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Abstract

The aim of the thesis is to develop algorithms and architectures to meet the high data rate, low

complexity requirements of the future mobile communication systems. Algorithms, architectures

and implementations for detection, channel estimation and interference mitigation in the multiple-

input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) receivers are

presented. The performance-complexity trade-offs in different receiver algorithms are studied and

the results can be utilized in receiver design as well as in system design. 

Implementation of detectors for spatial multiplexing systems is considered first. The linear

minimum mean squared error (LMMSE) and the K-best list sphere detector (LSD) are compared

to the successive interference cancellation (SIC) detector. The SIC algorithm was found to

perform worse than the K-best LSD when the MIMO channels are highly correlated. The

performance difference diminishes when the correlation decreases. With feedback to the

transmitter, the performance difference is even smaller, but the full rank transmissions still require

a more complex detector. A reconfigurable receiver, using a simple or a more complex detector as

the channel conditions change, would achieve the best performance while consuming the least

amount of power in the receiver. 

The use of decision directed (DD) channel estimation is also studied. The 3GPP long term

evolution (LTE) based pilot structure is used as a benchmark. The performance and complexity of

the pilot symbol based least-squares (LS) channel estimator, the minimum mean square error

(MMSE) filter and the DD space-alternating generalized expectation-maximization (SAGE)

algorithm are studied. DD channel estimation and MMSE filtering improve the performance with

high user velocities, where the pilot symbol density is not sufficient. With DD channel estimation,

the pilot overhead can be reduced without any performance degradation by transmitting data

instead of pilot symbols. 

Suppression of co-channel interference in the MIMO-OFDM receiver is finally considered.

The interference and noise spatial covariance matrix is used in data detection and channel

estimation. Interference mitigation is applied for linear and nonlinear detectors. An algorithm to

adapt the accuracy of the matrix decomposition and the use of interference suppression is

proposed. The adaptive algorithm performs well in all interference scenarios and the power

consumption of the receiver can be reduced. 

Keywords: channel estimation, detection, interference mitigation, LSD, MIMO, OFDM
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Tiivistelmä

Tämän väitöskirjatyön tavoitteena on kehittää vastaanotinalgoritmeja ja -arkkitehtuureja, jotka

toteuttavat tulevaisuuden langattomien tietoliikennejärjestelmien suuren datanopeuden ja pienen

kompleksisuuden tavoitteet. Työssä esitellään algoritmeja, arkkitehtuureja ja toteutuksia ilmai-

suun, kanavaestimointiin ja häiriönvaimennukseen monitulo-monilähtötekniikkaa (multiple-

input multiple-output, MIMO) ja ortogonaalista taajuusjakokanavointia (orthogonal frequency

division multiplexing, OFDM) yhdistäviin vastaanottimiin. Algoritmeista saatavaa suorituskyky-

hyötyä verrataan vaadittavaan toteutuksen monimutkaisuuteen. Työn tuloksia voidaan hyödyntää

sekä vastaanotin- että järjestelmäsuunnittelussa. 

Lineaarista pienimmän keskineliövirheen (minimum mean square error, MMSE) ilmaisinta ja

listapalloilmaisinta (list sphere detector, LSD) verrataan peräkkäiseen häiriönpoistoilmaisimeen

(successive interference cancellation, SIC). SIC-ilmaisimella on huonompi suorituskyky kuin

LSD-ilmaisimella radiokanavan ollessa korreloitunut. Korrelaation pienentyessä myös ilmai-

simien suorituskykyero pienenee. Erot suorituskyvyissä ovat vähäisiä silloinkin, jos järjestel-

mässä on takaisinkytkentäkanava lähettimelle. Tällöinkin korkean signaali-kohinasuhteen olo-

suhteissa LSD-ilmaisimet mahdollistavat tilakanavoidun, suuren datanopeuden tiedonsiirron.

Radiokanavan muuttuessa uudelleenkonfiguroitava vastaanotin toisi virransäästömahdollisuu-

den vaihtelemalla kompleksisen ja yksinkertaisen ilmaisimen välillä. 

Kanavaestimointialgoritmeja ja niiden toteutuksia vertaillaan käyttämällä lähtökohtana

nykyisen mobiilin tiedonsiirtostandardin viitesignaalimallia. Tutkittavat algoritmit perustuvat

pienimmän neliösumman (least squares, LS) ja pienimmän keskineliövirheen menetelmään, sekä

päätöstakaisinkytkettyyn (decision directed, DD) kanavaestimointialgoritmiin. DD-kanavaesti-

maattori ja MMSE-suodatin parantavat vastaanottimen suorituskykyä korkeissa käyttäjän nope-

uksissa, joissa viitesignaaleiden tiheys ei ole riittävä. DD-kanavaestimoinnilla datanopeutta voi-

daan nostaa viitesignaaleiden määrää laskemalla vaikuttamatta suorituskykyyn. 

Työssä tarkastellaan myös saman kanavan häiriön vaimennusta. Häiriöstä ja kohinasta koos-

tuvaa kovarianssimatriisia käytetään ilmaisuun ja kanavaestimointiin. Työssä esitetään adaptiivi-

nen algoritmi matriisihajoitelman tarkkuuden ja häiriön vaimennuksen säätämiseen. Algoritmi

mahdollistaa hyvän suorituskyvyn kaikissa häiriötilanteissa vähentäen samalla virrankulutusta. 

Asiasanat: häiriön vaimennus, ilmaisin, kanavaestimointi, LSD, MIMO, OFDM
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Symbols and Abbreviations

| · | absolute value

(·)∗ complex conjugate

(·̂) estimate of variable

|| · || Euclidean norm

(·)H Hermitian transpose

(·)−1 inverse

(·)+ Moore-Penrose pseudo-inverse

(·)† pseudo-inverse
√

(·) square root

⊗ Kronecker product

d(·) distance

det(·) determinant

diag(·) diagonal values of matrix

E(·) expectation of the argument

ei(·) PED on the ith level in SSFE

exp(·) exponent function

Im{·} imaginary part of the argument

jacln(·) Jacobian logarithm of the argument

J0(·) the zeroth-order Bessel function of the first kind

ln(·) natural logarithm

log2(·) base 2 logarithm

max(x,y) maximum of the arguments

min(x,y) minimum of the arguments

p(·) likelihood function

Pr(·) probability

r(·) a refinement term

Re{·} or {·}re real part of the argument

C complex plane

δm m dominant eigenvalues

ε metric for constellation point selection in SSFE

11



Γ diagonal matrix with noise variance estimates

γ j instantaneous SINR

γk metric for layer selection in SIC detection

γmR
noise variance estimate on mRth receive antenna

ηc noise vector

κ ratio of the maximum eigenvalue to the sum of all eigenvalues

Λ LLR bit metric

λ wave length

Ω set of all possible transmitted symbols

Ψ reduced covariance matrix

ρi signal-to-interference-noise ratio on the ith stream

ρ(n−n′) temporal correlation between the channel taps at times n and n′

R real plane

Σ diagonal matrix from SVD

Σ−1

ĥ
LS
mR ,mT ,l

the cross-covariance matrix between hmR,mT ,l(n) and ĥLS
mR,mT ,l

ΣH
mR,mT ,l

auto-covariance matrix of hmR,mT ,l(n)

Σw noise covariance matrix

σ2 noise variance

ςi ith singular value

B bandwidth

B f length of MMSE filtering window

B diagonal matrix for removing LMMSE bias

Bd the off-diagonal elements of D

b transmitted binary vector

Bk,±1 the set of 2NQ−1 bit vectors having bk =±1

bk the kth transmitted bit

b[k] subvector of b without its kth element

bp binary vector on pth subcarrier corresponding to the transmitted symbol

c speed of light

C channel capacity

C0 sphere radius

CRX receiver spatial correlation matrix

CT X transmitter spatial correlation matrix

12



d distance

Ddet latency of the detector

Ddec latency of the decoder

Drec latency of the receiver

D diagonal matrix of eigenvalues

DR diagonal matrix with diagonals of R

DU diagonal matrix with squared diagonals of R

Es power spectral density of received signal

E{x} symbol expectation

F the DFT matrix

Fk kth row of the truncated Fourier matrix

F NP×NL matrix from the DFT matrix

fc center frequency

fclock clock frequency

fd Doppler frequency

G matrix to be inverted in LMMSE filter calculation

H channel matrix on any subcarrier

H extended channel matrix

Ĥ channel estimate

He equivalent channel matrix

Hk matrix H with the vectors from previously detected layers removed

Hp channel matrix on pth subcarrier

hk kth vector from matrix H

hi ith column of matrix H

ĥ
(i)
mT ,mR,l

(n) channel estimate on the ith iteration for lth tap and mT ,mRth antennas

ĥLS
mR

(n) LS channel estimate for the mRth receive antenna at time index n

ĥLS
mR,mT ,l

the LS channel estimate for the lth tap and mT ,mRth antennas

ĥMMSE
mR,mT ,l

(n) MMSE channel estimate for the mRth receive antenna at time index n

hmR
the time domain channel vector from the transmit antennas to the mRth receive antenna

IM identity matrix with dimensions of number of receive antennas

IN identity matrix with dimensions of number of transmit antennas

imR
vector containing interference plus identically distributed complex white Gaussian noise

k Boltzmann’s constant

K the list size of the tree search detector

L length of the channel impulse response
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L list of candidates

Lk,±1 subset of Bk,±1 where bk =±1

LA the a priori information

LA1 the a priori information at the detector input

LA2 the a priori information at the decoder input

LA,[k] LA values corresponding to b, excluding the value for bk

LD the a posteriori information

LD1 the a posteriori information at the detector output

LD2 the a posteriori information at the decoder output

LE the extrinsic information

LE1 the extrinsic information after the detector

LE2 the extrinsic information after the decoder

LF free space path loss

LLRk log-likelihood ratio if bit k

M number of receive antennas

m SSFE node spanning vector

mR receive antenna index

mT transmit antenna index

N number of transmit antennas

Niter number of receiver iterations

N0 power spectral density of the AWGN process

Ncand size of the output list of a list sphere detector

NP number of OFDM symbols with pilot symbols in an MMSE filtering window

NR receiver noise floor

Nr number of pilot symbols

Ns number of RAM bits used by a state machine

o time domain received signal

P number of subcarriers

Q number of bits per symbol

Q matrix with orthogonal columns

Qi spatial covariance matrix of interference

QA matrix result from SGR

Q extended matrix with orthogonal columns

q
i

ith column of matrix Q

R upper triangular matrix with positive diagonal elements

14



R upper triangular matrix with positive diagonal elements from QRD with extended matrix

ri, j i, j element of matrix R

r received signal vector

S constellation point in symbol expectation calculation

Si number of SAGE iterations

T temperature

TB OFDM symbol duration

t pc throughput clock cycles

Tr training period

U unitary matrix from SVD

UR upper triangular matrix from SGR

v velocity

V unitary matrix from SVD

Vm eigenvectors for m dominant eigenvalues

W LMMSE filter coefficient matrix

WmR,mT ,l(n) the MMSE filter for the lth tap from the mT th transmit antenna to the mRth receive antenna

w circularly symmetric complex Gaussian distributed noise

X(n) transmitted signal over P subcarriers and N transmit antennas

x transmitted signal on any subcarrier

xl lth constellation point in Ω

xp transmitted signal on pth subcarrier

x2N
i the last 2N − i+1 components of vector x

x̃ estimate of the transmitted signal

X
−1
k,λ subset of hypersymbols {x} for which the λ th bit of label b is i

x̂ML ML estimate

x̂MMSE LMMSE equalized symbol estimate

y received signal

y extended received signal

yp received signal on pth subcarrier

ymR
(n) received signal over all subcarriers on the mRth receive antenna at discrete time index n

z complete data in SAGE estimator

cc clock cycle

dB decibel
◦ degrees
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Gb/s gigabits per second

GHz gigahertz

Hz hertz

k thousand

kbit kilo bit

kHz kilohertz

km/h kilometers per hour

Mbps megabits per second

MHz megahertz

mm2 square millimeters

µs microsecond

mW milliwatt

nJ nano Joule

ns nanosecond

s second

2G second generation

3G third generation

3GPP third generation partnership project

4G fourth generation

ADC analog to digital converter

AMC adaptive modulation and coding

AoA angle of arrival

AoD angle of departure

APP a posteriori probability

ARQ automatic repeat request

ASIC application-specific integrated circuit

ASIP application-specific instruction set processor

AWGN additive white Gaussian noise

B3G beyond third generation

BER bit error rate

BICM bit-interleaved coded modulation

BLAST Bell Laboratories layered space-time

BRAM block RAM

BS base station
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CCI co-channel interference

CDMA code-division multiple access

CIR channel impulse response

CMOS complementary metal oxide semiconductor

CoMP coordinated multi-point

CORDIC coordinate rotation digital computer

CP cyclic prefix

CQI channel quality indicator

CSI channel state information

DA data aided

D-BLAST diagonal Bell Laboratories layered space-time

DD decision directed

DDCE decision directed channel estimation

DFT discrete Fourier transform

DSP digital signal processing

ED Euclidean distance

EM expectation maximization

EVD eigenvalue decomposition

FD frequency domain

FEC forward error control

FER frame error rate

FFT fast Fourier transform

FM fade margin

FPGA field programmable gate array

GPRS general packet radio services

GE gate equivalent

GS Gram-Schmidt

GSM Groupe spécial mobile

IEEE Institute of electrical and electronics engineers

H-BLAST horizontal Bell Laboratories layered space-time

HDL hardware description language

HLS high level synthesis

HSPA high speed packet access

ICI intercarrier interference

IFFT inverse fast Fourier transform
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IMT-A international mobile telecommunications-advanced

IN-SCM interference and noise spatial covariance matrix

IR-LSD increasing radius list sphere detector

ISI intersymbol interference

ITU International Telecommunication Union

LA link adaptation

LLR log-likelihood ratio

LMMSE linear minimum mean square error

LOS line-of-sight

LR lattice reduction

LS least squares

LSD list sphere detector

LTE long term evolution

LTE-A long term evolution advanced

LUT lookup table

MAC multiply and accumulate

MAP maximum a posteriori

MCS modulation and coding scheme

MIMO multiple-input multiple-output

MISO multiple-input single-output

ML maximum likelihood

MMSE minimum mean square error

MS mobile station

MSE mean square error

NLOS non line-of-sight

NMT Nordic mobile telephony

OFDM orthogonal frequency-division multiplexing

OFDMA orthogonal frequency division multiple access

OSIC ordered serial interference cancellation

PAPR peak-to-average power ratio

PCCC parallel concatenated convolutional code

PED partial Euclidean distance

PIC parallel interference cancellation

PMI precoding matrix indicator

QAM quadrature amplitude modulation
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QoS quality of service

QPSK quadrature phase shift keying

QRD QR decomposition

RAM random access memory

RLS recursive least squares

RTL register transfer level

RX receiver

SAGE space-alternating generalized expectation-maximization

SC-FDMA single-carrier frequency division multiple access

SD sphere decoding

SEE Schnorr Euchner enumeration

SGR squared Givens rotations

SIC successive interference cancellation

SIMO single-input multiple-output

SINR signal-to-interference-noise ratio

SIR signal-to-interference ratio

SISO single-input single-output

SM spatial multiplexing

SNR signal-to-noise ratio

SQRD sorted QR decomposition

SSFE selective spanning with fast enumeration

STC space-time code

STBC space-time block code

STTC space-time trellis code

SVD singular value decomposition

TD time domain

TDMA time division multiple access

TX transmitter

TU typical urban

UMTS Universal Mobile Telecommunications Services

V-BLAST Vertical Bell laboratories layered space-time

VHDL very high speed integrated circuit hardware description language

VLSI very-large-scale integration

WiMAX worldwide interoperability for microwave access

WLAN wireless local are network
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ZF zero-forcing
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1 Introduction

During the last few decades, wireless communication systems have been under major

development. The requirements have shifted from the low data rate voice services to

real time video transmissions. Support for higher data rates has become more essential

and the development towards more advanced wireless systems is still ongoing. Multiple

antennas are currently included in many of the wireless standards to achieve the required

data rates. This increases the complexity of signal processing algorithms in the receiver.

However, the complexity and power consumption of the wireless device should be

moderate. This poses challenges in developing algorithms and architectures for the

mobile receiver.

The goal of this thesis is to develop receiver algorithms and architectures to meet the

high data rate and low complexity requirements of the forthcoming wireless systems.

Furthermore, many of the system features are considered when evaluating the suitability

of different algorithms for the wireless systems. The work in the thesis concentrates

on signal detection, channel estimation and interference mitigation algorithms and

their implementation requirements. The evolution of mobile communication systems is

reviewed in Section 1.1 and multiple antenna communications are discussed in Section

1.2. The aims and outline of the thesis, including the author’s contribution, are covered

in Section 1.4.

1.1 Mobile communication systems

The evolution of mobile communication systems has progressed rapidly. The first

international cellular networks were deployed in the 1980s, while national car phone

systems were employed during the previous decades. The Nordic mobile telephony

(NMT) system was the first cellular network used in the Nordic countries [1]. It was

based on analog cellular technology, as well as the systems deployed shortly after

NMT in North America and Japan. The second generation (2G) cellular systems were

pioneered by the Groupe Spécial Mobile (GSM) with a European cellular standard now

known globally as the Global Systems for Mobile Communications [2]. The GSM is a

digital system using time division multiple access (TDMA) with frequency hopping and

frequency shift keying [3]. Simultaneously, TDMA based 2G standards were developed
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in the USA and Japan. General packet radio services (GPRS) were included in the

GSM standard to enable data transfer and the operating bandwidth was tripled with the

introduction of the enhanced data-rates for global evolution (EDGE) [4].

The third generation (3G) mobile communication standards were first being devel-

oped by the International Telecommunication Union (ITU) and they were based on

wideband code division multiple access (WCDMA) [2]. The standardization was later

unified to be performed under the Third Generation Partnership Project (3GPP). The 3G

systems further increased the data rates from 2G and added the number of available

services [1]. A 3G network was first launched in Japan and shortly after that in Europe,

where it was known as Universal Mobile Telecommunications Services (UMTS). The

3GPP 3G system was later further improved with high speed packet access (HSPA) and

multiple antennas [5–7].

As the need for higher data rates and a better quality of service (QoS) increased,

the 3GPP started the development of the long term evolution (LTE) standard in 2005.

LTE uses orthogonal frequency-division multiplexing (OFDM) as the downlink access

scheme and single-carrier frequency division multiple access (SC-FDMA) in the uplink

[8]. The peak data rates for LTE were defined to be 100 Mbps for downlink and 50

Mbps for uplink [9]. Other requirements for LTE included a scalable bandwidth up to 20

MHz and an increased performance at the cell edge. The evolution of cellular systems is

still ongoing. ITU defined the targets for the fourth generation (4G) international mobile

telecommunications-advanced (IMT-A) technologies. The LTE-advanced (LTE-A) [10]

and the 802.16m mobile worldwide interoperability for microwave access (WiMAX) 2.0

standard from the Institute of Electrical and Electronics Engineers (IEEE) have filled the

requirements for IMT-A. The WiMAX 2.0 standard, also known as WirelessMAN-

Advanced, reaches the 1 Gb/s data rate requirements with the use of multiple antennas

and orthogonal frequency division multiple access (OFDMA) [11–13]. OFDMA is

also the access scheme for the LTE-A downlink where up to eight antennas are used to

achieve the high data rate requirements [14, 15].

1.2 Multiple antenna communications

Multiple antennas can be used in the transmitter, receiver or both to improve the

reliability of the transmission or to increase the data rates. Spatial diversity allows

multiple antenna systems to utilize multipath propagation by taking advantage of fading

and the channel delay spread [16]. Due to the multiple paths for a signal, combining
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them in the receiver can restore and improve the received signal quality. The diversity

order increases with the number of spatial streams. Single-input multiple-output (SIMO)

antenna configurations can be used for array gain, i.e. enhancing the signal at the

receiver by combining the signals from the transmit antennas [17]. SIMO transmission

can also be utilized to obtain receive diversity and the diversity order is equal to the

number of receive antennas. Multiple-input single-output (MISO) channels can be

exploited to achieve transmit diversity [18]. Assuming independently faded streams, the

diversity order in the MISO system is equal to the number of transmit antennas [17].

Multiple-input multiple-output (MIMO) schemes can also be used to obtain a

diversity gain or an array gain, but unlike in the MISO and SIMO systems, MIMO

systems offer also spatial multiplexing (SM) gain [19]. The capacity increase provided

by spatial multiplexing is achieved by demultiplexing the data onto different transmit

antennas. The capacity grows linearly with the number of transmit and receive antenna

pairs in spatial multiplexing MIMO systems if the channel can be estimated in the

receiver and the channel paths are independent [20, 21]. Given independently fading

MIMO streams, the diversity order of a MIMO system is the product of the number of

transmit and receive antennas.

The Bell Labs Layered Space Time (BLAST) architecture demultiplexes the encoded

data stream onto separate transmit antennas [20]. The method of dividing a stream

into vertical vectors to be transmitted on the antenna array is also known as the

vertical BLAST (V-BLAST) architecture [22]. Horizontal transmission, also known

as H-BLAST, can also be applied [23]. The streams are then encoded separately for

each transmit antenna. The V-BLAST scheme can offer a higher coding gain over

the H-BLAST scheme, but the H-BLAST has the advantage of retransmitting only

the failed streams [23]. The diagonal BLAST (D-BLAST) architecture [20] applies

horizontal encoding after which the codewords are spread over the transmit antennas.

The D-BLAST architecture leads to an ideal performance, but the efficiency suffers

from the wasted blocks in the beginning and end of the transmission [23].

Transmit diversity in MIMO systems can be achieved with space-time codes (STC)

[16]. Using channel coding combined with multiple transmit antennas to achieve diver-

sity was proposed in [24], but space-time codes for multiple antenna communications

were introduced in [25], where trellis codes were used to achieve a diversity and coding

gain. Space-time trellis codes (STTC) provide a diversity corresponding to the number

of transmit antennas but require complex receiver processing. Space-time block codes

(STBC) were proposed in [26] for two transmit antennas and were shown to provide a
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diversity gain in the order of twice the number of receive antennas and require only

simple linear processing at the receiver. STBC for multiple transmit antennas was

introduced in [27]. If channel knowledge at the transmitter is available, beamforming

can be used to obtain a diversity gain [28, 29].

Both diversity and spatial multiplexing gain can be achieved simultaneously in

MIMO communications, but there is a tradeoff between the error probability and

data rate [30]. With feedback from the receiver to the transmitter, the transmission

can be adapted to perform either spatial multiplexing or to use a diversity mode [31].

Spatial multiplexing can be used in good channel conditions and diversity schemes in

poor channels to obtain a good performance in different channel conditions [2]. The

modulation can also be adjusted according to the channel conditions [32]. Adaptation of

the transmission scheme can be combined with modulation and coding adaptation to

approximate the link capacity [33]. Adaptation can be performed by adjusting the rate

or power of the transmission [1, 34]. In power adaptation, the transmit power is adjusted

to maintain a target error rate and in rate adaptation, the transmission rate is adjusted to

the channel conditions. Rate control is more commonly used and more efficient [35, 36].

Link adaptation (LA) and adaptive modulation and coding (AMC) have been extensively

studied in the literature [37–40].

1.3 Multicarrier communications and cellular systems

The fading channels exploited by MIMO systems can cause intersymbol interference (ISI)

[19]. OFDM suppresses the ISI and it is therefore combined with MIMO transmissions

in many communication systems, such as the 3GPP LTE and LTE-A and the WiMAX

systems [41]. The idea of OFDM was proposed by Chang in the 1960s [42] and

the performance of the OFDM system was considered in [43]. The discrete Fourier

transform (DFT) based time-limited multi-tone system was described in [44]. OFDM

for mobile communications was proposed in [45], where the results showed significant

improvements in performance.

OFDM is a multicarrier (MC) technique where the frequency band is divided into

several narrow-band subcarriers which are transmitted in parallel. The duration of each

symbol can then be increased, which reduces ISI if the delay spread of the channel is

smaller than the duration of the symbol [46]. A MIMO-OFDM transmission system

is illustrated in Figure 1. The transmission from each antenna can be reflected from

buildings or other structures and arrive at the receiver with delay and attenuation. Due to
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the delay in the reflected paths, interference from the previous OFDM symbol is added to

the received symbol. Therefore, a cyclic prefix (CP), which contains replicated symbols

from the end of the block, is added to the beginning of each block. This eliminates

the ISI if the length of the CP is larger than that of the channel [47]. Equalization

in the receiver also becomes simpler as ISI is not present. To prevent interference

from adjacent subcarriers and to improve the spectral efficiency by overlapping the

subcarriers, orthogonality between the carriers is applied [43].
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Fig. 1. The wireless MIMO-OFDM transmission system.

The idea of efficient implementation of the DFT by the fast Fourier transform (FFT)

[48, 49] motivated the use of OFDM in communication systems [2]. The modulation in

OFDM is then performed with an inverse FFT (IFFT) and the demodulation with the

FFT. Interleaving and channel coding is often combined with OFDM to increase the

robustness of the system [50]. Interleaving the code words over time and frequency

prevents a set of contiguous symbols from being exposed to deep fades. If channel state

information (CSI) at the transmitter is available, the data and power assigned to each

subcarrier can be adapted based on the quality of the subchannel [51].

A high peak-to-average power ratio (PAPR) is one of the drawbacks of OFDM due

to the linear combination of the transmitted subcarriers. The peak and average values

should be close to each other for an efficient use of the power amplifier [2]. Therefore,

high PAPR leads to an increased cost and power consumption in the power amplifiers.

Methods to reduce the PAPR, such as clipping and filtering, dummy sequence insertion,

selected mapping and pre-coding, can be applied [1, 41]. Another problem in OFDM

is the time and frequency offset in the receiver [52]. It can be caused by mismatched
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oscillator frequencies in the transceiver or by Doppler spread and can cause ISI and

intercarrier interference (ICI) [41]. These offsets can lead to a high error rate, but they

can be estimated in the receiver [53]. The frequency offset caused by Doppler spread

can change over time and may be more difficult to mitigate. In a scenario with multiple

users, orthogonal frequency division multiple access (OFDMA) can be used to allocate a

subset of subcarriers from the entire bandwidth to different users. OFDMA can increase

the capacity of the system with reasonable subcarrier allocation, but synchronization of

the transmissions from different users becomes an issue [41].

The combination of MIMO transmissions and OFDM has gained a great deal of

attention from the early combination of MIMO systems and multitone transmission [54]

to MIMO-OFDM field trials [55]. MIMO-OFDM in a multiuser scenario has also lead

to new problems in optimizing the transmission. MIMO-OFDM is currently adopted in

wireless standards, including the 3GPP LTE [8], LTE-A [10] and WiMAX [56].

As the cellular networks consist of cells formed by the transmission range of

the base station, transmissions from neighboring cells can cause interference. Co-

channel interference (CCI) is a key limiting factor in the forthcoming communication

systems. The interference from another cell may be prohibitive for the cell edge

user. It may be combatted with interference alignment [57] or scheduling of the

time or frequency resources [58]. Schemes such as coordinated multi-point (CoMP)

transmission, where the base stations co-operate when transmitting to a user at the cell

edge, are currently considered for future wireless systems [59]. Joint processing and

coordinated beamforming are the two main considered downlink CoMP transmission

schemes [60]. In the joint processing schemes, a resource block is assigned to only

one cell edge user from the coordinates cells. In this scheme, the user receives the

transmission from multiple cells or only from its own cell, while the other cells are not

transmitting on the resource block. Beamforming weights which reduce interference to

users in other cells can be used with the coordinated beamforming schemes and allow

simultaneous transmission to users in neighboring cells. Both schemes increase the cell

edge throughput, but the joint transmission schemes are even more effective than the

coordinated beamforming schemes [60].

1.4 Aims, outline and author’s contribution

In the future wireless systems, the data rate requirements have increased, but the need

for power efficient and low complexity solutions still exists. The goal of this thesis
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is to develop algorithms and architectures to meet these requirements. Algorithms,

architectures and implementations for detection, channel estimation and interference

mitigation in MIMO systems are presented. The performance-complexity trade-offs

with realistic system setup and scenarios are obtained through computer simulations and

hardware synthesis results. The outcome of the thesis can be used in the mobile receiver

design, but the results can also be utilized in system design.

Transmission of independent data streams from different antennas in spatial multi-

plexing MIMO systems usually causes inter-antenna interference. Advanced receivers

are essential in coping with the interference. An optimal detector would be the maxi-

mum a posteriori probability (MAP) symbol detector which provides soft outputs or

log-likelihood ratio (LLR) values to the forward error control (FEC) decoder. Since

the computational complexity of the MAP detector is exponential with the number

of spatial channels and modulation symbol levels, several suboptimal solutions are

considered. The performance-complexity tradeoff of various soft-output MIMO-OFDM

detectors is analyzed for application in the evolving next generation cellular standards.

Both the information transmission rate and the hardware detection rate combined with

the complexity and power consumption are considered when comparing the different

detection algorithms. The impact of transmission adaptation on the performance of

different detection algorithms is also studied to see if a simpler detector could be used

when the transmission is tuned to the channel conditions.

Channel estimation for MIMO-OFDM is also considered. The reference signals used

in channel estimation are placed in the OFDM time-frequency grid at certain intervals in

most forthcoming systems [61]. The interval may not be sufficiently short when the user

velocity is high and the channel is fast fading. The high mobility scenario, which is

included in the LTE-A requirements, calls for the use of spatial multiplexing when the

channel state information (CSI) at the transmitter becomes outdated for transmission

adaptation. Furthermore, the pilot overhead increases with the number of MIMO streams.

Additionally, channel estimation based on only pilot symbols does not utilize the channel

information available in the data decisions. Decision directed (DD) channel estimation

can be used to improve the performance by exploiting the information on the non-pilot

symbols or to reduce the pilot overhead by transmitting data symbols instead of pilot

symbols. The performance and complexity of channel estimation algorithms is studied

using the LTE pilot symbol structure as a benchmark. Two throughput decreasing issues

are addressed, namely the fast fading or high mobility scenario with insufficient pilot

symbol density and the high pilot overheads from the MIMO pilot symbols. Several
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algorithms for channel estimation in high velocity scenarios have been proposed in

the literature. However, the actual implementation cost or a performance-complexity

comparison of the algorithms has not been previously discussed. Thus, this is the scope

of the work in this thesis.

The CoMP schemes may not be able to adapt to the frequently changing channel

conditions in high velocity scenarios and their functionality and performance require

further study. However, the CCI may be suppressed at the receiver for improved

performance and a more efficient use of resources. The complexity and performance of

interference suppression combined with two different detection algorithms are presented.

The outline of the thesis is as follows: Chapter 2 consists of the literature review

on MIMO receiver algorithms containing previous and parallel work. The system

models for the remainder of the thesis are introduced in Chapter 3. The work on

detection is discussed first, followed by topics on channel estimation and interference

mitigation. MIMO detection algorithms are addressed in Chapter 4. The work presented

therein has been previously published in part in [62–66]. Different suboptimal detection

algorithms are presented and their performance is compared via computer simulations.

The performance is compared in fixed modulation and code rate scenarios, after which

the scope is shifted to systems with adaptive modulation and coding. The complexities

of the algorithms are compared via the presented implementation results.

Chapter 5 focuses on channel estimation algorithms for MIMO-OFDM. The work

has been in part published in [67] and submitted in [68, 69]. The performance of the

least-squares (LS), minimum mean square error (MMSE) and the space-alternating

generalized expectation-maximization (SAGE) channel estimation algorithms is studied.

The theoretical complexity of the channel estimation algorithms is presented and some

complexity-performance trade-off aspects of the algorithms are considered as well. The

architecture and implementation results in gate counts and power consumption for the

pilot symbol based LS, MMSE and the DD SAGE channel estimators are presented

for the 2×2 and 4×4 antenna systems. For a more energy efficient solution, a longer

latency for the channel estimator is considered. The impact of generating a timely

channel estimate for the detector on the performance and complexity is then discussed.

Chapter 6 includes topics on interference mitigation for MIMO-OFDM. The results

have been submitted for publication in [70, 71]. The interference and noise spatial

covariance matrix measured on the pilot subcarriers is used in data detection and channel

estimation. Linear and nonlinear detectors are considered. The impact of the accuracy

of the matrix decomposition on the structure of the covariance matrix is studied. An
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algorithm to adapt the accuracy of the matrix decomposition and the use of interference

suppression is proposed. The different interference mitigation methods are implemented

and the performance-complexity tradeoffs are presented. Finally, conclusions and drawn

and future work is discussed in Chapter 7.

The thesis is written as a monograph, but part of the results in Chapters 4 and

5 have been published in one journal paper [62] and five conference papers [63–

67]. Furthermore, the work done in Chapters 5 and 6 has been submitted to two

different journals. The author was the main contributor in all of the papers. The other

authors provided help and comments. The novel SSFE-SIC algorithm or the SSFE

implementation results from Chapter 4 have not been previously published. Additional

simulation results were added to Chapters 5 and 6 that were not included in the journal

submissions.

The simulation software was originally developed by Dr. Markus Myllylä and

Dr. Nenad Veselinovic and the turbo coding and decoding used in the simulator by

Dr. Mikko Vehkaperä. The channel models used in the simulations were generated

with the channel simulator from Dr. Esa Kunnari and the original Matlab code for the

SAGE channel estimator was produced by Dr. Jari Ylioinas. The author made extensive

changes to the simulator before generating the results shown in this thesis.

In summary, the main contributions of the thesis are:

– A performance-complexity comparison of selected detection algorithms for MIMO-

OFDM

– The performance of an implemented algorithm defined as goodput, which is a

combination of information transmission rate and hardware detection rate

– Evaluation of the detection algorithms, also in a system with adaptive transmission

– Implementation of data aided and decision directed channel estimation algorithms

– Evaluation of the applicability of the channel estimation algorithms for mobile

MIMO-OFDM systems with different pilot symbol densities

– Finding the complexity and performance of co-channel interference mitigation

– An adaptive algorithm for CCI mitigation to obtain a good performance with possibil-

ity for power savings.
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2 Literature review

Receiver algorithms for spatial multiplexing MIMO transmissions are discussed in this

chapter. The literature containing previous and parallel work in MIMO detection is

reviewed in Section 2.1. Linear detectors and interference cancellation are covered first,

followed by tree search algorithms and some implementation related optimizations.

Channel estimation is discussed in Section 2.2, where pilot allocation and different

channel estimation methods are covered. Section 2.3 includes methods for co-channel

interference suppression.

2.1 Detection in MIMO systems

2.1.1 Linear detection and interference cancellation

Minimum mean square error (MMSE) or zero forcing (ZF) equalization principles can

be straightforwardly applied in MIMO detection [17, 72]. The ZF equalizer is given by

WZF = (HHH)−1HH = H†, (1)

where H is the channel matrix and (·)† is the pseudo-inverse [73] of the matrix. The ZF

receiver suppresses the interference between the MIMO streams, but it enhances the

noise and the performance is far from optimal. The MMSE equalizer minimizes the

mean square error (MSE), i.e.,

argmin
W

E{||Wy−x||2}, (2)

where W is the MMSE filter, y is the received signal, x is the transmitted signal and

takes the noise term into account [74]. It outperforms the ZF receiver, but at high

signal-to-noise ratios (SNR) the performance is equal to that of the ZF receiver. The

diversity order for the ZF and MMSE equalizers is only M−N +1, where M is the

number of receive antennas and N is the number of transmit antennas [17]. After the

equalizer, a decision on the transmitted symbol vector is made either by quantization

or by calculating the log-likelihood ratios (LLR) of the transmitted bits by taking

into account the residual channel and interference plus noise covariance matrix after

equalization [75].

35



The linear detectors can suffer a significant performance loss in fading channels, in

particular with spatial correlation between the antenna elements [76]. The nulling and

cancelling or interference cancellation methods consider the other layers as interference

while detecting the desired layer [22]. The nulling of each layer can be performed with a

ZF or an MMSE equalizer. In successive interference cancellation (SIC), the nulling and

cancelling of each layer is performed in a serial matter. The SIC receiver can suffer from

error propagation if an incorrectly detected layer is used in the cancellation. Therefore,

the ordered serial interference cancellation (OSIC) was proposed in the original papers

considering the Bell Laboratories layered space-time (BLAST) architecture [22, 77, 78].

There, the strongest layer, i.e. the layer with the highest signal-to-interference-plus-noise

ratio (SINR), is detected first and its interference is cancelled from the other streams.

Without error propagation, each cancellation step increases the diversity [17]. In parallel

interference cancellation (PIC), all the layers are detected simultaneously and then

cancelled from each other followed by another stage of detection [79]. PIC was proposed

to reduce the latency from SIC but has a higher computational complexity.

The linear ZF detector is optimal if the channel matrix is orthogonal. However, since

this is not usually the case in practice, lattice reduction (LR) can be used to transform

the channel matrix to a more orthogonal matrix after which ZF or MMSE filters can

be applied [80]. Using LR aided linear equalization can improve the performance

significantly [81].

2.1.2 Tree search algorithms

Uncoded systems

The maximum likelihood (ML) detector performs an exhaustive search over all possible

transmitted symbol vectors. The complexity of the ML detector is exponential in the

number of states (N), but it is the optimal detector for finding the transmitted symbol

vector [17]. Sphere detectors (SD) calculate the ML solution by taking into account

only the lattice points that are inside a sphere of a given radius [82]. Sphere detection

algorithms are based on the QR decomposition (QRD) of the channel matrix, which

allows for the tree based search of the lattice points. The choice of the sphere radius has

an impact on the performance and complexity. It can be adjusted according to the noise

variance [83]. The Pohst enumeration strategy for ML detection, also known as the

Viterbo-Boutros (VB) algorithm [83], can be thought of the classical sphere detection
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algorithm where the natural spanning of the nodes is applied. The Schnorr-Euchner

enumeration (SEE) [84] spans the nodes in a zig-zag order, making the search process

faster [85]. Improvements to the VB and Schnorr-Euchner based algorithms were

proposed in [86].

The spanning of the tree can be performed in a depth-first, breadth-first or metric-first

manner [87]. The VB and SEE are considered to be depth-first algorithms where the

tree search is performed one branch at a time from the top of the tree to the last leaf

node or until a threshold value is reached. The breadth-first tree search is performed by

expanding the nodes on each level of the tree before moving to their leaf nodes. If the

number of nodes to continue from each level is limited, sorting has to be performed

to find the nodes with the smallest Euclidean distances. In this case, the result may

not be the exact ML solution. The M-algorithm [87] and the K-best algorithm [88]

are examples of the breadth-first approach. The metric-first or best-first algorithms

extend the path with the best metric while maintaining a list of path metrics [89].

The metric-first algorithms can be more efficient than the depth-first and breadth-first

algorithms and they find the ML solution [90]. The ever-increasing radius sphere

detector (IR-SD) [91] increases the sphere radius during the tree search, which leads to

finding the ML solution faster while requiring less storage for the path metrics [92].

Coded systems

In a system with FEC, the optimal method for finding the transmitted symbols is to

jointly perform the symbol detection and data decoding [93]. However, the method is

infeasible in practice, since the complexity grows exponentially in the dimensions of the

search space. The joint detection and decoding method is then usually approximated

by separating the detection and decoding problems and exchanging soft information

between the detector and decoder. The turbo principle used in decoding [94] can be

used to perform detection and decoding iteratively [95, 96]. The MAP detector [97] is

the optimal detector for providing the a posteriori probabilities (APP) for the decoder.

However, its complexity may also be prohibitive. Suboptimal techniques such as MMSE

based turbo equalization [98–101] where interference cancellation is performed based

on the soft bit decisions from the turbo decoder have been considered.

The MAP detector can be approximated by a list sphere detector (LSD), which

provides the log-likelihood ratios (LLR) as APPs for the decoder [102]. The sphere

detector algorithms can be modified to provide a list of candidate symbols for the LLR
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calculation instead of just one solution. The breadth-first tree search based K-best LSD

algorithm is a modification of the K-best algorithm [103]. The a priori LLRs from the

decoder can be used to reduce the number of visited nodes in the K-best detector [104].

The depth-first [105–107] and metric-first [108, 109] sphere detectors have also been

modified to perform well in coded systems.

2.1.3 Optimizations and implementations

As MIMO detection is a complex problem, several implementation friendly modifications

to the detection algorithms have been proposed. Sorted QRD (SQRD) can be used in the

MMSE based BLAST detection to reduce the computational complexity with no impact

on performance [110]. Modifications to the soft output calculation of the detector and

the soft symbol calculation from the decoder in a SIC receiver were proposed in [111].

Even lower complexity for the soft output calculation from the ZF or MMSE equalizer

can be achieved with the approximate LLR approach [112]. MMSE based preprocessing

can also be used for the tree search detectors to improve the performance [113].

Several implementations of the MMSE equalizer can be found from the literature. A

direct matrix inversion algorithm is applied for the MMSE filter calculation in [114]. A

QR decomposition based matrix pseudo inverse calculation for MMSE-VBLAST is

implemented in [115]. An architecture and implementation for an MMSE detector in

[116] utilizes Strassen’s algorithms in the matrix inversion. The implementations of the

QRD based MMSE detector via the coordinate rotation digital computer (CORDIC) and

squared Givens rotation (SGR) algorithms were compared in [117]. A modified Gram-

Schmidt based sorted QRD implementation was presented in [118], where the QRD can

be used for SIC or as preprocessing for tree search algorithms. Further implementations

of the QR decomposition can be found in [119–121]. An ASIC implementation of a

SISO detector for iterative MIMO decoding utilizing an MMSE-PIC algorithm was

discussed in [122].

The silicon complexity analysis of ML detection in [123] concluded that ML

detection can be applied for low order modulation, but sphere detection can be applied

to achieve performance close to that of ML detection. An implementation of the K-best

algorithm with a large list size was reported in [124]. A simplified norm calculation

and pre-sorted metric computations for the K-best algorithm were used in [125]. A

modification to the M-algorithm was proposed in [126], where the number of nodes

extended in each level can be adjusted. Optimizations of a hard-output K-best detector
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were presented in [127] and a radius adaptive K-best detector and its implementation

were reported in [128]. An architecture and implementation for the K-best algorithm

where the nodes are expanded on demand were presented in [129]. An algorithm

combining the depth-first and breadth-first approaches in order to reduce the complexity

and achieve a close to ML performance was introduced in [130]. The depth-first sphere

detector was implemented in [131]. The throughput of the sphere detector was not

constant and depended on the SNR as the depth-first tree search approach was utilized.

A bounded search for the sphere detector was proposed in [132], which reduces the

latency and hardware cost compared to the unbounded sphere detector while maintaining

good performance. A flexible implementation of a sphere detector, which could adapt to

the antenna configuration and modulation was presented in [133]. Switching between

PIC and LSD in an iterative receiver can reduce the required list size and number of

iterations [134].

Several tree search algorithms, other than sphere detectors, have been proposed

to allow a parallel implementation with fixed complexity and latency. The selective

spanning with fast enumeration (SSFE) algorithm [135] and the flex-sphere algorithm

[136] use SEE to expand a fixed number of nodes on each level. The fixed sphere

decoder in [137] has also similar functionality. The SSFE algorithm does not include

sorting and is suitable for programmable platforms. The layered orthogonal lattice

detector (LORD) was proposed in [138]. It consists of performing QR decomposition

and a SSFE type tree search for different orderings of the channel matrix. An iterative

version of the LORD algorithm was proposed in [139].

Comparison of implementations of the different detection algorithms presented in

the literature is difficult as the design methods and platforms vary and the performance

results are obtained in different scenarios. Therefore, different detection algorithms are

compared through a unified simulation and design process in this thesis in order to

obtain comparable results.

2.2 Channel estimation in OFDM

Coherent or synchronized transmission [140] is applied in most wireless systems. For

coherent detection of the transmitted signal, the channel has to be known or estimated at

the receiver [141]. Differential modulation techniques can be used to avoid channel

estimation, but the performance degradation is high. In OFDM, channel estimation can

be performed with a blind or a non-blind technique [142]. The blind channel estimation
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method does not require the use of training sequences or pilot symbols and enables

a more efficient use of the available bandwidth. The channel estimates are obtained

using the statistical properties of the received data which is collected over a certain time

period [143]. A noise subspace method for blind channel estimation for MIMO-OFDM

was presented in [143], where the accurate channel estimation results were found by

increasing the length of the observation block. With the blind channel estimation

methods, decreased performance can be observed in fast fading scenarios. Pilot symbols

can be used to improve the channel estimation accuracy of blind channel estimation,

resulting in a semi-blind channel estimation scheme [144]. In [144], a subspace based

semi-blind channel estimator was presented which is able to track slow variations in the

channel. Given the large memory requirements of blind channel estimation and the

inability to track fast channel variations, non-blind channel estimation is used in most of

the current wireless transmission systems. Pilot aided transmission is used in most of

the wireless transmission systems and it will be discussed in more detail. The non-blind

channel estimation methods can be divided into two groups, namely the data aided (DA)

or decision directed (DD) methods.

2.2.1 Data aided channel estimation

Pilot allocation

A training sequence or pilot symbols known at the receiver are used in estimating the

channel with the DA methods. The training sequence is usually inserted in the beginning

of the transmission with no simultaneous data transmission. With pilot symbol assisted

modulation [145], known symbols are inserted periodically among the data symbols and

the peak-to-average power ratio or pulse shape is not affected. Pilot assisted transmission

is used widely in wireless communication systems as the periodically transmitted pilot

symbols enable more frequent channel estimation in fading channels [146]. The impact

of training on the capacity of a fading channel was considered in [147]. It was found

that optimal results can be obtained in high signal-to-noise ratios (SNR), but the training

schemes are suboptimal at low SNRs. A higher number of pilot symbols leads to better

channel estimation accuracy, but since the pilot symbols replace the data symbols, the

transmission rate is decreased. Therefore, the placement of the pilot symbols should be

designed as a compromise between a good channel estimate and a high transmission

rate.
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In OFDM, the pilot symbols are usually placed in a time-frequency grid of subcarriers.

The pilot symbols placing should be dense enough in frequency domain so that the

channel variations are captured accurately. The spacing of the pilot subcarriers then

depends on the coherence frequency [142]. Similar criteria for pilot symbol spacing

should be applied in the time domain in order to capture the channel variations

depending on the Doppler spread. The optimal pilot sequence in MIMO-OFDM should

be equispaced, equipowered and phase shift orthogonal in order to obtain the minimum

mean square error (MSE) of the least squares (LS) channel estimate [148]. Furthermore,

the pilot symbols should be spaced with the maximum distance to prevent the wasting of

resources and they should be placed on different subcarriers over consecutive OFDM

symbols. In [149], a placement of the pilot symbols that maximizes the capacity

assuming a minimum mean square error (MMSE) channel estimate was found. The pilot

symbols should then be placed periodically in frequency. The training sequence can also

be designed to simplify the channel estimation [150]. Pilot symbol assisted modulation

is used in most of the current and upcoming wireless MIMO-OFDM transmission

systems, such as the WiMAX, LTE and LTE-A. The pilot symbols are placed at certain

intervals in time and frequency. In a MIMO system, when a pilot is transmitted for one

antenna, the other antennas transmit nothing [61].

Channel estimation

The channel estimates for the pilot positions are most commonly obtained by maximum

likelihood (ML) or MMSE based estimators. Maximum likelihood (ML) channel

estimation is equivalent to LS estimation with additive white Gaussian noise when the

number of pilot symbols is larger than the channel length [151]. The ML estimator

assumes that the channel impulse response (CIR) is deterministic and that there is no

knowledge of the channel statistics or the SNR. The CIR is assumed to be random

in the MMSE estimation where the SNR and prior information on the channel are

exploited. The recursive LS (RLS) algorithm can be used to enhance the channel

estimation performance, but it is most suitable for slow fading channels [148]. The

MMSE estimator minimizes the MSE of the channel estimates, but the complexity is

high compared to the ML or LS estimators. The ML and MMSE methods were compared

in [151] and [152] for OFDM systems and the MMSE was found to outperform the ML

in low SNRs. The calculation of the MMSE estimate requires a large matrix inversion. A

low-complexity approximation of the MMSE estimator was proposed in [153], where the
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singular value decomposition (SVD) was used to reduce the complexity. The complexity

of the MMSE estimator can also be reduced by considering only the high energy channel

taps [152]. The same modification can be extended to the LS estimator.

When the channel is estimated only on the set of pilot subcarriers, the estimates

for the data carriers can be obtained through interpolation. The performance of the

piecewise constant and piecewise linear interpolation techniques were compared in

[154]. In constant interpolation, the channel is assumed to be constant on the subcarriers

adjacent to the pilot carriers. In linear interpolation, the channel frequency response is

assumed to change linearly between pilot subcarriers. The performance was found to

improve with linear interpolation from the constant interpolation to the extent that the

number of pilots could be decreased. Higher order polynomial fitting can be used to

obtain the channel estimates for the data subcarriers when a priori information on the

frequency selectivity of the channel is available [142]. Transform domain techniques

may also be used for obtaining the channel estimates for the whole bandwidth. The fast

Fourier transform (FFT) is widely used due to its low complexity. The inverse FFT

transforms the channel frequency response into time domain where the low power taps

can be eliminated and the noise reduced channel can be transformed back to frequency

domain with the FFT [142]. MMSE filtering can also be used to predict the channel of

the current OFDM symbol based on channel estimates from previous symbols [155],

i.e. time and frequency domain correlation of the channel frequency response, can

be exploited in the channel estimation. For improved performance in MIMO-OFDM

systems, the spatial correlation can be included in the MMSE channel estimation [156].

2.2.2 Decision directed channel estimation

The decision directed channel estimation (DDCE) method uses the detected data symbols

and the channel estimates from previous OFDM symbols in calculating the current

channel estimate. The performance of the DDCE can degrade if the data symbols are

detected incorrectly or if the channel estimate used for initialization is incorrect or

outdated due to a fast fading environment. With either of the impairments present, the

errors in DDCE will propagate to the following channel estimates. Therefore, the correct

initialization is important in DDCE. The performance can be improved by sending pilot

symbols more frequently, using prediction algorithms to predict the channel for the next

OFDM symbol, filtering the channel estimates with the transform domain techniques or

the MMSE filter and using channel coding to improve the data symbol estimates [142].
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Iterative channel estimator which utilizes the preamble, pilot symbols and data symbols

was proposed in [157].

The expectation maximization (EM) algorithm [158] has been considered widely for

DDCE. It can be used to calculate the maximum likelihood (ML) estimate iteratively,

avoiding the matrix inversion. It uses the probabilities of the transmitted symbols from

the decoder, which makes the EM algorithm attractive for coded OFDM transmission

systems [142]. The EM algorithm includes a maximization and an expectation step. The

channel is estimated with the maximization step and the expectation step estimates the

component of the transmitted signal. The steps are alternated iteratively to obtain a

correct channel estimate. The channel estimate converges to the ML estimate when

a high enough number of iterations is performed. The DDCE can be used together

with pilot aided channel estimation to improve the estimation accuracy in fast fading

scenarios.

The space-alternating generalized expectation-maximization (SAGE) algorithm

[159] updates the parameters sequentially instead of simultaneously as in the classical

EM algorithm. This leads to a faster convergence with the SAGE algorithm. Two

different EM algorithms were introduced for channel estimation in OFDM in [160]. The

EM and SAGE algorithms were compared and the SAGE was found to converge faster

and have a lower complexity. The SAGE algorithm has been considered for channel

estimation jointly with detection and decoding in [161] and for MIMO-OFDM in [162].

Implementation of channel estimation algorithms

Implementations of channel estimation algorithms have not been reported in the

literature as extensively as the implementations of detection algorithms. In fact, most

of the reported implementations deal with the ML or filtering type solutions. An

implementation of an OFDM receiver with a transform domain channel estimator

was presented in [163]. A modification to the maximum likelihood estimator and

its implementation can be found in [164]. An implementation for an approximate

linear MMSE channel estimator was reported in [165] and in [166] a singular value

decomposition (SVD) based MMSE channel estimator for MIMO-OFDM systems was

presented. Data carriers are used in channel estimation for calculating channel variations

in [167]. However, implementation results for a decision directed channel estimator

have not been presented in the literature. Furthermore, a performance or complexity

comparison of different types of channel estimators has not been previously carried out.
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2.3 Interference mitigation

Signals from base station in other cells can cause interference on the desired signal in an

OFDM system. The co-channel interference can be measured on the pilot subcarriers

and the interference-plus-noise correlation matrix [168] can be used in both channel

estimation and in whitening the received signal for detection. The interference can be

synchronous or asynchronous. With synchronous interference, the interferers cyclic

prefix (CP) is aligned with the desired signals CP [142]. Channel estimation algorithms

for channels in the presence of co-channel interference were presented in [169]. If the

interference is synchronous, a structured model for the covariance can be used with few

parameters.

CCI suppression for receive diversity schemes have been considered in the literature

as the degrees of freedom can be used for eliminating the interference [170]. In a

scheme with a higher number of receive than transmit antennas, each additional receive

antenna can be used to eliminate an interfering signal. The suppression of asynchronous

interference was considered in [171] and [172]. It was shown in [172] that the circular-

convolution methods can fully suppress the asynchronous interference only if the number

of receive antennas is higher than that of channel paths. It was then proposed to exploit

the CP with a semi-blind asynchronous interference suppressor, which was found to

suppress both the synchronous and asynchronous interference. A suppression method

for asynchronous CCI for MIMO-OFDM was discussed in [171], where the interference

spatial covariance matrix was exploited. With asynchronous interference, the channel of

the interfering signal cannot be measured on the subcarriers, and thus, the conventional

interference cancellation cannot be applied effectively. Therefore, the covariance of the

interference was obtained by measuring the interference on the subcarriers, after which

Cholesky decomposition and low-pass smoothing was applied.

A semi-structured interference suppression method for OFDM was presented in

[173]. A low-rank model for the CCI part of the spatial covariance matrix was applied in

[174]. The structured covariance model leads to a fewer number of estimated parameters

which could have errors. Therefore, the total number of errors in the estimates can be

decreased. The low-rank model can be obtained from an eigenvalue decomposition

of the spatial covariance matrix which can then be used in the ML detection of the

received signal. A model averaged interference mitigation method for MIMO-OFDM

was proposed in [175], where the interference and noise spatial covariance matrix

(IN-SCM) was parameterized via a number of low rank models. A low complexity
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maximum a posteriori receiver was derived to regulate the log-likelihood ratio (LLR)

values. In addition, a probability for the number of interferers was obtained and used in

the LLR calculation.

Implementations for the aforementioned interference mitigation methods have

not been presented in the literature to the best of our knowledge. However, some

implementations of the SVD can be found. The SVD can be used for the matrix

decomposition needed in the nonlinear detection and matrix structuring when suppressing

the interference. In the case of a covariance matrix, the SVD can be replaced with a

more simple eigenvalue decomposition (EVD). Coordinate rotation digital computer

(CORDIC) algorithms are often used in the calculation of the SVD [176]. A very-

large-scale integration (VLSI) implementation of the SVD was presented in [177].

Implementations combining the QRD and SVD were presented in [178, 179] and

field programmable gate array (FPGA) implementations of the SVD were reported

in [180, 181]. Nevertheless, the performance-complexity trade-offs of interference

mitigation methods have not been discussed in the literature.

2.4 Design methodology

High level synthesis (HLS) is used to obtain the implementation results in this thesis.

Even though HLS tools have been developed for decades, only the tools developed in

the last decade have gained a more widespread interest. The main reasons for this are

the use of an input language, such as C, familiar to most designers, the good quality of

results and their focus on digital signal processing (DSP) [182]. HLS tools are especially

interesting in the context of rapid prototyping where they can be used for architecture

exploration and to produce designs with different parameters [183].

The design process starts with a high level description of the functionality of the

block. In this work, C code is used as the input language to the HLS tool. Bit-accurate

or fixed point data types are assigned to the variables in the design. The word lengths

for the fixed point variables are found by performing computer simulations with the

fixed length variables and comparing the performance to that obtained with floating

point variables. The high level description may have to be modified before being

suitable for the HLS tool. In general, HLS tools first compile the input description, after

which they allocate hardware resource and schedule the design before generating the

register transfer level (RTL) implementation [184]. Without any timing and allocation

constraints in the input file, the generation of different architectures by changing the
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parameters in the tool is possible. After obtaining the RTL with the desired timing and

complexity results, synthesis is performed with application-specific integrated circuit

(ASIC) or field programmable gate array specific tools to obtain the final complexity

results.

The benefits of using a HLS tool include a more unified design flow, low design

effort, reduced verification burden and more generic designs [185]. The unified design

flow allows the designer to return to the specifications and generate a new architecture

without a time consuming design process. Without the need to manually design the

architecture or scheduling, the chance of errors is reduced. With generic designs,

the implementation can be easily modified by making minor changes to the input

or constraints. However, using HLS requires knowledge of hardware design and

architecture exploration, familiarity with the tool specific options and the generation of a

suitable input code to the tool. Thus, the learning curve for using HLS can be lengthy.

Also, the resulting RTL from a HLS tool may not be as optimized as a corresponding

hand written RTL. HLS tools have been used in the implementation of MIMO detection

algorithms on FPGA [109, 186] and ASIC [187]. Despite their many advantages, HLS

tools have not yet been extensively utilized in the implementations presented in the

literature.

Catapult r C Synthesis tool [188] was used in the implementation of the receiver

algorithms in this thesis. It synthesizes algorithms written in ANSI C++ and SystemC

into high-performance, concurrent hardware. This single source methodology allows

designers to pick the best architecture for a given performance/area/power specification

while minimizing design errors and reducing the overall verification burden. While

the results may not always be as optimal as with hand-coded HDL, the tool allows

experimenting with different architectures in a short amount of time and the comparison

of different algorithms can be made, provided they are implemented with the same tool.

The complexity results can be close to the hand-coded ones with small designs [186].

There can be a higher difference with large designs.
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3 System, signal and channel models

The system model, signal models for detection and channel estimation and the used

channel model are presented in this chapter. A common system model for the remainder

of the thesis is presented in Section 3.1. As the notations in the signal models differ

for the detection and channel estimation related work, the signal model for detection

is introduced in Section 3.2 and for channel estimation in Section 3.3. Transmission

adaptation is also briefly described in Section 3.3 and the reference symbol structure

is discussed in Section 3.3. The channel models used in computer simulations are

presented in Section 3.4.

3.1 System model

An OFDM based MIMO transmission system with N transmit (TX) and M receive

(RX) antennas, where N ≤ M, is considered. A layered space-time architecture with

horizontal encoding is applied. The cyclic prefix of an OFDM symbol is assumed to be

long enough to eliminate the intersymbol interference. The system model is illustrated

in Figure 2. The blocks with solid lines are common for all scenarios throughout the

thesis. The blocks with dashed lines are used in parts of the thesis. Precoding and

CQI calculation are used only in part of the results in Chapters 4 and 6 and channel

estimation is used in Chapters 5 and 6.

The LTE standard specifies a maximum of two separately encoded data streams

[189]. Therefore, two streams of data bits are encoded separately in the transmitter, after

which they are interleaved. Two separately encoded streams are also used in the 4×4

antenna system. Each separate stream is then multiplexed onto two transmit antennas.

The bit streams are modulated onto quadrature amplitude modulation (QAM) symbols.

Precoding is performed when transmission adaptation is used before transforming the

symbols to time domain with the IFFT. In the receiver, the symbols are transformed

into frequency domain with the FFT. The soft detector provides soft output LLRs for

the decoder. Feedback from the decoder can be used in the detector. The soft symbol

estimates from the decoder can also be used in the channel estimation or only the

received symbols with the known pilot symbols may be utilized. The channel quality

indicator (CQI) is calculated when transmission adaptation is used.
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Fig. 2. The MIMO-OFDM system model.

The received frequency domain signal vector y(n) at a discrete time index n after the

discrete Fourier transform (DFT) can be described as

y(n) = X(n)Fh(n)+w(n), (3)

where X(n) = [X1, ...,XN ] ∈ C
P×NP is the transmitted signal over P subcarriers and N

transmit antennas, y = [y1, ..,yP] ∈ C
P×M , w ∈ C

P×M contains circularly symmetric

complex Gaussian distributed noise with variance σ2, F = IN ⊗F is a NP×NL matrix

from the DFT matrix with [F]u,s =
1√
P

e− j2πus/P, u = 0, ...,P−1, s = 0, ...,L−1, L is

the length of the channel impulse response and h ∈ C
NL×M is the time domain channel

matrix.

Parallel concatenated convolutional coding (PCCC) is used in the turbo encoding as

specified in [190] for LTE. The encoder consists of two 8-state constituent encoders

and one turbo code internal interleaver. The rate of the constituent encoders is 1/2.

Encoding is performed over one OFDM symbol. The turbo decoder consists of two MAP

decoders and an interleaver [97]. Eight iterations in the turbo decoder are performed.

The log-likelihood ratios in the decoder are calculated with the soft-input soft-output

APP module [191].

3.2 Signal model for detection

The received frequency domain (FD) signal on the pth subcarrier at discrete time index

n can be described with the equation

yp(n) = Hp(n)xp(n)+ηp(n), p = 1,2, . . . ,P, (4)
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where P is the number of subcarriers, xp ∈C
N is the transmitted signal on pth subcarrier,

yp ∈ C
M is the pth vector from y, ηp ∈ C

M is a vector containing circularly symmetric

complex Gaussian distributed noise with variance σ2 and Hp ∈ C
M×N is the frequency

domain channel matrix containing complex Gaussian fading coefficients. Bit-interleaved

coded modulation (BICM) is applied. The entries of xp are drawn from a complex QAM

constellation Ω and |Ω|= 2Q, where Q is the number of bits per symbol. The set of

possible transmitted symbol vectors is ΩN . The binary vector bp corresponding to xp

has elements b j, where j = (k−1)Q, ...,kQ−1 with the kth element of xp. The time

index n will be omitted in the sequel in the detection related work.

A real valued system model is sometimes assumed for simpler processing in the

sphere detector. The real valued received signal can then be expressed as
[

Re{yp}
Im{yp}

]

=

[

Re{Hp} −Im{Hp}
Im{Hp} Re{Hp}

][

Re{xp}
Im{xp}

]

+

[

Re{η p}
Im{η p}

]

, (5)

where Re{·} and Im{·} denote the real and imaginary parts of the signal. The dimensions

of the real valued signals are then twice of those of the complex valued signals.

Transmission adaptation

Feedback from the receiver to the transmitter can be used to improve the performance of

the system. Several metrics for the channel quality and transmission adaptation have

been used in the literature, but the channel capacity was chosen for the metric in this

work as the aim is to study the impact of adaptation on different receiver algorithms and

not to optimize the adaptation. The channel capacity or signal-to-interference-noise

ratio (SINR) based channel quality indicator is calculated in the receiver and then sent

back to the transmitter. The CQI includes the indices to adapt modulation, code rate and

transmission rank for the downlink transmission. A suitable precoding matrix from a

predefined codebook is also informed in the form of a precoding matrix indicator (PMI)

[189]. The channel capacities with different precoding matrices are calculated in the

receiver and the highest capacity achieving precoding matrix is selected. A lookup table

is used to select the best modulation, code rate and transmission rank combination for

the calculated capacity while maintaining the target frame error rate (FER).

The Shannon capacity on a subcarrier p with no CSI at the transmitter and perfect

CSI at the receiver can be calculated as [141]

C = log(det(I+
Es

σ2M
HH

P Hp)) (6)
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and it can be summed over all the subcarriers in the frame to obtain the threshold used in

the modulation and coding scheme (MCS) selection. Different MCS can be applied for

blocks of subcarriers to achieve a better performance in a frequency selective channel. If

precoding is used, H in (6) is replaced by PH and the P with the largest capacity is

selected. The instantaneous SINR can also be used in the MCS selection and it can be

calculated for the jth stream as

γ j =
1

[(I+ Es

σ2M
HH

p Hp)−1] j j

. (7)

The capacity based MCS selection is assumed here. The subscript p will be omitted for

clarity in the sequel.

3.3 Signal model for channel estimation and interference

mitigation

The received frequency domain signal vector y(n) on the mRth receive antenna at a

discrete time index n after the discrete Fourier transform (DFT) can be described as

ymR
(n) = X(n)FhmR

(n)+ imR
(n), (8)

where ymR
= [ymR,1, ..,ymR,P]

T ∈ C
P and hmR

∈ C
NL is the time domain channel vector

from the transmit antennas to the mRth receive antenna. In the system model for Chapter

6, imR
∈ C

P contains interference plus identically distributed complex white Gaussian

noise with the spatial covariance Qi and in Chapter 5, it is assumed that imR
contains

only noise. The entries of the diagonal matrix XmT
∈ C

P×P are from a complex QAM

constellation Ω and mT = 1, ...,N and mR = 1, ...,M.

The cell-specific reference signal or pilot symbol positions in LTE resource elements

are illustrated in Fig. 3, where the downlink slot consist of OFDM symbols i, where

i = 0, ..,6 for the normal cyclic prefix [61]. Each element in the grid corresponds to a

resource element. Reference signals are transmitted in the first, second and fifth OFDM

symbols. The reference signals in the first antenna port are illustrated with black, in the

second with vertical stripes, in the third with horizontal stripes and in the fourth port

with diagonal stripes. Nothing is transmitted on the other antenna ports when a reference

signal is transmitted on one antenna port. The reference signals for each antenna port

are mapped to every 6th resource element in frequency. Quadrature phase shift keying

(QPSK) modulated reference signals are assumed.
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The pilot overhead in the 2×2 MIMO is roughly 9.5% and in the 4×4 MIMO

14%. With 8×8 MIMO, the pilot overhead is more than 20% when the demodulation

reference signals are used. In LTE-A, user specific or demodulation reference signals

are specified to support up to eight transmit antennas [61]. With spatial multiplexing,

demodulation reference signals can be transmitted for all antennas in the last two OFDM

symbols in a slot. Reference signals for up to four antennas can be transmitted in the

same subcarrier and orthogonal cover codes are used to achieve time and frequency

domain orthogonality. The demodulation reference signals can be used with precoding,

so that the channel estimate obtained from the reference signals corresponds to the

precoded channel. The demodulation reference signals are not considered in this work.
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Fig. 3. The LTE pilot structure ([67], published by permission of IEEE).

3.4 Channel model

Several MIMO channel models have been proposed to account for the spatial correlation

and frequency selectivity found in many propagation environments [192]. The models

can be divided into narrowband and wideband channel and time-varying and time-

invariant channels. The models can also be divided into physical models and analytical

models [192]. Physical models characterize the wave propagations, while analytical

models characterize the channel impulse response mathematically. The physical models

may not describe the channel accurately with a low number of parameters, however
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[193]. The analytical models can be accurate, but only for the specified scenario.

Nevertheless, physical models seem to have gained more interest. Two different physical

channel models were used in the generation of simulation results in this thesis. A

stochastic small-scale fading model [194] is used for the majority of the thesis. The

geometry-based stochastic Winner channel model [195] is employed to verify the

channel estimation results in Chapter 5. The Winner model was also used in [65] to

compare different detection algorithms.

The typical urban (TU) channel [194, 196] with base station (BS) azimuth spread of

2 or 5 degrees was applied in most of the work. The simulator for the MIMO fading

channel model was introduced in [194] and it includes temporal, spatial and spectral

correlation. The TU channel parameters are shown in Table 1. Slightly different path

delays and powers were used for the generated channels in Chapters 4 and 5. The spatial

correlation matrix for the receiver can be written as

CRX =








1 −0.7+0.34 j 0.49−0.36 j −0.38+0.34 j

−0.7+0.34 j 1 −0.7+0.34 j 0.49−0.36 j

0.49−0.36 j −0.7+0.34 j 1 −0.7+0.34 j

−0.38+0.34 j 0.49−0.36 j −0.7+0.34 j 1







, (9)

where each element corresponds to the correlation between the first antenna and each

of the next four antennas. For a 2× 2 antenna case, the first two elements of the

matrix are used. The spatial correlation matrix for the transmitter depends on the BS

azimuth spread. For BS azimuth spread of 2 degrees, the first row of the matrix is

[1;0.8+0.3 j;0.42+0.44 j;0.14+0.39 j], and for BS azimuth spread of 5 degrees, the

first row is [1;0.46+0.2 j;0.13+0.15 j;0.03+0.09 j]. The correlation matrix CT X for

the transmitter can be formed from the vectors in a similar manner as in CRX . The

channel spatial correlation model can be obtained from CT X ⊗CRX , where ⊗ is the

Kronecker product. The channel with BS azimuth spread of 2 degrees is denoted as a

correlated channel and with 5 degrees as a moderately correlated channel. In addition, a

spatially uncorrelated channel is considered as well. The base station antenna separation

is 4 λ and the mobile station (MS) antenna separation is λ/2.

The Winner channel model [195] was used for part of the results in Chapter 5. The

channel parameters are presented in Table 2. The Winner C1 suburban macro-cell

channel with no line-of-sight (NLOS) components and a line-of-sight (LOS) component

were used. The Winner channel models are based on channel measurements. The

suburban macro-cell mobile stations are outdoors and the base stations are above

rooftops. The model generates more taps for the LOS channel than the NLOS channel
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Table 1. TU channel model parameters.

Chapter 4 Chapters 5,6

Number of paths 6 6

Path delays (ns) [0,200,500,1600,2300,5000] [0,310,710,1090,1730,2510]

Path power −[3,0,2,6,8,10] dB −[0,1,9,10,15,20] dB

BS antenna spacing 4 λ 4 λ

MS antenna spacing λ/2 λ/2

BS average AoD 50 ◦ 50 ◦

MS average AoA 67.5 ◦ 67.5 ◦

BS azimuth spread 2 ◦ / 5 ◦ 2 ◦ / 5 ◦

MS azimuth spread 35 ◦ 35 ◦

as the delays are longer and the number of clusters is higher.

Table 2. Winner C1 channel model parameters.

LOS NLOS

Number of clusters 15 14

Path delays (ns) [0,...,960] [0,...,770]

Path power −[0,...,32.6] dB −[3,...,22.4] dB

BS antenna spacing 4 λ 4 λ

MS antenna spacing λ/2 λ/2

Cluster departure azimuth spread 5 ◦ 2 ◦

Cluster arrival azimuth spread 5 ◦ 10 ◦
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4 Detection in MIMO-OFDM systems

Different detection algorithms and their implementations for MIMO-OFDM systems are

presented in this chapter. The performance of the algorithms is compared via computer

simulations. The performances are compared both with a fixed modulation and coding

scheme and in schemes with adaptive transmission. Perfect CSI at the receiver is

assumed in this chapter. The complexities of the detector algorithms are obtained via

very-large-scale integration (VLSI) implementations.

The communication system performance is characterized by frame error rate, which

is usually transformed to data transmission throughput. The frame is defined to be

erroneous when it contains erroneous bits. Given an ideal automatic repeat request

(ARQ) procedure, the transmission throughput is decreased with every re-transmission.

The transmission throughput is then defined to be equal to the nominal information

transmission rate of information bits times (1-FER). In other words, the throughput

measure characterizes the rate and the reliability. However, in real systems, the number

of ARQ re-transmissions would be limited. The latency of the implementation is also

analyzed, and reflected as a detection rate of a particular implementation. The detection

rate refers to the nominal rate by which the algorithm can make data decisions, but it tells

nothing about the reliability of the decisions. When both the throughput and detection

rate are considered, the performance of the algorithm can be evaluated more reliably.

Even though the transmission throughput of an algorithm can be high, the detector may

not be able to process the data with the required speed. The definition for goodput in

this work differs from the one generally used in network theory for application level

throughput [197]. The minimum of the detection rate and transmission throughput is

referred to as goodput in this chapter. When combined with the complexity and power

consumption of the algorithm, the cost and performance of different algorithms can be

compared.

The main contributions of this chapter are provision of a performance-complexity

comparison of selected detection algorithms for MIMO-OFDM and evaluation of the

detection algorithms, also in a system with adaptive transmission. A modification to the

K-best tree search is presented and an algorithm combining a tree search algorithm and

interference cancellation is introduced.

The chapter is organized as follows: the system model was presented in Section
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3.1, where transmission adaptation is also briefly addressed. Section 4.1 presents the

optimal ML and MAP detection methods. LMMSE and interference cancellation are

discussed in Section 4.2 and tree search detection algorithms are introduced in Section

4.3. Performance of different types of detectors is compared in Section 4.4 and their

implementation complexities are presented in Section 4.5. Finally, the results are

discussed in Section 4.6. The chapter contains some previously published material.

The simulation results from Sections 4.4.2, 4.4.3 and 4.4.4 were published in [62] and

part of the results from Section 4.4.6 was published in [63]. The algorithm description

in 4.3.3 or the related simulation results in 4.4.5 have not been previously published,

however. The implementation results in Section 4.5 were generated for this thesis, but

the architecture descriptions and similar results have been published [62, 63] with the

exception of the tree search comparison in Section 4.5.5.

4.1 ML and MAP detection

The ML detection method minimizes the average error probability and it is the optimal

method for finding the closest lattice point [17]. The ML detector calculates the

Euclidean distances (EDs) between the received signal vector y and lattice points Hx,

and returns the vector x with the smallest distance, i.e. it minimizes

x̂ML = arg min
x∈ΩN

||y−Hx||2. (10)

The ML detector performs an exhaustive search over all possible lattice points and the

complexity is exponential in N.

The ML detector is optimal for uncoded systems, but for coded systems, as pointed

out in Section 2.1.2, APPs for the decoder are required. The optimal receiver would

perform detection and decoding jointly, but its complexity would be prohibitive as it

depends on the length of the code block [102]. The optimal receiver is then approximated

with an iterative receiver [96]. A structure of such a receiver is presented in Figure 4.

The detector calculates a posteriori soft output values LD1 using the a priori information

LA1. The contribution of the a priori information is subtracted from LD1 to obtain the

extrinsic information LE1. The soft in soft out (SISO) decoder uses the de-interleaved

LE1 as a priori information LA2 to produce the a posteriori values LD2. The extrinsic

information LE2 is again obtained by subtracting the a priori values from the a posteriori

values. The interleaved LE2 can then be used as a priori information for the detector.

The MAP detector provides the optimal APPs or LLRs [95] for the decoder. The a
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Fig. 4. The iterative receiver.

posteriori LLR LD(bk) for the transmitted bit k is

LD(bk|y) = ln
Pr(bk =+1|y)
Pr(bk =−1|y) . (11)

Given the interleaving of b, the bits are approximately statistically independent and

LD(bk|y) can be written as [102]

LD(bk|y) = LA(bk)+ ln

∑
b∈Bk,+1

p(y|b)exp(
1

2
bT
[k]LA,[k])

∑
b∈Bk,−1

p(y|b)exp(
1

2
bT
[k]LA,[k])

︸ ︷︷ ︸

LE (bk|y)

, (12)

where Bk,a is the set of 2NQ−1 bit vectors having bk = a,a ∈ {−1,1}, b[k] is a subvector

of b without bk and vector LA,[k] includes all LA values except for bk. The likelihood

function p(y|b) can be written as

p(y|b) = exp(− 1

2σ2
||y−Hx||2) (13)

when the noise in the system is white Gaussian. The complexity of (12) can be reduced

by only considering a subset of Bk,a. With (12) and (13), LE(bk|y) can be rewritten as

LE(bk|y) = ln

∑
b∈Lk,+1

exp(− 1

2σ2
||y−Hx||2 + 1

2
bT
[k]LA,[k])

∑
b∈Lk,−1

exp(− 1

2σ2
||y−Hx||2 + 1

2
bT
[k]LA,[k])

, (14)

where Lk,+1
⋂
Bk,+1 is a list of candidate points x. The list L can be obtained by

neglecting the insignificant elements in B such that the K candidate points in L include
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x̂ML and 2MQ > K ≥ 1 [102]. This can be achieved for example with a list sphere

detector.

The approximation of the logarithm in LE(bk|y) can be calculated using a small

look-up table and the Jacobian logarithm [198]

jacln(a1,a2) := ln(ea1 + ea2) = max(a1,a2)+ ln(1+ exp(−|a1 −a2|)). (15)

The Jacobian logarithm in (15) can be computed without the logarithm or exponential

functions by storing r(|a1 −a2|) in a look-up table, where r(·) is a refinement of the

approximation max(a1,a2). Max-log approximation further simplifies (14) when the

refinement term is left out with negligible loss in performance. With these simplifications,

(14) can be written as

LE(bk|y) = max
b∈Lk,+1

{

− 1

2σ2
||y−Hx||2 + 1

2
bT
[k]LA,[k]

}

(16)

− max
b∈Lk,−1

{
1

2σ2
||y−Hx||2 + 1

2
bT
[k]LA,[k]

}

.

4.2 Linear detection and interference cancellation

4.2.1 LMMSE detection

The linear MMSE filter can be calculated as

W = (HHH+σ2IM)−1HH = G−1HH, (17)

where H is the channel matrix, σ2 is the noise variance, (·)H is the complex conjugate

transpose and IM is a M×M identity matrix. The received signal vector is then filtered

to obtain the equalized signals as

x̂MMSE = Wy. (18)

As discussed in Section 2.1.1, the LMMSE detector minimizes the mean square error

between the output x̂MMSE and the transmitted signal x. The LMMSE filter can also be

calculated using an extended channel matrix H ∈ C
(M+N)×N [199] as

W = (HHH)−1HH, (19)

where the extended channel matrix and received vector y ∈ C
(M+N) can be expressed as

H =

[

H

σIN

]

and y =

[

y

0N×1

]

(20)
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and 0N×1 denotes a vector of zeros. The equalized signals can then be obtained from

x̂MMSE = H+y, (21)

where (·)+ denotes the Moore-Penrose pseudo-inverse of the matrix [200]. The bias

in the LMMSE filter can be removed by W = BG−1HH [112], where B is a diagonal

matrix with i, ith element

Bi,i =
ρi +1

ρi

. (22)

The SINR on stream i can be calculated as [17]

ρi =
1

σ2G−1
i,i

−1. (23)

Matrix inversion

The matrix inversion required in the LMMSE filter calculation can be calculated with

different approaches. The direct approach is used for the 2×2 antenna system in this

work. The direct matrix inversion is calculated as

G−1 =
1

|G|

[

g2,2 −g1,2

−g2,1 g1,1

]

. (24)

The positive semi-definite nature of the matrix G in (17) simplifies the calculation of the

matrix inverse. The determinant |G| is a real valued and no complex division is required.

The direct approach can, however, be too complex for large matrices. The QR

decomposition can be utilized in the matrix inversion. Two methods are used to calculate

the LMMSE filter in this work. The squared Givens rotations (SGR) [201] are used for

calculating the inverse of G. The modified Gram-Schmidt algorithm [200] is employed

to perform a QR decomposition on the extended channel matrix H = QR, where

R ∈ C
(M+N)×N has orthonormal columns and R ∈ C

N×N is an upper triangular matrix.

The LMMSE filter is then obtained from

W = R−1QH. (25)

The modified Gram-Schmidt algorithm is described as Algorithm 1. The factorization

can also be performed with sorting in order to obtain an optimal detection order [202].

The sorted QRD (SQRD) can be used as a basis for interference cancellation in a
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V-BLAST architecture or instead of the conventional QRD used as preprocessing in tree

search algorithms.

Algorithm 1. Modified Gram-Schmidt

Input: H

Outputs: Q,R

Q = H

for i = 1, ...,N

normi = ||hi||2
end

for i = 1, ...,N

ri,i =
√

normi

q
i
= q

i
/ri,i

for j = i+1, ...,N

ri, j = qH
i

q
j

q
j
= q

j
− ri, jqi

norm j = norm j − r2
i, j

end

end

The SGR algorithm is used to calculate the inverse of G, after which the result has

to be multiplied with HH. The decomposition of the M×M matrix with squared Givens

rotations can be written as [201]

G = QAD−1
U UR, (26)

where QA = QDR ∈ C
M×M , DU = D2

R ∈ R
M×M , UR = DRR ∈ C

M×M and DR =

diag(R) ∈ R
M×M . Equation (18) can be rewritten as

QH
A Gx̂MMSE = QH

A HHy

DRQHGx̂MMSE = QH
A HHy

DRQHQDRD−1
U URx̂MMSE = QH

A HHy

D2
RD−2

R URx̂MMSE = QH
A HHy

x̂MMSE = U−1
R QH

A HHy, (27)
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where QA and UR are obtained with the SGR. Since UR is an upper triangular matrix, its

inversion can be obtained through back substitution or with an algorithm presented in

[203]. The latter was used in this work and the algorithm is presented as Algorithm 2.

Algorithm 2. Inversion of triangular matrix

Input: UR

Output: U−1
R

A = 0M×M

for i = 1, ...,M

Ai,i =
1
U Ri,i

end

for i = 1, ...,M−1

for j = i+1, ...,M

t = 0

for k = 1, ..., j−1

t = t +Ai,kURk, j

end

Ai, j =−tA j, j

end

end

U−1
R = A

LLR calculation

The log-likelihood ratios for the FEC decoder can be calculated with a soft demodulator

which takes as input the LMMSE equalizer outputs x̂MMSE , the equivalent channel

He = diag(WH) and the covariance of the residual interference N0 = He −HeHH
e . The

process of producing LLRs with the soft demodulator is described as Algorithm 3.
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Algorithm 3. Soft demodulation

Inputs: He,N0, x̂MMSE

Output: LLR

for k = 1, ...,N

for i = 1, ...,Q

s1 = s0 =−∞

for j = 1, ...,Ω

d = x̂MMSEk
−Hekx j

di = |d|2
lm =−di/N0k

if bi, j = 1

s1 = maxx(s1, lm)

else

s0 = maxx(s0, lm)

end

end

LLRki = s1 − s0

end

end

Function c = maxx(a,b)

if a > b

c = a+ log(1+ e−|a−b|)

else

c = b+ log(1+ e−|a−b|)

end

The LLRs can be calculated from the LMMSE equalizer outputs x̂MMSE as presented

in [112] by using an approximate log-likelihood criterion. Instead of calculating the

Euclidean distance between the LMMSE equalizer output and the possible transmitted

symbols as in Algorithm 3, Gray labeling of the signal points is exploited. This

reduces the latency and complexity but was shown to have only a minor impact on the

performance. The bit-metric approximations L̂(b j|x̂,W) in [112] are calculated as
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ρkΛ(b j, x̂) = min
x̃k∈X−1

k, j

|x̂k − x̃k|2 − min
x̃k∈X1

k, j

|x̂k − x̃k|2, (28)

where k = ⌊ j/Q⌋+1, X= {xk : b j = i} is the subset of hypersymbols {x} for which

the jth bit of label b is i and ρk is the SINR of layer k. Λ(b j, x̂) can be simplified by

considering x̂k in only one quadrature dimension given by j. The symbol mapping of

real symbols to LLR values with 64-QAM is shown in Figure 5. For example, the first

bit is one in the positive side of the axis and zero on the negative size. The LLR then

grows based on how far the symbol value is from zero. The same process applies to the

imaginary parts of the symbols.
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Fig. 5. The mapping of symbols to LLRs.

4.2.2 The SIC algorithm

Instead of jointly detecting signals from all the antennas, the strongest signal can be

detected first and its interference is cancelled from each received signal in the SIC

receiver. Then, the second strongest signal is detected and cancelled from the remaining

signals, and so on. The detection method is called successive nulling and interference
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cancellation [22], as discussed in Section 2.1.1. With the horizontal layering of the

encoded streams, the detected layers can be decoded separately. Therefore, decoding

can be performed only on the strongest layer first and on the remaining layers after

interference cancellation.

The soft SIC receiver is illustrated in Figure 6. The first layer is detected with the

LMMSE detector. The LLR block calculates LLRs from the LMMSE equalizer outputs.

The deinterleaved stream is decoded with a turbo decoder and symbol expectations are

calculated. The expectations are cancelled from the second layer, which is then decoded.

The layer detected in the first iteration is not updated during the second iteration.
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Fig. 6. The soft IC receiver ([62], published by permission of IEEE).

The weight matrix is calculated with the LMMSE algorithm. The layer for detection

can be chosen according to the post-detection SNR and the corresponding nulling vector

is chosen from the weight matrix W [22]. All the weight matrices in an OFDM symbol

are calculated and the layer to be detected is chosen according to the average over all the

subcarriers. The metric for the layer selection on the kth stream over the subcarriers can

be calculated as

γk =
P

∑
p=1

[(HH
p Hp +σ2I)−1]kk. (29)

The layers can then be ordered according to the magnitude of γk.

After the first iteration, the cancelled symbol expectation is used to update the

weight matrix. The weight matrix on the second iteration is calculated as

W = (E{x}E{x}∗hkhH
k +Hk(I− (E{x}E{x}∗)HH

k +σ2IM))−1hH
k , (30)

where hk is the kth vector from matrix H, k is the layer to be detected, Hk is matrix
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H with the vectors from previously detected layers removed and E{x} is the symbol

expectation.

The detected layer is decoded and symbol expectations from the soft decoder outputs

are calculated as [204]

E{x}= (
1

2
)Q ∑

xl∈Ω

xl

Q

∏
i=1

(1+bi,l tanh(LA(bi)/2)), (31)

where LA(bi) are the LLRs of coded bits corresponding to x and bi,l are bits corresponding

to constellation point xl . The expectation calculation in (31) can be simplified to the

form

E{x}re = sgn(LA(bi))S|tanh(LA(bi+2))|. (32)

The constellation point S is chosen from {1,3,5,7} depending on the signs of LA(bi+1)

and LA(bi+2).

4.3 Tree search algorithms

The search over the lattice points can be performed with a tree structure due to the QR

decomposition applied on the channel matrix. The sphere detector is a well known and

commonly used tree search based algorithm for MIMO detection. The SD algorithms

solve the ML solution with a reduced number of considered candidate symbol vectors as

stated in Section 2.1.2. They take into account only the lattice points that are inside a

sphere of a given radius. The condition that the lattice point lies inside the sphere can be

written as

||y−Hx||2 ≤C0. (33)

After QR decomposition of the channel matrix H in (69), it can be rewritten as

||y′−Rx||2 ≤C
′
0, (34)

where C
′
0 =C0 −||(Q′)Hy||2, y′ = QHy, R ∈ C

N×N is an upper triangular matrix with

positive diagonal elements, Q ∈ C
M×N and Q′ ∈ C

M×(M−N) are orthogonal matrices.

The squared partial Euclidean distance (PED) of xN
i , i.e. the square of the distance

between the partial candidate symbol vector and the partial received vector, can be

calculated as

d(xN
i ) =

N

∑
j=i

∣
∣
∣
∣
∣
y
′
j −

N

∑
l= j

r j,lxl

∣
∣
∣
∣
∣

2

, (35)
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where i = N . . . ,1, y
′
j is the jth element of y′, r j,l is the j, lth element of the matrix

R, xl is the lth element of the candidate vector xN
i and xN

i denotes the last N − i+1

components of vector x [86].

List sphere detectors can be used to approximate the MAP detector and to provide

soft outputs for the decoder [102]. A list of candidates L and their Euclidean distances

are used to calculate the a posteriori probabilities LD of the coded bits in bp.

A LSD structure is presented in Figure 7. The channel matrix H is first decomposed

as H = QR in the QR-decomposition block. The Euclidean distances between the

received signal vector y and the possible transmitted symbol vectors are calculated in

the LSD block. The candidate symbol list L from the LSD block is demapped to a

binary form. The LSD block can be substituted with any tree search algorithm that

produces a list of candidate symbols. The log-likelihood ratios are calculated from the

list of Euclidean distances in the LLR block. Limiting the range of LLRs reduces the

required list size [205].
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Fig. 7. The list sphere detector ([62], published by permission of IEEE).

4.3.1 The K-best LSD algorithm

The tree search can be performed in a breadth-first, depth-first or metric-first manner,

as discussed in Section 2.1.2. The breadth-first approach is considered in this thesis

because it can be easily pipelined and parallelized and provides a fixed detection rate.

The breadth-first K-best LSD can also be more easily implemented and provide the

high and constant detection rates required in the LTE. The K-best algorithm [88] is a

breadth-first search based algorithm, which keeps the K nodes which have the smallest

accumulated Euclidean distances at each level. If the PED is larger than the squared

sphere radius C0, the corresponding node will not be expanded. No sphere constraint is

assumed, i.e. C0 = ∞, but a set the value for K is used instead, as is common with the

K-best algorithms. The K-best algorithm without the sphere constraint can also be seen

as the M-algorithm [87]. The K-best LSD algorithm description is given as Algorithm 4.
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The main loop of the algorithm runs from i = 1, ...,2N in a real valued system.

Algorithm 4. The K-best LSD algorithm

Inputs: Q,R,y, C′
0, K, P (modulation used, P-QAM)

Preprocessing:

Calculate: y′

Algorithm:

for i = 1, ...,N

1. Denote the partial candidate by xN
i+1.

1.1 Determine all admissible candidate child nodes xi with given C′
0

and calculate the corresponding PEDs d(xN
i ).

1.2 Store the partial candidates and their PEDs to a temporary stack memory.

2. Sort the partial candidates according to their PEDs and store the K smallest PEDs

and the corresponding symbol vectors to the final list stack memory.

end

Give the candidates and their EDs as outputs.

The K-best tree search with no sphere constraint is illustrated in Figure 8. A list

size of two is assumed. The tree search proceeds level by level, expanding all the child

nodes of each parent node. If the number of child nodes exceeds the list size, sorting

is performed to find the K nodes with the smallest partial Euclidean distances. The

tree search starts from the top of the tree on the first level in the figure. Both nodes are

spanned, and on the second level, all the child nodes are spanned as well. Sorting is

performed to find the two nodes with the smallest PEDs. The tree search continues until

the fourth level is reached and the two leaf nodes with the smallest Euclidean distances

are given as output.

Enhanced tree search

The breadth-first tree search can be modified to decrease the latency. With the novel

search strategy [64], two or more PEDs can be calculated in parallel and the largest ones

are discarded. With 64-QAM, instead of having to sort 64 PEDs, there are only 32 PEDs

to be sorted on each level when two PEDs are calculated in parallel. On the first level,

the PEDs are calculated as with the original breadth-first search, as shown in Figure 9.
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Fig. 8. The K-best tree search.

On subsequent levels, half the nodes are discarded before sorting, as shown in the figure,

as lighter nodes.
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Fig. 9. The modified tree search ([62], published by permission of IEEE).

4.3.2 Selective spanning with fast enumeration

The selective spanning with fast enumeration algorithm [135] can also be thought of

as a breadth-first tree search algorithm. The algorithm spans each level of the tree

based on the node spanning vector m = [m1, ...,mM]. The number of spans for each

node on a level is specified with the element of m corresponding to that level. As the

spanned nodes are not discarded, the length of the final candidate list can be obtained by

multiplying the elements of m. For example, in a 2×2 antenna and 64-QAM system,
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the vector m = [64,8] would lead to a final candidate list of 512. For the same real

valued system, the vector m = [8,8,8,8] would lead to a final list size of 4,096. In

practice, smaller list sizes should be aimed at. In this work, a real valued system model is

used. Such a system model simplifies the Euclidean distance calculation and the slicing

operation as the closest constellation point selection can be done on a one dimensional

axis.

The PED on each level of the tree search can be calculated as

di(x
i) = di+1(x

i+1)+
∥
∥ei(x

i)
∥
∥

2
, (36)

where di+1(x
i+1) is the PED from the previous level and i = N, ...,1. The slicer unit

selects a set of closest constellation points xi, minimizing

∥
∥ei(x

i)
∥
∥

2
=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

y′i −
M

∑
j=i+1

ri, jx j

︸ ︷︷ ︸

bi+1(xi+1)

−ri,ixi

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

. (37)

Minimizing
∥
∥ei(x

i)
∥
∥2

is equivalent to the minimization of ‖ei(x
i)/rii‖2

∥
∥
∥
∥

ei(x
i)

ri,i

∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥

bi+1(x
i+1)/ri,i

︸ ︷︷ ︸

ε

−xi

∥
∥
∥
∥
∥
∥

2

. (38)

The closest constellation points based on ε are selected in the slicer unit.

The real valued axis for 64-QAM is shown in Figure 10. The slicing order given

ε is also depicted. If five constellation points are sliced, the slicer would select the

constellation points in the order of {5,3,7,1,−1}. The process is similar to the Schnorr-

Euchner enumeration (SEE). The SSFE algorithm could then be thought of as the

M-algorithm combined with SEE. The SSFE algorithm does not require sorting, which

makes it more attractive for implementation than the M-algorithm or the K-best detector.

The SSFE algorithm is summarized as Algorithm 5.
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Fig. 10. The slicing operation in SSFE with 64-QAM.

Algorithm 5. The SSFE algorithm

Inputs: Q,R,y, m, P (modulation used, P-QAM)

Preprocessing:

Calculate: y′

Calculate: hi = 1/Ri,i

Algorithm:

for i = 1, ...,N

1. Calculate ε for each candidate in xi

2. Slice the mi closest points

3. Calculate the PEDs to the sliced lattice points

end

Give the candidates and their EDs as outputs.

4.3.3 Tree search with interference cancellation

A system with two separately encoded streams in the 4×4 antenna case is assumed.

If MMSE-SIC is used, two strongest layers are cancelled from the other two layers

and only MMSE is used in separating the two strongest or weakest layers. This can

degrade the performance, especially in low rank channels. A tree search algorithm can

be used to separate the streams, which were not used for interference cancellation. In

the SSFE-SIC algorithm, the strongest stream is detected with the SSFE detector. The

LLRs are calculated from the final list and decoding is performed. The tree search has to

be performed for the whole received symbol vector in the first iteration to achieve a

sufficiently good performance. Symbol expectations can be calculated from the outputs

of the decoder as in (31). The symbol expectations are cancelled from the receiver

symbol vector with r = y−HE{x}. A partial tree search is performed on r in order to

separate the final two streams.
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4.4 Numerical throughput examples

4.4.1 Simulation model

The communication system, i.e. the transmission throughput performance of the SIC

detector, is compared to that of the K-best LSD and the LMMSE detectors. The

simulation parameters are based on the LTE standard [189] and are summarized in Table

3. In the horizontally encoded system, two data streams are encoded separately and then

mapped onto different layers. The strongest layer can be detected and decoded first

and then cancelled from the remaining layer. In the 4×4 antenna system, each of the

two streams is multiplexed onto two antennas; the first stream is multiplexed onto the

first and second antenna and the second stream onto the third and fourth antenna. The

most recent versions of the 3GPP LTE specifications also include the 2×2 vertically

encoded case, where a single code word is multiplexed onto two layers. In this scenario,

decoding of the layers cannot be performed separately.

The transmission throughput is calculated as the nominal information transmission

rate of information bits times (1−FER). A 5 MHz bandwidth was assumed in the

simulations. The signal-to-noise ratio represents Es/N0, where Es is the symbol energy.

Each SNR point includes transmission of 1,000 frames. Perfect channel state information

was assumed in the receiver. The number of turbo decoder iterations in the simulations

was eight. The typical urban (TU) channel [194, 196] with base station (BS) azimuth

spread of 2 or 5 degrees was applied. The channel with BS azimuth spread of 2 degrees

is denoted as a correlated channel and with 5 degrees as the moderately correlated

channel, as explained in Section 3.4. A spatially uncorrelated channel was considered as

well. Parameters of the used channel models were shown in Table 1.

Table 3. Simulation parameters.

Coding Turbo coding with 1/2 code rate

Channel model Typical urban

User velocity 30, 120 km/h

Number of subcarriers 512 (300 used)

Bandwidth 5 MHz

Symbol duration 71.4 µs
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4.4.2 2 × 2 MIMO system

The throughput performances of the LMMSE, SIC and K-best detectors with 4-QAM,

16-QAM and 64-QAM and two transmit and receive antennas are illustrated in Figures

11–13. The highly correlated TU channel is applied in Figure 11 and a spatially

uncorrelated channel in Figure 12; both figures assume horizontal encoding denoted as

H-BLAST. A moderately correlated channel and vertical coding (denoted as V-BLAST)

was assumed in Figure 13. A real valued signal model was assumed in the K-best LSD

and QRD of the channel matrix H with no sorting of the layers.
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Fig. 11. Data transmission throughput vs. SNR in a 2× 2 H-BLAST system and

correlated TU channel ([62], published by permission of IEEE).

The results in Figure 11 show that the K-best LSD outperforms the SIC receiver with

all modulations under high correlation. Only the 8-best LSD with 64-QAM performs

worse than the SIC in low SNRs. Using the turbo decoder outputs to update the LLRs in

the LSD receiver improves the performance by roughly 1 dB compared to the LSD

without any iterations. With 64-QAM, approximately the same performance is achieved

with 8-best and two iterations as with 16-best without iterations. Performing interference

cancellation improves the performance up to 4 dB compared to the LMMSE receiver.

Turbo decoding for the bit LLRs is performed once both in the SIC receiver and the

K-best receiver with no iterations. The iterative K-best LSD includes turbo decoding of

the bit LLRs twice.
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Fig. 12. Data transmission throughput vs. SNR in a 2× 2 H-BLAST system and

uncorrelated channel ([62], published by permission of IEEE).
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Fig. 13. Data transmission throughput vs. SNR in a 2× 2 V-BLAST system and

moderately correlated channel ([62], published by permission of IEEE).

The SIC receiver also outperforms the K-best LSD when the channel has no

correlation, as presented in Figure 12. With highly correlated channels, the initial

decisions in the SIC receiver are more likely to be incorrect, which is found to lead to

error propagation.

The SIC receiver improves the performance of the LMMSE receiver only very

marginally in the vertically encoded system, as illustrated in Figure 13. This is
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understandable and not surprising at all, because both layers have to be decoded before

soft interference cancellation can be performed. Thus, the SIC receiver provides no

benefit compared to the plain LMMSE receiver in the vertically encoded case, and it

will be considered for the horizontally encoded case only in the sequel. The K-best LSD,

on the other hand, performs similarly to the horizontally encoded case.

4.4.3 4 × 4 MIMO system

The data transmission throughput vs. SNR with four transmit and receive antennas

is presented in Figure 14. Two streams are encoded separately and the first stream is

multiplexed onto the first two antennas and the second stream onto the third and fourth

antenna [189]. Two iterations are performed with the SIC receiver. The symbols from

the strongest layers are detected and decoded first and then cancelled from the remaining

layers. The streams from the spatially multiplexed layers are separated only with the

LMMSE equalizer in the SIC receiver. Interference cancellation is performed only

between the two horizontally encoded streams. In the correlated TU channel, the K-best

LSD outperforms the SIC and LMMSE receivers. In the uncorrelated channel, the

difference in performance is smaller and the SIC receiver outperforms the K-best LSD.

This is due to the fact that the LMMSE detector is able to separate the MIMO streams

under low correlation and the feedback from the decoder is more likely to be correct.

With moderate correlation, the SIC performance is close to that of the K-best LSD. The

performance of the SIC receiver is worse in the 4×4 antenna case than in the 2×2 case

because cancellation is performed between the two streams and only LMMSE detection

is used in the vertically encoded streams. This is due to the encoding structure, which

was described in the beginning of Section 4.4.
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Fig. 14. Data transmission throughput vs. SNR in a 4× 4 system in (a) a highly

correlated (b) moderately correlated and (c) uncorrelated channel ([62], published

by permission of IEEE).
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4.4.4 Preprocessing, enhanced tree search and LLR

calculation

Different methods for the QRD in the tree search algorithms can be applied. The

basic QRD decomposes the channel matrix H, while the MMSE-QRD performs QR

decomposition on the extended channel matrix H. The MMSE-SQRD improves the

performance by including the noise term in the preprocessing. The sorted QRD sorts the

channel matrix according to its column norms while performing the QRD [110]. This

approach leads to an improved tree search order where the best layer is expanded first.

The SQRD can also be performed on the extended channel matrix to further improve the

performance. The FER performances of the different preprocessing approaches are

presented in Figure 15 in a 4×4 16-QAM case. The K-best LSD with the list sizes of 4,

8 and 16 was used as the tree search algorithm. Including the noise variance in the

preprocessing has a high impact on the performance. It can be seen from the fact that

the highest performance gain is obtained by the extended channel matrix. Sorting in the

QRD brings only a little additional gain. Also, the larger the list size, the lower the

impact of the preprocessing. With more complex preprocessing, even small list sizes can

be used.
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Fig. 15. FER vs. SNR in a 4×4 system in a highly correlated channel with different

QRD preprocessors.
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The impact of the enhanced tree search described in Section 4.3.1 on the performance

in a 2×2 64-QAM case is shown in Figure 16. It can be seen that the performance

degradation is minimal, but the detection rate will be doubled. The new strategy is the

most beneficial with high order modulations, when the nodes have several branches.

When a lower order modulation is used, the performance degrades more with the new

strategy because a smaller amount of bit combinations is included in the LLR calculation.
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Fig. 16. Data transmission throughput vs. SNR in a 2× 2 system in a highly cor-

related channel with the modified tree search ([62], published by permission of

IEEE).

The LLR calculation in the K-best LSD is simplified from (15) by leaving out

the refinement part from (15). The impact of using the simplified LLR calculation

is presented in Figure 17. The simplification has again only a small impact on the

performance. Comparison of implementation estimations showed that the complexity is

reduced approximately four times with the simplified LLR calculation. Also the SIC

receiver is simplified from using soft demodulation presented as Algorithm 3 for LLR

calculation compared to using the approximate log-likelihood criterion. The symbol

expectations are also calculated with (32).
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Fig. 17. Data transmission throughput vs. SNR in a 2×2 system in a highly corre-

lated channel with the simplified LLR calculation ([62], published by permission

of IEEE).

4.4.5 Performance comparison of K-best and SSFE

The performances of the tree search algorithms with different list sizes are compared in

Figures 18 and 19. The performance of the SSFE-SIC algorithm from Section 4.3.3 is

also shown. The SSFE node spanning vector m is shown in the figure for the first four

levels of the real valued tree search. In the last four levels, only one node is expanded.

The last value of m corresponds to the first level in the tree. A 4×4 antenna system

with 16-QAM and a correlated channel is assumed in Figure 18. There, the K-best with

the list size of 16 and 8-best with two iterations perform best. The performance of the

SSFE-SIC is degraded by the incorrect symbol decisions from the decoder feedback.

SSFE with one global iteration and a final list size of 12 has a performance difference of

almost 2 dB compared to the 8-best. The SSFE may not always find the best branches

on each level, but the K-best detector goes through all the child branches on a level and

finds the ones with the smallest distances. The SSFE detector also goes through only

one branch in the bottom levels of the tree.

A 4× 4 antenna system with 64-QAM and a moderately correlated channel is

assumed in Figure 19. The difference in performance is smaller than in the correlated
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Fig. 18. Data transmission throughput vs. SNR of K-best and SSFE in a correlated

channel with 4×4 16-QAM.

channel. The best performance is obtained with the SSFE-SIC algorithm with a

sufficiently large tree search size. Updating of the LLRs gives a good performance

with both K-best and SSFE. Even though the SSFE might be better suitable for

implementation, the performance of the SSFE is still worse than that of the K-best.

Therefore, as the K-best algorithm gives the most constant performance in most scenarios,

it will be the main tree search algorithm considered in the remainder of the thesis.

Nevertheless, detailed complexity comparisons are provided in Section 4.5.5.
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Fig. 19. Data transmission throughput vs. SNR of K-best and SSFE in a moder-

ately correlated channel with 4×4 64-QAM.

4.4.6 Performance with AMC

The performances of the receiver algorithms with adaptive transmission are compared in

this section. The capacity metric for adaptation is used, but several other metrics also

exist. The goal is to study the impact of adaptation on the performance of the receiver

algorithms and not to find the ideal adaptation metric, which is an open research topic.

In the simulations with AMC, a 5 MHz bandwidth was used and a correlated typical

urban channel with BS azimuth spread of 2 degrees was applied. The user velocity

was 30 km/h. The modulations used in the AMC scheme were QPSK, 16-QAM and

64-QAM and the code rates were 1/3, 1/2, 2/3, 3/4 and 4/5. The precoding matrices

from [189] were used. The transmission was adapted by calculating the capacity at

the receiver as in (6) and sending the suggested CQI to the transmitter. The extended

channel matrix is used in the QRD for the K-best detectors.

The performance of the LMMSE receiver in a 4×4 system with different fixed

modulation, coding schemes and transmission ranks is presented in Figure 20. The

throughput with adaptive modulation and coding and precoding is also shown. Precoding

improves the throughput from the fixed MCS upper bound up to 5 dB because it finds

the best precoding weights for the transmission streams. In the 2×2 antenna system, the

performance is not greatly improved with precoding.
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Fig. 20. Data transmission throughput vs. SNR with fixed MCSs and AMC with

precoding ([63], published by permission of IEEE).

The performance of the receiver algorithms with AMC is presented in Figure 21 in a

2×2 antenna case. The transmission was adapted to use mostly rank 1 transmission in

the lower SNRs. When rank 2 transmission is used, the K-best LSD receiver with a

list size of 8 performs the best and the LMMSE receiver has the worst performance.

Updating the LLRs from the decoder improves the performance of the K-best by 1 dB.

Since the transmission is already adapted to the channel, a better receiver does not give a

high gain in performance.
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Fig. 21. Data transmission throughput vs. SNR in a correlated 2×2 channel ([63],

published by permission of IEEE).
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The performance of the algorithms in a channel with less correlation than in Figure

21 is shown in Figure 22. The difference in performance is smaller when the channel

conditions are improved. The same was seen in the fixed modulation and code rate cases

earlier in the chapter. With lower correlation in the channel and transmission adapted

to the channel conditions, a simpler receiver also succeeds in separating the MIMO

streams.

−5 0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

Es/N0 [dB]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

2x2 H−BLAST, moderately correlated TU channel, 30 km/h user velocity, 5 MHz bandwidth

 

 

LMMSE

8−best

8−best, 2i iter.

SIC

Fig. 22. Data transmission throughput vs. SNR in a moderately correlated 2× 2

channel ([63], published by permission of IEEE).

The performance in a 4×4 antenna system is shown in Figure 23. The transmission

rank of the precoding matrix was one, two or four. The performances of the algorithms

are similar with rank one transmissions as in the 2×2 antenna system. With higher

SNRs and transmission rank, the performance improves with the more complex receivers.

The SIC receiver does not improve the performance much from the LMMSE in the high

SNRs when rank 4 transmission is used. This is partly due to the encoding structure

and the two strongest streams are cancelled from the other streams and only MMSE

is used to separate the remaining streams. However, the LSD receivers improve the

performance greatly with rank 4 transmission since a more advanced detector is needed

to separate the streams.

The performance difference of LMMSE and K-best in a 4×4 antenna system with

all the ranks from one to four is illustrated in Figure 24. The performance difference

between the receivers is smaller from Figure 23 when the additional rank is utilized in
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Fig. 23. Data transmission throughput vs. SNR in a 4× 4 system with AMC and

precoding with transmission ranks 1, 2 and 4 ([63], published by permission of

IEEE).

the transmission. However, there is still a several dB performance difference in the

higher SNRs. What is more, the adaptation process is more time consuming with all

transmission ranks. The capacity has to be calculated with 64 different combinations of

the precoding matrices and transmission ranks.
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Fig. 24. Data transmission throughput vs. SNR in a 4× 4 system with AMC and

precoding with transmission ranks 1-4.
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4.5 Implementation results

The theoretical complexity of the receivers with M = N is presented in Table 4, where

the number of multiplication and addition operations is specified. In the squared

Givens rotations (SGR) and the Gram-Schmidt based QRD, the division and square

root were approximated with additions and shifts [206]. The largest term in the SGR

comes from matrix multiplications and in the QRD from multiple iterations of vector

multiplications. The number of operations in the K-best algorithm depends on the list

size K. If K is larger than
√

|Ω|(l−1), it is used as K. In the first level l, the number of

multiplications is 2
√

|Ω| and additions
√

|Ω|. The LLR calculation operations for the

linear receivers depend on the modulation. The constant multiplications with a power of

2 were calculated as shifts. The number of multiplications is lower in the K-best LSD

than in the SIC with 4×4 QPSK. The number of multiplications in the K-best algorithm

increases with the list size and modulation. The modulation order does not have a major

impact on the complexity with the SIC receiver. The impact of this can be seen later in

the implementation results. The SIC receiver includes more multiplications than the

K-best algorithm with 4×4 QPSK and the implementation gate count is also higher.

With 64-QAM, the number of multiplications and gates is higher with the K-best.

As discussed in Section 2.4, the implementation results were generated with the

Catapult C HLS tool. The FPGA complexity results are presented in slices and dedicated

digital signal processing (DSP) slices. The DSP slices include an 18×18-bit multiplier.

The VHDL from Catapult C was synthesized to a Xilinx Virtex-5 FPGA with Mentor

Graphics Precision Synthesis. The ASIC results are presented in gate equivalents

(GE) and power consumption estimates. The Synopsys Design Compiler was used in

synthesizing the VHDL along with the UMC 0.18 µm complementary metal oxide

semiconductor (CMOS) technology.

Simulations were performed to confirm that the used word lengths did not result

in performance degradation compared to the floating point word lengths. The most

critical part in terms of word lengths in the detector is the preprocessing, i.e. the QRD or

LMMSE. Figure 25 includes simulation results for both the LMMSE detector and the

K-best LSD with the list size of 16. In the K-best, the word lengths in the tree search

and LLR calculation are 16 bits. The word lengths in the QRD are from 18 to 20 bits.

The LMMSE filter calculation was performed with the extended channel matrix as in

(19). The need to increase the word lengths in the LMMSE filter increases with the

SNR. The 26 bit word length in the division and square root operations and the 24 bit
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Table 4. The theoretical complexity of the receivers as numbers of arithmetic op-

erations ([62], published by permission of IEEE).

Block Multiplications Additions

(HHH+σ2IM) 4M3

SGR (Q,R) 4M3+4.5M2+7.5M-12

MMSE-QRD (Q,R) 2M(16M3 −6M2 +M+5) 32M4 −20M3 +62M2 +86M

R inverse ∑
M−1
j=1 j2

R−1QH 8M3

Detection 4M2 3M2 −M

LLR (MMSE/SIC) [2|8|16]M MQ/4

Expectation calc. 4M

SIC 2M2 +4M 4M2 −M

QRD 2M(8M3 −2M2 +3M+1) 16M4 −12M3 +66M2 +86M

Matrix-vector mult. 4M2 4M2 −2M

K-best LSD
2M

∑
l=2

K
√

|Ω|(l +1) K
2M

∑
l=2

√

|Ω|(l +1)

LLR (K-best) K QM+32

word length in the matrix elements is enough for the lower SNRs, but higher word

lengths are required for the higher SNRs. However, the high SNRs may not be feasible

in the LMMSE detector and a compromise can be used to lower the complexity of the

LMMSE filter while maintaining a good performance in the lower SNRs.

4.5.1 Preprocessing

Preprocessing of the channel matrix is utilized in every detector type in this thesis. The

LMMSE and SIC detectors require the LMMSE filter calculation and the tree search

detectors need the results from the QR decomposition of the channel matrix. Two

preprocessing methods were considered in Section 4.2. The SGR based QRD is used for

the LMMSE coefficient calculation and the Gram-Schmidt algorithm is employed to

perform the QRD on the channel matrix. The Gram-Schmidt process is also utilized in

the LMMSE filter calculation for the extended channel matrix.

A simplified architecture for the SGR based LMMSE filter calculation is presented

in Figure 26. The dashed rectangle represents M/2(M−1) iterations with the operations
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Fig. 25. Data transmission throughput vs. SNR with 4×4 64-QAM fixed point arith-

metics.

inside the rectangle. After the iterations, the outputs QA and UR are used to calculate the

final coefficient matrix W. The upper triangular matrix UR is inverted, after which the

coefficient matrix is obtained as W = U−1
R QH

A HH.

+� 1/x *
�

σ²

Matrix 

mult.* 1/x
�

�

�

�

Matrix 

mult.

�A*

INV
�R Matrix 

mult.

Matrix 

mult.
�

M/2(M�1)

�R
�1

Fig. 26. Architecture of the SGR based calculation of the LMMSE filter.

The architecture of the Gram-Schmidt (GS) QRD is shown in Figure 27. The

column norms of the channel matrix H are calculated first. The following process is

then iterated 2M times in the case of real valued signal model. The square root and

division operations are performed on one norm value in each iteration. The elements
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of matrix R and columns of matrix Q are updated with the multiply and accumulate

(MAC) operations. The number of MAC operations is 2M with the channel matrix H

and 4M with the extended channel matrix H. The updating of R and Q is iterated as

j = i+1, ...,2M for each outer iteration i. The iterations increase the latency of the GS

QRD unless several intermediate registers are added and the architecture is copied into

several stages. If the architecture is used for the LMMSE filter calculation, a matrix

multiplication and an inversion of R is added.

Norms
� √‾ 1/x * MAC MAC MAC

�

�

2M
i=1,...,2M

2M

�

j=i+1,...,2M

Fig. 27. Architecture of the Gram-Schmidt based QRD.

The implementation results for the 4×4 antenna system preprocessing are shown

in Table 5. The table includes implementation results for the Gram-Schmidt QRD

in the 8×8 real valued channel matrix and the 8×16 real valued extended channel

matrix cases and for the SGR QRD of the complex valued 4×4 channel matrix. Also,

the blocks for inversion of the upper triangular matrices and matrix multiplications

are included. The word lengths in the GS QRD are from 18 to 20 bits and from 20

to 26 bits for the extended channel matrix. The high word length requirement and

increased number of iterations in the extended GS QRD double the power consumption

compared to the QRD with the regular channel matrix. The word lengths for the SGR

are from 18 to 20 bits as in [187], but some scaling is assumed. However, the numerical

accuracy is more problematic with the SGR LMMSE filter and the GS method is utilized

in the sequel. When the implementation latencies are roughly the same, the power

consumption of the GS LMMSE is higher. A faster SGR was also implemented in the

case of the need to calculate all the coefficient matrices before starting the SIC detection.

However, it is assumed in the sequel that only a portion of the LMMSE coefficient

matrices are needed to determine the SIC detection order and that the order remains

the same for a few channel coherence periods. Thus, the GS based QRD is used for

preprocessing in the LMMSE, SIC and K-best detectors.
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Table 5. The 4×4 preprocessing ASIC implementation results.

Block Gates Power Clock Latency Throughput

GS QRD 248.7 k 210.5 mW 125 MHz 175 cc 176 cc

GS QRD 380 k 237 mW 124 MHz 85 cc 40 cc

GS QRD ext. 350.3 k 440 mW 97 MHz 505 cc 504 cc

R−1 38.3 k 41.2 mW 100 MHz 455 cc 456 cc

Matrix mult. 26.4 k 39.9 mW 140 MHz 258 cc 256 cc

SGR QRD 443 k 260 mW 137 MHz 404 cc 400 cc

SGR U−1
R QH

A HH 26.2 k 36.3 mW 140 MHz 258 cc 256 cc

SGR QRD 399.5 k 550 mW 124 MHz 63 cc 40 cc

SGR U−1
R QH

A HH 84.7 k 126.2 mW 140 MHz 45 cc 40 cc

Total: GS LMMSE 415 k 522 mW 97 MHz 1218 cc 504 cc

Total: SGR LMMSE 469.2 k 296 mW 137 MHz 662 cc 400 cc

Total: SGR LMMSE 484 k 676 mW 124 MHz 108 cc 40 cc

4.5.2 K-best LSD

The K-best LSD receiver includes the QRD block, the K-best LSD block and the LLR

calculation block. The QR decomposition block is based on the modified Gram-Schmidt

QRD algorithm from [110]. Ordering of the channel matrix is not utilized in the

architecture. The top level architecture of the K-best LSD for a 2×2 antenna system is

shown in Figure 28. The 4×4 antenna system LSD is based on the same architecture,

but four more PED calculation blocks and sorters are added to the design.

The K-best LSD architecture is modified from [66]. A 2×2 and a 4×4 antenna

system with a real signal model [207] is assumed. The received signal vector y is

multiplied with matrix Q in the matrix multiplication block. Matrix R is multiplied

with the possible transmitted symbols after the QRD is performed, i.e. when the

channel realization changes. Partial Euclidean distances between the last symbol in

vector y′ and possible transmitted symbols are calculated in block PED1 in a 2× 2

antenna system with d(x2
4) = ||y′

4 − r
′
4,4||2. The resulting lists of symbols and PEDs

are not sorted at the first stage. The distances are added to the partial Euclidean

distances d(x2
3) = ||y′

3 − (r
′
3,3 + r

′
3,4)||2 calculated in the PED2 block. The lists are

sorted and K partial symbol vectors with the smallest PEDs are kept. PED3 block
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calculates d(x2
2) = ||y′

2 − (r
′
2,2 + r

′
2,3 + r

′
2,4)||2, which are added to the previous distance

and sorted. The last PED block calculates the partial Euclidean distances d(x2
1) =

||y′
1 − (r

′
1,1 + r

′
1,2 + r

′
1,3 + r

′
1,4)||2. After adding the previous distances to d(x2

1), the lists

are sorted and the final K symbol vectors are demapped to bit vectors and their Euclidean

distance is used in the LLR calculation.
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Fig. 28. The top level architecture of the 2× 2 K-best LSD ([62], published by per-

mission of IEEE).

The modified K-best LSD tree search was used in the implementation in most of

the 64-QAM results. The architecture of the second stage parallel Euclidean distance

calculation and insertion sorting is illustrated in Figure 29. Two PEDs are calculated in

parallel and the smallest one is added to the list. The latency of each stage is then halved

from that of the original K-best tree search.
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Fig. 29. Parallel PED calculation and sorting ([62], published by permission of

IEEE).

The 2×2 FPGA implementation results are shown in Table 6 for the preprocessing,

Table 7 for the K-best tree search and Table 8 for the LLR calculation. The 4×4 FPGA

implementation results are presented in Table 9 for the preprocessing, Table 10 for the

tree search and Table 11 for the LLR calculation. Seven 18 Kbit BRAMs are needed to

store the results of the QRD in a 5 MHz bandwidth. In the iterative 2×2 64-QAM

16-best LSD, additional 9 BRAMs are needed to store the list and LLRs from the
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previous iteration. The ASIC implementation results are shown in Table 12 for the 2×2

preprocessing, Table 13 for the K-best tree search and Table 14 for the LLR calculation.

The 4×4 ASIC implementation results are presented in Tables 15, 16 and 17.

The latency and throughput of each block is expressed in clock cycles (cc). The

throughput cycles express the number of cycles after which the block can take a new

input, i.e. the pipelined throughput of the block. The QRD was scheduled to be

performed in the channel coherence time so that 1,200 subcarriers would be processed

during the coherence period. Assuming that the preprocessing can be performed at a

different clock frequency than the detection, the maximum velocity for the 2×2 FPGA

results would be almost 300 km/h. The velocity can be calculated as

v =
3.6 fclockc

P fct pc

, (39)

where fclock is the clock frequency, c is the speed of light, P is the number of subcarriers,

fc is the center frequency and t pc is the number of throughput cycles. The maximum

velocity in the 4× 4 FPGA case would then be 95 km/h. The velocities for the

preprocessing implemented with the ASIC technology would be 312 km/h in the 2×2

case and 213 km/h in the 4×4 case given a 100 MHz clock frequency. However, the

QRD could be clocked at a higher clock frequency.

The word lengths for the K-best LSD and LLR calculation are mainly 16 bits and

computer simulations have been performed to confirm that there is no performance

degradation [64]. The sorters are insertion sorters. The list size values of 16 and 8 are

used in the implementation. The sorters have 16 or 8 registers in which the smallest

Euclidean distances are kept during the sorting depending on the list size. A full list is

used in the 2×2 QPSK case and no sorting is required. This decreases the complexity

of the detector. The LSD is the timing bottleneck in the receiver. The QRD has the

highest latency, but it is performed only once in the channel coherence time. The list

L from the first iteration is used in calculating the LLRs in the second iteration. The

non-iterative LLR block has the same latency as the K-best block.

The LLR calculation block was designed both for the iterative and non-iterative

receiver. Using the decoder soft outputs in calculating the LLRs adds to the complexity.

An iterative receiver would include both the LLR block and the iterative LLR block. The

iterative LLR block was designed to have the same latency as the LLR block without

iterations. However, the latency of the decoder would reduce the data rate of the iterative

receiver. If extra iterations are not needed, only one LLR block would be included in the

receiver.
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Table 6. The 2×2 Preprocessing FPGA implementation results.

Block Slices DSPs Clock Latency Throughput

QRD 1136 5 139 MHz 174 cc 175 cc

1/σ2 45 1 157 MHz 27 cc 28 cc

4-QAM Rx 151 5 159 MHz 10 cc 11 cc

16-QAM Rx 351 6 137 MHz 23 cc 25 cc

64-QAM Rx 652 6 136 MHz 47 cc 49 cc

Table 7. The 2×2 K-best FPGA implementation results.

Modulation K Slices DSPs Clock Latency Throughput

4-QAM 16 372 12 206 MHz 22 cc 16 cc

16-QAM 16 771 5 189 MHz 151 cc 32 cc

64-QAM 8 1080 15 189 MHz 320 cc 32 cc

64-QAM 16 2427 15 194 MHz 293 cc 64 cc

Table 8. The 2×2 LLR FPGA implementation results.

Modulation K Slices DSPs Clock Latency Throughput

Non-iter.

4-QAM 16 171 1 206 MHz 35 cc 16 cc

16-QAM 16 247 1 194 MHz 48 cc 32 cc

64-QAM 8 330 1 194 MHz 48 cc 32 cc

64-QAM 16 346 1 195 MHz 125 cc 64 cc

Iter.

4-QAM 16 196 1 209 MHz 35 cc 16 cc

16-QAM 16 284 1 216 MHz 49 cc 32 cc

64-QAM 8 403 1 194 MHz 49 cc 32 cc

64-QAM 16 425 1 209 MHz 126 cc 64 cc
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Table 9. The 4×4 Preprocessing FPGA implementation results.

Block Slices DSPs Clock Latency Throughput

QRD 2243 14 96 MHz 377 cc 378 cc

1/σ2 45 1 157 MHz 27 cc 28 cc

4-QAM Rx 568 17 137 MHz 36 cc 37 cc

16-QAM Rx 1242 1 93 MHz 73 cc 75 cc

64-QAM Rx 2319 36 104 MHz 40 cc 40 cc

Table 10. The 4×4 K-best FPGA implementation results.

Modulation K Slices DSPs Clock Latency Throughput

4-QAM 8 1800 12 192 MHz 177 cc 16 cc

16-QAM 16 2131 12 183 MHz 315 cc 32 cc

16-QAM 16 3909 12 129 MHz 564 cc 64 cc

64-QAM 8 3016 24 180 MHz 320 cc 32 cc

64-QAM 16 7116 22 220 MHz 607 cc 64 cc

Table 11. The 4×4 LLR FPGA implementation results.

Modulation K Slices DSPs Clock Latency Throughput

Non-iter.

4-QAM 8 233 1 211 MHz 34 cc 16 cc

16-QAM 8 412 1 194 MHz 48 cc 32 cc

16-QAM 16 423 1 170 MHz 124 cc 64 cc

64-QAM 8 485 1 184 MHz 53 cc 32 cc

64-QAM 16 594 1 211 MHz 125 cc 64 cc

Iter.

4-QAM 8 233 1 183 MHz 34 cc 16 cc

16-QAM 8 517 1 183 MHz 49 cc 32 cc

16-QAM 16 542 1 190 MHz 126 cc 64 cc

64-QAM 8 750 1 157 MHz 49 cc 32 cc

64-QAM 16 788 1 149 MHz 126 cc 64 cc
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Table 12. The 2×2 Preprocessing ASIC implementation results.

Block Gates Power Clock Latency Throughput

QRD 39.5 k 36.1 mW 150 MHz 119 cc 120 cc

1/σ2 3 k 5 mW 150 MHz 30 cc 31 cc

4-QAM Rx 6.5 k 8.3 mW 100 MHz 10 cc 11 cc

16-QAM Rx 13.7 k 15.4 mW 100 MHz 21 cc 23 cc

64-QAM Rx 24 k 37.1 mW 100 MHz 35 cc 37 cc

Table 13. The 2×2 K-best ASIC implementation results.

Modulation K Gates Power Clock Latency Throughput

4-QAM 16 33.8 k 162 mW 280 MHz 19 cc 16 cc

16-QAM 8 97 k 341 mW 280 MHz 304 cc 32 cc

16-QAM 8 125 k 454 mW 280 MHz 180 cc 16 cc (P)

64-QAM 8 150 k 551.4 mW 280 MHz 311 cc 32 cc (P)

64-QAM 16 217.2 k 717.3 mW 280 MHz 592 cc 64 cc

Table 14. The 2×2 LLR ASIC implementation results.

Modulation K Gates Power Clock Latency Throughput

Non-iter.

4-QAM 16 10.9 k 43.7 mW 280 MHz 37 cc 16 cc

16-QAM 8 11.3 k 44.7 mW 280 MHz 65 cc 32 cc

64-QAM 8 14.4 k 57.4 mW 280 MHz 65 cc 32 cc

64-QAM 16 17 k 66 mW 280 MHz 129 cc 64 cc

Iter.

4-QAM 16 10.8 k 42.2 mW 280 MHz 37 cc 16 cc

16-QAM 8 12.5 k 53.5 mW 280 MHz 69 cc 32 cc

64-QAM 8 15.9 k 71.3 mW 280 MHz 66 cc 32 cc

64-QAM 16 18.8 k 78.3 mW 280 MHz 130 cc 64 cc

93



Table 15. The 4×4 Preprocessing ASIC implementation results.

Block Gates Power Clock Latency Throughput

QRD 249 k 211 mW 125 MHz 175 cc 176 cc

1/σ2 3 k 5 mW 150 MHz 30 cc 31 cc

4-QAM Rx 14 k 17.3 mW 100 MHz 20 cc 40 cc

16-QAM Rx 30 k 36 mW 100 MHz 37 cc 40 cc

64-QAM Rx 23 k 22.8 mW 100 MHz 43 cc 40 cc

Table 16. The 4×4 K-best ASIC implementation results.

Modulation K Gates Power Clock Latency Throughput

4-QAM 16 33.8 k 162 mW 280 MHz 19 cc 16 cc

16-QAM 8 97 k 341 mW 280 MHz 304 cc 32 cc

16-QAM 8 125 k 454 mW 280 MHz 180 cc 16 cc (P)

16-QAM 16 148.4 k 500 mW 280 MHz 557 cc 64 cc

64-QAM 8 150 k 551.4 mW 280 MHz 311 cc 32 cc (P)

64-QAM 16 217.2 k 717.3 mW 280 MHz 592 cc 64 cc

Table 17. The 4×4 LLR ASIC implementation results.

Modulation K Gates Power Clock Latency Throughput

Non-iter.

4-QAM 8 11.8 k 51 mW 280 MHz 35 cc 16 cc

16-QAM 8 17.3 k 68 mW 280 MHz 65 cc 32 cc

16-QAM 16 20.2 k 79 mW 280 MHz 129 cc 64 cc

64-QAM 8 21.1 k 87 mW 280 MHz 65 cc 32 cc

64-QAM 16 24.5 k 96.6 mW 280 MHz 129 cc 64 cc

Iter.

4-QAM 8 12.5 k 54.7 mW 280 MHz 36 cc 16 cc

16-QAM 8 20.9 k 90.7 mW 280 MHz 69 cc 32 cc

16-QAM 16 23.9 k 99.7 mW 280 MHz 133 cc 64 cc

64-QAM 8 29.1 k 130 mW 280 MHz 67 cc 32 cc

64-QAM 16 32.1 k 138 mW 280 MHz 131 cc 64 cc

94



4.5.3 Soft interference cancellation

The SIC receiver consists of a LMMSE detector, a LLR calculation block, a symbol

expectation calculation block and an interference cancellation block, as presented in

Figure 6. The top level architecture of the LMMSE detector for a 2×2 antenna system

is presented in Figure 30. The channel matrix H is first multiplied by its complex

conjugate transpose and the noise variance σ2 is added to the diagonal elements. The

resulting 2×2 matrix G is positive definite and symmetric. This simplifies the matrix

inversion, which is performed by dividing the elements with the determinant, switching

the diagonals and negating the off-diagonal elements. The determinant is real valued

and the off-diagonal elements are complex conjugates. Therefore, fewer operations are

needed.
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Fig. 30. The top level architecture of the 2×2 LMMSE detector ([62], published by

permission of IEEE).

The architecture for the real part of the symbol expectation calculation in the

16-QAM case is presented in Figure 31. The imaginary part is calculated in parallel in

the same manner from LLRs LA(bi) and LA(bi+2) from the decoder. The lookup table

(LUT) is used to find the tanh value.
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Fig. 31. The architecture of the symbol expectation calculation ([62], published by

permission of IEEE).
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The complexity of the SIC receiver for a 2×2 system is presented in Table 18 with

an FPGA implementation and in Table 20 using ASIC technology. The word lengths

were determined with computer simulations. In symbol expectation and LLR calculation

blocks, the word lengths range from 6 to 16 bits. In the LMMSE block, word lengths up

to 22 bits were used. In addition, four 18-kbit block RAMs are used to store the channel

matrix H and the received symbol vector y and a BRAM is used in the interleaver. The

LLR calculation block also includes detection, i.e. multiplying the received signal with

the weight matrix W and another block for only LLR calculation in the SIC receiver.

The clock frequency in the ASIC implementation is 100 MHz and the minimum clock

frequency is 126 MHz in the FPGA implementation. The clock frequency on FPGA is

limited by the used implementation tools. Higher clock frequencies could be obtained

on FPGAs with some optimization.

The complexity of the SIC receiver for a 4×4 system is presented in Table 19 for

the FPGA implementation and in Table 21 for the ASIC implementation. The LMMSE

detector is the most complex part of the receiver taking 94 percent of the slices and

almost 69 percent of the gates. The LMMSE detector is based on the Gram-Schmidt

QRD of the extended channel matrix and the LMMSE filter is obtained as in (25). The

number of BRAMs needed to store the channel matrix, the weight matrix W and the

received signal is eleven. There are two LLR calculation blocks in the receiver in order

to perform the first and second iteration in parallel. The decoder is not included in the

total complexity.

The LLR calculation block produces Q(N/2) bit LLRs in the given latency period.

N/2 symbol expectations for a subcarrier are calculated in the given period. The

latencies in the ASIC implementation were set to achieve the detection rates needed to

process the data according to LTE time frames in a 20 MHz bandwidth. 20 MHz is the

maximum bandwidth in LTE, but lower bandwidths, such as the 5 MHz bandwidth used

in the simulations, are also possible.

96



Table 18. The 2×2 SIC FPGA implementation results.

Block Modulation Slices DSPs Clock Latency Throughput

LMMSE - 698 13 126 MHz 62 cc 63 cc

LLR 4-QAM 23 12 238 MHz 2 cc 1 cc

LLR 16-QAM 41 26 165 MHz 4 cc 1 cc

LLR 64-QAM 106 40 155 MHz 5 cc 1 cc

Symbol exp. 4-QAM 3 2 100 MHz 1 cc 1 cc

Symbol exp. 16-QAM 8 2 100 MHz 2 cc 1 cc

Symbol exp. 64-QAM 27 2 138 MHz 3 cc 1 cc

SIC - 48 16 135 MHz 2 cc 1 cc

Table 19. The 4×4 SIC FPGA implementation results.

Block Modulation Slices DSPs Clock Latency Throughput

LMMSE - 8509 43 139 MHz 2074 cc 982 cc

LLR 4-QAM 72 40 180 MHz 2 cc 1 cc

LLR 16-QAM 112 66 148 MHz 4 cc 1 cc

LLR 64-QAM 243 96 155 MHz 5 cc 1 cc

Symbol exp. 4-QAM 11 4 704 MHz 2 cc 1 cc

Symbol exp. 16-QAM 29 4 347 MHz 2 cc 1 cc

Symbol exp. 64-QAM 53 20 138 MHz 3 cc 1 cc

SIC - 165 43 149 MHz 3 cc 1 cc
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Table 20. The 2×2 SIC ASIC implementation results.

Block Modulation Gates Power Clock Latency Throughput

LMMSE - 48 k 40 mW 100 MHz 60 cc 40 cc

LLR 4-QAM 12.4 k 30 mW 100 MHz 6 cc 3 cc

LLR 16-QAM 18.6 k 33 mW 100 MHz 11 cc 3 cc

LLR 64-QAM 30.3 k 45 mW 100 MHz 9 cc 3 cc

Symbol exp. 4-QAM 488 0.58 mW 100 MHz 1 cc 2 cc

Symbol exp. 16-QAM 1335 1.2 mW 100 MHz 2 cc 2 cc

Symbol exp. 64-QAM 3521 3.2 mW 100 MHz 2 cc 2 cc

SIC - 17.5 k 22.3 mW 100 MHz 5 cc 3 cc

Table 21. The 4×4 SIC ASIC implementation results.

Block Modulation Gates Power Clock Latency Throughput

LMMSE - 415 k 522 mW 134 MHz 1218 cc 504 cc

LLR 4-QAM 35.9 k 82.6 mW 100 MHz 6 cc 3 cc

LLR 16-QAM 45.8 k 91 mW 100 MHz 12 cc 3 cc

LLR 64-QAM 72.6 k 114 mW 100 MHz 7 cc 3 cc

Symbol exp. 4-QAM 664 0.56 mW 100 MHz 1 cc 1 cc

Symbol exp. 16-QAM 2346 1.2 mW 100 MHz 1 cc 1 cc

Symbol exp. 64-QAM 3146 2.2 mW 100 MHz 1 cc 1 cc

SIC - 59 k 72 mW 100 MHz 5 cc 3 cc

4.5.4 Latency and receiver comparison

The processing latency of a receiver can be expressed as

Drec = Ddet +(DLLR +Ddec)Niter, (40)

where Ddet is the latency of the detector, DLLR is the latency of LLR calculation, Ddec is

the latency of the decoder and Niter is the number of iterations. LLR calculation and

decoding can be performed simultaneously and in a pipelined manner with detection

and their latency does not have to be included in the throughput latency. In an iterative
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receiver, the throughput latency is determined by the minimum of Ddet and DLLR +Ddec.

The detection rate of a receiver can be calculated as

QN

Drec
, (41)

where Q is the number of bits per symbol and N is the number of transmit antennas.

The timing of the K-best receiver is shown in Figure 32. The detector and the LLR

calculation are pipelined and have the same throughput period. The iterative LLR

calculation can begin after the code block has been decoded. It can be performed

simultaneously with the detection of the next code block. A code block size of 6,144

bits was assumed in the latency calculations.
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Fig. 32. The timing and latencies in the K-best receiver with 4×4 16-QAM.

The timing of the SIC receiver is illustrated in Figure 33, where the block latencies

are presented in clock cycles. The throughput period is shown as the time after processing

of the next subcarrier can begin. The weight matrices are calculated when the channel

realization changes, i.e. once in the channel coherence time. It is assumed that not all

the weight matrices have to be included in the decision on the layer to be detected and

that the layer order will remain the same for several channel realizations. The latency of

the LMMSE receiver does not depend on the modulation. The latency of turbo decoding

is included in the total latency estimate and it is calculated from the results given in

[208], where the decoding rate is 1.28 Gb/s. The turbo decoder limits pipelining in

the SIC receiver in a way that all the subcarriers have to be decoded before moving

to the symbol expectation calculation. The LLR1 block includes detection and LLR

calculation and it can start to process the next OFDM symbol while the second layer in

the previous symbol is being calculated.

A summary of the implementation results on FPGA is presented in Table 22 for

a 2× 2 antenna system and in Table 23 for a 4× 4 system. The detection rate of
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Fig. 33. The timing and latencies in the SIC receiver with 4×4 16-QAM ([62], pub-

lished by permission of IEEE).

each detector and the required rate for an LTE system are also presented. In the LTE

specifications, a 0.5 ms slot has been allocated for 7 or 6 (depending on the length of

the cyclic prefix length) OFDM symbols [189]. In a 20 MHz bandwidth, each OFDM

symbol contains 1,200 subcarriers. A part of the subcarriers is reserved for pilot symbols

that do not have to be detected. In a 2×2 system, roughly 10 percent of the subcarriers

in a slot are pilot symbols and in a 4×4 system, more than 16 percent of the subcarriers

contain pilot symbols. The required detection rates are then calculated from the data

subcarriers. Any other control signal or other overhead is not included in the required

rates. The FPGA results were generated to take full advantage of the platform and the

clock frequencies and detection rates are as high as possible with the given platform and

algorithm. The K-best detection rate is restricted by the sorting in the algorithm. The

LMMSE and SIC receivers have a higher detection rate than necessary. Several K-best

detectors could be used in parallel to achieve the required detection rate.
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Table 22. The 2×2 receiver FPGA complexity and throughput.

Modulation Slices DSPs Clock Det. rate Req. rate

LMMSE 4-QAM 713 23 126 MHz 252 Mbps 60 Mbps

SIC 4-QAM 772 43 126 MHz 210 Mbps 60 Mbps

16-best 4-QAM 1875 24 206 MHz 51.5 Mbps 60 Mbps

LMMSE 16-QAM 722 30 126 MHz 504 Mbps 121 Mbps

SIC 16-QAM 795 65 126 MHz 361 Mbps 121 Mbps

8-best 16-QAM 2550 18 189 MHz 47.3 Mbps 121 Mbps

8-best iter. 16-QAM 2762 18 189 MHz 45.5 Mbps 121 Mbps

LMMSE 64-QAM 755 37 126 MHz 756 Mbps 182 Mbps

SIC 64-QAM 879 79 126 MHz 476 Mbps 182 Mbps

8-best 64-QAM 3243 28 180 MHz 67.5 Mbps 182 Mbps

16-best 64-QAM 4606 28 194 MHz 36.4 Mbps 182 Mbps

Available 8160 288

Table 23. The 4×4 receiver FPGA complexity and throughput.

Modulation Slices DSPs Clock Det. rate Req. rate

LMMSE 4-QAM 8566 79 139 MHz 612 Mbps 115 Mbps

SIC 4-QAM 8758 130 139 MHz 406 Mbps 115 Mbps

8-best 4-QAM 4889 52 192 MHz 96 Mbps 115 Mbps

LMMSE 16-QAM 8589 92 139 MHz 1.2 Gbps 230 Mbps

SIC 16-QAM 8815 156 139 MHz 615 Mbps 230 Mbps

8-best 16-QAM 6073 29 183 MHz 91.5 Mbps 230 Mbps

8-best iter. 16-QAM 6516 29 183 MHz 85.4 Mbps 230 Mbps

16-best 16-QAM 7863 29 129 MHz 32.3 Mbps 230 Mbps

LMMSE 64-QAM 8655 107 138 MHz 1.6 Gbps 345 Mbps

SIC 64-QAM 5970 202 138 MHz 721 Mbps 345 Mbps

8-best 64-QAM 8108 76 180 MHz 135 Mbps 345 Mbps

8-best iter. 64-QAM 8782 76 157 MHz 107.8 Mbps 345 Mbps

16-best 64-QAM 12317 74 211 MHz 79 Mbps 345 Mbps

Available 8160 288
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The ASIC implementation results are summarized in Table 24 for the 2×2 antenna

system and in Table 25 for the 4×4 case. The LMMSE and SIC receiver were designed

to have a 100 MHz clock frequency. They achieve the required detection rates in most

cases. Based on the synthesis results, the SIC receiver could be easily clocked with a

higher frequency in order to achieve the required rates. The K-best detector has a 280

MHz clock frequency, but it achieves the required rates only with the lower modulation

orders. In the other cases, the number of tree search and LLR blocks would have to be

doubled to achieve the required rates. The (P) in the table denotes the parallel K-best

detector presented in Section 4.3.1. The iterative K-best receivers include two LLR

calculation blocks. One block calculates the LLRs on the first iteration and the other

block uses the feedback from the decoder. Decoding latency of two code words is

included in detection rate results of the iterative K-best. The SIC receivers include the

decoding latency of one code block in the detection rate results. The complexities of

the different receivers do not differ greatly, but the power consumption of the K-best

detector can be higher due to the higher clock frequency.
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Table 24. The 2×2 receiver ASIC complexity and throughput.

Modulation Gates Power Clock Det. rate Req. rate

LMMSE 4-QAM 57.2 k 61.3 mW 100 MHz 66.7 Mbps 60 Mbps

SIC 4-QAM 78.3 k 92.6 mW 100 MHz 63.3 Mbps 60 Mbps

16-best 4-QAM 93.6 k 254 mW 280 MHz 70 Mbps 60 Mbps

LMMSE 16-QAM 60.2 k 64.3 mW 100 MHz 133 Mbps 121 Mbps

SIC 16-QAM 85.4 k 96.7 mW 100 MHz 120.7 Mbps 121 Mbps

8-best 16-QAM 105 k 238 mW 280 MHz 70 Mbps 121 Mbps

8-best iter. 16-QAM 112 k 273 mW 280 MHz 68.1 Mbps 121 Mbps

8-best (P) 16-QAM 116 k 287 mW 280 MHz 140 Mbps 121 Mbps

LMMSE 64-QAM 65.9 k 72.5 mW 100 MHz 200 Mbps 182 Mbps

SIC 64-QAM 99.3 k 110.6 mW 100 MHz 172.9 Mbps 182 Mbps

8-best (P) 64-QAM 137.5 k 326 mW 280 MHz 105 Mbps 182 Mbps

16-best (P) 64-QAM 161 k 404 mW 280 MHz 52.5 Mbps 182 Mbps

Table 25. The 4×4 receiver ASIC complexity and throughput

Modulation Gates Power Clock Det. rate Req. rate

LMMSE 4-QAM 444.5 k 587 mW 100 MHz 133 Mbps 115 Mbps

SIC 4-QAM 511 k 662 mW 100 MHz 120.7 Mbps 115 Mbps

8-best 4-QAM 367.3 k 604 mW 280 MHz 140 Mbps 115 Mbps

LMMSE 16-QAM 451 k 598 mW 100 MHz 266.7 Mbps 230 Mbps

SIC 16-QAM 522 k 686 mW 100 MHz 220.7 Mbps 230 Mbps

8-best 16-QAM 397 k 661 mW 280 MHz 140 Mbps 230 Mbps

8-best iter. 16-QAM 400.3 k 684 mW 280 MHz 126 Mbps 230 Mbps

LMMSE 64-QAM 459 k 607 mW 100 MHz 400 Mbps 345 Mbps

SIC 64-QAM 550 k 710 mW 100 MHz 304.7 Mbps 345 Mbps

8-best (P) 64-QAM 448 k 877 mW 280 MHz 210 Mbps 345 Mbps

16-best (P) 64-QAM 518.4 k 1052 mW 280 MHz 105 Mbps 345 Mbps

The performance, complexity and power consumption of the LMMSE, SIC and

K-best are further illustrated in Figures 34 and 35. The goodput was defined to be the

lesser of the detection rate and transmission throughput. Even though the information
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transmission rate of the K-best detector is higher than that of the SIC or LMMSE,

the hardware detection rate of a single detector is lower. The number of detectors

was increased to achieve the required rates, but this resulted also in an increase in the

complexity and power consumption. The results in Figures 34 and 35 are very similar.

In some cases, the SIC detector achieves a higher goodput with a lower amount of power

consumption than the K-best detector. The complexity, however, can be very close to

that of the 8-best detector. This can also be calculated from the theoretical complexity in

Table 4. The power consumption results may differ from the theoretical results due to

the different clock frequencies. The LMMSE has the lowest power consumption, but it

may not achieve any goodput in difficult channel conditions. It can be seen that the

16-best detector has a very high complexity and power consumption, while the goodput

is at the same level as with the 8-best. The 8-best provides a fair amount of goodput in

all scenarios.
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Fig. 34. Complexity-performance trade-off in a 4×4 antenna system.

4.5.5 SSFE and K-best comparison

The complexity and performance of two tree search algorithms are compared. The

performance of the algorithms was discussed in Section 4.4.5. The complexity results

for the SSFE and K-best detectors are presented in Table 26 in the 16-QAM case and in

Table 27 in the 64-QAM case. The SSFE list size is 12 and the node spanning vector

is [3,2,2,1,1,1,1,1] as in the simulation results. The clock frequency of the detectors
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Fig. 35. Power consumption-performance trade-off in a 4×4 antenna system.

was 280 MHz except for the 64-QAM SSFE where only a 269 MHz clock frequency

was achieved. In the receiver with two global iterations, the tree search is performed

only once and the complexity is the same as with one iteration. However, the LLR

calculation is different in the two cases as the feedback from the decoder is used in the

iterative detector. Decoding reduces the detection rate in the iterative receiver. The

8-best detector has a lower complexity and power consumption than the SSFE in the

16-QAM case, but the detection rate is also lower. The power consumption is also lower

in the 64-QAM case, but the detection rate of the SSFE is higher. The higher list size of

the SSFE increases its complexity and power consumption. The SSFE-SIC from Section

4.3.3 was not implemented as it required a high list size to perform well. Therefore, the

complexity would be too high compared to the achievable performance gain.
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Table 26. Implementation results with 4×4 16-QAM.

Receiver Gates Power Detection rate

Tree search LLR Tree search LLR

SSFE 135.2 k 19 k 488.9 mW 79 mW 186 Mbps

SSFE, 2 it. 135.2 k 34.6 k 488.9 mW 158 mW 163 Mbps

8-best 97 k 17.3 k 341.5 mW 68.3 mW 140 Mbps

8-best, 2 it. 97 k 33.1 k 341.5 mW 140.5 mW 126 Mbps

16-best 148.4 k 20.2 k 499.6 mW 79.2 mW 70 Mbps

Table 27. Implementation results with 4×4 64-QAM.

Receiver Gates Power Detection rate

Tree search LLR Tree search LLR

SSFE 177.4 k 25.7 k 568.6 mW 110.5 mW 269 Mbps

SSFE, 2 it. 177.4 k 50.4 k 568.6 mW 236.7 mW 222 Mbps

8-best 183.7 k 21.5 k 551.4 mW 87 mW 210 Mbps

8-best, 2 it. 183.7 k 45.2 k 551.4 mW 197.9 mW 180 Mbps

16-best 217.2 k 24.5 k 717.3 mW 96.6 mW 105 Mbps

The complexity-performance trade-off is illustrated in Figure 36. The goodput i.e.

the minimum of the transmission throughput and hardware detection rate of information

bits in a 20 MHz bandwidth with a 1/2 code rate, is compared to the hardware complexity.

The K-best with list size of 16 has a high complexity and low goodput. The goodput

of the SSFE with two global iterations is close to that of the 8-best with one iteration

with 16-QAM, but has a higher complexity. With 64-QAM, SSFE with two iterations

achieves the highest goodput. Extra iterations do not bring any benefit with the K-best

tree search as the detection rate is low. Even though the SSFE algorithm does not

include sorting, the slicing operation induces extra complexity compared to the K-best

algorithm and the difference between the two tree search algorithms remains small.
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4.5.6 Receiver adaptation

Architecture

The architecture of the QRD and MMSE calculation for an N ×N MIMO system is

presented in Figure 37. The QRD of the matrix is calculated with an algorithm which

produces a unitary matrix Q. The input matrix is either the extended channel matrix H or

the matrix used in the capacity and SINR calculations. The same QRD architecture can

be used for both matrices. For example, the Gram-Schmidt process [209] presented in

Section 4.2 without column reordering can be used for the QRD. Part of the multipliers

can be turned off when calculating capacity because the input matrix is smaller than the

extended channel matrix. Another option is to extend the capacity/SINR matrix with

zeros and then the QRD architecture can be used in exactly the same way as with the

extended channel matrix. The capacity is obtained by multiplying the diagonal elements

of R and taking the logarithm from the product. The SINR for stream n is found by

calculating the inverse of the diagonal element (n,n) of matrix W.

The decision on the modulation and coding scheme can be obtained by summing the

SINR or capacity of the subcarriers in an OFDM symbol and using a lookup table to

select the modulation, code rate and transmission rank based on the sum. The calculation

of QRD and capacity can be time interleaved as they are not performed in each frame

but in the channel coherence time. If precoding is used, multiplying the channel matrix
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with different precoding matrices is added to the left side of the architecture. A separate

block can be added to calculate the rank 1 and 2 capacities as matrix inversion is not

necessary.
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Fig. 37. Architecture of the capacity and MMSE/QRD calculation ([63], published

by permission of IEEE).

Implementation results

The LMMSE, SIC and K-best LSD receivers were designed to operate with an adaptive

modulation scheme in a 2×2 and a 4×4 antenna system. Therefore, the receivers can be

used with QPSK, 16-QAM and 64-QAM. The decoder is not included in the complexity

results, but a high throughput turbo decoder [208, 210] can be used to achieve the LTE

decoding rate requirement.

The complexities in gate equivalents of the preprocessing, detection and LLR

calculation are presented in Table 28 for the 2×2 system and Table 29 for the 4×4

system. The clock frequency was 280 MHz with the K-best LSD and 100 MHz with the

other receivers and preprocessing. In the 2×2 case, the MMSE was calculated with the

direct matrix inversion and the QRD with the Gram-Schmidt algorithm. The QRD was

the most complex block. The latency of the block is the time after which processing of

the next input can start. The preprocessing latency can be higher than the detection

latency as it has to be performed when the channel realization changes. In the 4×4

system, the QRD is one of the most complex blocks. An 8×16 real valued extended

channel matrix is used as an input to the QRD. As the direct matrix inversion for MMSE

weight matrix calculation would be more complex in the 4×4 system, the QRD of the

extended channel matrix is used to calculate the weight matrix as presented in (19). The
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word lengths of the different receivers are mostly 16 bits. In the QRD, some larger inner

word lengths were used and if the QRD is used for capacity calculation, the inputs are

scaled as the capacity values are larger than the channel values.

Table 28. The 2×2 implementation results for adaptive receiver.

Receiver Block Complexity Power Latency

(Gates) (mW) ns

QRD (Gram-Schmidt) 66.6 k 35.1 400

MMSE (direct matrix inversion) 48 k 40 400

Detection and LLR 17.1 k 12.8 10

SIC 19.6 k 24.5 40

4-best LSD 31.7 k 120.6 114

8-best LSD 51.3 k 198 114

LLR for 4-best 12.6 k 50 114

LLR for 8-best 14.4 k 57.4 114

LLR it. for 8-best 18.7 k 79.6 114

Table 29. The 4×4 implementation results for adaptive receiver.

Receiver Block Complexity Power Latency

(Gates) (mW) ns

QRD (Gram-Schmidt) 179.8 k 116 4480

R−1 (for MMSE) 43.5 k 31.9 3420

Matrix mult. (for MMSE) 29 k 31.4 3200

Detection and LLR 31 k 33.7 50

SIC 86.3 k 88.7 40

4-best LSD 78.3 k 322.8 114

8-best LSD 126.6 k 496 114

LLR for 4-best 18.2 k 74.5 114

LLR it. for 4-best 41.4 k 216.9 114

LLR for 8-best 21 k 86.2 114
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The total complexity and power consumption of the receivers are presented in

Tables 30 and 31. The K-best LSD has the highest complexity. In the 2×2 system, the

complexity of the SIC receiver is much lower even though the performance is close to

that of the K-best LSD.

Table 30. Complexity and decoding rate of 2×2 adaptive receivers.

Receiver Complexity Power consumption Max. det. rate

(Gates) (mW) (Mbps)

LMMSE 59.5 k 52.4 600

SIC 84.7 k 77.3 134

4-best 130 k 229 105

8-best 151.7 k 314 105

8-best, 2 it. 156 k 368 97

The difference in complexity between the receivers is smaller in the 4×4 case than

in the 2×2 case. Calculating the MMSE weight matrix W takes almost 90 percent of the

gate equivalents in the LMMSE receiver in the 4×4 case. The 2×2 system allowed

some simplifications in the implementation and cannot be straightforwardly scaled to all

other antenna configurations. The 4×4 implementation could be also scaled to larger

antenna configurations.

Table 31. Complexity and decoding rate of 4×4 adaptive receivers.

Receiver Complexity Power consumption Max. det. rate

(Gates) (mW) (Mbps)

LMMSE 283.3 k 213 240

SIC 369.6 k 302 202

4-best 305 k 538 210

4-best, 2 it. 329 k 681 180

8-best 356.5 k 723 210

If precoding is used, the complexity of the receiver is increased. The capacity has

to be calculated for the sixteen possible precoding matrices in LTE with the different

precoding matrix ranks. For rank 4 transmission, the capacity is the same for all
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precoding matrices and it has to be calculated only once. The QRD can be used to

calculate the determinant, as shown in Figure 37. The matrix multiplications and the low

rank determinant calculations add still another 82 k gates to the complexity, as shown in

Table 32. Without precoding, the capacity calculations are simpler and most of the

complexity comes from the HHH matrix multiplication.

Table 32. Complexity of precoding in a 4×4 system ([63], published by permission

of IEEE).

Block Complexity Power

(Gates) (mW)

Capacity with precoding 81.9 k 39.2

Capacity without precoding 32 k 36

4.6 Discussion

The theoretical complexities of the algorithms were presented. The complexity of the

K-best algorithm is close to that of the SIC algorithm with low order modulations, but

the difference is greater with higher modulations. The implementation results in Section

4.5 support the theoretical results in Table 4: the receivers have similar complexities

with low order modulations, but the complexity of the K-best LSD increases with

the modulation order. The LMMSE calculation was implemented as a direct matrix

inversion in the 2× 2 case, which made the SIC less complex even with low order

modulations.

Comparison of both performance and implementation to literature can be difficult

as the used channel models, methods and the implementation technologies may be

different. Many of the implementations in the literature consider an uncoded system or

an uncorrelated channel, where also simple receivers perform well, which can lead to

different parameters in the implementation. Also, the word length requirements may

vary with different system setups. The parameters used may have even a higher impact

on the preprocessing, i.e. the LMMSE filter or the QRD. Depth-first sphere detector

implementations in the literature usually report an SNR dependent throughput, which

makes the implementation comparison more challenging. The use of a HLS tool in this

work also results in an unfavorable comparison to hand-coded results.
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The Givens rotation based QRD in [120] uses smaller word lengths than the QRD

implementation in this work. The complexity is roughly 100 k gates smaller, but the

power consumption is higher by 100 mW. The latency of the QRD is, however, much

smaller than that in this work. An MMSE receiver was implemented in [116]. The

complexity and power consumption are much higher than those in this work, however,

the detection rate is also higher. Nevertheless, a lower detection rate was aimed for in

this work.

The hard-output l2-norm K-best detectors in [211] have a lower complexity, but were

implemented with different list sizes and CMOS technology from our work. Other norms

were also used in [211] for the Euclidean distance calculation to avoid the squaring

operation in the l2-norm, yet since they were not used in this work as they also have an

impact on performance, their implementation is not comparable. The complexity of the

receiver increases by roughly 30 percent both in [211] and this work when the list size is

doubled. However, the detection rate decreases almost five times in [211], whereas it is

only halved in our work. An implementation of a radius adaptive K-best detector was

presented in [128]. The complexities of the 64-QAM K-best detectors are similar to

those in this work, yet the power consumption is much lower. This can also be due to the

different implementation technology. The hard-output K-best detector with on demand

node expansion was implemented in [129]. A different implementation technology

was used, but the gate count and power consumption were smaller than those in this

work. The soft output K-best implementation in [103] with a list size of 5 in a 4×4

16-QAM system has almost a three times lower throughput and half the complexity

of our implementation with a list size of 8. A soft output K-best detector is presented

in [124]. It achieves a 50 Mb/s throughput with 4×4 64-QAM, list size of 256 and a

silicon area of 20 mm2. In conclusion, numerous existing detection implementations

can be found, but a meaningful quantitative comparison in terms of performance and

complexity is difficult. Therefore, the performance and complexity of several detection

algorithms was compared in this work.

The performance-complexity trade-off of the ASIC implementations in a 2× 2

16-QAM in a correlated channel is summarized in Table 33 and in the 4×4 16-QAM

case in Table 34. The detection rates of the receivers are almost the same and enough to

reach 121 Mbps in the 2×2 case and 230 Mbps in the 4×4 case. Even though the

detection rate of the LMMSE receiver is high, the performance degradation in terms of

reliable transmission throughput is considerable, in particular at the cell edge, where the

available SNR is often low. The term goodput was defined to be the minimum of the
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hardware detection rate times the 1/2 code rate and the transmission rate of information

bits over the 20 MHz bandwidth times (1−FER).

The LMMSE receiver would require almost 10 dB more transmit power in order to

achieve the goodput of the K-best LSD, but the power consumption is much higher with

the K-best LSD. The SIC receiver does not achieve the goodput of the K-best LSD, but

has a much lower complexity. In the 4×4 antenna case, the SIC and LMMSE receivers

do not give much goodput at lower SNRs, yet all the receivers have a high goodput

when the SNR is high enough. If the channel is less correlated, the receivers have a

more similar performance and less transmit power is needed to achieve a high goodput.

The SIC receiver produces the most bits per gate equivalent in the 2×2 antenna system,

but in the 4×4 system, the K-best LSD is the most efficient. A part of the performance

degradation of the SIC receiver in the 4×4 antenna system is due to the encoding of

the streams, which leads to interference cancellation being performed between two

layer pairs and the two layer pairs being separated only by the LMMSE equalizer. The

SIC receiver would still provide a higher goodput than the LMMSE receiver with a

lower power consumption than the K-best LSD, thus, offering a compromise between

performance and complexity.

Table 33. The performance-complexity trade-off with 2×2 16-QAM.

Receiver Complexity Power Goodput Goodput

(Gates) mW at 16 dB at 20 dB

LMMSE 60 k 64 0.3 Mb/s 15.7 Mb/s

SIC 85 k 97 6.2 Mb/s 49.4 Mb/s

8-best 170 k 274 17.4 Mb/s 67.3 Mb/s

8-best, 2 iter. 173 k 458 32.4 Mb/s 69.8 Mb/s
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Table 34. The performance-complexity trade-off with 4×4 16-QAM.

Receiver Complexity Power Goodput Goodput

(Gates) mW at 24 dB at 28 dB

LMMSE 451 k 598 0.1 Mb/s 84.4 Mb/s

SIC 522 k 686 20.6 Mb/s 133.7 Mb/s

8-best 545 k 1112 113.4 Mb/s 140 Mb/s

8-best, 2 iter. 576 k 1257 128 Mb/s 140 Mb/s

As a final illustration of the performance-complexity trade-off, the required transmit

power to satisfy the rate and quality requirements is considered in a simple example case.

As the LMMSE and SIC receivers reach their maximum throughput at higher SNRs

than the K-best receiver, the transmit power needs to be higher to obtain the highest

data rates. The following example case illustrates the distance at which the maximum

data rates can be achieved with the different receivers. The power efficiency of the

transmitter in transmit power/transmission rate in a 4×4 antenna system with a 20 MHz

bandwidth is presented in Figure 38. The needed transmit power was obtained from

LF +NR +SNR+FM, where LF is the free space path loss 20log(4πd/λ ), NR is the

receiver noise floor (kT B + receiver noise figure of 6 dB) and FM is a 30 dB fade margin

(λ is the wavelength, d is the distance from the base station, k is Boltzmann’s constant,

T is the temperature [K] and B is the bandwidth). The SNR is the signal strength at the

receiver required to achieve the maximum goodput. A simple path loss model without

shadowing or reflections was chosen for simplicity. The required transmit power of the

LMMSE receiver is at least twice of that of the K-best LSD. The transmit energy per

bit grows with the modulation order and is the same with 64-QAM K-best LSD and

16-QAM LMMSE. The K-best LSD can receive data reliably from a higher distance

than the SIC or LMMSE receiver with a fixed transmit power. With 4×4 64-QAM,

the LMMSE receiver can receive data at only very short distances with a reasonable

transmit power. Therefore, a more complex receiver is needed to receive data from also

larger distances.

The previous performance-complexity trade-off results assumed that there is no

channel state information at the transmitter. With full or partial transmitter channel state

information, low mobility appropriate feedback schemes combined with transmitter

precoding could change the conclusions. Therefore, the impact of adaptive modulation
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Fig. 38. The transmitter energy consumption per reliably transmitted bit versus

the propagation distance ([62], published by permission of IEEE).

and coding with transmission rank adaptation on the performance of different receiver

algorithms was studied in Section 4.5.6. The complexities and goodput of the LMMSE,

SIC and K-best receivers in a 2×2 antenna system with AMC are summarized in Table

35. The performance differences are smaller with AMC than with fixed modulation and

coding schemes. In the low SNRs, the performances of the receivers are similar, but

when the transmission rank is increased at the high SNRs, the more complex receivers

give a higher goodput. The situation is similar in the 4× 4 antenna system, but the

differences at high SNRs are larger. A reconfigurable architecture could be used, where

a low complexity receiver in the low SNRs and a more complex receiver in the high

SNRs would provide the highest goodput with the least amount of power.

Table 35. The 2×2 performance-complexity trade-off.

Receiver Gates Goodput at 4 dB Goodput at 28 dB

LMMSE 60 k 21.9 Mb/s 89 Mb/s

SIC 121 k 30.1 Mb/s 103.2 Mb/s

4-best 193 k 26.5 Mb/s 100.6 Mb/s

8-best 237 k 29.3 Mb/s 113.6 Mb/s

8-best, 2 it. 245 k 30.7 Mb/s 123.4 Mb/s
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5 Channel estimation in MIMO-OFDM systems

In this chapter, performance of the LS, MMSE and SAGE channel estimation algorithms

is studied using the LTE pilot symbol structure as a benchmark. The fast fading

or high mobility scenario with insufficient pilot symbol density and the high pilot

overheads from the MIMO pilot symbols are the two main issues considered. The SAGE

channel estimator is used in the iterative receiver to improve the performance when

the pilot symbol density is too low, i.e. in high velocity cases. MMSE filtering is also

used in between pilot symbols to improve the channel estimates and the performance

is compared to that of the SAGE estimator. The throughput can be increased by

replacing some of the pilot symbols with data symbols and using the SAGE algorithm

to compensate for the performance loss caused by the decreased pilot density. The

theoretical complexity of the channel estimation algorithms is presented and some

complexity-performance trade-off aspects of the SAGE algorithm are considered. The

architecture and implementation results in gate counts and power consumption for the

pilot symbol based LS, MMSE and the DD SAGE channel estimators are presented

for the 2×2 and 4×4 antenna systems. For a more energy efficient solution, a longer

latency for the channel estimator is considered. The impact of generating a timely

channel estimate for the detector on the performance and complexity is then discussed.

The main contributions of this chapter are the implementation of data aided and

decision directed channel estimation algorithms and evaluating the applicability of

the channel estimation algorithms for mobile MIMO-OFDM systems with different

pilot symbol densities. Although different channel estimation algorithms have been

proposed, only few implementations of channel estimation algorithms can be found in

the literature. Furthermore, the latency of decision directed channel estimation has not

been previously considered. Thus, these are the main themes of this chapter.

The channel estimation algorithms are introduced in Section 5.1. The performances

of the algorithms with different channel models are compared in Section 5.2 and some

complexity reducing alterations and latency issues are discussed in Section 5.3. The

implementation results are presented in Section 5.4 and Section 5.5 includes discussion

on the results. The performances of the LS and SAGE algorithms were compared in

[67], where the latency of the SAGE estimator was also discussed. The implementation

results and the simulation results presented in Section 5.2 have not been previously
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published.

5.1 Channel estimation algorithms

The system model was introduced in Section 3.1 and the signal model for channel

estimation in Section 3.3. The receiver structure is presented in Figure 39. The LS

channel estimator is used in calculating the channel estimates from pilot symbols. The

received signal vector is transformed into frequency domain before the LS channel

estimation. The LS channel estimate can be filtered with an MMSE filter. The channel

impulse response result from the LS or MMSE estimator has to be transformed into

frequency domain for the detector with the second fast Fourier transform (FFT). The

DD SAGE channel estimator can be used in addition to the LS estimator. The pilot

based LS estimator provides initial channel estimates for the SAGE algorithm. The

soft symbols are calculated from the decoder outputs as in (31) in Chapter 4 and are

transformed into time domain for the SAGE channel estimator. The SAGE channel

estimator also takes the time domain received signal as input. The hard outputs from

the decoder are not considered for channel estimation as the soft information better

represents the reliability of the decision.

Detection π
	1

Decoding

π
Soft 

decisions
IFFT

FFT LS FFT

SAGE
ĥ

o

Optional decision directed addition

Ĥ

MMSE

Fig. 39. The receiver structure.

5.1.1 LS channel estimation

The LS estimate of the channel can be calculated as

ĥLS
mR

(n) = (FHXH(n)X(n)F)−1FHXH(n)ymR
(n), (42)

where X contains the pilot symbols or if used in a DD mode, the symbol decisions. The

calculation of the LS channel estimate from the pilot symbols is simple as the matrix
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inversion can be calculated in advance and the only calculation to be performed in real

time is multiplication with the received signal. When using the LS estimator in a DD

mode, the NL×NL matrix inversion induces a high computational complexity.

5.1.2 MMSE channel estimation

In order to exploit the time domain correlation of the channel and to take into account

the impact of the noise, the LS channel estimate can be filtered with an MMSE filter [74]

ĥMMSE
mR,mT ,l

(n) = WH
mR,mT ,l

(n)ĥLS
mR,mT ,l

, (43)

where the LS channel estimate vector for the lth tap from the mT th transmit antenna to

the mRth receive antenna

ĥLS
mR,mT ,l

= [ĥLS
mR,mT ,l

(n1)...ĥ
LS
mR,mT ,l

(nNP
)]T ∈ C

NP×1 (44)

contains the LS channel estimates from the duration of the filtering window. NP is the

number of OFDM symbols with pilot symbols in a filtering window and mT = 1, ...,N

and mR = 1, ...,M are the transmit and receive antenna indices. The MMSE filtering

vector WmR,mT ,l(n) is [156]

WmR,mT ,l(n) = Σ−1
ĥLS

mR ,mT ,l

ΣH
mR,mT ,l

, (45)

where the cross-covariance matrix between hmR,mT ,l(n) and ĥLS
mR,mT ,l

is

ΣmR,mT ,l = [ρ(n−n1)...ρ(n−nNP
)]Σhl

(46)

and the auto-covariance matrix is

ΣĥLS
mR ,mT ,l

=







ρ(n1 −n1) · · · ρ(n1 −nNP
)

...
. . .

...

ρ(nNP
−n1) · · · ρ(nNP

−nNP
)







ΣhmR ,mT ,l
+Σw. (47)

The noise covariance matrix Σw = σ2I ∈ R
NP×NP , ΣhmR ,mT ,l

= E(h∗mR,mT ,l
hmR,mT ,l) and

ρ(n−n′) is the temporal correlation between the channel taps, which depends on the lag

n−n′ between time indices n and n′ [156]. In order to avoid the calculation of the spatial

correlation Σhl
, it can be left out from (46) and (47). This only has a minor impact on the

performance, as presented in Section 5.2. It also enables the use of precalculated MMSE
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filter coefficients, where the predetermined values for σ2 and user velocity are used.

The coefficients can be calculated for a set of σ2 and velocity values and the coefficients

closest to the estimated values can be used. Since ρ(n−n) = 1 and Σw contains σ2 on

its diagonal, the precalculated coefficients can be obtained by substituting the known

values in (45). The MMSE filter coefficients can be then precalculated as







1+σ2 · · · ρ(n1 −nNP
)

...
. . .

...

ρ(nNP
−n1) · · · 1+σ2







−1





ρ(n−n1)
...

ρ(n−nNP
)






, (48)

where the temporal correlation is distributed according to Jakes’ model and can be

written as

ρ(n−n′) = J0(2π fd(n−n′)TB) (49)

and J0 denotes the zeroth-order Bessel function of the first kind, fd is the Doppler

frequency and TB is the OFDM symbol duration.

5.1.3 SAGE channel estimation

The EM algorithms consist of an expectation and a maximization step. The "complete"

data is estimated in the expectation step and the channel estimate is updated in the

maximization step. The frequency domain SAGE algorithm provides an iterative

solution of the decision directed LS estimate in (55). The time domain SAGE algorithm

[212] can be used to avoid the matrix inversion required with non-constant envelope

modulations in FD SAGE channel estimator. The time domain received signal o is

viewed as the "incomplete" data and z as the "complete" data, which is iteratively

updated along with the channel estimate ĥmT ,mR,l(n). The time domain SAGE algorithm

calculates the channel estimates with iterations

ẑ
(i)
mT ,mR,l

= ẑ
(i)
mT ,mR,l

+[omR
−

MT

∑
m′

T=1

L−1

∑
l′=0

ẑ
(i)

m′
T ,mR,l′

] (50)

ĥ
(i+1)
mT ,mR,l

(n) =
x̄H

mT ,l
ẑ
(i)
mT ,mR

(n)

x̄H
mT ,l

x̄mT ,l
(51)

ẑ
(i+1)
mT ,mR,l

(n) = x̄mT,l
ĥ
(i+1)
mT ,mR,l

(52)
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ẑ
(i+1)
m′′

T ,mR,l′′
(n) = ẑ

(i)

m′′
T ,mR,l′′

. (53)

The channel estimator is initialized with the channel estimate ĥ
(0)
mT ,mR,l

from the previous

OFDM symbol as

ẑ
(0)
mT ,mR,l

(n) = x̄mT,l
ĥ
(0)
mT ,mR,l

. (54)

5.2 Performance comparison

The simulation parameters are presented in Table 36 and the vehicular channel model

parameters [213] in Table 1 in Section 3.4. Alternatively, a Winner channel model was

used [195]. The Winner channel parameters were presented in Table 2. The detector

used in the simulations is a K-best list sphere detector [88] with the list size of 8 in the

2×2 antenna system and 16 in the 4×4 antenna system. The user velocities of 50 km/h

and 100 km/h were assumed, where the corresponding Doppler frequencies were 111

Hz and 222 Hz.

Mitigation of inter-carrier interference (ICI) caused by very high mobile velocities

is out of the scope of this work. The remaining frequency offset after frequency

synchronization may be modeled with increased noise at the receiver [214]. Furthermore,

the algorithms considered in this thesis are not among the most suitable algorithms for

very high velocities where the ICI would be the most dominant.

The throughput can be increased by using half of the LTE reference signals along

with the decision directed channel estimation. The pilot symbols are then transmitted

only in the first OFDM symbol in a slot and data is transmitted instead of pilot symbols in

the other OFDM symbols which is denoted in the figures as 1 pilot. Channel estimation

can be performed over several slots, but this degrades the performance in high velocity

scenarios.

In the following simulation results, LS channel estimation is used on the OFDM

symbols with pilot symbols and the SAGE algorithm is used on the OFDM symbols

without reference signals. The performance of the SAGE algorithm with transmitted

data as the feedback, i.e. genie aided SAGE algorithm, is also shown in the figures.

With the genie aided mode, pilots are transmitted in one OFDM symbol per slot where

the LS estimator is used in estimating the channel. The MMSE channel estimator is

precalculated with the velocity of 70 km/h and the SNR of 26.5 dB in the 4×4 antenna

system and 16.5 dB in the 2×2 antenna case as they were found to be suitable for most

of the simulation cases. MMSE filtering is performed over one slot with the LTE pilot
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structure and over two slots with pilots in only one OFDM symbol as the MMSE filter

needs at least two channel estimates to perform well. The filtering window is shifted

when a new channel estimate is available from the LS estimator in order to obtain the

most current estimates. This also decreases the latency from the case where channel

estimation is performed on the whole slot before detection. Increasing the size of the

filtering window with LTE pilot structure does not improve the performance.

The performances of the LS, the precalculated MMSE and the SAGE algorithms

are presented and compared in the following figures. First, the results with 2× 2

antenna system with 16-QAM and 100 km/h user velocity are presented in Figure

40 followed by the 4×4 16-QAM results with a 50 km/h user velocity in Figures 41

and 42. Then, results for 4× 4 MIMO with 16-QAM, different channel types and

100 km/h user velocity in Figure 43 are discussed. After that, the performance of the

algorithms is illustrated in Figure 45 for 4×4 64-QAM and a 50 km/h user velocity,

including comparisons of the MMSE estimator with known velocity and SNR and

the precalculated MMSE filter with constant velocity and SNR. Spatial correlation is

not used in the MMSE filter with the exception of the results with the known spatial

correlation in Figure 44. The impact of estimated tap delays is presented in Figure 46

and the performances with the Winner channel model are shown in Figures 47 and 48.

The performance with the LMMSE and K-best detectors combined with MMSE and

SAGE channel estimators in an uncorrelated channel are compared in Figure 49. The

typical urban channels are moderately correlated with base station (BS) azimuth spread

of 5 degrees except for the channels in Figures 43 and 49.

Table 36. Simulation parameters.

Coding Turbo coding with 1/2 code rate

Carrier frequency 2.4 GHz

Modulation scheme 16-QAM, 64-QAM

Number of subcarriers 512 (300 used), 5 MHz bandwidth

Symbol duration 71.4 µs

The performance of the channel estimation algorithms is presented in Figure 40 in a

2×2 antenna system. The communication system performance is usually characterized

by frame error rate. The transmission throughput is defined to be equal to the nominal

information transmission rate of information bits times (1−FER). The throughput
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increases when half of the LTE reference symbols are used along with the decision

directed channel estimation. However, the MMSE estimator performs nearly as well

as the SAGE estimator in the 2×2 antenna system. The pilot symbol density is not

high enough for the LS estimator to perform well since the channel changes too rapidly

between the OFDM symbols containing pilot symbols.
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Fig. 40. 2× 2 16-QAM data transmission throughput vs. SNR with different pilot

densities and 100 km/h user velocity.

The same can be seen in Figure 41 with a 4×4 antenna system, where the decision

directed channel estimation increases the throughput more than in the 2×2 antenna case

already with the LTE pilot symbols. With pilot symbols in one OFDM symbol in a

slot, denoted as 1 pilot, pilot symbols for all antennas are transmitted in the 1st OFDM

symbol. The MMSE and SAGE estimators are able to compensate for the performance

loss from the decreased pilot symbol density, unlike the LS estimator. The performance

of the MMSE estimator is almost as good as with the SAGE estimator with the LTE pilot

structure, but when the pilot density is decreased, the performance difference is larger.

The simulated mean square error of channel estimation is presented in Figure 42 in

the same scenario as in Figure 41. The performance of the SAGE channel estimator is

highly dependent on the quality of the data decisions. This can be seen in the MSE as

saturation when the data decisions are reliable. The MSE of the LS or MMSE channel

estimators does not depend on the data decisions.

The performance with a 100 km/h user velocity is shown in Figure 43 and the MSE
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Fig. 41. 4× 4 16-QAM data transmission throughput vs. SNR with different pilot

densities and 50 km/h user velocity.
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Fig. 42. 4×4 16-QAM MSE vs. SNR with different pilot densities and 50 km/h user

velocity.

results for the same scenario in Figure 44. Figure 44 includes performance results of

the MMSE filter with the known velocity, SNR and spatial correlation. The difference

in performance of the MMSE filter with the known parameters is small compared to

that of the MMSE filter with fixed parameters. Channels with different amounts of

correlation were used. The highly correlated channel is generated with the BS azimuth

spread of 2 degrees and the moderately correlated channel with an azimuth spread of
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5 degrees. The average channel condition number is 90 for the correlated channel,

30 for the moderately correlated channel and 10 for the uncorrelated channel. The

condition number can be calculated as the ratio of the maximum and minimum singular

value ς1/ςN , where the singular values are obtained from the diagonal matrix Σ with

the singular value decomposition of the channel matrix H = UΣVH. The performance

is poor in the correlated channel. This is mostly due to the fact that the detector does

not perform well in the highly correlated channel. This also has an impact on the

performance of the SAGE algorithm as the quality of feedback from the detector is

not high. The benefit obtained with the SAGE algorithm increases in the moderately

correlated and uncorrelated channels.
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Fig. 43. 4× 4 16-QAM data transmission throughput vs. SNR with different chan-

nels and 100 km/h user velocity.

Transmitting pilot symbols for all four antennas in the 1st OFDM symbol in a

slot improves the SAGE estimator performance, especially with high user velocities

because there is no need to combine the channel estimate of the two antennas in the

current OFDM symbol with the channel estimate of the other two antennas from the

previous OFDM symbol. The SAGE estimator also gets a better initial guess of the

channel when all pilot symbols are transmitted in the same slot and is able to estimate

the channel well in the decision directed mode. With the LTE pilots, the MMSE filter

performs well. However, the performance of the MMSE estimator degrades when the

pilot symbol density decreases, i.e. the MMSE estimator needs a sufficient pilot symbol

density to perform well. The MMSE estimator cannot be used effectively to improve the
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Fig. 44. 4× 4 16-QAM MSE vs. SNR with different channels and 100 km/h user

velocity.

throughput by transmitting less pilots as the SAGE channel estimator.

The performance in a 4×4 antenna system and 64-QAM is presented in Figure 45.

Simulations were performed with both precalculated MMSE filter coefficients and with

the MMSE filter from (45) using the actual SNR and user velocity. It can be seen that

leaving out the spatial correlation Σhl
from (46) and (47) and using fixed values for the

SNR and user velocity has only a minor impact on the performance. Furthermore, the

throughput can be increased by decreasing the pilot symbol density and using the SAGE

channel estimator.

The channel length and the delays of the taps were assumed to be known in the

previous simulation results. However, in practice, they would have to be estimated.

Figure 46 shows the performance with estimated channel tap delays where only five

taps were estimated when the number of channel taps was six. The tap delays were

estimated by calculating a LS estimate ĥ for 20 taps and using the diagonal values

PLS = diag(ĥHĥ) to determine the strongest paths. Five paths from the estimated paths

were used in channel estimation in Figure 46. The genie aided SAGE estimator also uses

only five channel taps. The performance degrades with the estimated taps compared to

the known tap delays in Figure 41, but the performance difference between the channel

estimation algorithms does not change.

Simulations were also performed with an alternative channel model. The Winner

suburban macro-cell channel with no line-of-sight (NLOS) was used to generate the
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Fig. 45. 4× 4 64-QAM data transmission throughput vs. SNR with different pilot

densities and 50 km/h user velocity.
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Fig. 46. 4×4 16-QAM data transmission throughput vs. SNR with estimated chan-

nel tap delays and 50 km/h user velocity.

results in Figure 47 and a line-of-sight (LOS) channel was used for the results in 48. The

Winner channel models are based on channel measurements. The suburban macro-cell

mobile stations are outdoors and the base stations are above rooftops [195]. The model

generates more taps for the LOS channel than the NLOS channel. Even though the

LOS channel has a stronger first tap, the NLOS channel has effectively three taps and
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the LOS channel has seven taps. The performances of the MMSE and SAGE channel

estimators are similar in the NLOS channel, but the SAGE algorithm performs better in

the LOS channel with a higher number of taps.
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Fig. 47. 4 × 4 16-QAM data transmission throughput vs. SNR with the Winner

NLOS channel.
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Fig. 48. 4×4 16-QAM data transmission throughput vs. SNR with the Winner LOS

channel.
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The performance of the MMSE and SAGE channel estimators with the LMMSE

and K-best detectors are compared in Figure 49 in an uncorrelated channel. In such

channels, the performance difference between the LMMSE and K-best detectors is

smaller than in a correlated channel, as discussed in Chapter 4. The more low complexity

LMMSE detector could be used with the SAGE channel estimator to achieve a similar

performance as with the K-best detector and MMSE channel estimator. With a reduced

pilot symbol density, SAGE estimator combined with LMMSE detection performs even

better than the MMSE estimator with K-best detection. The low complexity of the

detector would then balance the complexity difference in the receiver when comparing

the SAGE and MMSE channel estimators.
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Fig. 49. 4× 4 16-QAM data transmission throughput vs. SNR with uncorrelated

channel.

5.3 Complexity reduction in channel estimation

The complexity of an algorithm can be measured, at least to some extent, by the

number multiplications and additions performed during a certain processing time. The

complexity of the time domain SAGE algorithm in the number of multiplications is

P(8LNMSi +4N) and in the number of additions P((2NL+7)LNMSi +2N), where P

is the number of subcarriers, L is the length of the channel and Si is the number of

SAGE iterations; 2N divisions are also needed. The number of multiplications in the LS

129



channel estimator is 4NrLN, where Nr is the number of pilot symbols. The number of

multiplications in the decision directed LS estimation would be more than 12 million in

a corresponding system when performing the NL×NL matrix inversion, where N = 2,

L = 6 and P = 512 [212]. This is more than 60 times higher than in the DD SAGE

estimator. The number of multiplications for obtaining the MMSE channel estimates

with precalculated coefficients is 2NMLNPB f , where B f is the length of the filtering

window and Np is the number of LS channel estimates used in the MMSE filtering.

5.3.1 SAGE feedback reduction

The feedback to the SAGE channel estimator, i.e. the number of data symbols calculated

from the decoder outputs, can be reduced. This lowers the complexity of the SAGE esti-

mator, but can cause some performance degradation. Figure 50 shows the performance

with different numbers of feedback data symbols used in the SAGE channel estimation.

SAGE estimation with three iterations is equivalent to the SAGE estimation with 1 pilot

curve in Figure 41. The number of multiplications and the performance degradation with

different numbers of iterations Si, channel taps L and feedback symbols used is presented

in Table 37 in a system with 512 subcarriers. With half of the feedback symbols,

every other subcarrier is used in the channel estimation. This decreases the complexity

of the channel estimation almost by half. The performance can be increased with a

higher number of SAGE iterations. In the 2×2 antenna case, a 0.5 dB performance

degradation is observed when using every 4th symbol and 2 SAGE iterations. With 3

SAGE iterations, there is no performance degradation compared to using all the symbols.

The estimation of the first five channel taps only will decrease the complexity, but the

performance will also degrade. A good performance with lower complexity can be

achieved by estimating six taps with 1/4 of symbols and 4 SAGE iterations.

As a comparison, there are 4,800 multiplications in the pilot symbol based LS

channel estimator in the 2×2 system and 9,600 in the 4×4 system. The number of

multiplications in the list sphere detector used in simulations are 142 k in the 2×2

system and 984 k in the 4×4 system [62]. The complexity in terms of multipliers is

almost half of that of a sphere detector, but the achievable performance improvement

can be significant.
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Fig. 50. 4× 4 16-QAM data transmission throughput vs. SNR with different num-

bers of used symbols and 50 km/h user velocity.

Table 37. Number of multiplications with different parameters ([67], published by

permission of IEEE).

Symbols Si L Performance

degradation

Multiplications

2×2

512 2 6 - 200704

256 2 6 +-0 dB 100352

128 3 6 +-0 dB 74752

128 2 6 -0.5 dB 50176

4×4

512 2 6 - 794624

256 3 6 +-0 dB 593920

256 2 6 -[2-4] dB 397312

256 3 5 -[1-2] dB 495616

128 3 6 -[3-5] dB 296960

128 4 6 -0.5 dB 395264
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5.3.2 Latency-performance trade-off

The LS channel estimation from the pilot symbols can be performed before detection in

order to have a more timely channel estimate. However, the latency requirement of the

channel estimator is less strict if channel estimation can be performed during detection.

This can also have a major impact on the complexity. The alternative latencies in the

receiver are presented in Figure 51. In the top part of the figure, the channel estimators

have a latency of one OFDM symbol. Pilot symbols are received in the first OFDM

symbol. The LS estimator then calculates the channel estimate during the detection of

all data symbols in the first OFDM symbol. The LS channel estimate is used in the

detection of the second OFDM symbol and as an input to the MMSE estimator or the

SAGE estimator. The SAGE channel estimation can be performed when the decoding of

the code word has finished. The data decisions of the first OFDM symbol are used to

calculate the SAGE channel estimate while detecting the second OFDM symbol. The

channel estimate is then used in the detection of the third symbol. Thus, the channel

estimate used in the estimation is an estimate of the channel experienced two OFDM

symbols ago. The other alternative is to use the result from the decision directed channel

estimation in the detection of the next symbol, as shown in the bottom part of the figure.

The channel estimate used in detection corresponds to the channel experienced in the

previous OFDM symbol. The MMSE estimator can be used to predict a more current

channel estimate from the delayed LS estimates as the coefficients can be adjusted

according to the delay of the LS estimate.
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Fig. 51. Receiver latency alternatives; delay/no delay in channel estimation.

The performance of the channel estimators with different delays are presented in

Figure 52 with a 50 km/h user velocity. The results with delay in channel estimation are

obtained with the scheduling from the top part of Figure 51 and the results with no delay

from the bottom part. The LS estimator was used with the LTE pilot structure and the

SAGE estimator with a decreased pilot density, i.e. pilot symbols are transmitted in one

OFDM symbol per slot. The impact of the delay on the performance increases with

the user velocity. With 100 km/h user velocity, the performance degradation is more

significant with the delayed channel estimation. The impact is high, especially on the

SAGE estimator which is sensitive to the initial guess, i.e. the channel estimate from the

previous OFDM symbol.
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Fig. 52. 4×4 16-QAM data transmission throughput vs. SNR with different delays

and 50 km/h user velocity.

5.4 Implementation of LS, MMSE and SAGE channel

estimation

5.4.1 Architecture and memory requirements

The LS channel estimator includes complex multiplications of the LS coefficients and

the received data symbols when performed from the pilot symbols. The calculation of

each LNM channel coefficient includes P/N complex multiplications, after which the

results are added together. For a 2×2 antenna system, there are 80 channel coefficients

to be calculated. If the channel estimate can be obtained with the delay of one OFDM

symbol, the latency for the calculation of one channel coefficient is 0.88 µs.

The MMSE channel estimator consists of multiplications of the LS channel estimates

with real valued coefficients. Each MMSE channel estimate coefficient ĥMMSE
mR,mT ,l

is a

composite of the NP LS estimates from the filtering period. With the 4×4 system,

NP = 3 and the filtering period is 7 OFDM symbols. The MMSE channel estimator

then performs six multiplications and four additions for each complex valued channel

coefficient.

The architecture of the SAGE channel estimator for a 2× 2 antenna system is

presented in Fig 53. Each block corresponds to (50)–(54). The elements of x̄mT
in each
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stream are squared and the results are added together in the symbol multiplication part.

The inverses of the results are multiplied with x̄mT
. These calculations from (51) can be

performed separately from the iterative channel tap calculations. For each channel tap,

Nc iterations are performed. The channel tap iterations are initialized by multiplying the

symbol decisions x̄mT
with the channel taps from the previous OFDM symbol in the

block corresponding to (52). In later iterations, the channel taps from previous iterations

are used. L multiplication results from N layers corresponding to the channel to each

receive antenna are added together and subtracted from the received symbol from each

receive antenna. The result is then added to the first x̄mT
ĥmT mR

multiplication result in

the block corresponding to (50) and multiplied with x−1
i in the block corresponding to

(51). A channel tap is obtained by adding together the results from the Nc iterations. The

total number of iterations in calculating all the channel taps is MNLSiNc.
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Fig. 53. The architecture of the SAGE channel estimator.

The precision of the variables required to sustain the performance close to that of the

floating point variables were determined. The minimum word lengths for the channel

estimators are presented in Table 38 in (word length, integer length, sign) format. The

word lengths were determined with computer simulations using the same parameters as

those in Section 5.2. The performance of the fixed point channel estimators compared to

those of the floating point estimators are presented in Figure 54. Some performance

degradation is allowed in the fixed point estimators in order to keep the complexity low

as reaching the floating point performance may require a considerable increase in the

word lengths.

The total number of bits required in the variables, the bits out of the word length

used for the integer part and if the variable is signed or unsigned are shown in the table.
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Fig. 54. 2 × 2 16-QAM data transmission throughput vs. SNR with fixed word

lengths.

The variables in the SAGE channel estimator correspond to those in Figure 53 and the

corresponding block is denoted by (10)-(12). The LS coefficients are the precalculated

results of (FHXH(n)X(n)F)−1FHXH(n) from pilot symbols. The received signal vector

y is in frequency domain in the LS estimator and yi is in time domain in the SAGE

channel estimator. The MMSE coefficients are precalculated and real valued.

Table 38. Word lengths in channel estimation.

SAGE LS MMSE

Variable (Wl , Il ,Sl ) Variable (Wl , Il ,Sl ) Variable (Wl , Il ,Sl )

X̄i (11) (8,3,1) y (FD) (16,4,1) MMSE coeff. (13,2,1)

X̄−1
i (11) (12,2,1) LS coeff. (12,2,1) ĥMMSE (14,2,1)

xp (11) (17,13,0) ĥLS (13,2,1)

1/xp (11) (17,1,0)

ĥi (11),(12) (18,4,1)

ti (10) (12,5,1)

ẑi (12) (12,4,1)

oi (TD) (10) (8,4,1)

di (10) (12,4,1)

The amount of memory required to store the LS coefficients precalculated from the

pilot symbols is 14.4 Kbit assuming that the pilot symbols are the same in each OFDM

symbol. The highest amount of memory in the MMSE filter is needed in storing the
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LS channel estimates from NP OFDM symbols. The required amount of memory is

17.5 Kbit in the 4×4 antenna system. In the SAGE channel estimator, the memory

requirement for the symbol expectations x̄i is 16.4 Kbit in the 2×2 antenna system

and 32.8 Kbit in the 4× 4 antenna system. The highest amount of memory in the

SAGE estimator would be the 1.2 Mbit for storing the interim results for ẑi but this is

partly included in the following implementation results unlike the previously discussed

memory requirements for the LS and MMSE filters.

5.4.2 Implementation results

Catapult r C Synthesis tool [188] was used in the implementation of the receivers. The

Synopsys Design Compiler was used in synthesizing the VHDL along with the UMC

0.18 µm CMOS technology. The FFTs are not included in the complexity estimations.

The complexity and power consumption of each channel estimator is comparable

only to other channel estimators presented in this work as the results depend on the

used implementation method and library. However, a few other channel estimation

implementations from the literature will be briefly discussed.

The implementation results for the LS channel estimator and MMSE filter are

presented in Table 39 with different processing times. The estimators were implemented

for 2×2 and 4×4 antenna systems and for a 5 MHz bandwidth. The processing time of

71 µs corresponds to the case of delay in channel estimates and the shorter processing

time corresponds to the no delay case shown in the bottom part of Figure 51. The

corresponding performance results were presented in Figure 52. The detector latency

was assumed to be half from the 71 µs OFDM symbol duration, but the detector itself

is not included in the complexity estimates. The LS estimator latency can then be 38

µs in the 2×2 antenna system and 33 µs in the 4×4 antenna system. The decoder

latency [210] is also included in the latency calculations and each codeword is assumed

to be mapped to a single slot and not interleaved over multiple slots. The gate count

increases with the bandwidth in the LS estimator and the results can be scaled to

higher bandwidths. The longer processing delay does not have a major impact on the

complexity, but the power consumption can be decreased. This is due to the reduced

clock frequencies in the case of the longer processing delay.
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Table 39. Synthesis results for the LS and MMSE channel estimators with different

latencies.

No delay Delay

LS MMSE LS MMSE

2×2

Processing time 38 µs 38 µs 71 µs 71 µs

Clock frequency 95 MHz 95 MHz 51 MHz 51 MHz

Equivalent gates 3763 3213 3730 3213

Power consumption 8.3 mW 5.2 mW 4.8 mW 2.8 mW

4×4

Processing time 33 µs 33 µs 71 µs 71 µs

Clock frequency 146 MHz 146 MHz 102 MHz 68 MHz

Equivalent gates 3759 4549 3763 4375

Power consumption 13.2 mW 10.2 mW 8.9 mW 4.6 mW

The implementation results for the SAGE channel estimator are presented in Table

40. There are two target processing times for the SAGE estimator. The SAGE channel

estimator has 31 µs in the no delay case to calculate the channel estimates in the 2×2

antenna system when the detector latency, the decoder latency of 5 µs, the symbol

expectation latency of 1 µs and the IFFT [215] latency of 1 µs is subtracted from the

OFDM symbol time. The symbol expectation calculation was implemented with the

architecture from [62] and the gate count of 5.5 k gates was added to the SAGE estimator

complexity in Table 40. In the 4×4 antenna system, the decoder and IFFT have higher

latencies and the processing time for SAGE channel estimation is only 25 µs.

The longer processing times of 64 µs and 59 µs correspond to the case when channel

estimation is performed during the detection of the following OFDM symbol. The

IFFT complexity was not considered in the total complexity. An IFFT block could

be added to the receiver or the FFT with scaling could be reused, timing permitting.

The LS estimator would be included in the receiver with SAGE channel estimator and

the complexity and power estimates would have to be added together to get the total

complexity of the SAGE channel estimator.
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Table 40. Synthesis results for the SAGE channel estimator with different laten-

cies.

Delay No delay

2×2

Processing time 64 µs 31 µs

Symbols, Si 1/2, 3 1/2, 4

Clock frequency 144 MHz 165 MHz

Equivalent gates 34.6 k 58.2 k

Power consumption 93 mW 189 mW

4×4

Processing time 59 µs 25 µs

Symbols, Si 1/4, 4 1/4, 4

Clock frequency 104 MHz 147 MHz

Equivalent gates 113.4 k 210 k

Power consumption 257 mW 604 mW

Implementation results for MIMO channel estimators have not been presented

extensively in the literature; this is particularly true for decision-directed algorithms.

Quantitative comparison to existing work in terms of performance and complexity can

be difficult as the simulation setups and system models differ from the ones in this

work. Therefore, a thorough performance-complexity comparison to other work is

unfeasible and it is one of the reasons different channel estimation algorithms were

compared in this work. Comparison in terms of complexity has additional challenges,

such as different implementation technologies and methods used. However, a few

implementations are briefly introduced.

The approximate linear MMSE channel estimator from [165] uses the noise and

correlation in calculating the coefficients. The implementation cost is 49 k gates, but the

algorithm is different from the MMSE filter in this work making a comparison difficult.

Data carriers are exploited in channel estimation for calculating channel variations

in [167]. The algorithm provides better performance in fast fading scenarios, but the

complexity of the channel estimator is 1,901 k gates. Furthermore, the implementation

was done for a wireless local area network (WLAN) system. An implementation of a

decision feedback channel estimator for space-time block code system was introduced

in [216]. However, the performance is not comparable to the spatial multiplexing system

in this work and the complexity for the one receive antenna implementation of [216] is

higher than that of the SAGE estimator implementation for four antennas in this work.
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The LS estimator is used throughout this work for obtaining the initial channel

estimates from pilot symbols and the SAGE estimator for updating the channel estimates.

The use of DD LS estimation would be prohibitive because of the high complexity,

as stated in Section 5.2. With higher bandwidths or numbers of antennas, the time in

which the SAGE channel estimation should be performed is shorter due to the increased

decoder and FFT latencies. This results in higher complexity and power consumption.

In terms of throughput per number of gates, the pilot only LS estimator uses the least

number of gates per bit. However, in higher velocities, the MMSE and SAGE estimators

would greatly improve the performance. Furthermore, the throughput can be increased

by decreasing the pilot symbol density and using the SAGE estimator in calculating the

channel estimates.

The energy efficiency of the pilot based LS, MMSE and the DD SAGE channel

estimators is presented in Table 41. The throughput is achieved in a 4× 4 antenna

system at 22 dB with 50 km/h user velocity, as illustrated in Figure 52. The throughput

with perfect channel state information would be 32 Mb/s with pilot symbols in one

OFDM symbol per slot. The power consumption of the LS estimator is included in

all the estimators. The MMSE estimator with processing delay has the best energy

efficiency, but the SAGE estimator with delay can be used for improved throughput.

When using the SAGE channel estimator at the receiver, less transmit power is needed

for achieving the required throughput.

Table 41. LS, MMSE and SAGE energy efficiency comparison.

Estimator Pilots Delay Throughput Energy/bit

LS LTE No 17.1 Mb/s 0.77 nJ/b

LS LTE Yes 11.6 Mb/s 0.767 nJ/b

MMSE LTE No 27.2 Mb/s 0.86 nJ/b

MMSE LTE Yes 19.6 Mb/s 0.388 nJ/b

SAGE 1 pilot Yes 31.2 Mb/s 8.6 nJ/b

5.5 Discussion

The performance of the DD SAGE channel estimation with the possibility of using it to

improve the performance from the pilot symbol based estimators was considered. The
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least squares estimator was used in obtaining the channel estimates from pilot symbols.

Time domain correlation of the channel estimates was exploited in the MMSE filter

when calculating estimates for symbols with no pilots. The theoretical complexity of the

SAGE algorithm and some complexity reducing modifications were presented. The

implementation results for the pilot based LS estimator, the SAGE channel estimator

and the MMSE filter were presented.

The complexity and power consumption of the LS and MMSE estimators are low.

The delay after which the channel estimates from the SAGE estimator are available for

detection has a high impact on the complexity and performance. The complexity and

power consumption can be high when using the SAGE estimator with a short processing

delay. A good performance-complexity trade-off can be achieved by allowing a longer

processing delay for the SAGE estimator.

The MMSE filter and the SAGE estimator improve the pilot symbol based LS

estimator performance with high user velocities when the channel changes frequently

between pilot symbols. The throughput can be increased by decreasing the pilot symbol

density and transmitting data instead of pilot symbols. The SAGE estimator can then be

used in calculating channel estimates when pilot symbols are not transmitted. The SAGE

channel estimator would be a good choice for systems where training is performed in

the beginning of the transmission or less frequently. The MMSE estimator is suitable for

systems with high pilot densities as it has a low complexity and it is able to sustain

acceptable performance.
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6 Interference mitigation in MIMO-OFDM

systems

In this chapter, the performance and the complexity of suppressing CCI at the downlink

receiver are considered. The main focus is on the 2× 4 system where two MIMO

streams are transmitted. Interference mitigation is beneficial also in other MIMO cases

and the 2× 2 and 4× 4 schemes are also studied. The LTE standard specifies four

antennas in the terminal. The extra degrees of freedom could be used for interference

suppression, making the 2×4 system a case of interest. The base station can have more

than two transmit antennas, which could be used for multi-user MIMO in the cell or for

transmit diversity. However, the suppression of interference from neighboring cells is

studied in this work and the aforementioned schemes are not included here. An OFDM

system is assumed, but the interference suppression methods could also be extended to

uplink where a 2×4 would be even more relevant.

The interference is measured on the pilot subcarriers and the IN-SCM is used in

channel estimation and data detection. Noise power level estimation is also performed in

the receiver. Both the linear minimum mean square error and the nonlinear maximum

likelihood based detector are considered. The received data is whitened before nonlinear

detection by using the result of an eigenvalue decomposition. The accuracy of the EVD

has an impact on the structure of the covariance matrix. Both the unstructured and

structured model for the covariance matrix with different degrees of accuracy are applied

and the complexity-performance trade-off is compared. Eigenspace tracking is also

used to reduce the complexity of the EVD. Furthermore, an adaptive algorithm for the

interference suppression and EVD calculation is proposed in order to achieve a good

performance in all interference scenarios.

This chapter discusses the complexity and performance of co-channel interference

mitigation since the combination has not been considered in the literature. Different

methods and their implementation complexities are compared. Another contribution

of the chapter is an adaptive algorithm for CCI mitigation, which obtains a good

performance with the possibility for power savings.

The rest of the chapter is organized as follows. The receiver algorithms, including

interference mitigation and detection, are introduced in Section 6.1 and some perfor-

mance results are presented in Section 6.2. The complexities of the different interference
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suppression methods are compared in Section 6.3, where the VLSI implementation

results are presented. Section 6.4 includes discussion on the results. The results

presented in this chapter have not been previously published but a part of the results has

been submitted as a journal publication.

6.1 Receiver algorithms

The receiver structure is presented in Fig. 55. The LS channel estimator is used in

calculating the channel estimates from pilot symbols. The received signal vector is

transformed into frequency domain before the LS channel estimation. The result of

the LS estimator is in time domain as shown in (55) and it has to be transformed into

frequency domain for the detector with the second FFT. The MMSE filter can be used

to filter the LS channel estimates in high velocity scenarios [156]. The CCI block

calculates the IN-SCM and the noise variance from the channel estimates, pilot symbols

and received signal vectors. Results with decoder feedback are not reported in this work

due to the latency and error propagation issues.

Detection π
	1

DecodingFFT LS FFT
o

Ĥ

MMSE CCI

Fig. 55. The receiver structure.

6.1.1 Channel and noise variance estimation

The LS estimate of the channel can be calculated as [74]

ĥmR
(n) = (FHXH(n)X(n)F)−1FHXH(n)ymR

(n), (55)

where X contains the pilot symbols. The calculation of the LS channel estimate from the

pilot symbols is simple as the matrix inversion can be calculated in advance and the only

calculation to be performed in real time is multiplication with the received signal, as

discussed in Chapter 5.

Maximum likelihood channel estimation based on pilot symbols is equivalent to the

LS estimation in additive white Gaussian noise when the number of pilot symbols is

larger than the channel length. The IN-SCM can be included in the channel estimation.
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The ML channel estimates, which can be also seen as weighted LS estimates, can then

be calculated as [74, 175]

ĥmR
(n) = (

P

∑
k=1

FH
k Q−1

ik
Fk)

−1
P

∑
k=1

FH
k Q−1

ik
ymR

(n)xH
k (n), (56)

where Qi is the IN-SCM, Fk is fk ⊗ IM, fk is the kth row of the P×L truncated Fourier

matrix and xk(n) is the transmitted pilot signal on the kth pilot subcarrier. The calculation

of the channel estimate requires a ML×ML matrix inversion.

The unbiased noise variance estimate on a receive antenna can be calculated as

γmR
=

1

Nr −1

Nr

∑
k=1

|(yk(n)− Ĥk(n)xk(n))mR
−µ|2, (57)

where the variance is calculated over all the pilot subcarriers Nr and µ is the average of

the values (yk(n)− Ĥk(n)xk(n))mR
, k = 1, ...,Nr. The noise variance can be averaged

over the receive antennas, as well as over consecutive subframes.

6.1.2 Detection

The spatial covariance matrix is needed both in a linear MMSE detector and ML based

detector for improved performance. The LMMSE filter can be calculated as

W = (ĤĤ
H
+Qi)

−1ĤH, (58)

where the covariance matrix is used instead of the noise variance matrix σ2I. If the

covariance matrix is not available, the LMMSE filter can be approximated using the

noise variance estimates as

W = (ĤĤ
H
+Γ)−1ĤH, (59)

where Γ is a diagonal matrix containing the noise variance estimates γmR
. The received

signal is filtered with the LMMSE filter and the log-likelihood ratios (LLR) can be

calculated with a soft demodulator or as bit metric approximations [112], as explained

in Section 4.2.

The IN-SCM is needed in the LLR calculation in the nonlinear detector. The

log-likelihood ratio L(bk) for the transmitted bit k can be determined as

LD(bk|y) = ln
Pr(bk =+1|y)
Pr(bk =−1|y) , (60)
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as presented in (11) in Chapter 4. The likelihood function (13) on any subcarrier can be

calculated using the covariance matrix as

p(y|b) = 1

|Qi|
exp(−||Q−1/2

i (y− Ĥx)||2). (61)

6.1.3 Interference estimation and processing

The interference can be measured on the pilot subcarriers by subtracting the estimated

channel from the received signal. The IN-SCM on a subcarrier is defined as

Qi = E[(y−Hx)(y−Hx)H], (62)

where H is the channel matrix in frequency domain and x contains the transmitted pilot

symbol. The IN-SCM estimate

Q̂i =
1

Tr

Tr

∑
n=1

(y(n)− Ĥ(n)x(n))(y(n)− Ĥ(n)x(n))H (63)

is obtained by averaging over a training period Tr.

A structured model for the covariance can be applied in order to improve the accuracy

of the estimation [174]. The IN-SCM can be modeled as

Q̂i = Ψ+ σ̂2I, (64)

where Ψ has the EVD as Ψ = Vm(δm − σ̂2Im)V
H
m, the eigenvectors Vm and the eigen-

values δm correspond to the m dominant eigenvalues and σ̂2 is the average of the last

M−m eigenvalues.

The whitening of the channel matrix and the received signal vector in the detector

can be performed by multiplying them with the inverse square root of the covariance

matrix estimate Q̂i as presented in (61). The inverse square root of a Hermitian matrix

can be calculated from its eigenvalue decomposition Q̂i = VDVH as

Q̂
−1/2
i = VD−1/2VH, (65)

where D is a diagonal matrix containing the eigenvalues of Q̂i and V contains the

corresponding eigenvectors.

The EVD can be calculated by row-cyclic Jacobi sweeping [73] where left and

right side transformations are applied. The input matrix is diagonalized iteratively by
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applying the transformations on submatrices. The rotations can be calculated with

coordinate rotation digital computer (CORDIC) iterations. A more accurate result can

be obtained by applying several sweeps of the algorithm. Each sweep makes the input

matrix more diagonal and results in more accurate eigenvalues. If the interference level

or signal-to-noise ratio is low, the unstructured covariance matrix may give a better

performance when the EVD for (65) is calculated with only one sweep. The off-diagonal

values are discarded and only the diagonal values are used. The covariance matrix after

one sweep can be written as

Q̂i = VH(D−Bd)V, (66)

where Bd contains the off-diagonal elements of D. With one sweep of the algorithm, the

most significant eigenvalues are obtained, which leads to Q
−1/2
i close to that calculated

with the structured covariance matrix.

The accuracy of the EVD with a low number of sweeps may be improved by tracking

of eigenspaces [217]. The covariance matrix Q̂i can be multiplied from both sides

with the previous eigenvector matrix V before performing the EVD. This makes the

covariance matrix more diagonal, which results in the need for fewer sweeps in the

EVD. The new covariance matrix before the EVD can be calculated as

Q̃i(n+1) = VH(n)Q̂i(n+1)V(n) (67)

and the eigenvector matrix after the EVD is obtained from

Ṽ(n+1) = V(n)V(n+1). (68)

CCI mitigation adaptation

In order to adapt the CCI calculation, the eigenvalue ratio can be used. The ratio of the

maximum eigenvalue to the sum of all eigenvalues

κ = δmax/
M

∑
i=1

δi, (69)

where δmax is the largest eigenvalue and ∑
M
i=1 δi is the sum of all eigenvalues with

different numbers of interferers is presented in Figure 56. The values for κ were

obtained after performing one Jacobi sweep in the EVD. A 2×4 MIMO system was

assumed, resulting in a 4× 4 covariance matrix. The values do not depend on the
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modulation scheme of the interference or the desired signal. With low SNR and high

signal-to-interference ratio (SIR), the eigenvalue ratio is small. With a low eigenvalue

ratio, the interference is not dominating and interference mitigation brings no gain.

With high SNR and low SIR, the ratio is close to one when there is only one interfering

signal. The ratio decreases when the number of interferers increases. When there is no

interference, the ratio is close to 0.5 regardless of the SNR.
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Fig. 56. Eigenvalue ratios with different numbers of interferers.

The proposed adaptation algorithm starts by determining the number of sweeps in

the EVD. After the first sweep of the algorithm, the need for an additional sweep can be

determined by calculating the eigenvalue ratio. If the ratio indicates more than one

interferer being present, i.e. it is within a certain limit, another sweep is performed.

With multiple strong interferers, the ratio is within certain limits, as can be seen in

Figure 56. The other condition for continuing with the second sweep is a threshold

formed by scaling the largest eigenvalue with the noise variance. The second step of the

algorithm decides whether interference mitigation is performed. If κ is below a limit,

interference is not suppressed.

6.2 Performance examples

The simulation parameters are the same as those used in Chapter 5 and the channel

parameters were presented in Table 1. The nonlinear detector used in the simulations is

a K-best list sphere detector with the list size of 8 and the LS estimator was used for
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channel estimation. As earlier, the transmission throughput is defined to be equal to the

information transmission rate of information bits times (1−frame error rate). Decoding

was performed over one OFDM symbol in the simulations. The signal-to-interference

ratio of 0 dB was assumed in the simulations. With high SIR, the interference can be

seen as noise and interference suppression has no major impact on the performance. The

estimated IN-SCM from (63) is used in the interference mitigation and the structured

model from (64) is fixed to m−1 dominating eigenvalues. The EVDs are calculated

with transformations using six CORDIC rotations.

The performance with one interferer with SIR of 0 dB is shown in Figure 57. The

user velocity is 3 km/h. The interferer is present with probability of one. There is no

throughput without interference mitigation. Similar performance is achieved with the

structured model, the unstructured model with two sweeps, the adaptive algorithm

and the unstructured model with one sweep and eigenspace tracking. The adaptive

algorithm does not fully achieve the one sweep EVD performance in the low SNRs, but

the performance difference in negligible. The performance improves at high SNRs with

the algorithms using more iterations because the estimated covariance matrices are more

accurate. At low SNRs, better performance is achieved when just one eigenvalue is used

for the covariance matrix.
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Fig. 57. 2×4 16-QAM data transmission throughput vs. SNR with one interferer.

The performance with one interferer present with the probability of 0.5, user velocity

of 3 km/h and SIR of 0 dB is presented in Figure 58. In this case, the interference is
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either present in all the subcarriers in an OFDM symbol or there is no interference

in any of the subcarriers. The structured model has the best performance while the

unstructured model with one sweep leads to roughly 2 dB performance degradation. The

two sweep case has the worst performance. The eigenspace tracking does not improve

the performance. The adaptive algorithm performs well, i.e. no interference mitigation

is performed in low SNRs and a one sweep EVD is performed in the high SNRs.
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Fig. 58. 2× 4 QPSK data transmission throughput vs. SNR with max. one inter-

ferer.

The performance with maximum of two interferers with a probabilities of 1 and

0.2 and SIR of 0 dB is presented in Figure 59. The user and interference velocity is

50 km/h. The MMSE filter is used to filter the LS channel estimates for improved

performance in the high velocity case. The lower velocity cases do not benefit from

MMSE filtering. The structured model gives the best performance and the adaptive

algorithm and unstructured model perform also well. The performance is poor without

interference mitigation.

The structured model or the number of sweeps in the EVD does not have an impact

on performance in a 2× 2 antenna case, as can be seen in Figure 60. The use of

eigenspace tracking does not improve the performance either, as the 2×2 covariance

matrix does not require additional accuracy. However, interference mitigation does

improve the performance compared to the case of no mitigation. The difference in

performance is larger in the 4×4 system. There, the unstructured model with one sweep
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Fig. 59. 2×4 QPSK data transmission throughput vs. SNR with max. two interfer-

ers.

performs better than the two-sweep case and the adaptive algorithm performs also well.

The structured model has the best performance, but the choice of wrong m can degrade

the performance.
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Fig. 60. 2× 2 and 4× 4 QPSK data transmission throughput vs. SNR with one

interferer.

The performance with a linear MMSE detector is illustrated in Figure 61. One

interfering signal is present with a SIR of 0 dB. The interfering signal has a velocity of

50 km/h, while the user velocity is 3 km/h. Using the noise variance estimate from (57)
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improves the performance from the no mitigation case where the known SNR is used.

The structuring of the covariance matrix with the EVD improves the performance from

using the covariance matrix directly in (58). The use of the covariance matrix in the

LMMSE filter calculation could have an impact on the complexity due to the possible

increase in word lengths.
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Fig. 61. 2×4 QPSK data transmission throughput vs. SNR with one interferer and

MMSE detection.

The structured model leads to a good performance in the presented scenarios.

However, the number of dominant interferers has to be estimated. This can be done for

example with the rank estimation method from [174], but it will add extra complexity to

the receiver and may not perform as well as applying a fixed value for the rank. The

structured model may not provide a gain compared to the unstructured model when the

number of interferers is larger than the difference between the number of transmit and

receive antennas. The extra degrees of freedom are helpful in interference mitigation

and without them, the structuring of the covariance matrix may not be successful. The

unstructured model with one sweep performs well if the interference cannot be estimated

accurately, such as in the case of low SNR and multiple interferers.

The impact of including the IN-SCM in the channel estimation as in (56) is presented

in Figure 62. The user and interference velocities are 3 and 50 km/h. The channel

estimation was performed with the true IN-SCM as well with the estimated covariance

matrix. The largest difference in performance can be seen in high SNRs with the
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known IN-SCM. However, the calculation of the channel estimate with (56) requires an

ML×ML matrix inversion and the interference would be the strongest in the lower

SNRs. There, the performance may even suffer from using the estimated IN-SCM in

channel estimation. Therefore, the complexity cost of including the IN-SCM in the

channel estimation is high compared to the achievable performance gain.
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Fig. 62. Impact of IN-SCM in channel estimation on the performance in a 2× 4

system.

A comparison of the LMMSE and K-best detectors with one interferer with SIR

of 0 dB is given in Figure 63. The K-best detector performs better regardless of the

interference mitigation method. Without interference mitigation, the performance with

both detectors is poor. Structuring the covariance matrix with one sweep of the EVD

improves the performance also in the LMMSE detector.

The results with adaptive modulation and coding are presented in Figure 64. The

same setup as in Section 4.4.6 is used with the exception of all the transmission ranks

from one to four are possible. The K-best and LMMSE detectors are compared in a

case with no interference and one interferer with SIR of 0 dB. LS channel estimation is

used. The K-best detector performs better than the LMMSE detector when there is no

interference and the SNR is high enough for higher transmission ranks. The results are

similar to those in Section 4.4.6, where the channel was assumed to be known in the

receiver. With interference from a neighboring cell, the performance of the detectors is

similar. The transmission rank in this case is more probably lower even in the high
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SNRs than in the case of no interference.
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6.3 Implementation results

The top level structure of the CCI mitigation is presented in Figure 65. First, the

noise and interference are calculated by subtracting the impact of the channel and the

known pilot symbols from the received signal. The IN-SCM and the noise variance are

calculated from the resulting vectors as in (63) and (57). The IN-SCM is averaged with

the previous covariance matrix estimates. The EVD is performed for the estimated

covariance matrix. The resulting eigenvectors V and the diagonal matrix D containing

the inverse square root of the eigenvectors are used in calculating the inverse square

root of Q̂i. The received signal vector and the estimated channel are whitened with the

matrix Q̂
−1/2
i in the case of nonlinear detection. With linear detection, matrix Q̂i or its

structured model can be used directly in the MMSE filter calculation.
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Fig. 65. The structure of the CCI mitigation.

The architecture for the EVD calculation is presented in Figure 66. The architecture

has a maximum of two Jacobi sweeps. After the final sweep, the square root operation

followed by an inverse is performed on the diagonal values of D. Each sweep consists of

three stages which include vectoring and rotation blocks. The angle for the rotation

blocks is calculated in the vectoring blocks. The left side transformations for the inner

rotations are calculated in the first rotation blocks followed by the right transformation

for the matrix to be diagonalized. After the new angle calculation in the vectoring

block, the right side Givens transformation are calculated followed by the left side

transformations. Each vectoring and rotation block consists of six CORDIC iterations.

The vectoring and rotation chain is performed three times in the first stage, two times

in the second and once in the last stage. Depending on the sweep and stage of the

algorithm, the number of rotations performed for the diagonalized matrix is between

two and four.

The EVD algorithm used in the performance simulations was implemented with both

155



��� ������

����

���

��� ��� ���

���

�	
��
 �	
��� �	
���

�����
 ������

�

�

���
�� �

��
���

�

Fig. 66. The architecture of the EVD calculation.

one and two sweeps of the algorithm. The time in which the EVD has to be calculated

was assumed to be 0.5 ms. A longer delay could be used for the low user velocity case,

but 0.5 ms was found to be sufficient for also higher velocities. In the case of structured

covariance matrix, the EVD has to be performed both for the structuring of the matrix,

as well as the inverse square root calculation. There, the number of required sweeps is

two. The complexity results for the structured model then include two EVD calculation

blocks.

The required word lengths were determined via computer simulations. The perfor-

mance with 20 bit word lengths in the EVD is presented in Figure 67. The sufficient

word lengths in the interference and noise variance estimation are from 16 to 18 bits.

The word lengths of 18 bits in the EVD would be sufficient in the lower SNR ranges, but

20 bit word lengths are required in the high SNRs. The performance does not degrade

when only half of the covariance matrices in a frame are processed. The same covariance

matrix is used for six consecutive subcarriers in that case. This will allow a longer

latency for the EVD which will lead to a lower complexity or power consumption.

Catapult r C Synthesis tool [188] was used in the implementation of the EVD. The

Synopsys Design Compiler was used in synthesizing the VHDL along with the UMC

0.18 µm CMOS technology. The implementation was done for a 5 MHz bandwidth.

With higher bandwidths, more covariance matrices would have to be processed, which

would lead to a higher complexity.

The implementation results for the interference and noise variance estimation are

presented in Table 42. The delay includes the processing of all the subcarriers, but

individual subcarriers can be processed in a pipelined manner. The calculation of y−Hx

is performed before the noise variance or the IN-SCM can be calculated. The noise
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Fig. 67. The impact of complexity reduction and word lengths on the performance.

variance estimator has to process all the subcarriers before the noise estimate is obtained.

The covariance calculation block calculates the IN-SCM matrices. The calculation

of VDVH is performed after the EVD to form the inverse square root matrix. The

implementation results do not include the use of the IN-SCM in detection.

Table 42. Implementation results for the interference estimation.

Delay (cycles) Delay (µs) Gates Power

y−Hx 627 12.5 7424 11 mW

Noise var. est. 1704 34 7117 4 mW

Covariance 3151 63 11.3 k 8.4 mW

VDVH 2850 92 44 k 33.5 mW

The implementation results for the EVD are presented in Table 43 with different

numbers of sweeps of the algorithm. The complexity of the algorithm with one or two

sweeps is roughly the same, but the clock frequency is higher with the two sweep case.

The structured model consists of two EVDs with two sweeps.
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Table 43. Implementation results for the EVD.

Unstr. 1 sw Unstr. 2 sw Struct. 2 sw

Delay (cycles) 783 1543 1543

Clock frequency 79 MHz 155 MHz 155 MHz

Gates 71 k 64 k 128.1 k

Power consumption 45.7 mW 78.5 mW 157 mW

Complexity comparison of different interference mitigation methods are presented

in Table 44. The complexity includes the calculation of the covariance matrix as in (62),

the eigenvalue decomposition and the calculation of the inverse square root from the

results of the EVD. The adaptive algorithm also includes the noise variance estimate

calculation and the eigenvalue ratio calculation. The tracking method includes the

multiplication of the covariance matrix with the previous matrix V and the updating of

V as in (67) and (68). The memory requirement for the eigenspace tracking is higher

than that of the other methods because of the need to store the previous matrices V. The

power consumption for the adaptive algorithm is obtained for the two sweep case. The

adaptive algorithm can obtain some power saving when performing only one sweep with

a reasonable complexity while maintaining a good performance.

Table 44. Complexity of interference mitigation.

Unstr. 1 sw Adaptive sweep Tracking

Gates 134 k 145 k 180 k

Power consumption 98 mW 145 mW 117 mW

Memory (bits) 54.4 k 54.4 k 83.2 k

6.4 Discussion

The interference and noise spatial covariance matrix was used for both channel estimation

and detection. Both the unstructured and structured covariance matrix were considered

and some complexity reducing techniques were presented. Interference mitigation was

found to be crucial if strong interference is present. The accuracy of the EVD affects the
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performance. The less accurate EVD performs better in scenarios where the quality of

the covariance matrix is low. There, a lower number of estimated parameters leads

to fewer erroneous parameters. An adaptive algorithm was proposed to control the

interference suppression and the number of iterations performed in the EVD. Noise

variance estimation was included in the adaptive algorithm. The algorithm performs

well in all interference scenarios. Eigenspace tracking was also applied to lower the

complexity of the EVD and was found to perform well in some scenarios.

The EVD required for the structuring of the covariance matrix, as well as for

the inverse square root calculation was implemented with a high level synthesis tool

to obtain the complexity numbers. The use of the structured model leads to a good

performance at the expense of high complexity. Eigenspace tracking performs well, but

has a higher complexity and memory requirements than the adaptive algorithm, which

can be used to achieve a good performance while obtaining power savings.
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7 Conclusions and future work

The thesis concentrated on finding feasible algorithms for a MIMO mobile receiver while

improving the error rate performance and throughput. Data detection, channel estimation

and interference mitigation were considered. The aim was to develop algorithms and

architectures to meet the high performance and low power consumption requirements of

the future mobile communication systems, as stated in Chapter 1. The performance of

the algorithms was studied through computer simulation and the complexity and power

consumption results were obtained via VLSI implementations. The previous and parallel

work on detection, channel estimation and interference mitigation was introduced in

Chapter 2. The system, signal and channel models for detection and channel estimation

were presented in Chapter 3.

The performances and implementation complexities of the LMMSE, SIC, non-

iterative and iterative K-best LSD receivers for MIMO–OFDM communications were

compared in Chapter 4. The emphasis was on LTE specific system parameters and

latency requirements. The SIC receiver was shown to outperform the K-best LSD with

horizontal encoding in channels with low spatial correlation, but the result is reversed in

channels with significant spatial correlation; the SIC receiver is not practically suitable

for vertically encoded MIMO communications. Soft information feedback from the

FEC decoder to the K-best LSD stage was also considered as a strategy to improve

the performance. It provides up to 2 dB performance improvement. The choice of the

receiver algorithm is emphasized when the number of antennas increases and the channel

condition number is high. There, the nonlinear ML or MAP based receivers clearly

outperform the linear receivers, but the price is remarkably increased computational

complexity and power consumption.

The considered receivers were synthesized to an FPGA and an ASIC to get a solid

ground for implementation complexity comparison. A modification on the tree search of

the K-best LSD was presented to simplify its implementation with no compromise in

its error rate performance. Thus, it can achieve double detection rate compared to the

original K-best algorithm. On the selected FPGA, the SIC receiver is fast enough to

process the number of subcarriers defined in the LTE standard for 20 MHz bandwidth

with all modulations and 2× 2 and 4× 4 antenna configurations. The K-best LSD

suffers from the timing bottleneck caused by the sorter, but the required detection rates
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can be achieved by utilizing multiple detection blocks in parallel.

ASIC implementation results were also provided. The receivers were designed to

have a detection rate, which would be enough for the LTE 20 MHz bandwidth. The

K-best LSD was found to be more than twice as complex as the SIC receiver in the 2×2

antenna case, but in the 4×4 case, the complexity difference was smaller. The latency

of the SIC receiver does not depend on the used modulation and it can be employed with

higher order modulations. The latency of the K-best LSD increases with the modulation

and the list size in both FPGA and ASIC implementations.

The detectors with the highest goodput and the lowest complexity on ASIC with

correlated, moderately correlated and uncorrelated channels with a given SNR are

presented in Table 45. It can be seen that the simpler LMMSE and SIC receivers can be

used in the uncorrelated channel, but in the correlated channel, the K-best LSD gives the

best goodput. The detector and the modulation order could be changed adaptively with

the channel conditions and SNR in order to achieve the best possible goodput with the

least amount of receive power.

Table 45. The detector with the best goodput (QAM constellation Ω) ([62], pub-

lished by permission of IEEE).

SNR Correlated Mod. correlated Uncorrelated

2×2 system

2 dB it. 16-best (4) it. 16-best (4) it. 16-best (4)

10 dB 16-best (4) 16-best (4) LMMSE (4)

15 dB SIC (4) SIC (16) SIC (16)

20 dB it. 8-best (16) SIC (64) SIC (64)

4×4 system

10 dB it. 8-best (4) 8-best (4) LMMSE (4)

15 dB 8-best (4) LMMSE (4) SIC (16)

20 dB LMMSE (4) 8-best (16) SIC (64)

25 dB it. 8-best (16) LMMSE (16) LMMSE (64)

To obtain an insight of the impact of transmitter channel state information into the

performance of the detector algorithms, the LMMSE, SIC and K-best detectors were

further evaluated in a system with adaptive modulation and coding. The capacity metric

was considered here, but the idea was to study the impact of adaptation on the receiver.
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The use of other metrics would be an interesting topic of further study. The performance

of the detectors was similar in the low SNR region, where the adaptation resulted in low

rank transmission. The K-best detector improved the performance from LMMSE and

SIC detectors in the high SNRs, where full rank transmission was used. The ASIC

implementation results for detectors supporting all three modulation schemes were

presented and were found to be similar to those of the fixed modulation schemes. In

conclusion, a simple detector can be used for a low cost receiver, but the peak data

rates may not be achieved. For a high performance receiver, a more complex detector

algorithm is needed.

Chapter 5 focused on channel estimation. The aim was to address the performance

degradation of a system with periodic pilot symbols, such as most of the mobile

communication systems, when the user velocity is high or when the pilot overhead

decreases the throughput. The performance and complexity of the LS, MMSE and

the decision directed SAGE channel estimators were compared. The LS and MMSE

estimators have a low complexity and power consumption. The SAGE estimator has a

much higher power consumption. The MMSE filter and the SAGE estimator can be used

to improve the pilot symbol based LS estimator performance. The pilot symbol based

LS estimator does not achieve a sufficient throughput with high user velocities when the

channel changes frequently between pilot symbols. The throughput increases when the

pilot symbol density is decreased and data is transmitted instead of pilot symbols. The

SAGE channel estimator compensates for the missing pilot symbols and maintains the

improved throughput with lower amount of pilot symbols. The performance and energy

efficiency of the channel estimators are summarized in Table 46 with different channels

and pilot symbol densities. The energy efficiency is defined as power consumption per

correctly received bit. The SAGE estimator has the highest goodput with low pilot

symbol density, while the MMSE estimator performs the best in most cases with LTE

pilots. The LS estimator has the best energy efficiency in most cases, but the difference

in power consumption between the LS and MMSE estimators is small. The SAGE

channel estimator would be a good choice for systems where training is performed in

the beginning of the transmission. The MMSE estimator performs well in systems with

high pilot densities, while the complexity and power consumption are low.

163



Table 46. The channel estimator with the highest goodput or best energy effi-

ciency.

Channel Velocity Highest goodput Most energy efficient

LTE pilots

Uncorrelated 50 km/h MMSE LS

Winner C1 NLOS 100 km/h MMSE MMSE

Mod. corr. TU 50 km/h SAGE LS

Mod. corr. TU 100 km/h MMSE MMSE

Low pilot symbol density

Uncorrelated 50 km/h SAGE LS

Winner C1 NLOS 100 km/h SAGE MMSE

Mod. corr. TU 50 km/h SAGE LS

Mod. corr. TU 100 km/h SAGE LS

Interference mitigation was considered in Chapter 6. The aim was to mitigate the

co-channel interference at the receiver in case no coordinated transmission strategies

were in place in the network. The interference and noise spatial covariance matrix

measured on the pilot subcarriers was utilized in channel estimation and detection.

Without interference mitigation, the performance of the receiver suffers if strong

interference is present. An adaptive algorithm was proposed to control the performance

and power consumption of the interference mitigation. The algorithm utilizes also

noise variance estimation. The algorithm was found to perform well in all scenarios

and it can be applied to both linear and nonlinear detection. Implementation results

for different interference mitigation algorithms were also provided. All the methods

can be implemented at a fairly low cost, but adaptation is required to achieve a good

performance in every interference case while obtaining power savings. Finally, detection

in an adaptive transmission system, channel estimation and interference mitigation were

combined. The performance of the LMMSE and K-best detectors were compared with

and without a strong interferer present in the system. Without interference, the same

conclusions can be drawn as in Chapter 4: the performances are similar in low SNRs but

the K-best detector performs better in high SNRs with higher transmission ranks. When

there is interference present, the transmission adaptation does not result in high rank

transmissions and the performance of the algorithms do not differ greatly.
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One promising topic for further study would be the design and implementation of a

reconfigurable overall architecture which would adaptively switch using a simple or a

more complex detector depending on the transmission requirements, available SNR,

channel properties, etc. This architecture could provide the best performance in all

transmission scenarios while minimizing the power consumption. The receiver could be

also further optimized for interference scenarios. Also, the combination of detection,

channel estimation and interference mitigation from Chapters 4-6 could be optimized to

obtain area and power savings. In conclusion, it can be seen that the wireless systems

are designed with a simple receiver in mind, but more complex receiver algorithms are

still needed to achieve the high data rates in difficult environments. Furthermore, since

even higher data rates are planned for the future wireless systems, the use of simple

receiver algorithms may not suffice.
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