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Abstract

This paper proposes a mechanism for equation-based conges-
tion control for unicast traffic. Most best-effort traffic in the
current Internet is well-served by the dominant transport pro-
tocol TCP. However, traffic such as best-effort unicast stream-
ing multimedia could find use for a TCP-friendly congestion
control mechanism that refrains from reducing the sending
rate in half in response to a single packet drop. With our
mechanism, the sender explicitly adjusts its sending rate as
a function of the measured rate of loss events, where aloss
event consists of one or more packets dropped within a sin-
gle round-trip time. We use both simulations and experiments
over the Internet to explore performance.

Equation-based congestion control is also a promising av-
enue of development for congestion control of multicast traf-
fic, and so an additional reason for this work is to lay a sound
basis for the later development of multicast congestion con-
trol.

1 Introduction

TCP is the dominant transport protocol in the Internet, and
the current stability of the Internet depends on its end-to-end
congestion control, which uses an Additive Increase Multi-
plicative Decrease (AIMD) algorithm. For TCP, the ‘sending
rate’ is controlled by a congestion window which is halved for
every window of data containing a packet drop, and increased
by roughly one packet per window of data otherwise.

End-to-end congestion control of best-effort traffic is re-
quired to avoid the congestion collapse of the global Inter-
net [FF99]. While TCP congestion control is appropriate
for applications such as bulk data transfer, some applications
where the data is being played out in real-time find halving
the sending rate in response to a single congestion indica-
tion to be unnecessarily severe, as it can noticeably reduce
the user-perceived quality [TZ99]. TCP’s abrupt changes in�This material is based upon work supported by AT&T, and by theNa-
tional Science Foundation under grants NCR-9508274, ANI-9805185 and
CDA-9502639. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not neces-
sarily reflect the views of AT&T or the National Science Foundation.

the sending rate have been a key impediment to the deploy-
ment of TCP’s end-to-end congestion control by emerging ap-
plications such as streaming multimedia. In our judgement,
equation-based congestion control is the leading candidate for
a viable mechanism to provide relatively smooth congestion
control for such traffic.

Equation-based congestion control was first proposed in
[MF97]. Whereas AIMD congestion control backs off in re-
sponse to a single congestion indication, equation-based con-
gestion control uses a control equation that explicitly gives
the maximum acceptable sending rate as a function of the
recentloss event rate. The sender adapts its sending rate,
guided by this control equation, in response to feedback from
the receiver. For traffic that competes in the best-effort Inter-
net with TCP, the appropriate control equation for equation-
based congestion control is the TCP response function char-
acterizing the steady-state sending rate of TCP as a function
of the round-trip time and steady-state loss event rate.

Although there has been significant previous research on
equation-based and other congestion control mechanisms [JE96,
OR99, RHE99, TZ99, PKTK99, TPB, VRC98, SS98], we
are still rather far from having deployable congestion control
mechanisms for best-effort streaming multimedia. Section 3
presents the TCP-Friendly Rate Control (TFRC) proposal for
equation-based congestion control for unicast traffic, In Sec-
tion 5 we provide a comparative discussion of TFRC and pre-
viously proposed protocols. The benefit of TFRC is a more
smoothly-changing sending rate than that of TCP; the cost is
a more moderate response to transient changes in congestion.

One of our goals in this paper is to present a proposal
for equation-based congestion control that lays the founda-
tion for the near-term experimental deployment of congestion
control for unicast streaming multimedia. Section 4 presents
results from extensive simulations and experiments with the
TFRC protocol, showing that equation-based congestion con-
trol using the TCP response function competes fairly with
TCP. Both the simulator code and the real-world implemen-
tation are publically available. We believe that TFRC and
related forms of equation-based congestion control can play
a significant role in the Internet.

For most unicast flows that want to transfer data reliably
and as quickly as possible, the best choice is simply to use
TCP directly. However, equation-based congestion control
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is more appropriate for applications that need to maintain a
slowly-changing sending rate, while still being responsive to
network congestion over longer time periods (seconds, as op-
posed to fractions of a second). It is our belief that TFRC
is sufficiently mature for a wider experimental deployment,
testing, and evaluation.

A second goal of this work is to lay a foundation for
further research within the network community on the de-
velopment and evaluation of equation-based congestion con-
trol. We address a number of key concerns in the design of
equation-based congestion control that have not been suffi-
ciently addressed in previous research, including responsive-
ness to persistent congestion, avoidance of unnecessary oscil-
lations, avoidance of the introduction of unnecessary noise,
and robustness over a wide range of timescales.

The algorithm for calculating the loss event rate is the
key design issue in equation-based congestion control, de-
termining the tradeoffs between responsiveness to changes in
congestion and the avoidance of oscillations or unnecessarily
abrupt shifts in the sending rate. The discussion in Section 3
addresses these tradeoffs and describes the fundamental com-
ponents of the TFRC algorithms that reconcile them.

A third goal of this work is to build a solid basis for the
development of congestion control for multicast traffic. In a
large multicast group, there will usually be at least one re-
ceiver that has experienced a recent packet loss. If the con-
gestion control mechanisms require that the sender reduces
its sending rate in response to each loss, as in TCP, then
there is little potential for the construction of scalable mul-
ticast congestion control. Equation-based congestion control
for multicast traffic has been an active area of research for
several years [RMR]. As we describe in Section 6, many of
the mechanisms in TFRC are directly applicable to multicast
congestion control.

2 Foundations of equation-based con-
gestion control

The basic decision in designing equation-based congestion
control is to choose the underlying control equation. An ap-
plication using congestion control that was significantly more
aggressive than TCP could cause starvation for TCP traffic if
both types of traffic were competing in a FIFO queue at a time
of congestion [FF99]. From [BCC+98], a TCP-compatible
flow is defined as a flow that, in steady-state, uses no more
bandwidth than a conformant TCP running under comparable
conditions. For best-effort traffic competing with TCP in the
current Internet, in order to be TCP-compatible, the correct
choice for the control equation is the TCP response function
describing the steady-state sending rate of TCP [Flo99].

From [PFTK98], one formulation of the TCP response
function is the following:T = sRq 2p3 + tRTO(3q 3p8 )p(1 + 32p2) (1)

This gives an upper bound on the sending rateT in bytes/sec,
as a function of the packet sizes, round-trip timeR, steady-
state loss event ratep, and the TCP retransmit timeout valuetRTO .

An application wishing to send less than the TCP-compatible
sending rate (e.g., because of limited demand) would still be
characterized as TCP-compatible. However, if a significantly
less aggressive response function were used, then the less ag-
gressive traffic could encounter starvation when competing
with TCP traffic in a FIFO queue. In practice, when two types
of traffic compete in a FIFO queue, acceptable performance
only results if the two traffic types have similar response func-
tions.

For traffic that is not competing with TCP traffic in a
FIFO queue, but is isolated from TCP traffic by some method
(e.g., with per-flow scheduling, or in a separate differentiated-
services class from TCP traffic), applications using equation-
based congestion control could make a different choice for
the underlying control equation. Issues about the merits or
shortcomings of various control equations for equation-based
congestion control are an active research area that we do not
address further in this paper.

2.1 Viable congestion control does not require
TCP

This paper proposes deployment of a congestion control algo-
rithm that does not reduce its sending rate in half in response
to a single congestion indication. Given that the stability of
the current Internet rests on AIMD congestion control mech-
anisms in general, and on TCP in particular, a proposal for
non-AIMD congestion control requires justification in terms
of its suitability for the global Internet. We discuss two sepa-
rate justifications, one practical and the other theoretical.

A practical justification is that the principle threat to the
stability of end-to-end congestion control in the Internet comes
not from flows using alternate forms of TCP-compatible con-
gestion control, but from flows that do not use any end-to-
end congestion control at all. For some of these flows (e.g.,
large-scale multicast, some real-time traffic), the only viable
possibility for end-to-end congestion control is a mechanism
that responds less drastically to a single packet drop than does
TCP.

A more theoretical justification is that preserving the sta-
bility of the Internet does not require that flows reduce their
sending rate by half in response to a single congestion indi-
cation. In particular, the prevention of congestion collapse
simply requires that flows use some form of end-to-end con-
gestion control to avoid a high sending rate in the presence
of a high packet drop rate. Similarly, as we will show in this
paper, preserving some form of “fairness” against competing
TCP traffic also does not require such a drastic reaction to a
single congestion indication.

For flows desiring smoother changes in the sending rate,
alternatives to TCP include AIMD congestion control mecha-
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nisms that do not use a decrease-by-half reduction in response
to congestion. In DECbit, which was also based on AIMD,
flows reduced their sending rate to 7/8 of the old value in
response to a packet drop [JRC87]. Similarly, in Van Jacob-
son’s 1992 revision of his 1988 paper on Congestion Avoid-
ance and Control [Jac88], the main justification for a decrease
term of 1/2 instead of 7/8, in Appendix D of the revised ver-
sion of the paper, is that the performance penalty for a de-
crease term of 1/2 is small. A related paper [FHP00] includes
a relative evaluation of AIMD and equation-based congestion
control.

3 The TCP-Friendly Rate Control
(TFRC) Protocol

The primary goal of equation-based congestion control is not
to aggressively find and use available bandwidth, but to main-
tain a relatively steady sending rate while still being respon-
sive to congestion. To accomplish this, equation-based con-
gestion control makes the tradeoff of refraining fromaggres-
sively seeking out available bandwidth in the manner of TCP.
Thus, several of the design principles of equation-based con-
gestion control can be seen in contrast to the behavior of TCP.� Do not aggressively seek out available bandwidth. That

is, increase the sending rate slowly in response to a de-
crease in the loss event rate.� Do not reduce the sending rate in half in response to a
single loss event. However, do reduce the sending rate
in half in response to several successive loss events.

Additional design goals for equation-based congestion con-
trol for unicast traffic include:� The receiver should report feedback to the sender at

least once per round-trip time if it has received any
packets in that interval.� If the sender has not received feedback after several
round-trip times, then the sender should reduce its send-
ing rate, and ultimately stop sending altogether.

3.1 Protocol Overview

Applying the TCP response equation (Equation (1)) as the
control equation for congestion control requires the follow-
ing:� The parametersR andp are determined. The loss event

ratepmust be calculated at the receiver, while the round-
trip time R could be measured at either the sender or
the receiver. (The other two values needed by the TCP
response equation are the flow’s packet sizes and the
retransmit timeout valuetRTO , which can be estimated
fromR.)

� The receiver sends either the parameterp or the calcu-
lated value of the allowed sending rateT back to the
sender.� The sender increases or decreases its transmission rate
based on its calculation ofT .

For multicast, it makes sense for the receiver to deter-
mine the relevant parameters and calculate the allowed send-
ing rate. However, for unicast the functionality could be split
in a number of ways. In our proposal, the receiver only cal-
culatesp, and feeds this back to the sender.

3.2 Sender functionality

In order to use the control equation, the sender determines the
values for the round-trip timeR and retransmit timeout valuetRTO .

The sender and receiver together use sequence numbers
for measuring the round-trip time. Every time the receiver
sends feedback, it echoes the sequence number from the most
recent data packet, along with the time since that packet was
received. In this way the sender measures the round-trip time
through the network.

The sender smoothes the measured round-trip time using
an exponentially weighted moving average. This weight de-
termines the responsiveness of the transmission rate to changes
in round-trip time.

The sender could derive the retransmit timeout valuetRTO
using the usual TCP algorithm:tRTO = SRTT + 4 �RTTvar
whereRTTvar is the variance of RTT andSRTT is the round-
trip time estimate. However, in practicetRTO only critically
affects the allowed sending rate when the packet loss rate
is very high. Different TCPs use drastically different clock
granularities to calculate retransmit timeout values, so it is not
clear that equation-based congestion control can accurately
model atypical TCP. Unlike TCP, TFRC does not use this
value to determine whether it is safe to retransmit, and so the
consequences of inaccuracy are less serious. In practice the
simple empirical heuristic oftRTO = 4R works reasonably
well to provide fairness with TCP.

The sender obtains the value ofp in feedback messages
from the receiver at least once per round-trip time.

Every time a feedback message is received, the sender
calculates a new value for the allowed sending rateT using
the control equation. If the actual sending rateTactual is less
thanT , the sender may increase its sending rate.

If Tactual is greater thanT , the sender must decrease the
sending rate. We have several choices here:� Decrease exponentially.Experiments show that this

is undesirable because it can involve decreasing to less
thanT , and the resulting undershoot leads to oscilla-
tory behavior.
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� Decrease towardsT . This might work, but there is al-
ready significant damping introduced in the measure-
ment of p and in the smoothing ofR, and so addi-
tional damping only confuses the effects of the existing
damping without changing the behavior significantly.� Decrease toT . This works well, and is the behavior
used in all the results presented in this paper.

3.3 Receiver functionality

The receiver provides feedback to allow the sender to mea-
sure the round-trip time (RTT). The receiver also calculates
the loss event ratep, and feeds this back to the sender. The
calculation of the loss event rate is one of the most critical
parts of TFRC, and the part that has been through the largest
amount of evaluation and design iteration. There is a clear
trade-off between measuring the loss event rate over a short
period of time and being able to respond rapidly to changes
in the available bandwidth, versus measuring over a longer
period of time and getting a signal that is much less noisy.

The method of calculating the loss event rate has been the
subject of much discussion and testing, and over that process
several guidelines have emerged:� The estimated loss event rate should track relatively

smoothly in an environment with a stable steady-state
loss event rate.� The estimated loss rate should measure theloss event
rate rather than the packet loss rate, where aloss event
can consist of several packets lost within a round-trip
time. This is discussed in more detail in Section 3.5.1.� The estimated loss event rate should respond strongly
to loss events in several successive round-trip times.� The estimated loss event rate should increase only in
response to a new loss event. (We note that this prop-
erty is not satisfied by some of the methods described
below.)� Let a loss interval be defined as the number of pack-
ets between loss events. The estimated loss event rate
should decrease only in response to a new loss interval
that is longer than the previously-calculated average, or
a sufficiently-long interval since the last loss event.

Obvious methods we looked at include the EWMA Loss
Interval method, the Dynamic History Window method, and
the Average Loss Interval method which is the method we
chose.� The EWMA Loss Interval method uses an exponen-

tially weighted moving average of the number of pack-
ets between loss events. Depending on the weighting,
this either puts too much weight on the most recent in-
terval, or takes too much history into account and is
slow to react to real changes.

� The Dynamic History Window method uses a history
window of packets whose length is determined by the
current transmission rate. This suffers from the effect
that even with a perfectly periodic loss pattern, loss
events entering and leaving the window cause changes
to the measured loss rate, and hence add unnecessary
noise to the loss signal.� The Average Loss Interval method computes the aver-
age loss rate over the lastn loss intervals. By itself,
the naive Average Loss Interval method suffers from
two problems: the interval since the most recent loss is
not necessarily a reflection of the underlying loss event
rate, and there can be sudden changes in the calculated
rate due to unrepresentative loss intervals leaving then intervals we’re looking at. These concerns are ad-
dressed below.

The full Average Loss Interval method differs from the
naive version in two ways. Letsi be the number of packets in
the i-th most recent loss interval, and let the most recent in-
tervals0 be defined as the interval containing the packets that
have arrivedsince the last loss. The first difference addresses
the most recent loss intervals0. When a loss occurs, the loss
interval that has beens0 now becomess1, all of the follow-
ing loss intervals are correspondingly shifted down one, and
the new loss intervals0 is empty. Ass0 is not terminated by a
loss, it is different from the other loss intervals. It is important
to ignores0 in calculating the average loss interval unlesss0
is large enough that including it would increase the average.
This allows the calculated loss interval to track smoothly in
an environment with a stable loss event rate.

Time now

Interval
since most
recent loss

interval 1

interval 2

interval n

weight 1

weight n

weighted
interval 1

weighted 
interval 2

weighted 
interval n

Sequence 
Number

Time

Packet
Arrival

Packet
lost

Figure 1: Weighted intervals between loss used to calculate
loss probability.

The second difference from the naive method reduces the
sudden changes in the calculated loss rate that could result
from unrepresentative loss intervals leaving the set of loss in-
tervals used to calculate the loss rate. The full Average Loss
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Interval method takes a weighted average of the lastn inter-
vals, with equal weights for the most recentn=2 intervals and
smaller weights for older intervals. Thus the average loss in-
terval ŝ is calculated as follows:ŝ = Pni=1 wisiPni=1 wi ;
for weightswi: wi = 1; 1 � i � n=2;
and wi = 1� i� n=2n=2 + 1 ; n=2 < i � n:
Forn = 8, this gives weights of:w1; w2; w3; w4 = 1; w5 =0:8; w6 = 0:6; w7 = 0:4; andw8 = 0:2.

The full Average Loss Interval method also calculatesŝnew,
which is the average loss interval calculated over intervalss0
to sn�1 rather than overs1 to snŝnew = Pn�1i=0 wi+1siPni=1 wi
To includes0 only at the correct times, as discussed above,
the value actually used for the average loss interval ismax(ŝ; ŝnew)
.

The sensitivity to noise of the calculated loss rate depends
on the value ofn. In practice a value ofn = 8, with the
most recent four samples equally weighted, appears to be a
lower bound that still achieves a reasonable balance between
resilience to noise and responding quickly to real changes in
network conditions. Section 4.4 describes experiments that
validate the value ofn = 8. However, we have not carefully
investigated alternatives for the relative values of the weights.

Because the Average Loss Interval method averages over
a number of loss intervals, rather than over a number of packet
arrivals, this method responds reasonably rapidly to a sudden
increase in congestion, but is slow to respond to a sudden
decrease in the loss rate. For this reason we deploy history
discounting as a component of the full Average Loss Interval
method that allows a more timely response to a sustained de-
crease in congestion. It is used by the TFRC receiver to iden-
tify a particularly long interval since the last dropped packet,
and to smoothly discount the weight given to older loss in-
tervals. History discounting is only invoked by TFRC after
the most recent loss interval is greater than twice the aver-
age loss interval. History discounting is described in detail in
[FHPW00].

Figure 2 shows a simulation using the Average Loss Inter-
val method for calculating the loss event rate at the receiver.
The link loss rate is 1% before time 6, then 10% until time 9,
and finally 0.5% until the end of the run. This simulation is
rather unrealistic because the loss is periodic, but this illus-
trates the mechanism more clearly.
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Figure 2: Illustration of the Average Loss Interval method
with idealized periodic loss.

For the top graph, the solid line shows the number of
packets in the most recent loss interval, as calculated by the
receiver once per round-trip time before sending a status re-
port. The smoother dashed line shows the receiver’s estimate
of the average loss interval. The middle graph shows the re-
ceiver’s estimated loss event ratep, which is simply the in-
verse of the average loss interval, along with

pp. The bottom
graph shows the sender’s transmission rate which is calcu-
lated fromp.

Several things are noticeable from these graphs:� Before t=6, the loss rate is constant and the Average
Loss Interval method gives a completely stable mea-
sure of the loss rate.� When the loss rate increases, the transmission rate is
rapidly reduced.� When the loss rate decreases, the transmission rate in-
creases in a smooth manner, with no step increases even
when older (10 packet) loss intervals are excluded from
the history. With naive loss interval averaging we would
have seen undesirable step-increases in the estimated
loss interval, and hence in the transmission rate.

3.4 Improving Stability

One of the goals of the TFRC protocol is to avoid the charac-
teristic oscillations in the sending rate that result from TCP’s
AIMD congestion control mechanisms. In controlling oscil-
lations, a key issue in the TFRC protocol concerns the re-
sponse function’s specification of the allowed sending rate
as inversely proportional to the measured RTT. A relatively
prompt response to changes in the measured round-trip time
is helpful to prevent flows from overshooting the available
bandwidth after an uncongested period. On the other hand,
an over-prompt response to changes in the measured round-
trip time can result in unnecessary oscillations.

If the value of the EWMA weight for calculating the aver-
age RTT is set to a small value such as 0.1 (meaning that 10%

5



2

8

32

64
buffer size

0
20

40
60

80
100

120
140

160
180

time (s)

0

100

200

300

 Send Rate 
 (KByte/s) 

 

Figure 3: Oscillations of a TFRC flow over Dummynet,
EWMA weight 0.05 for calculating the RTT.
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Figure 4: TFRC flow over Dummynet: oscillations prevented

of the weight is on the most recent sample) then TFRC does
not react strongly to increases in RTT. In this case, we tend to
see oscillations when a small number of TFRC flows share a
high-bandwidth link with DropTail queuing; the TFRC flows
overshoot the link bandwidth and then experience loss over
several RTTs. The result is that they backoff together by a
significant amount, and then all start to increase their rate to-
gether. This is shown for a single flow in Figure 3 as we
increase the buffer size in Dummynet [Riz98]. Although not
disastrous, the resulting oscillation is undesirable for appli-
cations and can reduce network utilization. This is similar
in some respects to the global oscillation of TCP congestion
control cycles.

If the EWMA weight is set to a high value such as 0.5,
then TFRC reduces its sending rate strongly in response to
an increase in RTT, giving a delay-based congestion avoid-
ance behavior. However, because the sender’s response is de-
layed and the sending rate is directly proportional to1=R, it
is possible for short-term oscillations to occur, particularly
with DropTail queues. While undesirable, these oscillations
tend to be less of a problem than the oscillations with smaller
values of the EWMA weight.

What we desire is a middle ground, where we gain some
short-term delay-based congestion avoidance, but in a form
that has less gain than simply making the rate inversely pro-
portional to the most recent RTT measurement. To accom-
plish this, we use a small value for the EWMA weight in cal-
culating the average round-trip timeR in Equation (1), and
apply the increase or decrease functions as before, but then
set the interpacket-spacing as follows:tinter�packet = spR0T �M

whereR0 is the most recent RTT sample, andM is the av-
erage of the square-roots of the RTTs, calculated using an
exponentially weighted moving average with the same time
constant we use to calculate the mean RTT. Thus, we gain the
benefits of short-term delay-based congestion avoidance, but
with a lower feedback loop gain so that oscillations in RTT
damp themselves out, as shown in Figure 4. The experiments
in Figure 3 did not use this adjustment to the interpacket spac-
ing.

3.4.1 Slowstart

The initial rate-based slow-start procedure should be similar
to the window-based slow-start procedure followed by TCP
where the sender roughly doubles its sending rate each round-
trip time. However, TCP’s ACK-clock mechanism provides a
limit on the overshoot during slow start. No more that two
outgoing packets can be generated for each acknowledged
data packet, so TCP cannot send at more than twice the bot-
tleneck link bandwidth.

A rate-based protocol does not have this natural self-limiting
property, and so a slow-start algorithm that doubles its send-
ing rate every measured RTT can overshoot the bottleneck
link bandwidth by significantly more than a factor of two. A
simple mechanism to limit this overshoot is to have the re-
ceiver feed back the rate that packets arrived at the receiver
during the last measured RTT. If loss occurs, slowstart is ter-
minated, but if loss doesn’t occur the sender sets its rate to:Tactual;i+1 = min�2Tactual;i; 2Treceived;i�
This limits the slow-start overshoot to be no worse than that
of TCP.

When the loss occurs that causes slowstart to terminate,
there is no appropriate loss history from which to calculate
the loss fraction for subsequent RTTs. The interval until the
first loss is not very meaningful as the rate changes so rapidly
during this time. The solution is to assume that the correct
initial data rate is half of the rate when the loss occurred;
the factor of one-half results from the delay inherent in the
feedback loop. We then calculate the expected loss interval
that would be required to produce this data rate, and use this
synthetic loss interval to seed the history mechanism. Real
loss-interval data then replaces this synthetic value when it
becomes available.

3.5 Discussion of protocol features

3.5.1 Loss Fraction vs. Loss Event Fraction

The obvious way to measure loss is as a loss fraction calcu-
lated by dividing the number of packets that were lost by the
number of packets transmitted. However this does not accu-
rately model the way TCP responds to loss. Different variants
of TCP cope differently when multiple packets are lost from
a window; Tahoe, NewReno, and Sack TCP implementations
generally halve the congestion window once in response to
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several losses in a window, while Reno TCP typically reduces
the congestion window twice in response to multiple losses in
a window of data.

Where routers use RED queue management, multiple packet
drops in a window of data are less common, but with drop-
tail queue management it is common for several packets in
the same round-trip-time to be lost when the queue overflows.
These multiple drops can result in multiple packets dropped
from a window of data from a single flow, resulting in a sig-
nificant difference between the loss fraction and the loss event
fraction for that flow.

Because we are trying to emulate the best behavior of a
conformant TCP implementation, we measure loss as aloss
event fraction. Thus we explicitly ignore losses within a round-
trip time that follow an initial loss, and model a transport pro-
tocol that reduces its window at most once for congestion no-
tifications in one window of data. This closely models the
mechanism used by most TCP variants.

To see how the loss-event fraction differs from the regular
loss fraction in the presence of random packet loss, consider
a flow that sendsN packets per round-trip time, and assume a
Bernoulli loss model with loss probabilityploss. The proba-
bility that at least one packet is lost in a given round-trip time
is 1� (1� ploss)N . Therefore the loss-event fractionpevent,
calculated as number of loss events per packet sent, is given
by: pevent = 1� (1� ploss)NN
Note that for a fixed loss probability, the faster the sender
transmits, the lower the loss-event fraction. However, the
sending rate is determined by the congestion control scheme,
and so itself depends onpevent. For a very high loss envi-
ronment where the congestion window is rarely higher than
one, and for a low loss environment, there will be little differ-
ence between the packet loss rate and the loss event rate for
a flow. However, for a moderate loss environment where the
congestion window is usually higher than one, there is some
difference between the two. A more formal discussion of this
problem is presented in [RR99].
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Figure 5: Loss-events per packet as a function of loss proba-
bility and error in the calculated transmission rate

Figure 5 shows the loss-event fraction as a function of loss

probability for a flow that obeys Equation (1), and also for a
flow transmitting at twice this rate and a flow transmitting
at half this rate. As Figure 5 shows, for high and low loss
rates the difference betweenploss andpevent is small. For
moderate loss rates, the difference betweenploss andpevent
can be at most 10% for these flows. Thus, for congestion-
controlled flows, the difference in the measured loss event
rate is not very sensitive to variations about the correct data
rate.

The version of the TCP response function in Equation (1)
is based in some respects on the loss event rate, and in other
respects on the packet loss rate. In particular, the response
function in Equation (1) models Reno TCP, where multiple
losses in a window cause a retransmission timeout. Ideally,
this response function would be replaced with a TCP response
function based on a model of Sack TCP and on loss event
rates rather than on packet drop rates.

3.5.2 Increasing the Transmission Rate

One issue to resolve is how to increase the sending rate when
the rate given by the control equation is greater than the cur-
rent sending rate. As the loss rate is not independent of the
transmission rate, to avoid oscillatory behavior it might be
necessary to provide damping, perhaps in the form of restrict-
ing the increase to be small relative to the sending rate during
the period that it takes for the effect of the change to show up
in feedback that reaches the sender.

In practice, the calculation of the loss rate by the method
above provides sufficient damping, and there is little need to
explicitly bound the increase. As shown in Appendix A.1,
given a fixed RTT and no history discounting, the increase
in transmission rate is limited to about 0.14 packets per RTT
every RTT (using Equation 1).

An increase in transmission rate can result from the inclu-
sion of new packets in the most recent inter-loss interval at the
receiver. IfA is the number of packets in the TFRC flow’s av-
erage loss interval, andw is the fraction of the weight on the
most recent loss interval, then the transmission rate cannot
increase by more than�T packets/RTT every RTT, where:�T = 1:2�qA+ w1:2pA�pA�
The derivation is given in Appendix A.1 assuming the simpler
TCP response function from [MF97] for the control equation.
This behavior has been confirmed in simulations with TFRC.
This behavior has also been numerically modeled for the TCP
response function in Equation (1), giving similar results for
low loss-rate environments but with significantly lower in-
crease rates in high loss-rate environments.

As changes in measured RTT are already damped using
an EWMA, even with the maximum history discounting (w =1), this increase rate does not exceed one packet per RTT ev-
ery RTT, which is the rate of increase of a TCP flow in con-
gestion avoidance mode.
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3.5.3 The response to persistent congestion

Simulations in Appendix A.2 show that, in contrast to TCP,
TFRC requires from three to eight round-trip times to reduce
its sending rate in half in response to persistent congestion.
As discussed in Appendix A.1, this slower response to con-
gestion is coupled with a slower increase in the sending rate
than that of TCP. In contrast to TCP’s increase of the send-
ing rate by one packet/RTT for every round-trip time without
congestion, TFRC generally does not increase its sending rate
at all until a longer-than-average period has passed without
congestion. At that point, given an environment with stable
round-trip times, TFRC increases the sending rate by 0.14
packets per round-trip; after an extended absence of conges-
tion, TFRC begins to increase its sending rate by 0.28 packets
per round-trip time. Thus the milder decrease of TFRC in re-
sponse to congestion is coupled with a considerably milder
increase in the absence of congestion.

4 Experimental Evaluation

We have tested TFRC extensively across the public Inter-
net, in the Dummynet network emulator [Riz98], and in the
ns network simulator. These results give us confidence that
TFRC is remarkably fair when competing with TCP traffic,
that situations where it performs very badly are rare, and that
it behaves well across a very wide range of network condi-
tions. In the next section, we present a summary of ns sim-
ulation results, and in section 4.3 we look at behavior of the
TFRC implementation over Dummynet and the Internet.

4.1 Simulation Results
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Figure 6: TCP flow sending rate while co-existing with TFRC

To demonstrate that it is feasible to widely deploy TFRC
we need to demonstrate that it co-exists acceptably well when
sharing congested bottlenecks of many kinds with TCP traffic
of different flavors. We also need to demonstrate that it be-
haves well in isolation, and that it performs acceptably over
a wide range of network conditions. There is only space here
for a summary of our findings, but we refer the interested
reader to [FHPW00, Pad00] for more detailed results, and to
the simulator code in thens distribution.

Figure 6 illustrates the fairness of TFRC when competing
with TCP Sack traffic in both DropTail and RED queues. In
these simulationsn TCP andn TFRC flows share a common
bottleneck; we vary the number of flows and the bottleneck
bandwidth, and scale the queue size with the bandwidth. The
graph shows the mean TCP throughput over the last 60 sec-
onds of simulation, normalized so that a value of one would
be a fair share of the link bandwidth. The network utilization
is always greater than 90% and often greater than 99%, so
almost all of the remaining bandwidth is used by the TFRC
flows. These figures illustrate than TFRC and TCP co-exist
fairly across a wide range of network conditions, and that
TCP throughput is similar to what it would be if the com-
peting traffic was TCP instead of TFRC.
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Figure 7: TCP competing with TRFC, with RED.

The graphs do show that there are some cases (typically
where the mean TCP window is very small) where TCP suf-
fers. This appears to be because TCP is more bursty than
TFRC. When we modify TFRC to send two packets every
two inter-packet intervals, TCP competes more fairly in these
cases. However this is not something we would recommend
for normal operation.

Although the mean throughput of the two protocols is
rather similar, the variance can be quite high. This is illus-
trated in Figure 7 which shows the 15Mb/s data points from
Figure 6. Each column represents the results of a single simu-
lation, and each data point is the normalized mean throughput
of a single flow. Typically, the TCP flows have higher vari-
ance than the TFRC flows, but if we replace all the flows with
TCP flows this variance doesn’t change greatly. In general,
the variance between flows increases as the bandwidth per
flow decreases. This is to be expected as Equation (1) indi-
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cates that TCP (and hence also TFRC) becomes more sensi-
tive to loss as the loss rate increases, which it must do at lower
bandwidths.

TFRC vs TCP Sack1, 32 flows, 15Mb/s link, RED Queue

Throughput
Dropped Packet

TF 1
TF 2

TF 3
TF 4

TCP 1
TCP 2

TCP 3
TCP 4

TFRC or TCP Flow

16

18

20

22

24

26

28

30

Time (s)

5
10
15
20
25
30
35

Throughput (KB/0.15s)

TFRC vs TCP Sack1, 32 flows, 15Mb/s link, Droptail Queue

Throughput
Dropped Packet

TF 1
TF 2

TF 3
TF 4

TCP 1
TCP 2

TCP 3
TCP 4

TFRC or TCP Flow

16

18

20

22

24

26

28

30

Time (s)

5
10
15
20
25
30
35

Throughput (KB/0.15s)

Figure 8: TFRC and TCP flows from Figure 6, forn = 16.

We have also looked at Tahoe and Reno TCP implemen-
tations and at different values for TCP’s timer granularity. Al-
though Sack TCP with relatively low timer granularity does
better against TFRC than the alternatives, their performance
is still quite respectable.

Figure 8 shows the throughput for eight of the flows (four
TCP, four TFRC) from Figure 6, for the simulations with a
15Mb/s bottleneck and 32 flows in total. The graphs depict
each flow’s throughput on the congested link during the sec-
ond half of the 30-second simulation, where the throughput
is averaged over 0.15 sec intervals; slightly more than a typ-
ical round-trip time for this simulation. In addition, a 0.15
sec interval seems to be plausible candidate for a minimum
interval over which bandwidth variations would begin to be
noticeable to multimedia users.1

Figure 8 clearly shows the main benefit for equation-based
congestion control over TCP-style congestion control for uni-
cast streaming media, which is the relative smoothness in the
sending rate. A comparison of the RED and Drop-Tail sim-
ulations in Figure 8 also shows how the reduced queuing de-
lay and reduced round-trip times imposed by RED require a
higher loss rate to keep the flows in check.

1The simulations in Figure 8 were run with RED queue management
on the 15 Mbps congested link, with the RED parameters set as follows:
min thresh is set to 25 packets,max thresh is set to five times minthresh,
max p is set to 0.1, and thegentle parameter is set to true.

4.1.1 Performance at various timescales

We are primarily interested in two measures of performance
of the TFRC protocol. First, we wish to compare the average
send rates of a TCP flow and a TFRC flow experiencing sim-
ilar network conditions. Second, we would like to compare
the “smoothness” of these send rates. Ideally, we would like
for a TFRC flow to achieve the same average send rate as that
of a TCP flow, and yet have less variability. The timescale at
which the send rates are measured affects the values of these
measures. Thus, we first define the send rate of a given data
flow F at timet, measured at a timescale�:R�;F (t) = s� packets sent by F betweent andt+ �� ; (2)

for s the packet size in bytes. We characterize the send rate
of the flow between timet0 and t1, wheret1 = t0 + n�,
by the time series:fR�;F (t0 + i � �)gni=0. The coefficient of
variation (CoV), which is the ratio of standard deviation to
the average, of this time series can be used as a measure of
variability [Jai91] of the sending rate of the flow at timescale�. A lower value implies a smoother flow.

To compare the send rates of two flows at a given time
scale, we define the equivalence at timet:e�;a;b(t) = min�R�;a(t)R�;b(t) ; R�;b(t)R�;a(t)� ; (3)R�;a(t) > 0 or R�;b(t) > 0
Taking the minimum of the two ratios ensures that the result-
ing value remains between 0 and 1. Note that the equivalence
of two flows at a given time is defined only when at least one
of the two flows has a non-zero send rate. The equivalence
of two flows between timet0 andt1 can be characterized by
the time series:fe�;a;b(t0 + i � �)gni=0. The average value of
the defined elements of this time series is called the equiva-
lence ratio of the two flows at timescale�. The closer it is
to 1, the more “equivalent” the two flows are. We choose to
take average instead of the median to capture the impact of
any outliers in the equivalence time series. We can compute
the equivalence ratio between a TCP flow and a TFRC flow,
between two TCP flows or between two TFRC flows. Ide-
ally, the ratio would be very close to 1 over a broad range of
timescales between two flows of the same type experiencing
the same network conditions .

4.1.2 Performance with long-duration background traf-
fic

For measuring the steady performance of the TFRC proto-
col, we consider the simple well-known single bottleneck (or
“dumbbell”) simulation scenario. The access links are suf-
ficiently provisioned to ensure that any packet drops/delays
due to congestion occur only at the bottleneck bandwidth.

We considered several simulation scenarios, but illustrate
here a scenario with a bottleneck bandwidth of 15Mbps and a
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RED queue.2 To plot the graphs, we monitor the performance
of one flow belonging to each protocol. The graphs are the
result of averaging 14 such runs, and the 90% confidence in-
tervals are shown. The loss rate observed at the bottleneck
router was about 0.1%.
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Figure 9: TCP and TFRC equivalence
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Figure 9 shows the equivalence ratios of TCP and TFRC
as a function of the timescale of measurement. Curves are
shown for the mean equivalence ratio between pairs of TCP
flows, between pairs of TFRC flows, and between pairs of
flows of different types. The equivalence ratio of TCP and
TFRC is between 0.6 to 0.8 over a broad range of timescales.
The measures for TFRC pairs and TCP pairs show that the
TFRC flows are “equivalent” to each other on a broader range
of timescales than the TCP flows.

Figure 10 shows that the send rate of TFRC is smoother
than that of TCP over a broad range of timescales. Both this
and the better TFRC equivalence ratio are due to the fact that
TFRC responds only to the aggregate loss rate, and not to
individual loss events.

From these graphs, we conclude that in an environment
dominated by long-duration flows, the TFRC transmission
rate is comparable to that of TCP, and is smoother than an

2The bottleneck delay is 50ms, packet size is 1000 bytes, the bottle-
neck queue runs RED withgentle enabled, a total buffer of 100 packets, aminthresh of 10 and amaxthresh of 50. There are 16 SACK TCP and
16 TFRC flows. The simulation duration is 150 seconds, and theresults are
from the last 100 seconds of the simulation. The round-trip time of each
flow, excluding the queuing delay, is random, uniformly distributed between
80 and 120 milliseconds. The flows are started at random times, uniformly
distributed between 0 and 10 seconds.

equivalent TCP flow across almost any timescale that might
be important to an application.

4.1.3 Performance with ON-OFF flows as background
traffic

In this simulation scenario, we model the effects of compet-
ing web-like traffic (very small TCP connections, some UDP
flows). It has been reported in [PKC96] that WWW-related
traffic tends to be self-similar in nature. In [WTSW95], it is
shown that self-similar traffic may be created by using sev-
eral ON/OFF UDP sources whose ON/OFF times are drawn
from heavy-tailed distributions such as the Pareto distribu-
tion. Figures 11-13 present results from simulations in which
we simulate such background traffic. The mean ON time is 1
second and the mean OFF time is 2 seconds, and during ON
time each source sends at 500Kbps. The number of simul-
taneous connections is varied between 50 and 150 and the
simulation is run for 5000 seconds. The results are averages
of 10 runs. The bottleneck link characteristics are the same as
in the previous simulation. There are two monitored connec-
tions: a long-duration TCP connection and a long-duration
TFRC connection. We measure the send rates on several dif-
ferent timescales and show the results in Figures 12 and 13.

These simulations produce a wide range of loss rates, as
shown in Figure 11. From the results in Figure 12, we can
see that at low loss rates the equivalence ratio of TFRC and
TCP connections is between 0.7 to 0.8 over a broad range
of timescales, which is similar to the steady-state case. At
higher loss rates the equivalence ratio is low at all but the
longest timescales because packets are sent so rarely, and any
interval in which only one of the flow sends no packets gives
a value of zero in the equivalence time series, while the inter-
vals in which neither flow sends any packets are not counted.
This tends to result in a lower equivalence ratio. However, on
long timescales, even at 40% loss (150 ON/OFF sources), the
equivalence ratio is still 0.4, meaning that one flow gets about
40% more than its fair share and one flow got 40% less. Thus
TFRC is seen to be comparable to TCP over a wide range of
loss rates even when the background traffic is very variable.

Figure 13 shows that the send rate of TFRC is much smoother
than the send rate of TCP, especially when the loss rate is
high. Note that the CoV for both flows is much higher com-
pared to the values in Figure 10 at comparable timescales.
This is due to the hight loss rates and the variable nature of
background traffic in these simulations.

4.2 Effects of TFRC on queue dynamics

Because TFRC increases its sending rate more slowly than
TCP, and responds more mildly to a single loss event, it is rea-
sonable to expect queue dynamics will be slightly different.
However, because TFRC’s slow-start procedure and long-term
response to congestion are similar to those of TCP, we ex-
pect some correspondence between the queueing dynamics
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background traffic
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ground traffic
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imposed by TRFC, and the queueing dynamics imposed by
TCP.

Figure 14 shows 40 long-lived flows, with start times spaced
out over the first 20 seconds. The congested link is 15 Mbps,
and round-trip times are roughly 45 ms. 20% of the link band-
width is used by short-lived, “background” TCP traffic, and
there is a small amount of reverse-path traffic as well. Each
graph in Figure 14 shows the queue size at the congested link.
In the top graph the long-lived flows are TCP, and in the bot-
tom graph they are TFRC. Both simulations have 99% link
utilization; the packet drop rate at the link is 4.9% for the
TCP simulations, and 3.5% for the TFRC simulations. As
Figure 14 shows, the TFRC traffic does not have a negative
impact on queue dynamics in this case.

We have run similar simulations with RED queue man-
agement, with different levels of statistical multiplexing, with
a mix of TFRC and TCP traffic, and with different levels
of background traffic and reverse-path traffic, and have com-
pared link utilization, queue occupancy, and packet drop rates.
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Figure 14: 40 long-lived TCP (top) and TFRC (bottom) flows,
with Drop-Tail queue management.

While we have not done an exhaustive investigation, partic-
ularly at smaller time scales and at lower levels of link uti-
lization, we do not see a negative impact on queue dynamics
from TFRC traffic.

4.3 Implementation results

We have implemented the TFRC algorithm, and conducted
many experiments to explore the performance of TFRC in
the Internet. Our tests include two different transcontinental
links, and sites connected by a microwave link, T1 link, OC3
link, cable modem, and dial-up modem. In addition, condi-
tions unavailable to us over the Internet were tested against
real TCP implementations in Dummynet. Full details of the
experiments are available in [Wid00].
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Figure 15: Three TCP flows and one TFRC flow over the
Internet.

To summarise all the results, TFRC is generally fair to
TCP traffic across the wide range of network types and con-
ditions we examined. Figure 15 shows a typical experiment
with three TCP flows and one TFRC flow running concur-
rently from London to Berkeley, with the bandwidth mea-
sured over one-second intervals. In this case, the transmission
rate of the TFRC flow is slightly lower, on average, than that
of the TCP flows. At the same time, the transmission rate of
the TFRC flow is smooth, with a low variance; in contrast, the
bandwidth used by each TCP flow varies strongly even over
relatively short time periods, as shown in Figure 17. Com-
paring this with Figure 13 shows that, in the Internet, both
TFRC and TCP perform very similarly to the lightly loaded
(50 sources) “ON/OFF” simulation environment which had
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less than 1% loss. The loss rate in these Internet experiments
ranges from 0.1% to 5%. Figure 16 shows that fairness is
also rather similar in the real world, despite the Internet tests
being performed with less optimal TCP stacks than the Sack
TCP in the simulations.

0.2

0.4

0.6

0.8

1

0.5 1 2 5 10 20 50 100

E
qu

iv
al

an
ce

 R
at

io

Measurement Timescale (seconds)

UCL
Mannheim

UMASS (Linux)
UMASS (Solaris)

Nokia, Boston

Figure 16: TCP equivalence with TFRC over different Inter-
net paths
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Figure 17: Coefficient of Variation of TFRC (left) and TCP
(right) over different Internet paths

We found only a few conditions where TFRC was less fair
to TCP or less well behaved:� In conditions where the network is overloaded so that

flows achieve close to one packet per RTT, it is possible
for TFRC to get significantly more than its fair share of
bandwidth.� Some TCP variants we tested against exhibited unde-
sirable behavior that can only be described as “buggy”.� With an earlier version of the protocol we experienced
what appears to be a real-world example of a phase ef-
fect over the T1 link from Nokia when the link was
heavily loaded.

The first condition is interesting because in simulations
we do not normally see this problem. This issue occurs be-
cause at low bandwidths caused by high levels of congestion,
TCP becomes more sensitive to loss due to the effect of re-
transmission timeouts. The TCP throughput equation models
the effect of retransmission timeouts moderately well, but thetRTO (TCP retransmisson timeout) parameter in the equa-
tion cannot be chosen accurately. The FreeBSD TCP used

for our experiments has a 500ms clock granularity, which
makes it rather conservative under high-loss conditions, but
not all TCPs are so conservative. Our TFRC implementation
is tuned to compete fairly with a more aggressive SACK TCP
with low clock granularity, and so it is to be expected that it
out-competes an older more conservative TCP. Similarly un-
fair conditions are also likely to occur when different TCP
variants compete under these conditions.

Experiments from UMass to California gave very differ-
ent fairness depending on whether the TCP sender was run-
ning Solaris 2.7 or Linux. The Solaris machine has a very
aggressive TCP retransmission timeout, and appears to fre-
quently retransmit unnecessarily, which hurts its performance
[Pax97]. Figure 16 shows the results for both Solaris and
Linux machines at UMass; the Linux machine gives good
equivalence results whereas Solaris does more poorly. That
this is a TCP defect is more obvious in the CoV plot (Fig-
ure 17) where the SolarisTFRC trace appears normal, but the
SolarisTCP trace is abnormally variable.

The apparent phase effect occured when a large number
of TFRC flows compete with a TCP flow over the T1 bottle-
neck link out of Nokia. We don’t have conclusive evidence
but it appears that, without interpacket spacing adjustment as
described in Section 3.4, the TFRC flows were sufficiently
smooth that the TCP flow suffered from a poor interaction
between its own burstiness and a full DropTail queue situated
very close to the sources. Adding the interpacket spacing ad-
justment introduced sufficient small short-term variations in
TFRC’s throughput (and hence in the DropTail buffer utiliza-
tion) due to small queuing variations downstream of the bot-
tleneck that TCP’s burstiness was less of a hinderence and
fairness improved greatly. Figure 16 shows TFRC with this
mechanism enabled, and the Nokia flow is performing nor-
mally.

4.4 Testing the Loss Predictor

As described in Section 3.3, the TFRC receiver uses eight
inter-loss intervals to calculate the loss event rate, with the
oldest four intervals having decreasing weights. One measure
of the effectiveness of this estimation of the past loss event
rate is to look at its ability topredict the immediate future loss
rate when tested across a wide range of real networks. Figure
18 shows the average predictor error and the average of the
standard deviation of the predictor error for different history
sizes (measured in loss intervals) and for constant weighting
(left) of all the loss intervals versus decreasing the weights of
older intervals (right). The figure is an average across a large
set of Internet experiments including a wide range of network
conditions.

Prediction accuracy is not the only criteria for choosing
a loss estimation mechanism, as stable steady-state through-
put and quick reaction to changes in steady-state are perhaps
equally important. However these figures provide experimen-
tal confirmation that the choices made in Section 3.3 are rea-
sonable.
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Figure 18: Prediction quality of TFRC loss estimation

5 Summary of related work

The unreliable unicast congestion control mechanisms clos-
est to TCP maintain a congestion window which is used di-
rectly [JE96] or indirectly [OR99] to control the transmission
of new packets. We believe that since [JE96] uses TCP mech-
anisms directly, comparison results will not be much differ-
ent than those described in the previous section. In the TEAR
protocol (TCP Emulation at the Receivers) from [OR99], which
can be used for either unicast or multicast sessions, the re-
ceiver emulates the congestion window modifications of a
TCP sender, but then makes a translation from a window-
based to a rate-based congestion control mechanism. The re-
ceiver maintains an exponentially weighted moving average
of the congestion window, and divides this by the estimated
round-trip time to obtain a TCP-friendly sending rate. At the
time of writing this paper, we did not have access to sufficient
information about TEAR to allow us to perform comparative
studies.

A class of unicast congestion control mechanisms one
step removed from those of TCP are those that use additive
increase, multiplicative decrease (AIMD) in some form, but
do not apply AIMD to a congestion window. The Rate Adap-
tation Protocol (RAP) [RHE99] uses an AIMD rate control
scheme based on regular acknowledgments sent by the re-
ceiver which the sender uses to detect lost packets and es-
timate the RTT. The authors use the ratio of long-term and
short-term averages of the RTT to fine-tune the sending rate
on a per-packet basis. This translation from a window-based
to a rate-based approach also includes a mechanism for the
sender to stop sending in the absence of feedback from the
receiver. Pure AIMD protocols like RAP do not account for
the impact of retransmission timeouts, and hence we believe
that TFRC will coexist better with TCP in the regime where
the impact of timeouts is significant. Another AIMD proto-
col has been proposed in [SS98]. This protocol makes use of
RTP [SCFJ96] reports from the receiver to estimate loss rate
and round-trip times.

Equation-based congestion control [MF97] is probably
the class of TCP-compatible unicast congestion control mech-
anisms most removed from the AIMD mechanisms of TCP.
As already described in this paper, in unicast equation-based
congestion control the sender uses an equation such as those

proposed in [MF97, PFTK98] that specifies the allowed send-
ing rate as a function of the RTT and packet drop rate, and
adjusts its sending rate as a function of those measured pa-
rameters.

In [TZ99] the authors describe a simple equation-based
congestion control mechanism for unicast, unreliable video
traffic. The receiver measures the RTT and the loss rate over
a fixed multiple of the RTT. The sender then uses this infor-
mation, along with the version of the TCP response function
from [MF97], to control the sending rate and the output rate
of the associated MPEG encoder. The main focus of [TZ99]
is not the congestion control mechanism itself, but the cou-
pling between congestion control and error-resilient scalable
video compression.

The TCP-Friendly Rate Control Protocol (TFRCP) [PKTK99]
uses an equation-based congestion control mechanism for uni-
cast traffic where the receiver acknowledges each packet. At
fixed time intervals, the sender computes the loss rate ob-
served during the previous interval and updates the sending
rate using the TCP response function described in [PFTK98].
Since the protocol adjusts its send rate only at fixed time in-
tervals, the transient response of the protocol is poor at lower
time scales. In addition, computing loss rate at fixed time
intervals make the protocol vulnerable to changes in RTT
and sending rate. We have compared the performance TFRC
against the TFRCP using simulations. With the metrics de-
scribed in Section 3, we find TFRC to be better over a wide
range of timescales.

TCP-Friendly multicast protocols have been proposed in
[TPB, VRC98]. These scheme rely on data layering and use
of multiple multicast groups. We do not provide further dis-
cussion of these protocols due to their multicast-specific na-
ture.

6 Issues for Multicast Congestion Con-
trol

Many aspects of unicast equation-based congestion control
are suitable to form a basis for sender-based multicast con-
gestion control. In particular, the mechanisms used by a re-
ceiver to estimate the packet drop rate and by the sender to
adjust the sending rate should be directly applicable to multi-
cast. However, a number of clear differences exist that require
design changes and further evaluation.

Firstly, there is a need to limit feedback to the multicast
sender to prevent response implosion. This requires either hi-
erarchical aggregation of feedback or a mechanism that su-
presses feedback except from the receivers calculating the
lowest transmission rate. Both of these add some delay to
the feedback loop that may affect protocol dynamics.

Depending on the feedback mechanism, the slow-start mech-
anism for unicast may also be problematic for multicast as it
requires timely feedback to safely terminate slowstart.

Finally, in the absence of synchronized clocks, it can be
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difficult for multicast receivers to determine their round-trip
time to the sender in a rapid and scalable manner.

Addressing these issues will typically result in multicast
congestion control schemes needing to be a little more con-
servative than unicast congestion control to ensure safe oper-
ation.

7 Conclusion and Open Issues

In this paper we have outlined a proposal for equation-based
unicast congestion control for unreliable, rate-adaptive appli-
cations. We have evaluated the protocol extensively in simu-
lations and in experiments, and have made both thens im-
plementation and the real-world implementation publically
available. We would like to encourage others to experiment
with and evaluate the TFRC congestion control mechanisms,
and to propose appropriate modifications.

The current implementations of the TFRC congestion con-
trol mechanisms (inns and in the actual implementation) have
an omission that we are planning to correct. The current con-
gestion control mechanisms are designed for a sender that al-
ways has data available to send (until the last packet has been
sent). When we began this work, our intention was to emu-
late the behavior of TCP as much as possible; however, there
was no consensus on the appropriate response of TCP con-
gestion control to a quiescent or application-limited period,
where the previously-authorized congestion window or send-
ing rate was not fully used. A proposal for modification of
TCP congestion control to deal with a quiscent sender has
been described in [HPF99]. Our plan is to implement a rate-
based variant of this approach in TFRC.

While the current implementation of TFRC gives robust
behavior in a wide range of environments, we certainly do
not claim that this is the optimal set of mechanisms for uni-
cast, equation-based congestion control. Active areas for fur-
ther work include the mechanisms for the receiver’s update
of the packet drop rate estimate after a long period with no
packet drops, and the sender’s adjustment of the sending rate
in response to short-term changes in the round-trip time. We
assume that, as with TCP’s congestion control mechanisms,
equation-based congestion control mechanisms will continue
to evolve based both on further research and on real-world ex-
periences. As an example, we are interested in the potential
of equation-based congestion control in an environment with
Explicit Congestion Notification (ECN) [RF99].

We have run extensive simulations and experiments, re-
ported in this paper and in other technical reports under prepa-
ration, comparing the performance of TFRC with that of stan-
dard TCP, with TCP with different parameters for AIMD’s
additive increase and multiplicative decrease, and with other
proposals for unicast equation-based congestion control. In
our results to date, TFRC compares very favorably with other
congestion control mechanisms for applications that would
prefer a smoother sending rate than that of TCP. There have
also been proposals for increase/decrease congestion control

mechanisms that reduce the sending rate in response to each
loss event, but that do not use AIMD; we would like to com-
pare TFRC with these congestion control mechanisms as well.
We believe that the emergence of congestion control mech-
anisms for relatively-smooth congestion control for unicast
traffic can play a key role in preventing the degradation of
end-to-end congestion control in the public Internet, by pro-
viding a viable alternative for unicast multimedia flows that
would otherwise be tempted to avoid end-to-end congestion
control altogether [FF99].

Our view is that equation-based congestion control is also
of considerable potential importance apart from its role in
unicast congestion control. In our view, equation-based con-
gestion control provides the foundation for scalable conges-
tion control for multicast protocols. In particular, because
AIMD and related increase/decrease congestion control mech-
anisms require that the sender decrease its sending rate in re-
sponse to each packet drop, these congestion control families
do not provide promising building blocks for scalable multi-
cast congestion control. Our hope is that, in contributing to a
more solid understanding of equation-based congestion con-
trol for unicast traffic, the paper contributes to a more solid
development of multicast congestion control as well.
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A Analysis of TFRC

A.1 Upper bound on the increase rate

In this section we show that, given a fixed round-trip time and
in the absence of history discounting, the TFRC mechanism
increases its sending rate by at most 0.14 packets/RTT.

History discounting is a component of the full Average
Loss Interval method that is invoked after the most recent
loss interval is greater than twice the average loss interval,
to smoothly discount the weight given to older loss intervals.
In this section we show that with fixed round-trip times and
the invocation of history discounting, the TFRC mechanism
increases its sending rate by at most 0.28 packets/RTT.

For simplicity of analysis, in this section we assume that
TFRC uses the deterministic version of the TCP response
function [FF99] as the control equation, as follows:T = p1:5(Rpp) :
This gives the sending rateT in packets/sec as a function of
the round-trip timeR and loss event ratep. Thus, the allowed
sending rate is at mostp1:5=pp � 1:2=pp
packets/RTT.

To explore the maximum increase rate for a TFRC flow
with a fixed round-trip time, consider the simple case of a
single TFRC flow with a round-trip time ofR seconds, on a
path with no competing traffic. LetA be the TFRC flow’s
average loss interval in packets, as calculated at the receiver.
The reported loss event rate is1=A, and the allowed sending
rate is1:2pA pkts/RTT.

After a round-trip time with no packet drops, the receiver
has received1:2pA additional packets, and the most recent
loss interval increases by1:2pA packets. Let the most recent
loss interval be weighted by weightw in calculating the aver-
age loss interval, for0 � w � 1 (with the weights expressed
in normalized form so that the sum of the weights is one). For
our TFRC implementation in the normal case, when history
discounting is not invoked,w = 1=6. The calculated aver-
age loss interval increases fromA to at mostA + w1:2pA
packets. The allowed sending rate increases from1:2pA to

at most1:2pA+ w1:2pA packets/RTT.
Therefore, given a fixed round-trip time, the sending rate

increases by at most�T packets/RTT, for1:2qA+ w1:2pA = 1:2pA+ �T :
This gives the following solution for�T :�T = 1:2�qA+ w1:2pA�pA� (4)

Solving this numerically forw = 1=6, as in TFRC without
history discounting, this gives�T � 0:12 for A � 1. Thus,

given a fixed round-trip time, and without history discount-
ing, the sending rate increases by at most 0.12 packets/RTT.

This analysis assumes TFRC uses the simple TCP control
equation [FF99], but we have also numerically modeled the
increase behavior using Equation 1. Due to slightly different
constants in the equation, the upper bound now becomes 0.14
packets/RTT. With the simple equation the usual increase is
close to the upper bound; with Equation 1 this is still the case
for flows where the loss rate is less that about 5% but at higher
loss rates the increase rate is significantly lower than this up-
per bound.

When history discounting is invoked, the relative weight
for the most recent interval can be increased up tow = 0:4;
this gives�T � 0:28, giving an increase in the sending rate of
at most 0.28 packets/RTT in that case.

As this section has shown, the increase rate at the TFRC
sender is controlled by the mechanism for calculating the loss
event rate at the TFRC receiver. If the average loss rate was
calculated simply as the most recent loss interval, this would
mean a weightw of 1, resulting in�T � 0:7. Thus, even if all
the weight was put on the most recent interval, TFRC would
increase its sending rate by less than one packet/RTT, given a
fixed measurement for the round-trip time.
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Figure 19: A TFRC flow with an end to congestion at time
10.0.

To informally verify the analysis above, we have run sim-
ulations exploring the increase in the sending rate for the ac-
tual TRFC protocol. Figure 19 shows a TFRC flow with every
100-th packet being dropped, from a simulation in thens sim-
ulator. Then, after time 10.0, no more packets are dropped.
Figure 19 shows the sending rate in packets per RTT; this
simulation uses 1000-byte packets. As Figure 19 shows, the
TFRC flow does not begin to increase its rate until time 10.75;
at this time the current loss interval exceeds the average loss
interval of 100 packets. Figure 19 shows that, starting at time
10.75, the sender increases its sending rate by 0.12 packets
each RTT. Starting at time 11.5, the TFRC receiver invokes
history discounting, in response to the detected discontinu-
ity in the level of congestion, and the TFRC sender slowly
changes its rate of increase, increasing its rate by up to 0.29
packets per RTT. The simulation in Figure 19 informally con-
firms the analysis in this section.

A.2 The lower bound on TFRC’s response time
for persistent congestion

This section uses both simulations and analysis to explore
TFRC’s response time for responding to persistent conges-
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tion. We consider the following question: for conditions with
the slowest response to congestion, how many round-trip timesn of persistent congestion are required before TFRC conges-
tion control reduces its sending rate in half? For the simplified
model in this section, we assume a fixed round-trip time; thus,
we do not consider the effect of changes in round-trip time on
the sending rate. We assume that, for an extended period,
all loss intervals have been of length1=p packets, for some
loss event ratep. When congestion begins, we assume that at
least one packet is successfully received by the receiver each
round-trip time, and that the status reports transmitted each
round-trip time by the receiver are successfully received by
the sender. Thus, we are not considering the TFRC sender’s
mechanisms for reducing its sending rate in the absence of
feedback from the receiver.

Given this model, assume thatn round-trip times of per-
sistent congestion are required before the TFRC sender re-
duces its sending rate by at least half. (That is, letn be a
lower bound on the number of round-trip times of persistent
congestion required before the TFRC sender reduces its send-
ing rate by at least half.)

The control equation used in TFRC is nonlinear in
pp

for higher values ofp. A higher pre-existing loss event rate
results in a stronger response by the TFRC sender to an in-
crease in the reported loss event rate. In order to explore the
slowest possible response of the TFRC sender to congestion,
we assume that we are in the region of the control equation
where the sending rate is essentially proportional to1pp , for
loss event ratep. This is true in the region of small to moder-
ate loss event rates.

In this model of fixed round-trip times, for the region of
moderate congestion, if the sending rate is reduced at least
in half, this can only have been caused by the loss event rate
increasing by at least a factor of four, and therefore by the
average loss interval decreasing to at most1=4-th of its previ-
ous value. We note that in an environment where the round-
trip time increases with the onset of persistent congestion, the
TFRC sender would decrease its sending rate more strongly
in response to congestion.

For this model of fixed round-trip times, what is the most
drastic possible reduction in the average loss interval in re-
sponse ton small loss intervals from persistent congestion?
The most drastic possible reduction, not in fact achievable in
practice, would be when the small loss intervals were each of
size 0. We consider a model where the average loss interval
is computed as described in Section 3.3. After one small loss
interval, the average loss interval calculated by the receiver is
still at least 3 + 0:8 + 0:6 + 0:4 + 0:26 1p = 56p :
After two small loss intervals, the average loss interval is at
least 23p . Similarly, after four small loss intervals the aver-

age loss interval is at least13p . That is, it is not possible for
the average loss interval to have reduced by a factor1=4 over

only four loss intervals. However, after five small loss inter-
vals the lower bound on the average loss interval is1:26p = 15p ;
thus, in this simple model, it is possible for the average loss
interval to be reduced by a factor of four after five loss inter-
vals. Thus, in this model with fixed round-trip times and mild
congestion, it might be possible for the sending rate to be cut
in half after five consecutive round-trip times of congestion,
but it is not possible for the sending rate to be cut in half after
four consecutive round-trip times of congestion.
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Figure 20: A TFRC flow with persistent congestion at time
10.

In fact this lower bound is close to the expected case. To
informally verify this lower bound, which applies only to the
simplified model described above with equal loss intervals
before the onset of persistent congestion, we have run simula-
tions exploring the decrease in the sending rate for the actual
TRFC protocol. This is illustrated in the simulation shown in
Figure 20 which consists of a single TFRC flow. From time 0
until time 10, every 100th packet dropped, and from time 10
on, every other packet is dropped. Figure 20 shows the TFRC
flow’s allowed sending rate as calculated at the sender every
round-trip time, with a mark each round-trip time, when the
sender receives a new report from the receiver and calculates
a new sending rate. As Figure 20 shows, when persistent con-
gestion begins at time 10, it takes five round-trip times for the
sending rate of the TFRC flow to be reduced by half.
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Figure 21: Number of round-trip times to reduce the sending
rate in half.

Figure 21 plots the number of round-trip times of persis-
tent congestion before the TFRC sender cuts its sending rate
in half, using the same scenario as in Figure 20 with a range
of values for the initial packet drop rate. For the TFRC simu-
lations in Figure 21, the number of round-trip times required
to reduce the sending rate by half ranges from three to eight.
We note that for all of the simulations with lower packet drop
rates, the TFRC sender takes at least five round-trip times to
reduce its sending rate by half. Therefore, Figure 21 doesn’t
contradict the result earlier in this section.

This does not imply that the TFRC flow’s response to con-
gestion, for a TFRC flow with round-trip timeR, is as dis-
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ruptive to other traffic as that of a TCP flow with a round-trip
time 5R, five times larger. The TCP flow with a round-trip
time of 5R seconds sends at an unreduced rate for the entire5R seconds, while the TFRC flow reduces its sending rate,
although somewhat mildly, after onlyR seconds.
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