IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

Equalizer: A Scalable Parallel Rendering Framework

Stefan Eilemann*

Maxim Makhinya®

Renato Pajarola*

Visualization and MultiMedia Lab
Department of Informatics
University of Zirich

Abstract— Continuing improvements in CPU and GPU performances as well as increasing multi-core processor and cluster-based
parallelism demand for flexible and scalable parallel rendering solutions that can exploit multipipe hardware accelerated graphics. In
fact, to achieve interactive visualization, scalable rendering systems are essential to cope with the rapid growth of data sets. However,
parallel rendering systems are non-trivial to develop and often only application specific implementations have been proposed. The
task of developing a scalable parallel rendering framework is even more difficult if it should be generic to support various types of data
and visualization applications, and at the same time work efficiently on a cluster with distributed graphics cards.

In this paper we introduce a novel system called Equalizer, a toolkit for scalable parallel rendering based on OpenGL which pro-
vides an application programming interface (API) to develop scalable graphics applications for a wide range of systems ranging from
large distributed visualization clusters and multi-processor multipipe graphics systems to single-processor single-pipe desktop ma-
chines. We describe the system architecture, the basic API, discuss its advantadges over previous approaches, present example

configurations and usage scenarios as well as scalability results.

Index Terms—Parallel Rendering, Scalable Visualization, Cluster Graphics, Immersive Environments, Display Walls

1 INTRODUCTION

The continuing improvements in hardware integration lead to ever
faster CPUs and GPUs, as well as higher resolution sensor and display
devices. Moreover, increased hardware parallelism is applied in form
of multi-core CPU workstations, massive parallel super computers, or
cluster systems. Hand in hand goes the rapid growth in complexity
of data sets from numerical simulations, high-resolution 3D scanning
systems or bio-medical imaging, which causes interactive exploration
and visualization of such large data sets to become a serious challenge.
It is thus crucial for a visualization solution to take advantage of hard-
ware accelerated scalable parallel rendering. In this systems paper we
describe a new scalable parallel rendering framework called Equal-
izer that is aimed primarily at cluster-parallel rendering, but works as
well in a shared-memory system. Cluster systems are the main focus
because workstation graphics hardware is developing faster than high-
end graphics (super-) computers can absorb new developments, and
also because clusters offer a better cost-performance balance.

Previous parallel rendering approaches typically failed in one of the
following system requirements:

a) generic application support, instead of special domain solution
b) scalable abstraction of the graphics layer

c) exploit existing code infrastructure, such as proprietary scene
graphs, molecular data structures, level-of-detail and geometry
databases

To date, generic and scalable parallel rendering frameworks that can
be adopted to a wide range of scientific visualization domains are not
yet readily available. Furthermore, flexible configurability to arbitrary
cluster and display-wall configurations has also not been addressed in
the past, but is of immense practical importance to scientists depend-
ing high-performance interactive visualization as a scientific tool. In
this paper we present Equalizer, which is a novel flexible framework
for parallel rendering that supports scalable performance, configura-
tion flexibility, is minimally invasive with respect to adapting existing

*email: eilemann@gmail.com
Temail: makhinya@ifi.uzh.ch
femail: pajarola@acm.org

Manuscript received 5 Feb. 2008; revised 11 July 2008; accepted 22 Aug.
2008; published online 4 Sept. 2008.

For information on obtaining reprints of this article, please send e-mail to:
tveg @computer.org.

visualization applications, and is applicable to virtually any scientific
visualization application domain.

The main contributions that Equalizer introduces in a single parallel
rendering system, and which are presented in this paper are:

i) novel concept of compound trees for flexible configuration of
graphics system resources,

ii) easy specification of parallel task decomposition and image com-
positing choice through compound tree layouts,

iii) automatic decomposition and distributed execution of rendering
tasks according to compound tree,

iv) support for parallel surface as well as transparent (volume) ren-
dering through z-visibility as well as a-blending compositing,

v) fully decentralized architecture providing network swap barrier
(synchronization) and distributed objects functionality,

vi) support for low-latency distributed frame synchronization and
image compositing,

vii) minimally invasive programming model.

Equalizer is open source, available under the LGPL license from
http://www.equalizergraphcis.com/, which allows it to be used both for
open source and commercial applications. It is source-code portable,
and has been tested on Linux, Microsoft Windows, and Mac OS X in
32 and 64 bit mode using both little endian and big endian processors.

2 RELATED WORK

The early fundamental concepts of parallel rendering have been laid
down in [39] and [13]. A number of domain specific parallel render-
ing algorithms and special-purpose hardware solutions have been pro-
posed in the past, however, only few generic parallel rendering frame-
works have been developed.

Domain specific solutions

Cluster-based parallel rendering has been commercialized for off-line
rendering (i.e. distributed ray-tracing) for computer generated ani-
mated movies or special effects, since the ray-tracing technique is
inherently amenable to parallelization for off-line processing. Other
special-purpose solutions exist for parallel rendering in specific ap-
plication domains such as volume rendering [34, 56, 23, 50, 18, 44]
or geo-visualization [55, 2, 33, 29]. However, such specific solutions
are typically not applicable as a generic parallel rendering paradigm
and do not translate to arbitrary scientific visualization and distributed
graphics problems.

Recently in [45], parallel rendering of hierarchical level-of-detail
(LOD) data has been addressed and a solution specific to sort-first

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

(a)

Fig. 1. Various Equalizer use cases: (a) immersive CAVE, (b) display wall and (c) scalable volume rendering.

tile-based parallel rendering has been presented. While the presented
approach is not a generic parallel rendering system, basic concepts
presented in [45] such as load management and adaptive LOD data
traversal can be carried over to other sort-first parallel rendering solu-
tions.

Special-purpose architectures

Traditionally, high-performance real-time rendering systems have re-
lied on an integrated proprietary system architecture, such as the SGI
graphics super computers. These special-purpose solutions have be-
come a niche product as their graphics performance does not keep
up with off-the-shelf workstation graphics hardware and scalability of
clusters. However, cluster systems need more sophisticated parallel
graphics rendering libraries, such as the one proposed in this paper.

Due to its conceptual simplicity, a number of special-purpose image
compositing hardware solutions for sort-last parallel rendering have
been developed. The proposed hardware architectures include Sepia
[38, 32], Sepia 2 [35, 36], Lightning 2 [52], Metabufter [9, 59], MPC
Compositor [43] and PixelFlow [40, 17], of which only a few have
reached the commercial product stage (i.e. Sepia 2 and MPC Com-
positor). However, the inherent inflexibility and setup overhead have
limited their distribution and application support. Moreover, with the
recent advances in the speed of CPU-GPU interfaces, such as PCI
Express and other modern interconnects, combinations of software
and GPU-based solutions offer more flexibility at comparable perfor-
mance.

Generic approaches

A number of algorithms and systems for parallel rendering have been
developed in the past. On one hand, some general concepts applica-
ble to cluster parallel rendering have been presented in [41, 42] (sort-
first architecture), [49, 48] (load balancing), [47] (data replication),
or [11, 10] (scalability). On the other hand, specific algorithms have
been developed for cluster based rendering and compositing such as
[3], [12] and [57, 53]. However, these approaches do not constitute
APIs and libraries that can readily be integrated into existing visualiza-
tion applications, although the issue of the design of a parallel graph-
ics interface has been addressed in [28]. Only few generic APIs and
(cluster-) parallel rendering systems exist which include VR Juggler
[8] (and its derivatives), Chromium [27] (an evolution of [26, 24, 25])
and OpenGL Multipipe SDK [30, 6, 1].

VR Juggler [8, 31] is a graphics framework for virtual reality appli-
cations which shields the application developer from the underlying
hardware architecture, devices and operating system. Its main aim is
to make virtual reality configurations easy to set up and use without the
need to know details about the devices and hardware configuration, but
not specifically to provide scalable parallel rendering. Extensions of
VR Juggler, such as for example ClusterJuggler [7] and NetJuggler [4],
are typically based on the replication of application and data on each
cluster node and basically take care of synchronization issues, but fail
to provide a flexible and powerful configuration mechanism that effi-
ciently supports scalable rendering as also noted in [51]. The presented
system is different from VR Juggler in that it fully supports scalable
parallel rendering such as sort-first and sort-last task decomposition
and image compositing, it provides more flexible node configurations

which for example allow specifying arbitrary task decomposition and
image compositing combinations as simple compound layouts. Fur-
thermore, it it is fully distributed which includes support for network
swap barriers (synchronization), distributed objects as well as image
compression and transmission. In contrast to VR Juggler, Equalizer
supports multiple rendering threads per process, which is important
for multi-GPU systems.

While Chromium [27] provides a powerful and transparent abstrac-
tion of the OpenGL API, that allows a flexible configuration of display
resources, its main limitation with respect to scalable rendering is that
it is focused on streaming OpenGL commands through a network of
nodes, often initiated from a single source. This has also been ob-
served in [51]. The problem comes in when the OpenGL stream is
large in size, due to not only containing OpenGL calls but also the
rendered data such as geometry and image data. Only if the geome-
try and textures are mostly static and can be kept in GPU memory on
the graphics card, no significant bottleneck can be expected as then the
OpenGL stream is composed of a relatively small number of rendering
instructions. However, as it is typical in real-world visualization appli-
cations, display and object settings are interactively manipulated, data
and parameters may change dynamically, and large data sets do not fit
statically in GPU memory but are often dynamically loaded from out-
of-core and/or multiresolution data structures. This can lead to fre-
quent updates not only of commands and parameters wich have to be
distributed but also of the rendered data itself (geometry and texture),
thus causing the OpenGL stream to expand dramatically. Furthermore,
this stream of function calls and data must be packaged and broad-
cast in real-time over the network to multiple nodes for each rendered
frame. This makes CPU performance and network bandwidth a more
likely limiting factor. While preserving a minimally invasive API, the
novel proposed system is better aimed at scalability as the actual data
access is decentralized in the distributed rendering clients.

The performance experiments in [27] indicate that Chromium is
working quite well when the rendering problem is fill-rate limited.
This is due to the fact that the OpenGL commands and a non-critical
amount of rendering data can be distributed to multiple nodes without
significant problems and since the critical fill-rate work is then per-
formed locally on the graphics hardware.

Chromium also provides some facilities for parallel application de-
velopment, namely a sort-last, binary-swap compositing SPU and an
OpenGL extension providing synchronization primitives, such as a
barrier and semaphore. It leaves other problems, such as configura-
tion, task decomposition as well as process and thread management
unaddressed, thus making the development of parallel OpenGL appli-
cations harder than with Equalizer. Parallel Chromium applications
tend to be written for one specific parallel rendering use case, such as
for example the sort-first distributed memory volume renderer [5] or
the sort-last parallel volume renderer raptor [22]. We are not aware of
a generic Chromium-based application using many-to-one sort-first or
stereo decompositions. This is another difference to Equalizer which
provides a much more flexible task decomposition configuration. Ap-
plications written once for Equalizer can easily be run in any different
task decomposition mode and for any physical display configuration
without any changes to the application itself. While Equalizer pro-
vides an abstraction of all entities of the rendering pipeline (see Sec-

tions 4 and 5), Chromium’s infrastructure is primarily the compositing
stage.

OpenGL Multipipe SDK (MPK) [6] implements an effective paral-
lel rendering API for a shared memory multi-CPU/GPU system. It is
similar to IRIS Performer [46] in that it handles multi-pipe rendering
by a lean abstraction layer via a conceptual callback mechanism, and
that it runs different application tasks in parallel. However, MPK is
not designed nor meant for rendering nodes separated by a network.
MPK focuses on providing a parallel rendering framework for a single
application, parts of which are run in parallel on multiple rendering
channels, such as the culling, rendering and final image compositing
processes. Compared to MPK, Equalizer supports a fully distributed
parallel rendering paradigm and features a more flexible task decom-
position approach.

3 BAsIC CONCEPTS

Besides the API, one of the major differences of Equalizer to
Chromium is that it is fully distributed and runs the application code in
parallel. For example, one can setup a multi-screen display-wall with
Chromium, streaming the OpenGL calls to a number of render nodes
assigned to screen tiles of the display-wall, as illustrated in Figure 2(c).
One instance of the application is running. In contrast, Equalizer runs
parts of the application in parallel on multiple rendering channels as
illustrated in Figure 2(a).

(

OpenGL driver
GPU

crfaker
){ tilesort
OpenGL | OpenGL

GPU GPU

render | render
@ OpenGL | OpenGL
] GPU GPU

Anplication code OpenGL Chromium Stream
pp implementation Processing Units

(a) (b) (©)

Fig. 2. A traditional OpenGL application (b) and its equivalents when
using Equalizer (a) or Chromium (c).

Equalizer takes care of distributed execution, synchronization and
final image compositing, while the application programmer identifies
and encapsulates critical parts of the application, such as culling and
rendering. This approach is considered to be minimally invasive since
the existing and proprietary rendering code can basically be retained.
All rendering is executed directly to an OpenGL context, and at no
point are OpenGL commands sent over the network.

This minimally invasive approach allows the application to retain
its OpenGL rendering code, but structures the implementation to allow
for optimal performance. The network bandwidth is freed from unnec-
essary transmission of excessive graphics commands and data since
only the basic rendering parameters are exchanged between nodes.
Only for the unavoidable final image compositing step in scalable ren-
dering, framebuffer data between the nodes must be exchanged. The
application can implement efficient dynamic database updates based
on distributed objects or message passing as these distributed systems
primitives are provided by Equalizer.

A major strength of Equalizer is its flexible and scalable config-
uration of the parallel rendering tasks, which takes the notion of a
compound tree introduced in MPK [6] to a distributed cluster environ-
ment as discussed in Section 4.5. Hence different parallel rendering
task decomposition and image compositing configurations can easily
be specified, see also Figure 11. For example, efficient direct-send
sort-last image compositing has been demonstrated in [15].

The Equalizer framework does not impose any constraints on how
the application handles and accesses the data to be visualized. As
such, Equalizer does not provide a solution to the parallel data access
and distribution problem which has to be addressed by the application
itself, for example via mechanisms to limit data replication (e.g. [47]),
or out-of-core access to large data sets and multiresolution representa-
tions (e.g. [12]). As demonstrated in [12], out-of-core data structures
are well suited to provide efficient parallel access to the 3D data from
all rendering nodes, and a wealth of out-of-core approaches have been
provided for volume, polygonal or point data sets (e.g. [54], [21], [58],
[20] or [19]). Equalizer does not interfere with or inhibit any solution
to this problem, as it is an orthogonal issue.

Equalizer does address some fundamental problems to help appli-
cation developers to distribute their data effectively in the context of
parallel rendering. The Equalizer networking layer supports message
passing and the creation of distributed objects. By sub-classing a dis-
tributed object class, static and versioned objects can be created. Ob-
jects are addressed on the cluster using a unique identifier, which al-
lows the remote mapping of the object. Versioned objects are typically
used for frame-specific data, where a new version for each new frame
is created. This version information is passed correctly by Equalizer
to the application rendering code. This mechanism allows simple dis-
tribution and multi-buffering of data.

Our egPly and eVolve example applications use static distributed
objects for submitting the initialization parameters, e.g. the model
filename, and a versioned distributed object for the camera position
and other frame-specific data.

4 SYSTEM ARCHITECTURE

Equalizer is a parallel rendering framework using a similar task de-
scription concept as OpenGL Multipipe SDK (MPK) [6]. In the fol-
lowing we will focus on the basic system aspects of Equalizer, start-
ing with the interface and application structure followed by the client-
server model employed. One of the main Equalizer contributions, the
compound tree concept which describes the hardware resource setup
and parallel task decomposition, is then introduced in detail.

4.1 Interface

Equalizer provides a framework to facilitate the development of dis-
tributed as well as non-distributed parallel rendering applications. The
programming interface is based on a set of C++ classes, modeled
closely to the resource hierarchy of a graphics rendering system. The
application subclasses these objects and overrides C++ task methods,
similar to C callbacks. These task methods will be called in parallel
by the framework, depending on the current configuration. A wrapper
interface could be written to provide C bindings. This parallel render-
ing interface is significantly different from Chromium [27] and more
similar to VRJuggler [8] or MPK [6]. The class framework and in
particular its use is described in more detail in Section 5.

An Equalizer application does not have to select a particular ren-
dering configuration itself; it is configured by a system-wide configu-
ration server. The application is written only against a client library,
communicating with the server which does not have to be touched by
the developer. The parallel rendering configuration is initialized by the
server based on guidelines from the application or a user supplied con-
figuration file. The server also launches and controls the distributed
rendering clients provided by the application. Thus the application
itself can run unmodified on any configuration which has been initial-
ized by the server, and if none is given the application will run as a
stand-alone process on the node it has been started.

While on a higher level Equalizer uses a client-server approach, it
is built on a peer-to-peer network layer. This network layer provides a
message-based communication interface, as needed between any two
nodes in the cluster, e.g., to transmit image data for result recompo-
sition during scalable rendering. Currently Equalizer provides an im-
plementation for TCP/IP sockets and InfiniBand. The usage of MPI as
a low-level communication library was not feasible in the context of
Equalizer. Dynamic process management is only available in MPI 2,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

which still is not wide-spread enough. Furthermore, the communica-
tion patterns for which MPI was designed are significantly different
from Equalizer’s use case. However, this does not prohibit coupling
MPI-based programs with Equalizer.

4.2 Application

The application in Equalizer solely drives the rendering, that is, it car-
ries out the main rendering loop only, but does not actually execute any
rendering. Although depending on the configuration, the application
process may also host one or more render client threads, as described
below. When a configuration has no additional nodes besides the ap-
plication node, all application code is executed in the same process,
and no network data distribution has to be implemented.

During initialization of the server, the application provides a ren-
dering client. The rendering client is often, especially for simple ap-
plications, the same executable as the application. However, in more
sophisticated implementations the rendering client may be a thin ren-
derer which only contains the application-specific rendering code. The
server deploys this rendering client on all nodes specified in the con-
figuration. The main rendering loop is quite simple: The application
requests a new frame to be rendered, synchronizes on the completion
of a frame and processes events received from the render clients. Fig-
ure 3 shows a simplified execution model of an Equalizer application.
The rendering client and server are further described in the following
sections.

Equalizer
Server

initialize

choose
config

--open -

Application Render Clients

initialize S alize - ->
config - €------ > threads
—>+ oq—l
fbegin - === ppfcompute, == === P receive, - -p| execute:
rame transmit f===---- P dispatch F -p>
tasks [===--- »| tasks clear
I draw
assemble
end [~°°" > fsync readback
rame ;
frame |g ... % |l o1 swapbarrier
< end [| swap
no no
<Gt > R R
no Yes
update yes yes

database

exit femmeeapp| pee---
config [@=====-1 |d-==nn---

exit - close -b

L

05

Fig. 3. Simplified execution flow of an Equalizer application, omitting
event handling and application-node rendering threads.

4.3 Rendering Client

Each Equalizer application provides a rendering client, which can be
the same executable as the application code itself. In contrast to the
application however, the rendering client does not need to have a main
loop and is completely controlled by the Equalizer framework. If a
configuration also uses the application node for rendering then the ren-
dering happens in different threads within the application process. A

render client consists of the following threads: the node main thread,
one network receive thread, and one thread for each graphics card
(GPU) to execute rendering tasks.

The client library implements the main loop, which receives net-
work events and processes them. Most importantly, the network data
contains the rendering task parameters computed by the server. Based
on this data, the client library sets up the rendering context and calls
the application-provided task methods. Setting up the rendering con-
text consists of using the correct rendering thread, making the draw-
able and graphics context current, as well as providing the task meth-
ods with the 2D viewport, frustum, view matrix and the data-range
for sort-last rendering. The task methods clear the frame buffer as
necessary, execute the OpenGL rendering commands as well as read-
back, and assemble partial frame results for scalable rendering. All
tasks have default implementations so that only the application spe-
cific methods have to be implemented, which typically includes the
frameDraw () method. For example, the default callbacks for frame
recomposition during scalable rendering implement tile-based assem-
bly for sort-first and stereo decompositions, and z-buffer or composit-
ing for sort-last rendering of polygonal data. A detailed description of
the API and all methods can be found in the programming guide [14].

Event handling is implemented by listening asynchronously for
events from all windows. Events are transformed from window-
system specific events into generic window events, and dispatched to
the correct window. The window either processes the event locally, or
converts it into a config-event to be sent to the application node. The
application node processes the config-events as part of its main ren-
dering loop. A more detailed description of event handling can also be
found in [14].

In addition to executing the application code in the right context, the
client library implements image compression and transmission, net-
work swap barrier support and distributed object support.

4.4 Equalizer Server

The Equalizer server receives requests from the application on the vi-
sualization system. It serves these requests using the application’s
specific configuration, launching rendering clients on the nodes, de-
termining the rendering tasks for a frame, and synchronizing the com-
pletion of frames.

The server maintains the configuration for the application. Main-
taining the configuration on the server facilitates an extension to cross-
application load balancing, resource reservation and further system-
wide resource management. Each configuration consists of two parts.
The first part is a hierarchical resource description derived from the
physical and logical environment of the application. The second part
consists of the compound tree, which declares how the resources are
used for rendering. The compounds are the heart of the scalable ren-
dering engine, and are described in detail in the following section.

The resources description given in Table 1 includes the intuitive
entities that make up a typical graphics system, of which several are
used in parallel in a rendering cluster. At the top of the hierarchy
are nodes which represent a process, possibly one per CPU-core on
each computer within a cluster. A node contains one or more pipes
which are threads representing the GPUs in a machine. In turn, a pipe
can have multiple windows which correspond to OpenGL on-screen
or off-screen drawables. By default, all windows of a pipe share dis-
play lists and other OpenGL objects. Eventually, a window has one or
more channels which encapsulate a particular OpenGL viewport in a
window. Note that all tasks for a pipe and its children are executed in
a separate thread.

Physical entity: CPU GPU Drawable Viewport

Equalizer resource: node window channel

pipe

Table 1. Correspondence between physical and logical system entities
and Equalizer resources.

A simple example of resource description and configuration is given
in Figure 4 which shows a one-node, single-pipe, two-window, two-
channel resource configuration driving a TAN Holobench™ with two
projection surfaces. The corresponding resources configuration file
which is read by the server is also given below. The leaf-node channels
declared in the resource section on the left are used by the compounds
to describe the rendering processes. Another resource configuration is
illustrated in Figure 12. The corresponding compounds configuration
file is further detailed in the following section.

compound
eye [LEFT RIGHT |

i

channel "front"

: o} wall { ... }
il swapbarrier {}

swapbarrier {}

node {
pipe {
window {
viewport [0 0 1280 1024]
channel { name "front” }

window {
viewport [0 0 1280 1024]
channel { name “bottom” }

}
1

Fig. 4. An example Equalizer resource configuration for a TAN
Holobench™ with the associated render resources.

4.5 Compound Trees

To describe the parallel rendering task decomposition, Equalizer uses a
compound tree structure similar to MPK [6]. However, the compound
definition has been improved in a few key points to provide a more
flexible and powerful configuration.

First, it does not rely on a hard-coded mode which determines the
task decomposition and image compositing stages. Instead, it de-
scribes the rendering and compositing tasks via the compound tree’s
structure.

Second, the rendering is asynchronous, and not frame-synchronized
as in MPK where all rendering threads are synchronized at the end
of each frame. Asynchronous rendering avoids idle times for render-
ing threads which finish early. Equalizer introduces a config-latency
lconfig> Which defines how many frames the slowest rendering thread is
allowed to fall behind. Hence at the end of frame i, the completion of
frame i — l.onfig Will be synchronized. Note that setting leonfig = 0 en-
forces a frame-synchronicity if desired. Other synchronization points
in Equalizer only include the completion of image transfers for com-
positing, and optional swapbarriers explicitly defined in the com-
pound tree.

Compounds are a data structure to describe the parallel execution of
rendering tasks in form of a tree. Each compound corresponds to some
tasks (clear, draw, assemble, readback) and references a channel from
the resource description which executes the tasks in the given order.
A compound may provide output frames from the readback task to
others, and can request input frames from others for its own assembly
task, and output frames are linked to input frames by name.

Compound trees are a logical description of the rendering pipeline,
and only reference the actual physical resources through their chan-
nels. This allows mapping a compound tree to different physical con-
figurations by simply replacing the channel IDs. For example, one can
test the functionality of a sort-last configuration by using channels of
different windows on one local workstation.

A simple leaf compound description for rendering a part of the data
set, given by the data range, into a particular region of the viewport is
given in Figure 5. The data range is a logical mapping of the data set
onto the unit interval and is left to the application to interpret appro-
priately. Hence the range [0 %] indicates that the first half of the data
set should be rendered, for example the first 7 triangles of a polygonal
mesh with n faces. The viewport is indicated by the parameters [x y
width height] as fraction of the parent’s viewport, and in the example
the data is thus rendered into the left half of the viewport. The re-
sulting framebuffer data — including per-pixel color and depth — of the
rendering executed on this channel is read back and made available to
other compounds by the name left_half.

compound {
channel “draw”
buffer [COLOR DEPTH]
range [0 %]
viewport [00 1 1]
outputframe {name “left_half” }

}

Fig. 5. Compound executing rendering of a part of the data set into a
given region of the viewport.

A non-leaf compound performing some image assembly and com-
positing task is indicated in Figure 6. Framebuffer data is read from
two other compounds which supposedly execute rendering for part_a
and part_b of the data set in parallel. The compound itself executes for
example z-depth visibility compositing of the two input images on its
channel and returns the resulting color framebuffer.

compound {
channel “display”
inputframe { name “’part_a” }
inputframe { name “part_b” }
outputframe { buffer [COLOR] }

Fig. 6. Compound performing image compositing.

An example showing how to setup a specific physical display
configuration is given in Figure 7 which corresponds to the TAN
Holobench™ configuration shown in Figure 4 above. Using the wall
parameter the physical configuration of a display can be specified, here
given in meters where the coordinate system’s x,y-plane is the hori-
zontal bottom screen, z extending vertically up and the origin is the
front-leftmost corner of the two-screen display. Together with an ob-
server position and orientation, the wall parameters fully define the
view-frustum for each output screen.

Leaf compounds execute all tasks by default, but the focus is of-
ten on the draw task with a default assemble and standard readback
task used to pass the resulting image data on to other compounds for
further compositing. Hence while leaf compounds execute the render-
ing in parallel, non-leaf compounds often correspond to, but are not
restricted to the (parallel) image compositing and assembly part. The
readback or assemble tasks are only active if output or input frames
have been specified, respectively. Otherwise the rendered image frame
is left in-place for further processing in a parent compound sharing the
same channel.

Note that non-leaf nodes in the compound tree structure traverse
their children first before performing their default assemble and read-
back tasks. Furthermore, compounds only define the logical task de-
composition structure, while its execution is actually performed on the
referenced channels. Therefore, since compounds can share channels,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

compound {
eye [LEFT RIGHT |
compound {
channel "front”
wall {
bottom_left [0.0 0.5 0.0]
bottom_right [1.0 0.5 0.0]
top_left [0.00.50.5]
1}
compound {
channel "’bottom”
wall {
bottom_left [0.0 0.0 0.0]
bottom_right [1.0 0.0 0.0]
top_left [0.0 0.50.0]

1}
}
Fig. 7. Wall compound.

as often done between a parent and one of its child compounds, ren-
dered image data can sometimes be left in place, avoiding readback
and transfer to another node.

All attributes as well as the channel are inherited from the parent
compound if not specified otherwise. The viewport, data range and
eye attributes are used to describe the decomposition of the parent’s
2D viewport, database range and eye passes, respectively. To synchro-
nize the buffer swap among a group of channels, swap barriers can be
used which is typically used for multi-screen setups such as CAVEs or
display walls.

In the following we describe several use-case examples of the com-
pound tree structure introduced above that demonstrate how different
task decomposition modes can be specified. More complex configu-
rations can be achieved by combining these strategies. Note that the
physical resources description, the first part of the configuration (see
also previous section), is omitted in these examples.

Sort-first configuration

A sort-first compound configuration is shown in Figures 8 and 11(a).
The root compound defines the viewport size of the channel and the
frustum from the wall description. While the first child compound
inherits the channel, the other compounds are executed on different
channels. However, each defines a partial viewport, affecting its local
view frustum corresponding to the sort-first screen subdivision. All
leaf compounds execute the basic clear and draw tasks, and except
for the first child have to readback the result into the specified output
frames. The root compound executes the assemble task (sort-first tiled
image compositing) once the output frames are available.

channel "dest"
wall{... }
inputframe "tile.b1"
inputframe "tile.b2"

channel "buffer2"
viewport [right]
outputframe "tile.b2"

channel "buffer1"
viewport [middle]
outputframe "tile.b1"

channel "dest"
viewport [left]

Fig. 8. Compound tree for a three-to-one sort-first decomposition.

Sort-last configuration

Figures 9 and 11(b) show a sort-last configuration with parallel image
compositing. The leaf compounds execute the rendering, and read
back two tiles each to be z-composited by the other channels. The
intermediate compounds execute the z-compositing in parallel using
framebuffer data from the other channels via the indicated output-input
frame mapping. Once a channel has completed this assemble task
(sort-last z-buffer image compositing) on its tile, the color framebuffer

content is handed over to the root compound which puts together the
tiles to form the final image. Note that a compound does not need to
read back a tile which is processed in a parent on the same channel
since it is already in place (e.g. the compounds executed on the “dest”
channel in Figure 9). The arrows illustrate the data flow for the tile
being z-composited by the channel named “bufferl”, according to a
direct-send sort-last image compositing [15].

channel "dest"
wall{ ...}

inputframe { name "tile2" }
inputframe { name "tile3" }

channel "buffer1"
inputframe "tile2.dest"
inputframe "tile2.b2"
outputframe "tile2",
viewport [tile2]

channel "dest"
inputframe "tile1.b1"
inputframe "tile1.b2"

outputframe "tile3",
viewport [tile3]

channel "buffer2"
data range [third tier]
outputframe "tile1.b2",
viewport [tile1]
outputframe "tile2.b2",
viewport [tile2]

channel "buffer1"

data range [second tier]

outputframe "tile1.b1",
viewport [tile1]

outputframe "tile3.b1",
viewport [tile3]

channel "dest"

data range [first tier]

outputframe "tile2.dest",
viewport [tile2]

outputframe "tile3.dest",
viewport [tile3]

Fig. 9. Compound tree for a three-to-one direct-send sort-last configu-
ration.

Stereo sort-first configuration

Figures 10 and 11(c) show a mixture of decomposition algorithms in
a multilevel compound tree. Stereo rendering is mixed with sort-first
decomposition. The first level is a stereo decomposition for the left
and right eye, which is in turn parallelized for each eye on two chan-
nels using a sort-first decomposition. The channels used for rendering
are again also used for compositing, which again allows some image
transfer optimizations. Figure 11(c) uses anaglyphic stereo for bet-
ter readability, but the compound works the same for quad-buffered
stereo.

channel "dest"
wall{...}
inputframe "right"

channel "buffer1"
eye [RIGHT]
inputframe "right.b3"
outputframe "right"

channel "dest"
eye [LEFT]
inputframe "left.b2"

i channel "dest"
channel "buffer2" viewport [right-half |

viewport [left-half]
outputframe "left.n2"

channel "buffer3"
viewport [right-half]
outputframe "right.b3"

channel "buffer1"

viewport [left-half |

Fig. 10. Compound tree for a four-to-one stereo/sort-first configuration.

Multi-screen configurations

Multi-screen display systems can easily be configured with Equal-
izer by assigning one destination channel to each screen and addition-
ally specifying the rendering decomposition to generate the different
screen images. For example it is straight forward to setup any sized
display-wall configuration that uses its own nodes that drive the tiled
screens or projectors, or for that matter any additional nodes not di-
rectly driving a display, for parallel rendering and compositing. Nodes
can freely be combined to share the task of rendering and in a different
way to perform the image compositing task. Thus the use of physical
resources can be tailored to the particular system and use.

Figure 12 shows a two-node, three-pipe, three-window, four-
channel configuration driving a four-sided CAVE™. In this example
we again show the mapping to physical resources where two channels

(©)

(@)
Fig. 11. (a) Sort-first scalable rendering — compound tree Figure 8. (b)Sort -last scalable rendering — compound tree Figure 9. (c) Stereo separation

and sort-first decomposition — compound tree Figure 10.

are mapped to one single pipe and one node contains two pipes. The
channels declared in the resource section are used by the compounds
for rendering. The leaf compounds, which execute the rendering, use a
swap barrier to synchronize their output. The root compound specifies
that the left and right eye are used for stereo rendering.

c
Q
=

©

—
©

[&]

]
[a)]

(0]

[$)

S

>

[@]

(]

[0
o

channel "left" channel "floor"
wall{...} wall{..}
swapbarrier{} Jll swapbarrier{}

(]

()]

]

[%2]
-]

(O]

[$)

S

>

o

(%]

(]
o

Fig. 12. An example Equalizer CAVE configuration with the associated
real-world counterparts.

Equalizer’s compound description is extremely flexible and power-
ful, and can be used to define parallel image compositing algorithms,
such as direct-send or binary-swap, as well as multilevel decomposi-
tions using different decomposition modes to balance the bottlenecks

of the individual algorithms. A detailed specification can be found in
[14]. Numerous example configurations are included with the Equal-
izer distribution.

5 APPLICATION DEVELOPMENT

A typical, e.g. OpenGL based, interactive visualization application’s
main loop conceptually looks something like Figure 13(a). Equalizer
extends this model by separating the rendering operations from the
application’s main loop to be executed in parallel, as shown in Fig-
ure 13(b). An Equalizer-based application subclasses from the pro-
vided C++ classes, which represent typical rendering entities, such as
a node, pipe (GPU), window and channel (view). The base Equalizer
classes implement the typical use case, so that the programmer can fo-
cus on implementing the application-dependent code (more details are
given in the programming guide [14]).

Cstart)
initialize initialize |- render render
thread thread
|n|t | |n|t |
< > windows windows

begin framef == =< --

cull / draw

end frame --

exit | exit |
. windlows windows
Cstop) (Cstop) (Cstop)

(®

Fig. 13. A typical execution flow for a single-pipe (a) and a parallel
rendering application (b).

The hierarchical node-pipe-window-channel resource description
(see also Figure 14) results in more flexible applications than the sin-
gle ’application’ class used by VRJuggler. For example, one node
process in Equalizer might have two pipes, thus using two rendering
threads. In VRJuggler, two processes need to be instantiated on a such
a dual-GPU configuration. Furthermore, it allows the programmer to
store the data with the logical entity, for example context-specific data
in the window class and thread-specific data in the pipe class.

The most important change for a rendering application to take
advantage of Equalizer is to provide an implementation of the
Channel: :frameDraw () method, the principal rendering routine

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

[Application | Config J L InitData
run init Pipe getinstanceData
exit Node configlnit <>J Window Channel applylnstanceData
startFrame configlnit configExit configlnit configlnit
handleEvent configExit frameStart configExit frameDraw FrameData
\V4
Client Config Node Pipe Window Channel Object
connectServer init configlnit configlnit 1 configlnit configlnit commit
disconnectServer exit “{ configExit — configExit _h configExit 9 configExit sync
1 startFrame _1r frameStart frameStart frameStart _h frameStart getVersion
finishFrame frameFinish frameFinish frameFinish frameFinish
sendEvent makeCurrent frameClear setinstanceData
handleEvents swapBuffers frameDraw getinstanceData
handleEvent frameReadback applyInstanceData
* N frameAssemble
Server setDeltaData
chooseConfig pack
releaseConfig unpack

namespace eq

Fig. 14. UML diagram of the base Equalizer and extended eqPly classes.

executed in parallel by Equalizer. Equalizer provides a rendering con-
text to this routine, which consists of the drawable and its OpenGL
context, view frustum parameters, viewport, stereo buffer and a data-
range for sort-last rendering. Based on these parameters, the appli-
cation should implement efficient view frustum culling and render-
ing of the indicated part of the database. Therefore, the cull ()
and draw () functions indicated in Figure 13 are called from the
frameDraw () method.

Rendering parameters, such as the camera data, are implemented
as a distributed object. The application subclasses from the base
egNet : :Object class, and provides the pointer and size of data to
the base class for network distribution. During initialization, the ob-
ject is registered within the rendering session. At the beginning of each
frame, a new version of the object is committed and the new version
is passed to the rendering callbacks by Equalizer, which synchronize
their instance of the object to the given version.

Figure 14 shows an UML diagram of the principal Equalizer classes
and how they are subclassed in the polygonal rendering example (eq-
Ply). Most of the methods overwritten by eqPly just add minor func-
tionality and call the super class method to do most of the work. The
exception is the aforementioned method Channel: : frameDraw,
which contains the rendering code.

The implementation of multi-view rendering, sort-first and
stereo task decompositions is straight-forward: Based on the re-
sources configuration Equalizer computes the view frustra, draw
buffer and rendering tasks for the application rendering clients.
Channel: :frameDraw () is executed in parallel by the framework
and should implement efficient view frustum culling for performance.
The resulting image tiles are gathered and assembled automatically by
Equalizer, based on the compound tree configuration. For sort-first
decomposition, each contributing compound child specifies a frac-
tional viewport of the destination compound’s channel, e.g., [0,0, % 1],
[%,O, %, 1] and [%,0, %, 1] for a 2D compound three-way split in the x
dimension.! For a stereo compound, one compound child only renders
the left eye, whereas the other child renders the right eye.

For sort-last rendering, the application only has to support the abil-
ity to render a subset of the application-specific database, given by a
one-dimensional range interval. A range of [0, 1] indicates the entire
database, while a range of [a,b] with 0 < a < b < 1 indicates a pro-
portional subset of the database. Therefore, a simple sort-last parallel
task distribution for three nodes is achieved by specifying the three
data ranges [0, %], [%, %], and [%, 1] in the compound tree of the re-
source configuration, each indicating one third of the full range. The
mapping of the range [0, 1] to the actual data is left to the application.

lviewport decomposition syntax is [x,y, width, height

namespace eqNet

Advanced applications can provide implementations for any stage
of the rendering, e.g, volume rendering applications (such as our
eVolve demo) can override Channel: : frameAssemble () in or-
der to implement a back-to-front sorted ¢-blended assembly of the
provided frame image data.

Sort-first and sort-last rendering can be load-balanced by updating
the viewport split or data range subdivision, respectively. These val-
ues are currently fixed in the compound tree, but can be updated by the
application based on its internal rendering statistics if desired. Equal-
izer is scheduled to provide simple automatic load balancing strategies
based on its own internal statistics in the near future.

6 EXPERIMENTAL RESULTS

We conducted our experiments on two different clusters which exhibit
different GPU performance and network bandwidth. The first, Hac-
tar, is a 6 node rendering cluster with the following technical specifi-
cations: dual 2.2GHz AMD Opteron CPUs, 4GB of RAM, Geforce
7800 GTX PCle graphics and a high-resolution 2560 x 1600 pixel
LCD panel per node; Myrinet network and switch. The second config-
uration, Horus, consisted of 16 nodes with the following technical de-
tails: dual 2.4GHz AMD Opteron CPUs, 4GB of RAM (one node has
2 dual-Core 2GHz AMD Opterons and 32GB RAM), Quadro FX4500
PCle graphics; 1Gbs ethernet network and switch.

For most tests we used a full-size destination channel with a reso-
lution of 1280 x 800 on Hactar and 1280 x 1024 on Horus, since these
are typical window sizes for scalable parallel rendering. Pixel read,
write and network transmission performances are given in Table 2 be-
low. The slower network image transmission on Horus is due to miss-
ing SDP support, thus showing the influence of network bandwidth.

Cluster | GL Format, Type read write | transmit
Hactar BGRA, UNSIGNED_BYTE 52ms | 4.1ms 9.0ms
DEPTH_.COMPONENT, FLOAT | 5.8ms 37ms 8.9ms
Horus BGRA, UNSIGNED_BYTE 5.5ms 2.8ms 22.7ms
DEPTH_.COMPONENT, FLOAT | 5.7ms 48ms 22.Tms

Table 2. Pixel transfer timings for a full-size image.

Our prototype test applications included two 3D viewers: egPly
for rendering simple polygonal data, organized spatially in an oc-
tree for better view frustum culling and sort-last data range selec-
tion, and eVolve for 3D-texture based direct volume rendering. The
polygonal data is rendered using display lists, and each vertex con-
sist of 24 bytes (position+normal). The volume renderer keeps the
volume data in GPU texture memory using 4 bytes per voxel (packed
scalar+gradient). Table 3 lists our experimental test models.

Model Polygons Model Size
David head 4.10° Skull 5123
David 2mm 8-10° Skull 256°
Thai statue 10-10° MRI Head 2563
Lucy 28-10° Engine 2563
David lmm 56-10° VisMale 256% x 128

Table 3. Size in number of polygons or voxels of our test models.

Due to the limitations of the scope of this paper, our experimental
results provide the basic evidence of the flexibility and scalability po-
tential of Equalizer, but do not cover an extensive range of test data
sets, compound configurations or cluster sizes. This requires an addi-
tional dedicated and comprehensive performance study. The used test
applications eqPly and eVolve are also not yet fully optimized with
respect to large scale data management, culling or GPU usage.

6.1 Decomposition Modes

The power of Equalizer lies in its flexibility to configure different scal-
able task decomposition and image compositing strategies efficiently
using the introduced compound tree structure. Various exemplary use
cases have already been shown demonstrating the power of the com-
pounds structure in Section 4.5, and also Figure 1, including tiled
screen rendering (e.g. for display walls or CAVEs), partitioned ren-
dering of the geometry database (mostly for scalability) or an eye-
separated sort-first parallelized stereo rendering. The quintessential
benefit of Equalizer’s process model and compound tree structure lies
in an easy-to-configure and very scalable parallel rendering system.
Therefore, we demonstrate various use cases of the flexible task de-
composition possibilities in Equalizer that demonstrate the potential
of the presented system.

Sort-Last

Scalable parallel rendering is demonstrated in Figure 15 which shows
screenshots of eqPly using an eight-to-one node sort-last rendering
setup. The compound tree configuration is similar to the example
given in Figure 9, but with eight instead of three rendering and com-
positing channels. Corresponding sort-last scalability results obtained
on Hactar are shown in Figure 22(a).

anf windowd

(c) Thai statue

Fig. 15. Destination views of large polygonal models using an eight
node sort-last configuration, with color-coded node contributions for il-
lustration purposes.

(a) Davidl (b) Lucy

The eVolve demo application uses a hardware accelerated 3D
texture-based volume rendering algorithm [37] where the 3D texture is
intersected by some proxy geometry, a series of view-aligned clipped
quadrilaterals. The scalar and gradient values are interpolated from
the 3D texture, and the slices are a-blended back-to-front. To improve
visual quality, classification of the scalars is done by pre-integration
[16].

For sort-last rendering, the volume data range is divided uniformly
into slabs along one dimension as illustrated in Figure 16. Each node
renders one slab into a partial image, and final image assembly is per-
formed by perspective-correct back-to-front -compositing of the par-
tial frame data based on the relative positions of the slabs with respect
to the viewer, see also Figure 16. Such sort-last volume rendering has
the advantage of scaling both texture and main memory usage as well
as pixel fill rate.

near
plane

(@ (b)

Fig. 16. (a) Basic back-to-front compositing order of parallel volume
slabs. (b) Volume divided into a number of slabs. Perspective composit-
ing order is 4-3-1-2 or 1-4-3-2.

Figure 17 demonstrates scalable sort-last rendering with eVolve us-
ing an eight-to-one node compound setup. In this example, final -
compositing of the rendered volume slabs is performed on the desti-
nation display channel. In contrast, Figure 18 demonstrates the com-
bination of the (in-place) direct-send compositing principle [15] with
back-to-front ¢-blending, required by the above outlined direct vol-
ume rendering. This example provides further evidence how basic
parallel rendering features of Equalizer can orthogonally be exploited
for specific visualization tasks.

Fig. 17. Sort-last parallel rendering of a large volume data set divided
uniformly into slabs. Lower-right window shows final destination channel
with back-to-front a-blended slab images.

Fig. 18. Demonstration of direct-send image compositing in combination
with a-blended volume rendering. Each node renders one volume slab
as well as composites one horizontal image stripe for final assemply,
which is displayed in the upper-left window.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

Fig. 19. Tiled sort-first parallel rendering using four channels, and show-
ing the final assembled image on the left.

Sort-First

Sort-first parallel rendering can directly be applied for tiled multi-
screen display systems, and it offers the benefit of simple final image
assembly which does not require a costly z—depth or a-opacity com-
positing stage. Figure 19 shows a simple four-split tiled sort-first ren-
dering of a polygonal model that can be used to drive multiple displays
of a tiled wall, or render sub-regions of one single screen as shown in
this example.

A five-sided CAVE configuration is demonstrated in Figure 20. A
sort-first compound tree distributes the rendering tasks to five different
channels, each rendering and driving the display of one of the views
of the five-sided CAVE. Final image assembly in form of a cube envi-
ronment map is performed to illustrate the result.

Bna

Fig. 20. Environment cube map frame buffer image of a five-sided CAVE
display configuration. Five sort-first rendering channels generate the
different views in a single window.

For volume rendering, typically no special programming is needed
when targeting sort-first or stereo decompositions, since volume ren-
dering is mostly fill-rate limited and thus scales nicely in this mode.
In Figure 21 we demonstrate yet another combination of task decom-
position modes where a red-blue stereo image is generated by: first,
stereo separation of the rendering task for the left and right eye views,
and second, sort-first decomposition of the screen (see also compound
structure Figure 10).

6.2 Performance

Performance experiments where performed on the Hactar and Ho-
rus parallel rendering clusters mentioned above, which exhibit differ-
ent graphics and network bandwidth characteristics. Specific sort-last
direct-send image compositing scalability results can also be found in
[15]. In the performance charts, sort-first decomposition is also de-
noted by the shortcut 2D and sort-last parallel rendering indicated by
DB.

X] Result —— I

Fig. 21. Four-to-one stereo/sort-first parallel volume rendering.

Hactar

In the first benchmarks on Hactar, we measured the performance of
different task decomposition modes. The Thai statue was used in these
experiments and a fixed camera path of 100 frames to obtain the aver-
age frames per second as the result.

In Figure 22(a) we tested n-to-one sort-first as well as sort-last de-
compositions. The sort-first compounds use a trivial tile assembly on
the destination channel, while the sort-last compounds use direct-send
compositing. For sort-first parallel rendering, the speedup heavily de-
pends on the decomposition of the view frustum, and hence the tiling
of the window. For this study the data set is roughly placed in the
middle of the screen such that a simple tiling results in a fair, though
not perfect, load distribution. The graph 2D in Figure 22(a) shows a
nice close-to linear speedup for sort-first rendering, and as expected
the overhead from clipped primitives is not dominating for small num-
bers of tiles. Equalizer also shows excellent scalability with respect
to sort-last rendering, graph DB in Figure 22(a). Image compositing
overhead is not manifested at this level of parallelism, partly also due
to the efficient direct-send compositing algorithm (see also [15]).

The second set of benchmarks in Figure 22(b) uses different ap-
proaches to scale the performance during stereo rendering. The first
graph 2D-stereo uses a sort-first decomposition where the image is
split in half, and then assigned to two nodes for each of the two eye
passes, which are assembled on the destination channel in the parent
node into the correct stereo buffers. The second graph EYE-2D does
first a stereo decomposition, separating into left and right eye render-
ing tasks, and then a sort-first decomposition into screen tiles. The
graphs in Figure 22(b) show a good linear speedup, but also indicate
that the more complicated stereo image assembly and compositing in-
curs a small overhead factor.

Horus

To evaluate the basic scalability of parallel rendering and separating
out the networking and compositing costs we performed some base-
line experiments, reported in Figure 23. In this test, we rendered some
screen full of trivial geometry to measure the overall system bottle-
neck with respect to pixel readback, transmission, z/o-compositing
and pixel-draw for final display. It is clear that on a single node this
overhead is negligible as the frame buffer data never leaves the GPU
memory. Only for distributed parallel rendering using multiple nodes,
the overhead actually limits the achievable frame rate.

For up to 16 nodes on Horus, we can observe that polygonal ren-
dering with eqPly is bounded by around 10 FPS for sort-last and 35
for sort-first rendering, Figure 23(a). Despite different frame data and
compositing — back-to-front a-blending instead of z-depth visibility
culling — a similar trend can also be observed for our volume ren-
derer eVolve in Figure 23(b). The difference between sort-first (2D)
and sort-last (DB) can be attributed to the significantly different im-
age assembly stages. For 2D, overall the assembly only needs to draw
one full-resolution image into the destination channel (although one
in parts). On the other hand, the final DB image assembly consists of
combining many full-resolution images using z-depth visibility culling
(polygonal rendering) or @-blending (volume rendering).

In fact, these maximal distributed-rendering frame rates depend on
a number of parameters including: pixel readback rate, network trans-

S Decomposition Modes

1 2 3 nodes 5
(a)
Fig. 22. (a) Sort-first and sort-last many-to-one rendering performance. (b) Different stereo rendering decompositions. (Hactar)

mission, pixel draw rate (compositing) as well as binary frame buffer
formats. Most of these parameters are not yet fully optimized in Equal-
izer. In particular, the pixel draw rate is severely limiting the current
frame buffer assembly and image display stage. This is partly due to a
slow (driver) implementation of the OpenGL glDrawPixels func-
tionality, which may be improved by implementing z/-compositing
using asynchronous texture uploads and fragment shaders or CPU-
based compositing. Furthermore, the binary frame buffer number for-
mat and packing of color, alpha and depth channels can also have a
significant impact as implicit format transformations could be caused
in the drivers and these may be executed in software (on the CPU in-
stead the GPU). From our experiments, a number of signs indicate that
the latter two issues are currently the major limiting factors. Further-
more, network transmission can be improved in the future by more
sophisticated frame buffer data compression and region-of-interest se-
lection methods.

The scalability tests reported in Figure 24 show excellent speedup
factors for large polygonal data sets. Combining four large models (4
x David 1mm) to a 225M triangle mesh, eqPly demonstrates full lin-
ear speedup for (direct-send) sort-last (DB_ds) and near-linear speedup
for sort-first (2D) rendering, as shown in Figure 24(a). Using only a
single 56M triangle David Imm model, we can observe in Figure 24(b)
that the parallel rendering speedup is dampened as soon as the indi-
vidual nodes reach internal frame rates that approach the maximal dis-
tributed rendering bounds. For the 56M David 1mm this is the case
at around 8 to 10 nodes, and for smaller models such as the 28M tri-
angles Lucy this limit is hit earlier, already at around 4 to 6 nodes as
shown in Figure 24(c).

In Figure 25 we report our experimental performance speedup re-
sults for 3D texture based volume rendering. The achieved numbers
demonstrate very good scalability, up to the maximal distributed ren-
dering performance. In fact, for the large 5123 voxel volume we can
observe a drastic performance jump at 5 nodes, which is most likely
due to the fact that the reduced volume slabs fit more optimally into the
GPUs 3D texture memory. The smaller 2567 volume test shows a sim-
ilar behavior as the smaller polygonal models with the performance
approaching the maximal bounds after a certain number of added par-
allel rendering nodes.

One observation from the above tests is that the sort-first (2D)
polygonal rendering performance does not reach the maximal per-
formance limit, compare Figures 24(b), 24(c) with 23(a), while the
sort-last (DB) generally does. From our current tests and investiga-
tions we conclude that this is mostly due to the view-frustum culling
costs which add an additional overhead that is not included in Fig-
ure 23(a). Our current hierarchical polygonal mesh management and
view-frustum culling has some potential for optimization in that re-
spect. Optimized hierarchical and multiresolution data structures, and
culling methods may reduce this extra overhead largely. Thus the ad-
vantage of simpler 2D image compositing, as mentioned above along
with Figure 23, can be compensated by view-frustum culling if it is
not fully optimized.

On the other hand, the simpler view-frustum culling in 3D texture
based volume rendering — bounding the proxy geometry to the view
frustum — allows it to better approach the maximal performance. This

Stereo Rendering

~ 2D stereo
— EYE(-2D) compound
linear

1 2 nodes 4

(d)

is indicated in Figure 25(b) where 2D and DB reach a performance
much closer to the maximal reported in Figure 23(b).

Comparison to Chromium

Despite Equalizer and Chromium having slightly different main tar-
gets, flexible configuration and scalability on one side and transparent
abstraction of the OpenGL API on the other side, we provide a limited
experimental evaluation here. For this test we used a simple display
wall configuration as shown in Figure 26, with a static model, rotating
about its vertical axis, placed such that it nicely covers the different
screens. A standard tile-sort Chromium configuration has been com-
pared to a simple Equalizer display-wall compound setup. The polyg-
onal model is rendered using eqPly and uses display lists for the static
geometry. Using display lists allows Chromium to send geometry and
texture data once to the rendering nodes (retained mode rendering)
and display them repeatedly using glCallLists() which is inexpensive
in terms of network overhead [5].

Fig. 26. Display wall configurations to compare Equalizer and Chromium
using 1, 2, 4, 6, ...and 12 screens and rendering nodes.

According to [27, 5, 51] as well as our own understanding, a tile-
sort display-wall setup with static geometry rendered in retained mode
should be reasonably favorable for Chromium because the display lists
have to be transmitted only once over the network, and only sim-
ple display calls will be processed and distributed by Chromium for
each rendered frame. Figure 27 shows the experimental results of
the display-wall comparison between Chromium and Equalizer. One

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

100
—DB

epPly Maximal Performance .

1 2 3 4 5 6 7 8 9 10 11 12 13 14nodesl6

(a) polygonal rendering

60
eVolve max performance ---20

—DB_ds

FPS
50

40

30

20

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14nodes16

(b) volume rendering

Fig. 23. Maximal frame rate performance considering only the distributed image assembly, compositing and final display, using trivial geometry for

sort-first and sort-last rendering. (Horus)

3.5 12

David 1mm x4 David 1mm

FPS

linear
--2

—3p ~linear
—DB_ds

1 2 3 4 5 6 7 8

(a) 225M triangles

9 10 11 12 13 14 nodes 16 1 2 3 4 5 6 7

8

(b) 56M triangles

Lucy .

—linear

“==2D
—DB_ds

6 7 8

(c) 28M triangles

9 10 11 12 13 14 nodes 16 1 2 3 4 5 9 10 11 12 13 14 nodes 16

Fig. 24. Frame rate performance of sort-first and sort-last parallel rendering of large polygonal models. (Horus)

can clearly observe that while Chromium initially increases perfor-
mance when adding nodes, it quickly stagnates and even decreases
when more nodes are added. In contrast, Equalizer continually im-
proves performance with more added nodes and only exhibits a smooth
drop-off in speedup, due to the expected synchronization and network
overhead as the rendered data gets negligible in size per node. This
performance difference may also be due to the fact that Equalizer can
benefit from distributed parallel view-frustum culling.

Display wall configuration

----Equalizer

——Chromium

o

1 2 3 4 5 6 7 8 9 10 11 12 13 14nodes 16

Fig. 27. Frame rate performance comparison between Chromium and
Equalizer for tiled display wall configurations of up to 12 screens and
nodes. (Horus)

6.3 Latency and Viewport Size

In these benchmarks we measure the influence of the viewport size and
latency on the performance, tested with polygonal rendering using eq-
Ply on Hactar. All test were conducted using a sort-last direct-send
configuration with five nodes. Figure 28(a) varies the config-latency
leonfig from O to 6. One can observe that increasing the latency from
a strict frame synchronization with Ic,, f;; = 0 immediately increases
the performance by about 15%. This is achieved through reduced syn-
chronization bottlenecks and better task pipelining as rendering chan-
nels can overlap their draw tasks between frames. We also notice, as
expected, that further increasing the latency does not further improve
rendering performance, due to other synchronization constraints such
as image transfers. We can conclude that a small latency of only one

or two frames is sufficient to avoid most drawbacks of a strictly frame
synchronized parallel rendering execution.

In Figure 28(a) experiments with different viewport sizes for the
destination window are shown, and hence the amount of transferred
and z-composited pixel data varies accordingly. The graph exhibits the
expected asymptotic behaviour towards the constant time composition
cost of direct send, as analyzed in [15], regardless of the viewport size.
Since the composition cost is directly dependent on the viewport size,
the performance approaches, and is limited by the constant time com-
positing as soon as the draw cost is reduced sufficiently by parallel
load distribution. This is the normal expected behavior. However, we
would like to point our here that the flexible compound structure al-
lows for complex combinations of parallel rendering and parallel com-
positing where the number of contributing channels can vary and thus
allows for optimized resource usage.

7 DiscusSION AND CONCLUSION

In this paper we have presented a state-of-the art distributed parallel
rendering framework, which has been designed to be minimally inva-
sive in order to facilitate the porting and development of real-world
visualization applications. Equalizer has also been designed to be as
generic as possible to support development of parallel rendering appli-
cations for different data types.

The major strengths of Equalizer are its flexible compound tree
structures, fully distributed rendering support as well as efficient com-
positing algorithms. Compound trees allow for easy specification of
complex parallel task decomposition strategies which are automati-
cally implemented and executed by the Equalizer system. The parallel
task decomposition and efficient compositing achieves great scalabil-
ity for large data sets as demonstrated by the 225M polygonal mesh
and 5123 volume data sets. The fully distributed design supports ef-
fective network synchronization as well as shared objects and remote
method invocation which facilitate the development of decentralized
applications.

Parallel rendering of transparent data is not only supported for sort-
first configurations with application-side back-to-front traversal, but
also for sort-last configurations given the data partitioning enables a
back-to-front spatial ordering. This is demonstrated in our eVolve vol-

Skull 512

1 2 3 4 5 6 7 8

(a) 5123 voxels

9 10 11 12 13 14 nodesl16

Fig.

7.5
Latency
FPS

7.2
6.9
6.6
6.3

6.0
latency 6

(2)

ume rendering application which exploits the efficient &-compositing
compound provided in Equalizer.

Scalable sort-first rendering depends on a balanced distribution of
the rendering cost across the different screen tiles. To achieve this,
dynamic tile decomposition must be supported as well as some basic
rendering cost heuristics for effective load balancing. These exten-
sions pose interesting but also tractable challenges and are lined up
for integration into Equalizer. In fact, efficient load-balancing is an
important aspect for parallel applications, and with its flexible task
decomposition abilities Equalizer offers the basic structural support
which applications can readily use.

Equalizer efficiently supports, but does not solve all problems of
parallel rendering for the programmer. As mentioned before load bal-
ancing is a focus area, as is an improved image compression and trans-
port (readback-transfer-draw) pipeline. While these two problems are
going to be addressed directly in Equalizer, the data distribution and
replication problem may be more of an application dependent chal-
lenge which will be supported by facilitating distributed objects.

The current Equalizer system already goes beyond just the neces-
sary basic scalable rendering functionality. Nevertheless, we plan to
extend the functionality to include also time-multiplex support, so-
phisticated automatic load-balancing for sort-first and sort-last task
decompositions, as well as an API to compress and mask the chan-
nels’ screen-frames for optimized image transport.

Aside from the core parallel rendering API, in the long term we
plan to improve the resource management capabilities of the server by
enabling it to handle multiple applications, resource reservation and
cross-application load balancing. Furthermore, the creation of a trans-
parent OpenGL layer with Equalizer as the backend could allow run-
ning existing applications alongside with parallel applications. Even-
tually we will integrate remote visualization capabilities, for example
by supporting the VNC protocol.

ACKNOWLEDGEMENTS

We would like to thank and acknowledge the following institutions and
projects for providing the 3D geometry and volume test data sets: the
Digital Michelangelo Project, Stanford 3D Scanning Repository, Cy-
berware Inc., volvis.org and the Visual Human Project. This work was

25. Frame rate performance of sort-first and sort-last parallel volume rendering.

Skull 256

—linear -~
---2D ~
—oDB

20

1 2 3 4 5 6 7 8 9 10 11 12 13 1l4nodesl6

(b) 2563 voxels
(Horus)

Viewport Size

— 640x400 P
— 1280x800 .
2560x1600 e

nodes 5

(b)
Fig. 28. Influence of the latency (a) and viewport size (b) on rendering performance, using 5 nodes. (Hactar)

partially supported by the Swiss National Science Foundation Grant
200021-116329/1.

REFERENCES

(1]
(2]

3

—

[4

—_

[5

—

(6]

[7

—

(8]

[9

—

[10]

(1]

[12]

[13]

OpenGL Multipipe SDK.

G. Agranov and C. Gotsman. Algorithms for rendering realistic terrain
image sequences and their parallel implementation. The Visual Computer,
11(9):455-464, 1995.

J. Ahrens and J. Painter. Efficient sort-last rendering using compression-
based image compositing. In Proceedings Eurographics Workshop on
Parallel Graphics and Visualization, 1998.

J. Allard, V. Gouranton, L. Lecointre, E. Melin, and B. Raffin. Netjuggler:
Running VR Juggler with multiple displays on a commodity component
cluster. In Proceeding IEEE Virtual Reality, pages 275-276, 2002.

W. E. Bethel, G. Humphreys, B. Paul, and J. D. Brederson. Sort-first,
distributed memory parallel visualization and rendering. In Proceedings
IEEE Symposium on Parallel and Large-Data Visualization and Graph-
ics, pages 41-50, 2003.

P. Bhaniramka, P. C. D. Robert, and S. Eilemann. OpenGL Multipipe
SDK: A toolkit for scalable parallel rendering. In Proceedings IEEE Vi-
sualization, pages 119-126, 2005.

A. Bierbaum and C. Cruz-Neira. ClusterJuggler: A modular architec-
ture for immersive clustering. In Proceedings Workshop on Commodity
Clusters for Virtual Reality, IEEE Virtual Reality Conference, 2003.

A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-
Neira. VR Juggler: A virtual platform for virtual reality application de-
velopment. In Proceedings of IEEE Virtual Reality, pages 89-96, 2001.
W. Blanke, C. Bajaj, D.Fussel, and X. Zhang. The metabuffer: A scal-
able multi-resolution 3-d graphics system using commodity rendering en-
gines. Technical Report TR2000-16, University of Texas at Austin, 2000.
X. Cavin and C. Mion. Pipelined sort-last rendering: Scalability, perfor-
mance and beyond. In Proceedings Eurographics Symposium on Parallel
Graphics and Visualization, 2006.

X. Cavin, C. Mion, and A. Filbois. COTS cluster-based sort-last render-
ing: Performance evaluation and pipelined implementation. In Proceed-
ings IEEE Visualization, pages 111-118. Computer Society Press, 2005.
W. T. Correa, J. T. Klosowski, and C. T. Silva. Out-of-core sort-first
parallel rendering for cluster-based tiled displays. In Proceedings Euro-
graphics Workshop on Parallel Graphics and Visualization, pages 89-96,
2002.

T. W. Crockett. An introduction to parallel rendering. Parallel Comput-
ing, 23:819-843, 1997.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

S. Eilemann. Equalizer programming guide. Technical Report IFI-
2007.11, Department of Informatics, University of Zurich, 2007.

S. Eilemann and R. Pajarola. Direct send compositing for parallel sort-last
rendering. In Proceedings Eurographics Symposium on Parallel Graphics
and Visualization, 2007.

K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume ren-
dering using hardware-accelerated pixel shading. In Proceedings ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, pages
9-16,2001.

J. Eyles, S. Molnar, J. Poulton, T. Greer, A. Lastra, N. England, and
L. Westover. PixelFlow: The realization. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics Hardware, pages
57-68, 1997.

A. Garcia and H.-W. Shen. An interleaved parallel volume renderer with
PC-clusters. In Proceedings Eurographics Workshop on Parallel Graph-
ics and Visualization, pages 51-60, 2002.

E. Gobbetti and F. Marton. Layered point clouds: A simple and efficient
multiresolution structure for distributing and rendering gigantic point-
sampled models. Computers & Graphics, 28(1):815-826, February 2004.
M. Guthe, P. Borodin, A. Balazs, and R. Klein. Real-time appearance
preserving out-of-core rendering with shadows. In Proceedings Euro-
graphics Workshop on Rendering Techniques, pages 69—80, 2004.

S. Guthe, M. Wand, J. Gonser, and W. Strasser. Interactive rendering of
large volume data sets. In Proceedings IEEE Visualization, pages 53—60.
Computer Society Press, 2002.

M. Houston. Raptor. http://graphics.stanford.edu/projects/raptor/, 2005.
J. Huang, N. Shareef, R. Crawfis, P. Sadayappan, and K. Mueller. A
parallel splatting algorithm with occlusion culling. In Proceedings Euro-
graphics Workshop on Parallel Graphics and Visualization, 2000.

G. Humphreys, 1. Buck, M. Eldridge, and P. Hanrahan. Distributed ren-
dering for scalable displays. IEEE Supercomputing, October 2000.

G. Humphreys, M. Eldridge, 1. Buck, G. Stoll, M. Everett, and P. Han-
rahan. WireGL: A scalable graphics system for clusters. In Proceedings
ACM SIGGRAPH, pages 129-140. ACM Press, 2001.

G. Humphreys and P. Hanrahan. A distributed graphics system for large
tiled displays. IEEE Visualization 1999, pages 215-224, October 1999.
G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirch-
ner, and J. T. Klosowski. Chromium: A stream-processing framework
for interactive rendering on clusters. ACM Transactions on Graphics,
21(3):693-702, 2002.

H. Igehy, G. Stoll, and P. Hanrahan. The design of a parallel graphics
interface. Proceedings of SIGGRAPH 98, pages 141-150, July 1998.

A. Johnson, J. Leigh, P. Morin, and P. Van Keken. GeoWall: Stereoscopic
visualization for geoscience research and education. IEEE Computer
Graphics and Applications, 26(6):10-14, November-December 2006.

K. Jones, C. Danzer, J. Byrnes, K. Jacobson, P. Bouchaud, D. Courvoisier,
S. Eilemann, and P. Robert. SGI®OpenGL Multipipe™SDK User’s
Guide. Technical Report 007-4239-004, Silicon Graphics, 2004.

C. Just, A. Bierbaum, A. Baker, and C. Cruz-Neira. VR Juggler: A frame-
work for virtual reality development. In Proceedings Immersive Projec-
tion Technology Workshop, 1998.

P. G. Lever. SEPIA - applicability to MVC. White paper Manchester
Visualization Centre (MVC), University of Manchester, 2004.

P. P. Li, W. H. Duquette, and D. W. Curkendall. RIVA: A versatile parallel
rendering system for interactive scientific visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 2(3):186-201, 1996.

P. P. Li, S. Whitman, R. Mendoza, and J. Tsiao. ParVox: A parallel
splatting volume rendering system for distributed visualization. In Pro-
ceedings IEEE Parallel Rendering Symposium, pages 7-14, 1997.

S. Lombeyda, L. Moll, M. Shand, D. Breen, and A. Heirich. Scalable
interactive volume rendering using off-the-shelf components. Technical
Report CACR-2001-189, California Institute of Technology, 2001.

S. Lombeyda, L. Moll, M. Shand, D. Breen, and A. Heirich. Scalable
interactive volume rendering using off-the-shelf components. In Pro-
ceedings IEEE Symposium on Parallel and Large Data Visualization and
Graphics, pages 115-121, 2001.

M. Meissner, U. Hoffmann, and W. Strasser. Enabling classification and
shading for 3D texture mapping based volume rendering using OpenGL
and extensions. In Proceedings IEEE Visualization, pages 207-214.
Computer Society Press, 1999.

L. Moll, A. Heirich, and M. Shand. Sepia: scalable 3D compositing using
PCI pamette. In Proceedings IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 146—155, 1999.

[39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(501

(51]

[52]

[53]

(54

[55]

[56]

(571

(58]

[59]

S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification of
parallel rendering. IEEE Computer Graphics and Applications, 14(4):23—
32, 1994.

S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-speed rendering
using image composition. In Proceedings ACM SIGGRAPH, pages 231—
240, 1992.

C. Mueller. The sort-frst rendering architecture for high-performance
graphics. In Proceedings Symposium on Interactive 3D Graphics, pages
75-84. ACM SIGGRAPH, 1995.

C. Mueller. Hierarchical graphics databases in sort-first. In Proceedings
IEEE Symposium on Parallel Rendering, pages 49—. Computer Society
Press, 1997.

S. Muraki, M. Ogata, K.-L. Ma, K. Koshizuka, K. Kajihara, X. Liu,
Y. Nagano, and K. Shimokawa. Next-generation visual supercomputing
using PC clusters with volume graphics hardware devices. In Proceedings
ACM/IEEE Conference on Supercomputing, pages 51-51, 2001.

W. Nie, J. Sun, J. Jin, X. Li, J. Yang, and J. Zhang. A dynamic par-
allel volume rendering computation mode based on cluster. In Proceed-
ings Computational Science and its Applications, volume 3482 of Lecture
Notes in Computer Science, pages 416-425, 2005.

K. Niski and J. D. Cohen. Tile-based level of detail for the paral-
lel age. IEEE Transactions on Visualization and Computer Graphics,
13(6):1352-1359, November/December 2007.

J. Rohlf and J. Helman. IRIS Performer: A high performance multi-
processing toolkit for real-time 3D graphics. In Proceedings ACM SIG-
GRAPH, pages 381-394. ACM Press, 1994.

R. Samanta, T. Funkhouser, and K. Li. Parallel rendering with K-way
replication. In Proceedings IEEE Symposium on Parallel and Large-Data
Visualization and Graphics. Computer Society Press, 2001.

R. Samanta, T. Funkhouser, K. Li, and J. P. Singh. Hybrid sort-first and
sort-last parallel rendering with a cluster of PCs. In Proceedings Euro-
graphics Workshop on Graphics Hardware, pages 97-108, 2000.

R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J. P. Singh. Load balanc-
ing for multi-projector rendering systems. In Proceedings Eurographics
Workshop on Graphics Hardware, pages 107-116, 1999.

J. P. Schulze and U. Lang. The parallelization of the perspective shear-
warp volume rendering algorithm. In Proceedings Eurographics Work-
shop on Parallel Graphics and Visualization, pages 61-70, 2002.

0. G. Staadt, J. Walker, C. Nuber, and B. Hamann. A survey and perfor-
mance analysis of software platforms for interactive cluster-based multi-
screen rendering. In Proceedings Eurographics Workshop on Virtual En-
vironments, pages 261-270, 2003.

G. Stoll, M. Eldridge, D. Patterson, A. Webb, S. Berman, R. Levy,
C. Caywood, M. Taveira, S. Hunt, and P. Hanrahan. Lightning-2: A high-
performance display subsystem for PC clusters. In Proceedings ACM
SIGGRAPH, pages 141-148, 2001.

A. Stompel, K.-L. Ma, E. B. Lum, J. Ahrens, and J. Patchett. SLIC:
Scheduled linear image compositing for parallel volume rendering. In
Proceedings IEEE Symposium on Parallel and Large-Data Visualization
and Graphics, pages 33—40, 2003.

X. Tong, W. Wang, W. Tsang, and Z. Tang. Efficiently rendering large
volume data using texture mapping hardware. In EUROGRAPHICS -
IEEE TCVG Symposium on Visualization, 1999.

G. Vezina and P. K. Robertson. Terrain perspectives on a massively par-
allel SIMD computer. In Proceedings Computer Graphics International
(CGI), pages 163—188, 1991.

C. M. Wittenbrink. Survey of parallel volume rendering algorithms. In
Proceedings Parallel and Distributed Processing Techniques and Appli-
cations, pages 1329-1336, 1998.

D.-L. Yang, J.-C. Yu, and Y.-C. Chung. Efficient compositing methods
for the sort-last-sparse parallel volume rendering system on distributed
memory multicomputers. Journal of Supercomputing, 18(2):201-22—,
February 2001.

S.-E. Yoon, B. Salomon, R. Gayle, and D. Manocha. Quick-VDR: Out-
of-core view-dependent rendering of gigantic models. IEEE Transactions
on Visualization and Computer Graphics, 11(4):369-382, July-August
2005.

X. Zhang, C. Bajaj, and W. Blanke. Scalable isosurface visualization of
massive datasets on COTS clusters. In Proceedings IEEE Symposium on
Parallel and Large Data Visualization and Graphics, pages 51-58, 2001.

