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Equating Tests Under the Graded Response Model
Frank B. Baker, University of Wisconsin

The Stocking and Lord (1983) procedure for
computing equating coefficients for tests having
dichotomously scored items is extended to the case
of graded response items. A system of equations
for obtaining the equating coefficients under
Samejima’s (1969, 1972) graded response model is
derived. These equations are used to compute
equating coefficients in two related situations.
Under the first, the equating coefficients are
obtained by matching, on an examinee by
examinee basis, the true scores on two tests. In
the second case, the equating coefficients are

obtained by matching the test characteristic curves
(TCCS) of the two tests. Several examples of
computing equating coefficients in these two
situations are provided. The TCC matching ap-
proach was much less demanding computationally
and yielded equating coefficients that differed little
from those obtained through the true score
distribution matching approach. Index terms:

equating coefficients, graded response model,
quadratic loss function, response function method,
Stocking and Lord equating technique, test equating,
test characteristic curves.

Under item response theory (IRT), the equating of tests consists of finding the slope and intercept
coefficients for the linear transformation of the metric of one test calibration to that of another.

Due to the manner in which the identification problem is resolved in most IRT test calibration com-
puter programs, the metric information needed for equating is contained in the item parameter
estimates.

Some techniques, such as those due to Marco (1977) and Loyd and Hoover (1980), use the sum-
mary statistics of the anchor item parameter estimates yielded by the two test calibrations to obtain
the equating coefficients. However, this approach is sensitive to the distributional characteristics of
the item parameter estimates, and deviant estimates can distort the values of the equating coefficients.
A more sophisticated approach is one in which the equating coefficients are obtained by minimizing

a quadratic loss function based on differences in &dquo;true&dquo; scores yielded by the two test calibrations.
This approach was first presented by Haebara (1980) and further refined by Stocking and Lord (1983).
The loss function approach is preferred over the summary statistics approach for two reasons. First,
it uses the item parameter estimates for each anchor item in a test rather than their summary statistics.

Therefore, the equating coefficients are based on more detailed information. Second, the minimi-
zation of a loss function produces equating coefficients that in some sense are &dquo;optimum.&dquo; At the
present time, the loss function technique appears to be the method of choice for obtaining equating
coefficients (Baker & Ali-Karni, 1991). However, it has been developed and implemented only for
the case of dichotomous item responses. The present paper extends the approach to the graded response
model (Samejima 1969, 1972).

The Stocking and Lord Procedure

Lord (1980) has shown that, under IRT, the relationship between the metric of any two test cali-
brations is linear; thus, the basic metric transformation equation can be expressed as
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where A is the slope,
K is the intercept,
0, is the examinee’s ability parameter in the metric of the new test, and
8~ is 0, expressed in the target test metric.

The values of the new test item parameters, a, and b,, can be transformed to the target test metric
using the same coefficients as follows:

Stocking and Lord’s (1983) technique for obtaining the two equating coefficients is based on the
quadratic loss function

where N is the number of examinees in the common group.
Under a two-parameter item response function (IRF) model and a common group of anchor items,

the true scores, T, for the target test and T* for the transformed new test, are defined as

where n is the number of items common to the two tests, and a~’ and b,’ are the parameters of the
anchor items from the target test calibration. Because the goal is to express the new test results in
the target test metric, the 0, appearing in both T, and T,* are in the target test metric. a* and b* in
Equation 6 are the result of applying Equations 2 and 3 to the item parameter estimates yielded by
the new test calibration.

The task then is to find the equating coefficients that will minimize the quadratic loss function.
Because F is a function of A and K it will be minimized when aFlaA = 0 and aFlaK = 0, but the

resulting system of equations does not have a closed form solution. Stocking and Lord (1983) used
an iterative multivariate search technique (Davidon, 1959; Fletcher & Powell, 1963) to find the two

equating coefficients that will minimize F.
Stocking and Lord (1983) referred to their technique as the characteristic curve method. However,

they actually presented two different approaches without clearly differentiating between them. As
employed in Equation 4, the quantity (T, - T,*) is computed for each examinee, squared, and then
summed over all examinees in the common group. Because of the summation over examinees, the

process is one that minimizes the difference between the two distributions of true scores based on

the common anchor items of the two tests administered to a common group of examinees. Thus,
it would be employed only in horizontal equating situations. Haebara’s (1980) method is similar except
that he grouped the examinees on the 0 scale before computing the true scores and then multiplied
the squared difference by the group frequency count.
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The second approach results from what Stocking and Lord (1983) presented as a scheme for simpli-
fying the computational procedure. Rather than computing the quantity (T, - T *) at the target test
0 level of each examinee, an arbitrary set of N values along the target test 0 scale could be used.
The values of the true scores T, and T* would be computed directly from the two sets of anchor
item parameter estimates for the N arbitrary points along the target test 0 scale. The summation in
Equation 4 is now over the N arbitrary points rather than over examinees. The T, and T,* obtained
are the values of the two test characteristic curves (TcCs) at each selected point on the target test
0 scale. In this second case, the loss function minimizes the difference between these two TCCs. It

is this version that was implemented in the computer program (Stocking, 1985) for obtaining the
equating coefficients. This second approach has two advantages. First, because the T, and T,* are
not computed for each examinee, it is much less demanding computationally than the former approach.
Second, it requires only a target test 0 scale and two sets of item parameter estimates for the common
anchor items-it does not require a common group of examinees. As a result, it can be employed
in a wider range of equating situations (e.g., vertical equating or equating a set of test results to an
underlying metric) than can the former approach.

The Graded Response Case

Under Samejima’s (1969, 1972) graded response model, an item possesses m~ ordered response
categories, such as in a Likert scale, and the examinee selects only one of the categories. Each category
has a response weight associated with it so that an examinee’s true score is defined as

where k denotes an item response category of item j;
m, is the number of response categories of item j-therefore, 1 s k s m,; and

Ujk is the weight allocated to the response category.
Typically, the numerical value of the weight is the same as the integer index of the response category,

and category m~ is allocated the largest weight. Pk(6,) is the probability of selecting category k of item
j for an examinee of ability 0,. As was the case with dichotomously scored items, the examinee’s true
score does not depend on their vector of item response choices.

The estimation of the item parameters under the graded response model involves the use of

mj - 1 boundary curves representing the cumulative probability of selecting response categories greater
than and including the response category of interest (Samejima, 1969). The boundary curves are
characterized by an item discrimination parameter, a., and by the mj - 1 location parameters, b,k.
The bjk for an item are ordered, typically from low (k = 1) to high (k = /M~).

For a given item, a. is the same over all boundary curves. As a result, the probability of selecting
a given response category of a target test item is given by the following expressions:
when 1 < k < m~
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where P,k(6,) are the cumulative probabilities obtained from the boundary curves. Thus, a true score
based on the target test can be defined in terms of the boundary curves as follows:

In the case of a new test being equated into the target test metric, ~(8,) is the probability of select-

ing response category k for item j after transformation of the item parameters a, and b,, through
Equations 2 and 3. This probability can also can be expressed in terms of transformed boundary
curves. Let

Once the item parameters of the new test are transformed into the target test metric through the equating
coefficients A and K, an examinee’s new test true score is given by

and substituting for Pk(6,) and Pk_,(A,) yields

The Davidon-Fletcher-Powell minimization technique requires that the derivatives (gradients), with

respect to A and K, of the quadratic loss function of Equation 4 be evaluated at each primary itera-
tion. Because T, in these derivatives does not involve A and K, only 8T,*/8A and aT *laK are needed.
From the chain rule
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and

Some necessary derivatives are

and

Then

Let

and

For the intercept coefficient K

The gradients are given by
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and

Substituting for the true score derivatives with respect to A and K yields

The equations presented above can be used when the equating coefficients are based on matching
the examinee’s true scores or on matching Tccs. In the former, the terms are computed on an examinee

by examinee basis, and the summation is over the N examinees. In the latter, the terms are computed
only for the N arbitrary points on the target test 0 scale.

Because the two cases differ only in the number and definition of the points on the 0 scale employed,
both of the above procedures for estimating the equating coefficients were implemented in a single
computer program written in Professional FORTRAN for the IBM PC/AT. In the program implementa-
tion, two simplifying assumptions were made. First, all anchor items had the same number of response
categories. Second, the response category weights were integers where 1 s Ujk ::5 m~.

The Davidon-Fletcher-Powell technique was implemented using a set of six subroutines taken from
Numerical Recipes (Press, Flannery, Teukolsky, & Vetterling, 1986). Each primary iteration of the process
requires the evaluation of F, aFlaA, and aFlaK, and each secondary iteration requires that F be
evaluated. There is approximately a four-to-one ratio of secondary iterations to primary iterations.
As a result, the procedure requires a moderate amount of computing time on a personal computer.
The iterative process terminates when a convergence criterion based on successive values of F is met.

Examples of Computing Graded Response Equating Coefficients

Horizontal Equating Under the True Score Approach

Two simulated datasets based on the same anchor items and a common group of 300 examinees

were used to illustrate horizontal equating under the true score approach. Both sets were based on
a test of 30 items with four response categories. All 30 items were used as the anchor items in the
equating. The discrimination parameters of the test were generated from a uniform distribution ranging
from 1.34 to 2.65 in a logistic IRF metric. The three difficulty parameters for the boundary curves
of an item were generated from a normal distribution (mean = 0, variance = 1). Each set of three
ordered boundary curve difficulty parameters of an item was randomly paired with a single discrimina-
tion index. The 0 levels of the 300 simulated examinees were sampled from a unit normal distribution
over the range -2.8 to + 2.8.

The GENIRV computer program (Baker, 1986) was used to generate the vectors of examinee response
category choices for the target test. Then, using the same item and 0 parameter specifications and
a new random number generator seed, a new set of examinee item response choice vectors was

generated. Each of the two datasets was then analyzed by the MULTILOG computer program (Thissen,
1988) yielding the estimates of the item and 0 parameters. The second set of test results was to be
expressed in the metric of the first test calibration. The examinee 0 score estimates from the
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MULTILOG analysis of the target test data were used as the N 0 levels employed in the equating
process. Because the equating task was that of horizontal equating, the theoretical values of the

equating coefficients should be A = 1.0 and K = 0. The coefficient values obtained, after four primary
iterations of the equating computer program, were A = .9934 and K = -.0703. These values are in

good agreement with the theoretical values. The value of the quadratic loss function at conver-

gence, F = .0285, suggests that the minimum was nearly attained.

Using these coefficients, the item and 0 parameter estimates of the new test were transformed
to the target test metric. The means of the MULTILOG item and 0 parameter estimates of the target
test and those of the new test after transformation are reported in Table 1. Because the two datasets
differed only with respect to the random number seed used to generate the examinees’ item re-

sponse category choice vectors, there should be good agreement of the two sets of test results. This
was the case, as shown by the fact that the means of the two sets of results differ only in the third
decimal place.

Table 1

Summary Statistics of Target and
Transformed Parameters For Three Equatings

Horizontal Equating Under the Test Characteristic Curve Approach

These same two sets of test data were also used to illustrate computation of horizontal equating
coefficients using the ’rcc approach. The two sets of item parameter estimates and 21 points equally
spaced from -4 to + 4 on the target test 0 scale were entered into the computer program for estimating
the equating coefficients. The obtained values were A = .9986 and K = -.0715. The values agree
with both the anticipated values and with those yielded by the true score procedure. The value of
the quadratic loss function at convergence, F = .0359, was trivially larger than that obtained from
the true score procedure. In terms of the values of the obtained equating coefficients, there was little
difference in the outcomes of the two approaches. The means of the target test and the transformed
test item and 0 parameter estimates are also reported in Table 1. Again, the differences in mean values
are in the third decimal places. In addition, the differences between the mean values of the trans-
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formed parameter estimates obtained from the two analysis procedures were very small.

Nonhorizontal Equating

To illustrate a nonhorizontal equating situation, the item parameters of the 30-item test used in
the preceding examples were transformed through Equations 2 and 3 using the values A = .9 and
K = .5. These values were then used in GENIRV (Baker, 1986) to generate a target test dataset based
on 300 examinees whose 0 parameters were normally distributed (mean = 0, variance = 1). The
generated examinee item response vectors were then analyzed by MULTILOG to obtain the item
parameter estimates for the target test. The means are reported in Table 1.

The original MULTILOG test results were then equated to the metric of these results by the TCC
approach using 21 points equally spaced from -4 to +4 on the 0 scale. The obtained values of the
equating coefficients were A = 1.0083 and K = .5432. These agree reasonably well with the underlying
values, although the A coefficient is approximately .1 larger. The obtained value of the loss function
F was .0756, which indicates that the minimum was approximated. In the present equating situation,
the two sets of underlying item parameters differed primarily in terms of the locations of the items.
Thus, when the two sets of common items were equated, the change in location was reflected in the
mean abilities of the two groups of examinees. The summary statistics in Table 1 for the nonhorizontal

equating reflect this relationship. There was very good agreement between the mean values of the
item parameter estimates for the target test and the transformed test results. As expected, the mean
0 of the examinees of the transformed test (.5751) was approximately .5 above the mean (.0317) of
the target test group.

Discussion

The definition of the true score for the case of graded response items can be considered an exten-
sion of the true score definition for the case of dichotomously scored items. In the dichotomous
case, the true score is the sum of the probabilities of correct response over the n items at a given
0 level. Because the true score is an expected value, it does not depend on the examinee’s vector of
responses to the items.

In the graded response case, each item response category has a weight (Ujk) associated with it. Thus,
the product of the probability of selecting a response category, at a given 0 level, and its weight are
summed over the m~ categories to obtain the true score for an item. The true score, at a given 0 level,
is the sum of these item true scores over the n items. Again, the true score does not depend on the
examinee’s vector of item response category choices because it is an expected value.

The first of the two Stocking and Lord (1983) procedures for computing the equating coefficients
finds the values of A and K that minimize the difference between the true score distribution based
on the anchor items in the target test and the true score distribution of the new test after transforma-
tion of the anchor item parameters. Horizontal equating of two tests containing anchor items admin-
istered to a common group of examinees is the only feasible type of equating in this situation.

In the second Stocking and Lord (1983) procedure, the equating coefficients are obtained by minimiz-
ing the difference between the TCC of the target test based on the anchor items and that of the
transformed test anchor items. The advantage of this second approach is that it also can equate tests
in which there are two groups of examinees that differ with respect to ability. Thus, nonhorizontal
equating can be accomplished. As shown in the examples above, when both approaches are applied
in the horizontal equating situation, similar values of the equating coefficients are obtained. In prac-
tice, when the values of the equating coefficients based on the common anchor items have been deter-
mined, all the item parameters of the new test and the corresponding examinee 0 parameters can
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be transformed into the target test metric.
In the three examples shown above, the obtained values of the equating coefficients were very close

to the theoretical values. In addition, the loss function value at convergence of the iterative estima-
tion process was very close to 0. The minor differences in the reported means of the item and 0

parameter estimates were due to sampling variation in the examinees’ item response choice vectors,
which is reflected in the MULTILOG parameter estimates. Thus, the present paper has extended the

Stocking and Lord characteristic curve method of estimating equating coefficients to the graded
response model. Future research should examine the effect of such sampling variation on the obtained
equating coefficients in a variety of conditions.
A FORTRAN program was written to implement the computation of the equating coefficients for

graded response tests. Due to the iterative nature of the process, computing times were quite long.
For example, under the true score distribution matching approach, the datasets required approximately
two hours of computer time on an IBM PC/AT to perform four primary iterations. The amount of
time required reflects the need to compute the probability of choice for all response categories for
each anchor item for each examinee in both tests. When the Tic matching approach was employed
with 21 points along the 0 scale, the same test data required approximately 13 minutes for five primary
iterations. Thus, the latter approach is much less demanding computationally. Because there was lit-
tle difference in the obtained equating coefficients, the ’rcc matching approach is the method of
choice.

With some datasets, a peculiarity of the Davidon-Fletcher-Powell gradient search method was
observed that partially accounts for the long computer runs under the true score approach. The gra-
dients typically decreased rapidly from a large initial value to a small value, and the process usually
converged in three to four primary iterations. In some cases, after the gradients became quite small
(e.g., 10-6), the process required a total of five to ten primary iterations to achieve convergence. In
the final three or four primary iterations, the loss function F was essentially 0, yet convergence was
not readily achieved. This phenomenon appears to be a characteristic of the convergence criterion

employed within the Numerical Recipes subroutines (Press et al., 1986) that depends on the relative
values of the quadratic loss function in two successive primary iterations rather than on an absolute
difference.
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