the fact that a simple axiom
set can produce unanticipated optimizations which traditional com-
pilers would have to explicitly search for.

We start in Sections 3.1 and 3.2 by describing all PEG con-
structs used to represent loops. We then show in Section 3.3 how
our approach can perform an inter-loop strength reduction opti-
mization.

3.1 Single loop

Consider the simple loop from Figure 3(a). This loop iterates 15
times, incrementing the value ofi each time by 2. Assume that the
variablei is used inside the loop, and it is also used after the loop
(as indicated by the twouse annotations). The PEG for this code is
shown in Figure 3(d). The value ofi inside the loop is represented
by aθ node. Intuitively, thisθ node produces the sequence of values
thati takes throughout the loop, in this case[0, 2, 4, . . .]. The value
of i after the loop is represented by theeval node at the top of the
PEG. Given a sequences and an indexn, eval(s, n) produces the
nth element of sequences. To determine which element to select
from a sequence, our PEG representation usespass nodes. Given
a sequences of booleans,pass(s) returns the index of the first
element in the sequence that is true. In our example, the≥ node
uses the result of theθ node to produce the sequence of values
taken on by the boolean expressioni ≥ 29 throughout the loop.
This sequence is then sent topass , which in this case produces the
value15, since the15th value (counting from 0) ofi in the loop
(which is30) is the first one to makei ≥ 29 true. Theeval node
then selects the15th element of the sequence produced by theθ
node, which is30. In our previous example from Section 2, we
omittedeval /pass from the PEG for clarity – because we were not
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on the PEG from Figure 3(f). By picking the nodes that are check-
marked, we get the PEG from Figure 3(e).

interested in any of the values after the loop, theeval /pass nodes
would not have been used in any reasoning.

3.2 Nested loops

We now illustrate, through an example, how nested loops can be
encoded in our PEG representation. Consider the code snippet from
Figure 3(b), which has two nested loops. We are interested inthe
value ofsum inside the loop, as indicated by theuse annotation.
The PEG for this code snippet is shown in Figure 3(e). Eachθ,
eval and pass node is labeled with a subscript indicating what
loop depth it operates on (we previously omitted these subscripts
for clarity). The node labeledsuminner represents the value ofsum
at the beginning of the inner loop body. Similarly,sumouter is the
value of sum at the beginning of the outer loop body. Looking
at suminner , we can see that: (1) on the first iteration (the left
child of suminner ), suminner gets the value ofsum from the outer
loop; (2) on other iterations, it gets one plus the value ofsum
from the previous iteration of the inner loop. Looking atsumouter ,
we can see that: (1) on the first iteration,sumouter gets 0; on
other iterations, it gets the value ofsum right after the inner loop
terminates. The value ofsum after the inner loop terminates is
computed using a similareval /pass pattern as in Figure 3(d).

3.3 Inter-loop strength reduction

Our approach allows an optimizing compiler to perform intricate
optimizations of looping structures. We present such an example
here, with a kind of inter-loop strength reduction. Consider the code
snippet from Figure 3(c), which is equivalent to one we’ve already
seen in Figure 3(b). However, the code in 3(b) is faster because
sum++ is cheaper thani ∗ 10 + j. We show how our approach can
transform the code in Figure 3(c) to the code in Figure 3(b).

Figure 3(f) shows the PEG fori*10 + j, which will be the
focus of our optimization. We omiteval and pass in this PEG
because they are not used in this example, except in one step that
we will make explicit.

Figure 4 shows the saturated E-PEG that results from running
the saturation engine on the PEG from Figure 3(f). The checkmarks
indicate which nodes will eventually be selected – they can be
ignored for now. To make the graph more readable, we sometimes
label nodes, and then connect an edge directly to a label name,
rather than connecting it to the node with that label. For example,
consider nodej in the E-PEG, which reads asθ2(0, 1 + j). Rather
than explicitly drawing an edge from+ to j, we connect+ to a
new copy of labelj.

In drawing Figure 4, we have already performed loop-induction
variable strength reduction on the left child of the topmost+ from

Function Optimize(cfg : CFG) : CFG

1: let ir = ConvertToIR(cfg)
2: let saturated ir = Saturate(ir , A)
3: let best = SelectBest(saturated ir)
4: return ConvertToCFG(best)

Figure 5. Optimization phase in our approach. We assume a global
setA of equality analyses to be run.

Figure 3(f). In particular, this left child has been replaced with a
new nodei, wherei = θ1(0, 10 + i). We skip the steps in doing
this because they are similar to the ones described in Section 2.2.

Figure 4 shows the relevant equalities that our saturation engine
would add. We describe each in turn.

• Edge A is added by distributing+ overθ2:

i+ θ2(0, 1 + j) = θ2(i+ 0, i+ (1 + j))

• Edge B is added because0 is the identity of+, i.e.:i+ 0 = i.

• Edge C is added because addition is associative and commuta-
tive: i+ (1 + j) = 1 + (i+ j)

• Edge D is added because0, incrementedn times, producesn:

eval ℓ(idℓ, passℓ(idℓ ≥ n)) = n whereidℓ = θℓ(0, 1 + idℓ)

This is an example of a loop optimization expressible as a
simple PEG axiom.

• Edge E is added by distributing+ over the first child ofeval2:

eval2(j, k) + i = eval2(j+ i, k)

• Edge F is added because addition is commutative:j+i = i+j

We use checkmarks in Figure 4 to highlight the nodes that Peggy
would select using its Pseudo-Boolean profitability heuristic. These
nodes constitute exactly the PEG from Figure 3(e), meaning that
Peggy optimizes the code in Figure 3(c) to the one in Figure 3(b).

Summary. This example illustrates several points. First, it shows
how a transformation that locally seems undesirable, namely trans-
forming the constant 10 into an expensive loop (edge D), in the
end leads to much better code. Our global profitability heuristic is
perfectly suited for taking advantage of these situations.Second,
it shows an example of anunanticipated optimization, namely an
optimization that we did not realize would fall out from the simple
equality analyses we already had in place. In a traditional compi-
lation system, a specialized analysis would be required to perform
this optimization, whereas in our approach the optimization sim-
ply happens without any special casing. In this way, our approach
essentially allows a few general equality analyses to do thework
of many specialized transformations. Finally, it shows howour ap-
proach is able to reason about complex loop interactions, some-
thing that is beyond the reach of current super-optimizer-based
techniques.

4. Formalization of our Approach
Having given an intuition of how our approach works through

examples, we now move to a formal description. Figure 5 shows
theOptimize function, which embodies our approach.Optimize
takes four steps: first, it converts the input CFG into an internal rep-
resentation of the program; second, it saturates this internal repre-
sentation with equalities; third, it uses a global profitability heuris-
tic to select the best program from the saturated representation; fi-
nally, it converts the selected program back to a CFG.



An instantiation of our approach therefore consists of three
components: (1) an IR where equality reasoning is effective, along
with the translation functionsConvertToIR andConvertToCFG,
(2) a saturation engineSaturate, and (3) a global profitability
heuristicSelectBest. Future sections will show how we instantiate
these three components in our Peggy compiler.

Saturation Engine. The saturation engineSaturate infers equal-
ities by repeatedly running a setA of equality analyses. Given an
equality analysisa ∈ A, we defineir1

a
→ ir2 to mean thatir1 pro-

ducesir2 when the equality analysisa runs and adds some equali-
ties toir1. If a chooses not to add any equalities, thenir2 is simply
the same asir1.

We define a partial order⊑ on IRs, based on the equalities they
encode:ir1 ⊑ ir2 iff the equalities inir1 are a subset of the
equalities inir2. Immediately from this definition, we get:

(ir1
a
→ ir2) ⇒ ir1 ⊑ ir2 (4)

We define an equality analysisa to be monotonic iff:

(ir1 ⊑ ir2) ∧ (ir1
a
→ ir

′

1) ∧ (ir2
a
→ ir

′

2) ⇒ (ir ′1 ⊑ ir
′

2)

Intuitively, our approach addresses the phase ordering problem
because applying an equality analysisa beforeb cannot makeb less
effective, as stated in the following non-interference theorem.

THEOREM 1. If a andb are monotonic then:

(ir1
a
→ ir2) ∧ (ir2

b
→ ir3) ∧ (ir1

b
→ ir4) ⇒ (ir4 ⊑ ir3)

The above follows immediately from monotonicity and Property 4.
We now defineir1 → ir2 as:

ir1 → ir2 ⇐⇒ ∃a ∈ A . (ir1
a
→ ir2 ∧ ir1 6= ir2)

The→ relation formalizes one step taken by the saturation engine.
We also define→∗ to be the reflexive transitive closure of→. The
→∗ relation formalizes an entire run of the saturation engine.

Given a setA of monotonic equality analyses, if the saturation
engine terminates, then it is canonizing, where canonizingmeans
that for anyir1, there is a uniqueir2 with the following properties:
(1) ir1 →∗ ir2 and (2) there is noir3 such thatir2 → ir3. In
this case the saturation engine computes this canonical saturated
IR, which means thatOptimize returns the same result no matter
what order optimizations run in.

Because in general saturation may not terminate, we bound the
number of times that analyses can run. In this case we cannot pro-
vide the same canonizing property, but the non-interference theo-
rem (Theorem 1) still implies that no area of the search spacecan
be made unreachable by applying an equality analysis (a property
that traditional compilation systems lack).

5. PEGs and E-PEGs
The first step in instantiating our approach from the previous sec-
tion is to pick an appropriate IR. To this end, we have designed a
new IR called the E-PEG which can simultaneously represent mul-
tiple optimized versions of the input program. We first give afor-
mal description of our IR (Section 5.1), then we present its benefits
(Section 5.2), and finally we give a high-level description of how to
translate from CFGs to our IR and back (Section 5.3).

5.1 Formalization of PEGs and E-PEGs

A PEG is a triple(N ,L,C ), whereN is a set of nodes,L : N → F
is a labeling that maps each node to a semantic function from aset
of semantic functionsF , andC : N → list [N ] is a function that
maps each node to its children (i.e. arguments).

Types. Before giving the definition of semantic functions, we first
define the types of values that these functions operate over.Values
that flow through a PEG are lifted in two ways. First, they are
⊥-lifted, meaning that we add the special value⊥ to each type
domain. The⊥ value indicates that the computation fails or does
not terminate. Formally, for each typeτ , we definêτ = τ ∪ {⊥}.

Second, values are loop-lifted, which means that instead of
representing the value at a particular iteration, PEG nodesrepresent
values for all iterations at the same time. Formally, we letL be a
set of loop identifiers, with eachℓ ∈ L representing a loop from
the original code (in our previous examples we used integers). We
assume a partial order≤ that represents the loop nesting structure:
ℓ < ℓ′ means thatℓ′ is nested withinℓ. An iteration indexi
captures the iteration state of all loops in the PEG. In particular,
i is a function that maps each loop identifierℓ ∈ L to the iteration
that loop ℓ is currently on. Suppose for example that there are
two nested loops in the program, identified asℓ1 andℓ2. Then the
iteration indexi = [ℓ1 7→ 5, ℓ2 7→ 3] represents the state where
loop ℓ1 is on the5th iteration and loopℓ2 is on the3rd iteration.
We let I = L → N be the set of all loop iteration indices (where
N denotes the set of non-negative integers). Fori ∈ I, we use
the notationi[ℓ 7→ v] to denote a function that returns the same
value asi on all inputs, except that it returnsv on input ℓ. The
output of a PEG node is a map from loop iteration indices inI to
values. In particular, for each typeτ , we define a loop-lifted version
τ̃ = I → τ̂ . PEG nodes operate on these loop-lifted types.

Semantic Functions. The set of semantic functionsF is divided
into two: F = Prims ∪ Domain wherePrims contains the
primitive functionslike φ and θ, which are built into the PEG
representation, whereasDomain contains semantic functions for
particular domains like arithmetic.

Figure 6 gives the definition of the primitive functionsPrims =
{φ, θℓ, eval ℓ, passℓ}. These functions are polymorphic inτ , in that
they can be instantiated for variousτ ’s, ranging from basic types
like integers and strings to complicated types like the heapsum-
mary nodes that Peggy uses to represent Java objects. The defini-
tions of eval ℓ andpass

ℓ
make use of the functionmonotonizeℓ,

whose definition is given in Figure 6. Themonotonizeℓ function
transforms a sequence so that, once an indexed value is undefined,
all following indexed values are undefined. Themonotonizeℓ

function formalizes the fact that once a value is undefined ata
given loop iteration, the value remains undefined at subsequent
iterations.

The domain semantic functions are defined asDomain = {õp |
op ∈ DomainOp}, whereDomainOp is a set of domain operators
(like +, ∗ and− in the case of arithmetic), and̃op is a⊥-lifted, and
then loop-lifted version ofop. Intuitively, the⊥-lifted version of an
operator works like the original operator except that it returns⊥ if
any of its inputs are⊥, and the loop-lifted version of an operator
applies the original operator for each loop index.

As an example, the semantic function of+ in a PEG is+̃, and
the semantic function of1 is 1̃ (since constants like1 are simply
nullary operators). However, to make the notation less crowded,
we omit the tildes on all domain operators.

Node Semantics. For a PEG noden ∈ N , we denote its semantic
value byJnK. We assume thatJ·K is lifted to sequenceslist [N ] in
the standard way. The semantic value ofn is defined as:

JnK = L(n)(JC (n)K) (5)

Equation 5 is essentially the evaluation semantics for expressions.
The only complication here is that our expression graphs arerecur-
sive. In this setting, one can think of Equation 5 as a set of recursive
equations to be solved. To guarantee that a unique solution exists,
we impose some well-formedness constraints on PEGs.



φ : B̃× τ̃ × τ̃ → τ̃ θℓ : τ̃ × τ̃ → τ̃

φ(cond, t, f)(i) =





if cond(i) = ⊥ then ⊥

if cond(i) = true then t(i)

if cond(i) = false then f(i)

θℓ(base , loop)(i) =

{
if i(ℓ) = 0 then base(i)

if i(ℓ) > 0 then loop(i[ℓ 7→ i(ℓ)− 1])

eval ℓ : τ̃ × Ñ → τ̃ pass
ℓ
: B̃ → Ñ

eval ℓ(loop, idx)(i) =

{
if idx(i) = ⊥ then ⊥

elsemonotonizeℓ(loop)(i[ℓ 7→ idx(i)])
pass

ℓ
(cond)(i) =

{
if I = ∅ then ⊥

if I 6= ∅ then minI

whereI = {i ∈ N | monotonizeℓ(cond)(i[ℓ 7→ i]) = true}

wheremonotonizeℓ : τ̃ → τ̃ is defined as:

monotonizeℓ(value)(i) =

{
if ∃ 0 ≤ i < i(ℓ). value(i[ℓ 7→ i]) = ⊥ then ⊥

if ∀ 0 ≤ i < i(ℓ). value(i[ℓ 7→ i]) 6= ⊥ then value(i)

Figure 6. Definition of primitive PEG functions. The important notation:L is the set of loop identifiers,N is the set of non-negative integers,
B is the set of booleans,I = L → N, τ̂ = τ ∪ {⊥}, andτ̃ = I → τ̂ .

DEFINITION 1. A PEG is well-formed iff:

1. All cycles pass through the second child edge of aθ
2. A path from aθℓ, eval ℓ, or pass

ℓ
to a θℓ′ impliesℓ′ ≤ ℓ or the

path passes through the first child edge of aneval ℓ′ or pass
ℓ′

3. All cycles containingeval ℓ or pass
ℓ

contain someθℓ′ with
ℓ′ < ℓ

Condition 1 states that all cyclic paths in the PEG are due to looping
constructs. Condition 2 states that a computation in an outer-loop
cannot reference a value from inside an inner-loop. Condition 3
states that the final value produced by an inner-loop cannot be
expressed in terms of itself, except if it’s referencing thevalue of
the inner-loop from apreviousouter-loop iteration.

THEOREM 2. If a PEG is well-formed, then for each noden in the
PEG there is a unique semantic valueJnK satisfying Equation 5.

The proof is by induction over the strongly-connected-component
DAG of the PEG and the loop nesting structure≤.

Evaluation Semantics. The meaning functionJ·K can be eval-
uated on demand, which provides an executable semantics for
PEGs. For example, suppose we want to know the result of
eval ℓ(x, passℓ(y)) at some iteration statei. To determine which
case ofeval ℓ’s definition we are in, we must evaluatepass

ℓ
(y) on

i. From the definition ofpass
ℓ
, we must compute the minimumi

that makesy true. To do this, we iterate through values ofi until we
find an appropriate one. The value ofi we’ve found is the number
of times the loop iterates, and we can use thisi back in theeval ℓ
function to extract the appropriate value out ofx. This example
shows how an on-demand evaluation of aneval /pass sequence
essentially leads to the traditional operational semantics for loops.

E-PEG Semantics. An E-PEG is a PEG with a set of equalities
E between nodes. An equality betweenn andn′ denotes value
equality: JnK = Jn′K. The setE forms an equivalence relation,
which in turn partitions the PEG nodes into equivalence classes.

Built-in Axioms. We have developed a set of PEG built-in axioms
that state properties of the primitive semantic functions.These
axioms are used in our approach as a set of equality analyses that
enable reasoning about primitive PEG operators. Some important

built-in axioms are given below, where• denotes “don’t care”:

θℓ(A,B) = θℓ(eval ℓ(A, 0), B)
eval ℓ(θℓ(A, •), 0) = eval ℓ(A, 0)

eval ℓ(eval ℓ(A,B), C) = eval ℓ(A, eval ℓ(B,C))
pass

ℓ
(true) = 0

pass
ℓ
(θℓ(true, •)) = 0

pass
ℓ
(θℓ(false, A)) = pass

ℓ
(A) + 1

One of the benefits of having a well-defined semantics for primi-
tive PEG functions is that we can reason formally about thesefunc-
tions. In particular, using our semantics, we have proved all the
axioms presented in this paper.

5.2 How PEGs enable our approach

The key feature of PEGs that makes our equality-saturation ap-
proach effective is that they are referentially transparent, which in-
tuitively means that the value of an expression depends onlyon the
values of its constituent expressions [5]. In our PEG representation,
referential transparency can be formalized as follows:

∀(n,n′) ∈ N 2 .

(
L(n) = L(n′)∧
JC (n)K = JC (n′)K

)
⇒ JnK = Jn′K

This property follows from the definition in Equation (5), and the
fact that for anyn, L(n) is a pure mathematical function.

Referential transparency makes equality reasoning effective be-
cause it allows us to show that two expressions are equal by only
considering their constituent expressions, without having to worry
about side-effects. Furthermore, referential transparency has the
benefit that a single node in the PEG entirely captures the value of
a complex program fragment, enabling us to record equivalences
between program fragments by using equivalence classes of nodes.
Contrast this to CFGs, where to record equality between complex
program fragments, one would have to record subgraph equality.

Finally, PEGs allow us to record equalities at the granularity of
individual values, for example the iteration count in a loop, rather
than at the level of the entire program state. Again, contrast this
to CFGs, where the simplest form of equality between program
fragments would record program-state equality.



5.3 Translating between CFGs and PEGs

To incorporate PEGs and E-PEGs into our approach, we have
developed theConvertToIR andConvertToCFG functions from
Figure 5. We give only a brief overview of these algorithms, with
more details in a technical report [34].

Transforming a CFG into a PEG. The key challenge in con-
structing a PEG from a CFG is determining the branching structure
of the CFG. We perform this task with a function that, given paths
from one CFG basic block to another, produces a PEG expression
with φ, eval , andpass operations, specifying which path is taken
under which conditions. We use this to determine the break condi-
tions of loops and the general branching structure of the CFG. We
also identify nesting depth, entry points, and back-edges of loops
to constructθ nodes. We piece these components together with the
instructions of each basic block to produce the PEG. Lastly,we ap-
ply some basic simplifications to remove conversion artifacts. Our
conversion algorithm from CFG to PEG handles arbitrary control
flow, including irreducible CFGs (by first converting them sothey
become reducible).

Transforming a PEG into a CFG. Intuitively, our algorithm
first groups parts of the PEG into sub-PEGs; then it recursively
converts these sub-PEGs into CFGs; and finally it combines these
sub-CFGs into a CFG for the original PEG. The grouping is doneas
follows: φ nodes are grouped together whose conditions are equal,
thus performing branch fusion;θ nodes are grouped together that
have equalpass conditions, thus performing loop fusion. The pure
mathematical nature of PEGs makes it easy to identify when two
conditions are equal, which makes branch/loop fusion simple to
implement.

PEGs follow the insight from Click of separating code place-
ment issues from the IR [9]. In particular, PEGs do not represent
code placement explicitly. Instead, placement is performed during
the translation back to a CFG. As a result, the translation from a
CFG to a PEG and back (without any saturation) ends up perform-
ing a variety of optimizations: Constant Propagation, CopyProp-
agation, Common Subexpression Elimination, Partial Redundancy
Elimination, Unused Assignment Elimination, UnreachableCode
Elimination, Branch Fusion, Loop Fusion, Loop Invariant Branch
Hoisting/Sinking, Loop Invariant Code Hoisting/Sinking,and Loop
Unswitching.

6. The Peggy Instantiation
We have instantiated our approach in a Java bytecode optimizer
called Peggy. Recall from Figure 5 that an instantiation of our
approach consists of three components: (1) an IR where equal-
ity reasoning is effective, along with the translation functions
ConvertToIR andConvertToCFG, (2) a saturation engineSaturate,
and (3) a global profitability heuristicSelectBest. We now describe
how each of these three components work in Peggy.

6.1 Intermediate Representation

Peggy uses the PEG and E-PEG representations which, as ex-
plained in Section 5, are well suited for our approach. Because
Peggy is a Java bytecode optimizer, an additional challengeis to en-
code Java-specific concepts like the heap and exceptions in PEGs.

Heap. We model the heap using heap summaries which we call
σ nodes. Any operation that can read and/or write some object state
may have to take and/or return additionalσ values. Because Java
stack variables cannot be modified except by direct assignments,
operations on stack variables are precise in our PEGs and do not
involve σ nodes. None of these decisions of how to represent the
heap are built into the PEG representation. As with any heap sum-
marization strategy, one can have different levels of abstraction, and

Function Saturate(peg : PEG, A : set of analyses) : EPEG

1: let epeg = CreateInitialEPEG(peg)
2: while ∃(p, f) ∈ A, subst ∈ S . subst = Match(p, epeg) do
3: epeg := AddEqualities(epeg , f(subst , epeg))
4: return epeg

Figure 7. Peggy’s Saturation Engine. We useS to denote the set
of all substitutions from pattern nodes to E-PEG nodes.

we have simply chosen one where all objects are put into a single
summarization objectσ.

Exceptions. In order to maintain the program state at points
where exceptions are thrown, we bundle the exception state into
our abstraction of the heap, namely theσ summary nodes. As a
result, operations like division which may throw an exception, but
do not otherwise modify the heap, now take and return aσ node (in
addition to their regular parameters and return values). This forces
the observable state at the point where an exception is thrown to
be preserved by our optimization process. Furthermore, to preserve
Java semantics, Peggy does not perform any optimizations across
try/catch boundaries or synchronization boundaries.

6.2 Saturation Engine

The saturation engine’s purpose is to repeatedly dispatch equality
analyses. In our implementation an equality analysis is a pair (p, f)
wherep is a trigger, which is an E-PEG pattern with free variables,
andf is a callback function that should be run when the pattern
p is found in the E-PEG. While running, the engine continuously
monitors the E-PEG for the presence of the patternp, and when it
is discovered, the engine constructs amatching substitution, which
is a map from each node in the pattern to the corresponding E-
PEG node. At this point, the engine invokesf with this matching
substitution as a parameter, andf returns a set of equalities that
the engine adds to the E-PEG. In this way, an equality analysis
will be invoked only when events of interest to it are discovered.
Furthermore, the analysis does not need to search the entireE-PEG
because it is provided with the matching substitution.

Figure 7 shows the pseudo-code for Peggy’s saturation engine.
The call toCreateInitialEPEG on the first line takes the input
PEG and generates an E-PEG that initially contains no equality
information. TheMatch function invoked in the loop condition
performs pattern matching: if an analysis trigger occurs inside
an E-PEG, thenMatch returns the matching substitution. Once a
match occurs, the saturation engine usesAddEqualities to add the
equalities computed by the analysis into the E-PEG.

A remaining concern in Figure 7 is how to efficiently implement
the existential check on line 2. To address this challenge, we adapt
techniques from the AI community. In particular, the task offind-
ing the matches on line 2 is similar to the task of determiningwhen
rules fire in rule-based expert or planning systems. These systems
make use of an efficient pattern matching algorithm called the Rete
algorithm [17]. Intuitively, the Rete algorithm stores thestate of
partially completed matches in a set of FSMs, and when new infor-
mation is added to the system, it transitions the appropriate FSM.
Our saturation engine uses an adaptation of the Rete algorithm for
the E-PEG domain to efficiently implement the check on line 2.

In general, equality saturation may not terminate. Termination
is also a concern in traditional compilers where, for example, inlin-
ing recursive functions can lead to unbounded expansion. Byusing
triggers to control when equality edges are added (a technique also
used in automated theorem provers), we can often avoid infinite ex-
pansion. The trigger for an equality axiom typically looks for the
left-hand-side of the equality, and then makes it equal to the right-



hand-side. On occasion, though, we use more restrictive triggers to
avoid expansions that are likely to be useless. For example,the trig-
ger for the axiom equating a constant with a loop expression used
to add edge D in Figure 4 also checks that there is an appropriate
“pass” expression. In this way, it does not add a loop to the E-PEG
if there wasn’t some kind of loop to begin with. Using our current
axioms and triggers, our engine completely saturates 84% ofthe
methods in our benchmarks.

In the remaining cases, we impose a limit on the number of ex-
pressions that the engine fully processes (where fully processing
an expression includes adding all the equalities that the expression
triggers). To prevent the search from running astray and exploring
a single infinitely deep branch of the search space, we currently use
a breadth-first order for processing new nodes in the E-PEG. This
traversal strategy, however, can be customized in the implementa-
tion of the Rete algorithm to better control the searching strategy in
those cases where an exhaustive search would not terminate.

6.3 Global Profitability Heuristic

Peggy’sSelectBest function uses a Pseudo-Boolean solver called
Pueblo [32] to select which nodes from an E-PEG to include in the
optimized program. A Pseudo-Boolean problem is an integer linear
programming problem where all the variables have been restricted
to 0 or 1. By using these 0-1 variables to represent whether ornot
nodes have been selected, we can encode the constraints thatmust
hold for the selected nodes to be a well-formed computation.In
particular, for each node or equivalence classx, we define a pseudo-
boolean variable that takes on the value 1 (true) if we chooseto
evaluatex, and 0 (false) otherwise. The constraints then state that:
(1) we must select the equivalence class of the return value;(2) if
an equivalence class is selected, we must select one of its nodes;
(3) if a node is selected, we must select its children’s equivalence
classes; (4) the chosen PEG is well-formed.

The cost model that we use assigns a constant costCn to each
node n. In particular,Cn = basic cost(n) · kdepth(n), where
basic cost(n) accounts for how expensiven is by itself, and
kdepth(n) accounts for how oftenn is executed. We usedepth(n)
to denote the loop nesting depth ofn, andk is simply a constant,
which we have chosen as 20. UsingCn, the objective function we
want to minimize is

∑
n∈N

Bn · Cn, whereN is the set of nodes
in the E-PEG, andBn is the pseudo-boolean variable for noden.
Peggy asks Pueblo to minimize this objective function subject to
the well-formedness constraints described above. The nodes as-
signed 1 in the solution that Pueblo returns are selected to form the
PEG thatSelectBest returns. This PEG is the lowest-cost PEG that
is represented in the E-PEG, according to our cost model.

7. Evaluation
In this section we use our Peggy implementation to validate three
hypotheses about our approach for structuring optimizers:our ap-
proach is practical both in terms of space and time (Section 7.1),
it is effective at discovering both simple and intricate optimization
opportunities (Section 7.2), and it is effective at performing trans-
lation validation (Section 7.3).

7.1 Time and space overhead

To evaluate the running time of the various Peggy components, we
compiled SpecJVM, which comprises 2,461 methods. For 1% of
these methods, Pueblo exceeded a one minute timeout we imposed
on it, in which case we just ran the conversion to PEG and back.
We imposed this timeout because in some rare cases, Pueblo runs
too long to be practical.

The following table shows the average time in milliseconds
taken per method for the 4 main Peggy phases (for Pueblo, a
timeout counts as 60 seconds).

CFG to PEG Saturation Pueblo PEG to CFG
Time 13.9 ms 87.4 ms 1,499 ms 52.8 ms

All phases combined take slightly over 1.5 seconds. An end-
to-end run of Peggy is on average 6 times slower than Soot with
all of its intraprocedural optimizations turned on. Nearlyall of our
time is spent in the Pseudo-Boolean solver. We have not focused
our efforts on compile-time, and we conjecture there is significant
room for improvement, such as better pseudo-boolean encodings,
or other kinds of profitability heuristics that run faster.

Since Peggy is implemented in Java, to evaluate memory foot-
print, we limited the JVM to a heap size of 200 MB, and observed
that Peggy was able to compile all the benchmarks without running
out of memory.

In 84% of compiled methods, the engine ran to complete satu-
ration, without imposing bounds. For the remaining cases, the en-
gine limit of 500 was reached, meaning that the engine ran until
fully processing 500 expressions in the E-PEG, along with all the
equalities they triggered. In these cases, we cannot provide a com-
pleteness guarantee, but we can give an estimate of the size of the
explored state space. In particular, using just 200 MB of heap, our
E-PEGs represented more than2103 versions of the input program
(using geometric average).

7.2 Implementing optimizations

The main goal of our evaluation is to demonstrate that common,
as well as unanticipated, optimizations result in a naturalway
from our approach. To achieve this, we implemented a set of basic
equality analyses, listed in Figure 8(a). We then manually browsed
through the code that Peggy generates on a variety of benchmarks
(including SpecJVM) and made a list of the optimizations that we
observed. Figure 8(b) shows the optimizations that we observed
fall out from our approach using equality analyses 1 through6, and
Figure 8(c) shows optimizations that we observed fall out from our
approach using equality analyses 1 through 7.

With effort similar to what would be required for a compiler
writer to implement the optimizations from part (a), our approach
enables the more advanced optimizations from parts (b) and (c).
Peggy performs some optimizations (for example 15 through 19)
that are quite complex given the simplicity of its equality analy-
ses. To implement such optimizations in a traditional compiler, the
compiler writer would have to explicitly design a pattern that is
specific to those optimizations. In contrast, with our approach these
optimizations fall out from the interaction of basic equality analy-
ses without any additional developer effort, and without specifying
an order in which to run them. Essentially, Peggy finds the right
sequence of equality analyses to apply for producing the effect of
these complex optimizations.

In terms of generated-code quality, Peggy generates code whose
performance is comparable to the code generated by Soot’s in-
traprocedural optimizations, which include: common sub-expression
elimination, lazy code motion, copy propagation, constantpropa-
gation, constant folding, conditional branch folding, dead assign-
ment elimination, and unreachable code elimination. However, in-
traprocedural optimizations on Java bytecode generally produce
only small gains (on the order of a few percent). In the rare cases
where significant gains are to be had from intraprocedural opti-
mizations, Peggy excelled. Soot can also perform interprocedural
optimizations, such as class-hierarchy-analysis, pointer-analysis,
and method-specialization. We did not enable these optimizations
when performing our comparison against Soot, because we have
not yet attempted to express any interprocedural optimizations. We



(a) Equality Analyses Description
1. Built-in E-PEG axioms Axioms from Section 5.1 stating properties of primitive PEGnodes (φ, θ, eval , pass)
2. Basic Arithmetic Axioms Axioms stating properties of arithmetic operators like+, −, ∗, /, <<, >>
3. Constant Folding Equates a constant expression with its constant value
4. Java-specific Axioms Axioms stating properties of Java-specific operators like field and array accesses
5. Tail-recursion Elimination Replaces the body of a tail-recursive procedure with a loop
6. Method Inlining Inlining based on intraprocedural class analysis to disambiguate dynamic dispatch
7. Domain-specific Axioms User-provided axioms about certain application domains (optional)

(b) Optimizations Description
8. Constant Propagation and Folding Traditional Constant Propagation and Folding
9. Algebraic Simplification Various forms of traditional algebraic simplifications
10. Peephole Strength Reduction Various forms of traditional peephole optimizations
11. Array Copy Propagation Replace read of an array element by the expression it was previously assigned
12. CSE for Array Elements Remove redundant array accesses
13. Loop Peeling Pulls the first iteration of a loop outside of the loop
14. LIVSR Optimization described in Section 2, namely Loop-induction-variable Strength Reduction
15. Interloop Strength Reduction Optimization described in Section 3
16. Entire-loop Strength Reduction Transforms entire loop into one operation, e.g. loop doingi incrs becomes “plusi”
17. Loop-operation Factoring Factors expensive operations out of a loop, for example multiplication
18. Loop-operation Distributing Distributes an expensive operation into a loop, where it cancels out with another operation
19. Partial Inlining Inlines part of a method in the caller but keeps the call for the rest of the computation
(c) Domain-specific Optimizations Description
20. Domain-specific LIVSR LIVSR, but with domain operations like matrix/vector addition and multiply
21. Domain-specific code hoisting Code hoisting based on domain-specific invariance axioms
22. Domain-specific Redundancy RemovalRemoves redundant computations based on domain axioms
23. Temporary Object Removal Removes temporary objects created by calls to matrix/vector libraries
24. Specialization of Math Libraries Specializes vector/matrix algorithms based on, for example, the size of the vector/matrix
25. Design-pattern Optimizations Removes overhead of certain design patterns, like the indirection or interpreter pattern
26. Method Outlining Replaces code by call to a method performing the same computation, but more efficiently
27. Specialized Redirection Replaces method call with call to a more efficient version based on the calling context

Figure 8. Optimizations performed by Peggy

conjecture that interprocedural optimizations can be expressed as
equality analyses, and leave this exploration to future work.

With the addition of domain-specific axioms, our approach en-
ables even more optimizations, as shown in part (c). To give aflavor
for these domain-specific optimizations, we describe two examples.

The first is a ray tracer application (5 KLOCs) that one of the au-
thors had previously developed. To make the implementationclean
and easy to understand, the author used immutable vector objects
in a functional programming style. This approach however intro-
duces many intermediate objects. With a few simple vector axioms,
Peggy is able to remove the overhead of these temporary objects,
thus performing a kind of deforestation optimization. Thismakes
the application 7% faster, and reduces the number of allocated ob-
jects by 40%. Soot is not able to recover any of the overhead, even
with interprocedural optimizations turned on. This is an instance of
a more general technique where user-defined axioms allow Peggy
to remove temporary objects (optimization 23 in Figure 8).

Our second example targets a common programming idiom in-
volving Lists, which consists of checking that aList contains
an elemente, and if it does, fetching and using the index of the
element. If written cleanly, this pattern would be implemented with
a branch whose guard iscontains(e) and a call toindexOf(e) on
the true side of the branch. Unfortunately,contains andindexOf
would perform the same linear search, which makes this clean
way of writing the code inefficient. Using the equality axiom
l.contains(e) = (l.indexOf(e) 6= −1), Peggy can convert the
clean code into the hand-optimized code that programmers typi-
cally write, which storesindexOf(e) into a temporary, and then
branches if the temporary is not−1. An extensible rewrite system
would not be able to provide the same easy solution: althougha

rewrite of l.contains(e) to (l.indexOf(e) 6= −1) would remove
the redundancy mentioned above, it could also degrade perfor-
mance in the case where the list implements an efficient hash-based
contains. In our approach, the equality simply adds information
to the E-PEG, and the profitability heuristic can decide after satura-
tion which option is best, taking the entire context into account. In
this way our approach transformscontains to indexOf, but only
if indexOf would have been called anyway.

These two examples illustrate the benefits of user-defined ax-
ioms. In particular, the clean, readable, and maintainableway of
writing code can sometimes incur performance overheads. User-
defined axioms allow the programmer to reduce these overheads
while keeping the code base clean of performance-related hacks.
Our approach makes domain-specific axioms easier to add for the
end-user programmer, because the programmer does not need to
worry about what order the user-defined axioms should be run in,
or how they will interact with the compiler’s internal optimizations.

7.3 Translation Validation

We used Peggy to perform translation validation for the Sootopti-
mizer [36]. In particular, we used Soot to optimize a set of bench-
marks with all of its intraprocedural optimizations turnedon. The
benchmarks included SpecJVM, along with other programs, com-
prising a total of 3,416 methods. After Soot finished compiling, for
each method we asked Peggy’s saturation engine to show that the
original method was equivalent to the corresponding methodthat
Soot produced. The engine was able to show that 98% of methods
were compiled correctly.

Among the cases that Peggy was unable to validate, we found
three methods that Soot optimizedincorrectly. In particular, Soot



incorrectly pulled statements outside of an intricate loop, trans-
forming a terminating loop into an infinite loop. It is a testament to
the power of our approach that it is able not only to perform opti-
mizations, but also to validate a large fraction of Soot runs, and that
in doing so it exposed a bug in Soot. Furthermore, because most
false positives are a consequence of our coarse heap model (sin-
gleσ node), a finer-grained model can increase the effectivenessof
translation validation, and it would also enable more optimizations.

Our equality saturation engine can easily be extended so that,
after each translation validation, it generates a machine-checkable
proof of equivalence. With this in place, the trusted computing base
for our translation validator would only be: (1) the proof checker,
(2) the built-in axioms used in translation validation, most of which
we have proved by hand, and (3) the conversion from Java bytecode
to PEG.

8. Related Work
Superoptimizers.Our approach of computing a set of programs
and then choosing from this set is related to the approach taken
by super-optimizers [24, 18, 4, 16]. Superoptimizers strive to pro-
duce optimal code, rather than simply improve programs. Although
super-optimizers can generate (near) optimal code, they have so far
scaled only to small code sizes, mostly straight line code. Our ap-
proach, on the other hand, is meant as a general purpose paradigm
that can optimize branches and loops, as shown by the inter-loop
optimization from Section 3.

Our approach was inspired by Denali [21], a super-optimizer
for finding near-optimal ways of computing a given basic block.
Denali represents the computations performed in the basic block as
an expression graph, and applies axioms to create an E-graphdata
structure representing the various ways of computing the values
in the basic block. It then uses repeated calls to a SAT solverto
find the best way of computing the basic block given the equalities
stored in the E-graph. The biggest difference between our work
and Denali is that our approach can perform intricate optimizations
involving branches and loops. On the other hand, the Denali cost
model is more precise than ours because it assigns costs to entire
sequences of operations, and so it can take into account the effects
of scheduling and register allocation.

Rewrite-based optimizers.Axioms or rewrite-rules have been
used in many compilation systems, for example TAMPR [6],
ASF+SDF [37], the ML compilation system of Visseret al. [38],
and Stratego [7]. These systems, however, perform transformations
in sequence, with each axiom or rewrite rule destructively updat-
ing the IR. Typically, such compilers also provide a mechanism
for controlling the application of rewrites through built-in or user-
definedstrategies. Our approach, in contrast, does not use strategies
– we instead simultaneously explore all possible optimization or-
derings, while avoiding redundant work. Furthermore, evenwith
no strategies, we can perform a variety of intricate optimizations.

Optimization Ordering. Many research projects have been
aimed at mitigating the phase ordering problem, including auto-
mated assistance for exploring enabling and disabling properties of
optimizations [40, 41], automated techniques for generating good
sequences [10, 1, 22], manual techniques for combining analy-
ses and optimizations [8], and automated techniques for thesame
purpose [23]. However, we tackle the problem from a different
perspective than previous approaches, in particular, by simulta-
neously exploring all possible sequences of optimizations, up to
some bound. Aside from the theoretical guarantees from Section 4,
our approach can do well even if every part of the input program
requires a different ordering.

Translation Validation. Although previous approaches to
translation validation have been explored [31, 30, 25, 43],our ap-

proach has the advantage that it can perform translation validation
by using the same technique as for program optimization.

Intermediate Representations.Our main contribution is an
approach for structuring optimizers based on equality saturation.
However, to make our approach effective, we have also designed
the E-PEG representation. There has been a long line of work
on developing IRs that make analysis and optimizations easier to
perform [11, 2, 35, 19, 15, 39, 9, 33, 29]. The key distinguishing
feature of E-PEGs is that a single E-PEG can represent many
optimized versions of the input program, which allows us to use
global profitability heuristics and to perform translationvalidation.

We now compare the PEG component of our IR with previous
IRs. PEGs are related to SSA [11], gated SSA [35] and thinned-
gated SSA [19]. Theµ function from gated SSA is similar to our
θ function, and theη function is similar to oureval /pass pair.
However, unlike PEGs, all these variants of SSA are tried to an
underlying CFG representation.

Program Dependence Graphs [15] and the Program Dependence
Web [28] represent control information by grouping together oper-
ations that execute in the same control region. However, these IRs
are still statement based, and maintain explicit control edges.

Like PEGs, the Value Dependence Graph [39] (VDG) is a com-
plete functional representation. VDGs useλ nodes (i.e. regular
function abstraction) to represent loops, whereas we use special-
ized θ, eval andpass nodes. These specialized nodes, combined
with simple axioms about them, allow us to perform intricateopti-
mizations across loops, such as the optimization from Section 3.

Dependence Flow Graphs [29] (DFGs) are a complete and ex-
ecutable representation of programs based on dependencies. How-
ever, DFGs employ a side-effecting storage model with an imper-
ative storeoperation, whereas our representation is entirely func-
tional, making equational reasoning more natural.

Dataflow Languages.Our PEG intermediate representation is
related to the broad area of dataflow languages [20]. The most
closely related is the Lucid programming language [3], in which
variables are maps from iteration counts to possibly undefined val-
ues, as in our PEGs. Lucid’sfirst /next operators are similar to our
θ nodes, and Lucid’sas soon asoperator is similar to oureval /pass
pair. However, Lucid and PEGs differ in their intended use and ap-
plication. Lucid is a programming language designed to makefor-
mal proofs of correctness easier to do, whereas Peggy uses equiva-
lences of PEG nodes to optimize code expressed in existing imper-
ative languages. Furthermore, we incorporate amonotonize func-
tion into our semantics and axioms, which guarantees the correct-
ness of our conversion to and from CFGs with loops.

Theorem Proving.Because most of our reasoning is performed
using simple axioms, our work is related to the broad area of auto-
mated theorem proving. The theorem prover that most inspired our
work is Simplify [13], with its E-graph data structure for represent-
ing equalities [27]. Our E-PEGs are in essence specialized E-graphs
for reasoning about PEGs. Furthermore, the way our analysescom-
municate through equality is conceptually similar to the equality
propagation approach used in Nelson-Oppen theorem provers[26].

Execution Indices. Execution indices identify the state of
progress of an execution [14, 42]. The call stack typically acts
as the interprocedural portion, and the loop iteration counts in our
semantics can act as the intraprocedural portion. As a result, one
of the benefits of PEGs is that they make intraprocedural execution
indices explicit.

9. Conclusion and future work
We have presented a new approach to structuring optimizers that is
based on equality saturation. Our approach has a variety of benefits
over previous compilation models: it addresses the phase ordering



problem, it enables global profitability heuristics, and itperforms
translation validation.

There are a variety of directions for future work. One direction
is to extend Peggy so that it generates a proof of correctnessfor the
optimizations it performs. Each step in this proof would be the ap-
plication of an equality analysis. Since the majority of ouranalyses
are axiom applications, these proofs would be similar to standard
mathematical proofs. We would then like to use these proofs as a
way of automatically generating optimizations. In particular, by de-
termining which nodes of the original PEG the proof depends on,
and what properties of these nodes are important, we will explore
how one can generalize not only the proof but also the transforma-
tion. Using such an approach, we hope to develop a compiler that
can learn optimizations as it compiles.
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