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EQUATION-FREE, COARSE-GRAINED MULTISCALE

COMPUTATION: ENABLING MICROSCOPIC SIMULATORS TO

PERFORM SYSTEM-LEVEL ANALYSIS∗

IOANNIS G. KEVREKIDIS † , C. WILLIAM GEAR‡ , JAMES M. HYMAN§, PANAGIOTIS

G. KEVREKIDIS¶, OLOF RUNBORG ‖, AND CONSTANTINOS THEODOROPOULOS ∗∗

Abstract. We present and discuss a framework for computer-aided multiscale analysis, which
enables models at a fine (microscopic/stochastic) level of description to perform modeling tasks
at a coarse (macroscopic, systems) level. These macroscopic modeling tasks, yielding information
over long time and large space scales, are accomplished through appropriately initialized calls to
the microscopic simulator for only short times and small spatial domains. Traditional modeling
approaches first involve the derivation of macroscopic evolution equations (balances closed through
constitutive relations). An arsenal of analytical and numerical techniques for the efficient solution of
such evolution equations (usually Partial Differential Equations, PDEs) is then brought to bear on
the problem. Our equation-free (EF) approach, introduced in [1], when successful, can bypass the
derivation of the macroscopic evolution equations when these equations conceptually exist but are not
available in closed form. We discuss how the mathematics-assisted development of a computational
superstructure may enable alternative descriptions of the problem physics (e.g. Lattice Boltzmann
(LB), kinetic Monte Carlo (KMC) or Molecular Dynamics (MD) microscopic simulators, executed
over relatively short time and space scales) to perform systems level tasks (integration over relatively
large time and space scales,“coarse” bifurcation analysis, optimization, and control) directly. In effect,
the procedure constitutes a system identification based, “closure-on-demand” computational toolkit,
bridging microscopic/stochastic simulation with traditional continuum scientific computation and
numerical analysis. We will briefly survey the application of these “numerical enabling technology”
ideas through examples including the computation of coarsely self-similar solutions, and discuss
various features, limitations and potential extensions of the approach.

1. Introduction

The purpose of this work is to analyze a computational framework linking con-
ventional, continuum numerical methods/analysis with microscopic complex systems
modeling, dynamics and control. Based on this framework, it is possible—under con-
ditions discussed below—to perform the computer-assisted analysis of an evolution
equation for the coarse, macroscopic level, closed description of a physical/material
phenomenon without having this closed description explicitly available. This is ac-
complished by extracting from short bursts of simulation using a different, fine level,
microscopic description (e.g. MD, KMC, kinetic theory based Lattice Gas (LG) or
LB-BGK (Bhatnagar, Gross and Krook, [2] codes) the information that traditional
numerical procedures would obtain through direct evaluation of the macroscopic evo-
lution equation, had this equation been available. This type of information includes,
for example, numerical approximations of residuals, (actions of) Jacobians and Hes-

∗Received: August 15, 2002; accepted (in revised version): October 13, 2003. Communicated by
Shi Jin.

†Department of Chemical Engineering and Program in Applied and Computational Mathematics;
also Mathematics, Princeton University, Princeton, NJ 08544, USA. To whom correspondence should
be addressed: (yannis@princeton.edu)

‡Department of Chemical Engineering, Princeton University, Princeton, NJ, USA; NEC Research
Institute, Princeton, NJ, USA.

§CNLS and T-7, Los Alamos National Laboratory Los Alamos, NM 87545, USA.
¶Department of Mathematics, University of Massachusetts, Amherst, MA, USA.
‖Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ

08544, USA. Current address: Numerical Analysis and Computer Science, KTH, 100 44 Stockholm,
Sweden.

∗∗Department of Process Integration, UMIST, Manchester M60 1QD, UK.

715



716 MULTISCALE COMPUTATION

sians, partial derivatives with respect to parameters etc. Circumventing the derivation
of the macroscopic-level description lies at the heart of the approach. We collectively
refer to this class of methods as “Equation Free (Multiscale)” Methods (EF meth-
ods or EFM). The purpose of this computational framework is, therefore, to enable
microscopic-level codes to perform system-level analysis directly, without the need to
pass through an intermediate, macroscopic-level, explicit, “conventional” evolution
equation description of the dynamics.

A persistent feature of complex systems is the emergence of macroscopic, coherent
behavior from the interactions of microscopic agents, e.g. molecules, cells, individuals
in a population, between themselves and with their environment. The implication is
that macroscopic rules (description of behavior at a high level) can somehow be de-
duced from microscopic ones (description of behavior at a much finer level). For some
problems, like Newtonian fluid mechanics, the successful macroscopic description (the
Navier Stokes equations) predated its microscopic derivation from kinetic theory. In
many important current problems, ranging from ecology to materials science, and from
chemistry to engineering, the physics are known at the microscopic/individual level,
but the closures required to translate them to a high-level macroscopic description
are unknown. Severe limitations arise in trying either to find these closures directly,
or to solve these problems at the scale at which the questions of interest are asked
using microscopic simulations only. These limitations constitute a major stumbling
block in current complex system modeling.

In this work, using as a tool the “coarse time-stepper” [1] we discuss the formula-
tion, and in some instances demonstrate the implementation, of a set of “mathematics
assisted” computational superstructure that can be wrapped around existing and fu-
ture detailed atomistic/stochastic computer models. The procedure is intended to be
used when a macroscopic description is conceptually possible yet unavailable in closed
form. If accurate macroscopic models are available in closed form, one should proba-
bly work with them directly. It is interesting, however, even in this case, to explore
the performance of the EF methods we describe here.

If what we did was to run a full (completely resolved in space and time) micro-
scopic simulation, and merely observe the macroscopic behavior from it, the size of
the resolved computation would obviously limit us to small systems over short times.
A key feature of this work is that microscopic simulations are performed only in small
patches in space-time. A patch is a small space domain (a “box” or a “tooth”) over
a short time period. The solution is evolved in each patch, and then macroscopically
interpolated across the patches (which can be thought of as nodes of a coarse mesh) to
report the evolution of the macroscopic fields of interest; consecutive such reports can
be used to estimate the time-derivative of the unavailable equation for the evolution
of the coarse fields. These time derivative estimates can then be used as input to (a)
a large time-step integrator—the projective integrator [3, 4]; (b) a zero-finder, to de-
termine steady states, [1]; (c) an Arnoldi type eigensolver, to determine stability; and,
more generally, to macroscopic task codes (controller design software, optimization
software etc.). The detailed simulation should use the best current microscopic de-
scription of the physics available, and the code implementing it; our procedure will be
wrapped around this microscopic simulator calling it as a subroutine. As microscopic
simulators improve, the overall results will also improve. If the simulator does not em-
body correct physics, the EFM wrapper will extract, hopefully quickly and efficiently,
the macroscopic consequences of the incorrect physics; this can help in realizing what is
missing and modifying the microscopic model or code. The macroscopic computations
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will take advantage of the arsenal of tools that have been developed for continuum
evolutionary equation (usually Ordinary and Partial Differential Equation, ODE and
PDE) descriptions of physical phenomena (e.g. [6, 7, 8, 9]). Standard tools include
discretization and integration techniques, numerical linear algebra (most importantly,
iterative large scale linear algebra, matrix-free solvers and eigensolvers), contraction
mappings, continuation and numerical bifurcation analysis, as well as optimization
(local and possibly global), and controller design computations (e.g. the solution of
large scale Riccati equations and in general optimal control techniques).

A practical modeler is interested in the behavior of a system over time and space
scales relevant to a particular application; ideally, a quantitatively predictive model
is tailored to the scales of the application itself. Yet the relevant physical processes
occur over a vast range of time and space scales, e.g. from the Angstroms and fem-
toseconds of molecular interactions to the millimeters and seconds relevant for typical
macroscopic chemical reactors or laminar flows. Bridging this enormous range of dy-
namically coupled scales lies at the heart of physical modeling and continues to be a
driving force in the development of mathematical tools and techniques, from homoge-
nization to averaging, renormalization and the theory of inertial manifolds [10, 11, 12,
13]. These techniques underpin many successful explicit closures in equilibrium and
nonequilibrium statistical mechanics (e.g. [14, 15, 16, 17, 18, 19, 20]). When explicit
closures are not available, simulations must be done that seamlessly integrate different
levels of physical modeling, as well as the different mathematical techniques appropri-
ate for the different modeling levels/scales (e.g. [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]).
The quasi-continuum methods of Phillips and coworkers [31, 32, 33] is such a pio-
neering multiscale/multilevel approach, in which the quantities required in solving for
macroscopic fields are obtained by sampling atomistic computations over parts of the
computational domain. Another such example of multiscale/multilevel techniques are
those of Oettinger and coworkers, coupling continuum fields with stochastic evolution
of molecular orientation in complex fluids [34, 35, 36, 37], see also [38]. The opti-
mal prediction methods of Chorin and coworkers [39, 40, 41] provide a connection
between microscopic/stochastic evolution and macroscopic observables. The review
[42] on extracting macroscopic dynamics, from the projection operation formalism of
Mori and Zwanzig [43, 44] to modern reduction methods for stochastic differential
equation methods (e.g. [45, 46, 47]) contains a discussion of the strong relation be-
tween this approach and the coarse timestepper we will discuss below. Many other
ideas associated with the exploitation of separation of scales become gradually inte-
grated in modern multiscale computations; for example, a strong qualitative analogy
exists between approximate inertial manifolds in deterministic PDEs and the quasi-
equilibrium states of Gorban, Karlin and coworkers [48, 49, 50, 51]; use of these ideas
in nonequilibrium thermodynamics can be traced back to Ehrenfest [52].

In this paper we borrow many of these mathematical and computational ideas,
along with techniques that we have developed in our group, to put together a sys-
tematic computational framework for the equation-free analysis of general multi-
scale/complex system models. Optimal prediction over an appropriate time-horizon
will, for example, be combined with the quasi-continuum idea of computation over
small spatial domains and coarse projective integration to give rise to accelerated
simulation through what we will call patch dynamics. Coarse timesteppers based on
patches will be integrated with matrix-free solvers and eigensolvers to enable coarse
stability and bifurcation analysis. Matrix-free eigensolvers, based on time-stepping
results for different initializations and reporting horizons will be used to adaptively
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explore the level at which macroscopic descriptions close. We hope that the synthesis
proposed in our computational framework has new tools, useful points of view and
insights to offer multiscale/complex system modelers. Ours is a system-identification
based, “closure-on-demand” framework. It is interesting to draw an analogy with an
established field of systems theory: the design of experiments for optimal parameter
estimation/model building [53]. In our computational framework a microscopic simu-
lation code is a computational experiment that one can initialize and run at will. The
outer level code, the wrapper, designs these short bursts of computational experimen-
tation, executes them, and processes their results, so as to design new computational
experiments towards the ultimate goal. Different ultimate goals (long term inte-
gration, fixed point evaluation, stability, continuation, bifurcation, optimization and
control tasks) require different design protocols. These protocols for designing compu-
tational experiments with an inner microscopic/stochastic simulator are templated on
traditional continuum numerical analysis methods, and employ system identification
tools [54, 55, 56].

The paper is organized as follows. In Section 2 we review our recent work on the
coarse timestepper, and its use in coarse integration and coarse bifurcation analysis
of unavailable macroscopic evolution equations through microscopic simulators. In
Section 3 we discuss the “gap-tooth” scheme (first presented in [5]) and subsequently
show how to combine it with coarse integration (for patch dynamics) and coarse
bifurcation methods (for patch bifurcations). These steps enable the EF computation
of macroscopic behavior over large spatial domains and long time intervals by post-
processing the results of appropriately initialized and executed bursts of microscopic
simulation over small spatial domains and short time intervals. Our main illustrative
example will be the coarse LB-BGK simulation of a reaction-diffusion problem. We
will then briefly survey an anthology of results from recent investigations outlining
the scope of the EF methods in analyzing various types of problems, both in terms of
the type of inner (microscopic) simulator, but also in terms of alternative tasks, like
control-related tasks, homogenization—more precisely effective equation analysis—
and the computation of coarsely self-similar solutions. In conclusion we will discuss
various features and limitations of the EFM framework, as well as suggest areas in
which we hope the methods may be fruitfully applied.

2. Background

We are interested in the coarse dynamics of large complex systems. In this sec-
tion we assume that only solvers describing the microscopic behavior of the systems
are available. Those could be based on, e.g., Monte-Carlo simulations, molecular dy-
namics, (Lattice-)Boltzman or PDEs with rapidly varying coefficients. Equations for
the macroscopic, coarse, quantities of interest, such as the density, momentum, ve-
locity and energy of a fluid (first moments) or the solution of the homogenized PDE,
are, however, not explicitly available. We review here, for completeness, previous re-
sults so that they can be compared later with results obtained through more recent
approaches. The focus is on general dynamic systems that are described without
reference to specific spatial variation/structure.

Let u(t) be the microscopic, detailed solution. To simplify the exposition, we will
describe the case where u is given by a large system of ordinary differential equations,

du

dt
= f(u), u ∈ Rm, m ≫ 1. (2.1)

We denote this equation the detailed equation, and introduce the solution operator
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(or time stepper, or time-t map) T t
d for which

u(s + t) = T t
d u(s),

if u solves (2.1). The main premise is that (2.1) is too expensive to solve for long
times or that we do not have any precise knowledge of f ; typically (2.1) and Td would
be given as a “black box,” legacy code, for which we can only control initial data and
integration time.

The detailed equation (2.1) could, for instance, be a molecular dynamics simu-
lation or a finely discretized PDE. The system could also represent an ensemble of
identical, large systems that are run with different initial data. We should emphasize
that there exist microscopic systems that cannot be written in the form (2.1), which
can still be treated by the general methodology described here, e.g. stochastic systems
simulated via Monte-Carlo or Brownian Dynamics methods.

The first thing we need to do in order to perform macroscopic level simulations
based on (2.1), is to select the statistics of interest for describing the coarse behav-
ior of the system and an appropriate representation for them. We will call this the
macroscopic description, U ∈ RM , with M ≪ m. For example, in a gas simulation at
the particle level, the statistics would probably be the pressure, density, and velocity.
For our LB-BGK reaction-diffusion and KMC lattice gas illustrative problems, the
statistics of interest are the zeroth moments of the distribution (i.e. the concentra-
tions). (We will use lower case-letters to denote microscopic variables and functions
into the microscopic domain, and upper-case letters to name macroscopic variables
and functions into the macroscopic domain. Usually the macroscopic, or coarse, vari-
ables have a lower dimension than the microscopic variables and our choice of terms
will respect that. Since a primary purpose of the coarse variables is computational
speedup, the lower dimensionality is important. However, we will sometimes indicate
that coarse description variables may be functions (fields) —which have a higher di-
mension than any finite-dimensional particle model. In that case, the computational
model will use a low-dimensional approximation of the function with finite differences,
finite elements, or other standard computational tools.)

The choice of the coarse variables determines a restriction operator, which we
denote M. It takes a microscopic-level description u to the corresponding macroscopic
description U ,

U = Mu.

This operator may involve averaging over microscopic space and/or microscopic time
and/or number of realizations if an ensemble of simulations has been used. The
maximum likelihood inference based field estimator of Li et al. [23, 24, 59], and the
cumulative probability distributions in [60], are instances of such restriction operators.

If the detailed system can be successfully modeled at the coarse level through
the macroscopic variable set, U , the remaining statistics should be well approximated
as functionals of the selected ones; i.e. a fast-attracting slow manifold, parametrized
by the selected macroscopic statistics, prevails when we observe the dynamics of the
detailed microscopic problem. On this manifold, which embodies the closure of (2.1),
all components of U are slowly varying. For example, suppose that there exists a
change of variables u �→ v in (2.1) to get the ODE v′ = g(v1, v2) where v = (v1, v2) is
a partition of v into M and m−M components and that the compatible partition of
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g is (g1, g2/ε) with ε ≪ 1. Then we have

dv1

dt
= g1(v1, v2), (2.2)

dv2

dt
=

1

ε
g2(v1, v2).

Suppose that v2 closes on v1. (This is a much stronger condition than needed, and is
used for illustration at this point.) Then we will have v2 = r(v1) where g2(v1, r(v1)) =
0. Identifying v1 with the macroscopic variable U reduces (2.2) to the coarse equation

dU

dt
=

dv1

dt
= g1(v1, r(v1)) = F (U). (2.3)

Note that the functions g, r, and F are not available and neither (2.2) nor (2.3) can
be used as a basis for direct numerical simulation.

Our problem can now be stated thus:
Problem A: We want to simulate (2.3) for large, or infinite, times,
but we are only able to simulate (2.1) for short times.

2.1. Coarse Time Stepper. The main tool that allows the performance
of numerical tasks at the macroscopic level using microscopic/stochastic simulation
codes is the so-called coarse timestepper discussed in [1] (see also [57, 58, 4]). The
coarse timestepper, denoted T τ

c , implements an approximation of the time-τ map
for (2.3): the equation that governs the macroscopic evolution for the problem of
interest, which is unavailable in closed form. The parameter τ > 0 is the time horizon
of the coarse time stepper. It is a length of time that is short enough to make
the computation of T τ

d u tractable, yet large enough to be commensurate with the
macroscopic dynamics (i.e. to allow enough change in the macroscopic dynamics so
that we can locally estimate them).

The coarse time stepper relies on the detailed timestepper, Td for (2.1), the de-
tailed microscopic/stochastic evolution of the system, as well as an appropriate, non-
unique, lifting operator, µ, that maps the macroscopic description, U , to a consistent
microscopic description, u. By consistent we mean that Mµ = I , i.e. lifting from the
macroscopic to the microscopic and then restricting down again should have no effect
(except roundoff). For many types of microscopic descriptions, the lifting operator
constructs distributions conditioned on (one or more of their) lower moments. For
example, in a gas simulation using pressure etc. as the macroscopic-level variables, µ
would probably be chosen to make random particle assignments consistent with the
macroscopic statistics.

Given a macroscopic condition (e.g. concentration profile), U(t), at some time t,
the coarse timestepper consists of the following basic elements:

(a) Lift. Transform the initial data through lifting to one (or more) fine, con-
sistent microscopic realizations. When necessary to emphasize that the u
obtained by lifting depends on the macroscopic variable at the lifting time,
we will write this as u(0, t) = µU(t), although when the meaning is clear, we
will write u(s + t) for u(s, t).

(b) Evolve. Use the microscopic simulator (the detailed timestepper) to evolve
these realizations for the desired short macroscopic time τ , generating the
value(s) u(τ, t) = T τ

d u(0, t).
(c) Restrict. Obtain the restriction of u and define the coarse timestepper solu-

tion as T τ
c U(t) := Mu(τ, t).
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In other words, the coarse time stepper is defined by

T τ
c = MT τ

d µ.

The choice of µ determines the initial data for v2 at t in (2.2). For s ≫ ε, and the
assumption that v2 approximately closes on v1, g2 ≈ 0, independent of initial data;
the solution quickly approaches the slow manifold for any lifting operator µ. Except
for an initial transient, the dynamics will well approximate the real dynamics of (2.3),
and U(t+s) ≈ Mu(s, t). More importantly, the time derivatives of Mu(s, t) will also
be good approximations of the time derivatives of U(t + s) after the initial transient,
when the fast modes have been damped, e.g. dU(t + s)/ds ≈ dMu(s, t))/ds when
s ≫ ε. The hope is that also in more general settings the coarse solution (T τ

c )nU(0)
at the discrete points in time t = nτ come from an evolution equation (a semigroup)
like (2.3). In other words, we hope that a closed evolution equation—a formula for
the time derivative—exists and closes for U(t), defined for all t, and that its solution
agrees well with our coarse timestepper at t = nτ , i.e. U(nτ) ≈ (T τ

c )nU(0).

Example. Let us consider a simple example. Suppose u = (u1, u2)
T and that the

microscopic equation (2.1) has the form

du1

dt
= −u1 − u2 + 2,

du2

dt
=

1

ε
(u3

1 − u2).

(2.4)

We let the first component of u be the variable we observe the full dynamics on,
our coarse variable, U = Mu = u1, and we define the lifting as µU = (U, 1)T . An
example of a solution of this system is shown in Fig. 2.1, and the corresponding
coarse time stepper solution is given in Fig. 2.2. The solution of (2.4) rapidly moves
to the slow manifold u2 = u3

1 for any initial data when ε ≪ 1. The coarse time
stepper solution agrees better with the full solution (or its restriction) when ε is small
or τ is large. More sophisticated lifting procedures (e.g. short runs constrained on
the values of the coarse variables, in the spirit of algorithms like SHAKE [61], or of
consistent initialization of differential-algebraic equations [62]) can help alleviate the
lifting error. In this paper we will assume fast off-manifold dynamics (ε is small) lead
to quick “healing” of the lifting error directly.

Through the coarse time stepper, our Problem A above has now been reduced to
Problem B: We want to simulate (2.3) for large, or infinite, times,
but we are only able to simulate it for short discrete times, t = nτ .

We note that the coarse time stepper applied to (2.1) can now be viewed as a black
box solver for (2.3). This is the legacy code view of our approach: given a good
black-box timestepper for the problem, how to best use it (short of rewriting it) to
explore the coarse behavior of (2.3)?

2.2. Coarse Projective Integration. In this section we discuss the first part
of Problem B above: How to integrate (2.3) for large (macroscopic) times t ≫ τ , where
τ is the time horizon in the coarse time-stepper T τ

c . Coarse projective integration thus
enables the “short time” coarse timestepper to perform “long time” tasks.

Let ∆T ≫ τ be a large time step (commensurate with the slow coarse dynamics)
and δt ≤ τ be a small time step (commensurate with the relaxation of the fast dynam-
ics). Set tk = kδt. The small δt could for instance be the numerical time step used
when solving the detailed equation (2.1). Introduce the numerical approximations of
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Fig. 2.1. Solution of (2.4) with ε = 0.01, u1(0) = −1 and u2(0) = 1. The top figure shows the
solution plotted in the (u1, u2) phase space. The bottom figure shows the solution as a function of
time.

the coarse solution U(t) as UN ≈ U(N∆T ) and let u0,N = µUN be the lifted fine
approximation. The microscopic time stepper permits

uk,N = T tk

d u0,N (2.5)

to be computed. As long as the number of small time steps, k, is such that tk = kδt =
O(τ), we can afford this computation. We define the coarse approximations Uk,N at
small time steps as

Uk,N := Muk,N ≈ U(N∆T + tk). (2.6)

By consistency U0,N = UN . We cannot compute an approximation of UN+1 in this
way, however, since tk ≪ ∆T . Instead we extrapolate UN+1 by using a coarse scheme
of the type

UN+1 = Uk,N + (∆T − tk)F̃ (Uk,N ), (2.7)

where F̃ approximates F . For tk ≥ τ the fast modes in the detailed equations have
died out so that differences of Uk,N are useful for approximating derivatives of the
exact coarse solution. We use differencing, setting

F̃ (Uk,N ) :=
Uk+1,N − Uk,N

δt
≈

dU(N∆T + tk)

dt
= F (U(N∆T + tk)) ≈ F

(

Uk,N
)

.

(2.8)
The method in (2.7) and (2.8) is called Projective Forward Euler, and it is the most
simple instance of a class of methods known as projective integration methods. A
detailed study of this type of algorithms can be found in [3, 87]; while implicit ver-
sions of these algorithms are possible, and are partially discussed there, the heart of
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Fig. 2.2. Results with the coarse time stepper applied to (2.4) using τ = 10ε = 0.1 and
U(0) = −1. The top figure shows the lifted solution u(s, nτ) plotted in the (u1, u2) phase space. At
times t = nτ , the solution is restricted and lifted, which here amounts to setting u2(nτ) = 1. The
middle figure shows the restricted solution Mu(s, nτ) as a function of time t = nτ + s. Circles
correspond to the coarse time stepper approximation, (T τ

c
)nU(0) = Mu(0, nτ). These results are

compared with the exact coarse solution U(t) = u1(t) from Fig. 2.1. The bottom figure shows the
same comparison for the derivative of the functions.

the process is an explicit outer integrator, here (2.7), built around calls to an inner
integrator, here (2.5), a version of the coarse time stepper.

Note that the fast modes in u may not be completely removed by applying the
restriction operator M; fast modes are still present in the coarse solution U , although
they are small in size. For stability reasons those fast modes need to be sufficiently
damped by the coarse integrator (2.6) to neutralize their growth in the large, projec-
tive, extrapolation step in (2.7). In fact, each small time step of the coarse integrator
multiplicatively reduces the fast components, so the error reduction scales with a
power of the number of steps, k, whereas the growth in the extrapolation is linear in
the size of the large step, ∆T − tk. As such, the algorithms bear many resemblances
to explicit codes for stiff systems [88, 89, 90]; yet ours have been devised with mul-
tiscale problems and a microscopic/stochastic inner integrator in mind. The main
enabling step is the coarse time-stepper through the “lift–evolve-restrict” evaluation
sequence. There are some significant differences from explicit RK codes, including the
applicability in the legacy code or noisy inner integrator cases, and ease in dynami-
cally selecting step sizes (see [87] for details). It would also be interesting to compare
our projective integrators with Krylov/exponential integrators for large systems with
separations of time scales [91, 92, 93, 94].

Higher order versions of (2.7) can be constructed based on polynomial extrapo-
lation [4]. Let P (t) be the q-th order polynomial interpolating the points

P (N∆T + tk+s) = Uk+s,N , s = 0, . . . , q,
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Fig. 2.3. Schematic representation of an explicit projective integrator. Notice the lifting, the
evolution with successive restrictions, the estimation of the coarse time derivative, and the projection
step followed by a new lifting.

and subsequently use it to extrapolate the coarse solution at the next time level,

UN+1 = P ((N + 1)∆T ).

The Projective Forward Euler method is the case when q = 1. Alternatively, a
multistep version of (2.7) can be used [95].

The general procedure is illustrated in Fig. 2.3: an initial condition is taken in
coarse space (e.g. a density field) and lifted to a consistent distribution in microscopic
space (e.g. cells for a chemotaxis problem). The microscopic code is used to evolve the
distribution long enough for the higher moments, that have been incorrectly initialized,
to heal. A few more evolution steps are then taken, and the solutions restricted to
coarse space (densities). Successive density profiles are used to estimate the time
derivatives of the (unavailable) density equation (again, an identification step). The
profile of the (coarse) density function can be represented by the basis functions
used in any of the traditional numerical discretization techniques, including finite
differences, finite volumes, finite elements and spectral methods. The time-derivatives
for the coefficients of the basis function will be estimated, and used in the projective
integration step; finite difference (nodal), finite element as well as empirical basis
function representations have been illustrated in [4].

We have analyzed and used such two-tier (and multi-tier) EFM projective in-
tegrators for what we term “coarse integration” of the macroscopic equations using
microscopic as well as stochastic detailed time-steppers. Fig. 2.4, taken from [4] shows
time-series as well as long-term attractors of such an “inner LB, outer FEM” one stage
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Fig. 2.4. A comparison of FHN dynamics computed through (1) an LB-BGK code and (2) a
100-50-350 inner-LB - outer FEM (explicit Euler) projective integrator (from [4]). The comparisons
are performed by projection on subspaces spanned by a few empirical orthogonal eigenfunctions
(EOFs or PODs, see text). Top two panels: time series for (1, solid) and (2, dashed) starting from
the same initial conditions. Bottom four panels: various phase space projections (in POD-mode
space) of the attractors of the LB-BGK (1, solid) and the 100-50-350 LB-FEM projective scheme
(2, dashed).

projective forward Euler integrator. Because of the nature of the outer description, we
call these two-tier codes micro-Galerkin methods. We have also explored using empir-
ical basis functions (EOFs) for the representation of the macroscopic field. These are
also known as KL modes (from the Karhunen-Loeve expansion), POD modes (from
the Proper Orthogonal Decomposition) or simply PCs (from Principal Component
Analysis) see [96, 97]. Such basis functions (modes) are useful for the parsimonious
representation of macroscopic fields in complicated geometries, and are extensively
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used in nonlinear identification and model reduction (for data compression, identifi-
cation, bifurcation, control and optimization tasks), e.g. [98, 99, 100, 101, 102].

2.3. Coarse Bifurcation Analysis. In this section we discuss the second
part of Problem B above: How to find the solution of (2.3) for infinite times. More
specifically, we assume that the coarse equation (2.3) also includes a real parameter
λ,

dU

dt
= F (U ; λ), U ∈ RM , (2.9)

and we are interested in the qualitative behavior of its solutions for large times, and
their dependence on λ: the stability of steady states of (2.9) and bifurcation diagrams
with respect to λ. Note that a macroscopic, coarse, steady state can exist even
though there are no true microscopic steady states (e.g. in the case of stochastic
microscopic simulations). We recall that F (U ; λ) is not known explicitly. We only
have a timestepper T τ

c for the equation and we can only afford to evolve U for short
times, τ ≪ 1. The coarse bifurcation analysis with RPM that we discuss in this
section will enable this short-time coarse timestepper to perform infinite-time tasks.

Let us assume that (2.9) has a steady state, which we denote by U∗(λ). At the
steady state, dU/dt = 0. Then U∗ is obviously also a fixed point of T τ

c ,

U∗ = T τ
c U∗, (2.10)

and the stability of U∗ is given by the eigenvalues of the Jacobian of T τ
c ,

ρ

(

dT τ
c (U∗)

dU

)

< 1, ⇒ stability.

The question that we are faced with is hence how to solve the fixed-point problem
(2.10). Viewing the problem like this is the basis for time stepper based bifurcation
analysis from which our original inspiration comes [69, 70, 71, 72, 73].

One naive way to solve (2.10) is to use fixed point iteration (or successive substi-
tution), starting with some initial data U0 and for n ≥ 0 setting

Un+1 = T τ
c Un. (2.11)

This corresponds to direct simulation of (2.9), using the coarse time stepper to evolve
an initial profile in time. Since we can only realize T τ

c for small τ by assumption,
this is, however, not a feasible approach. Indeed, the convergence rate for fixed point
iterations is only linear. Moreover, we will not be able to find unstable solutions to
(2.10) in this way.

Alternatively, we could use a Newton type iteration to solve (2.10), e.g.

Un+1 = Un −

[

∂T τ
c (Un)

∂U
− I

]−1

[T τ
c Un − Un] .

This gives fast (quadratic) convergence, also when U∗ is an unstable solution. How-
ever, the method needs the Jacobian of T τ

c , which is not available in closed form in
our case, and it would be expensive to approximate it numerically.

A compromise between fixed point iteration and Newton type methods (e.g. see
the monograph [74] for Newton-Krylov methods) is Shroff and Keller’s Recursive Pro-
jection Method (RPM) [69]. It gives fast convergence (between linear and quadratic)
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and converges also when U∗ is slightly unstable. The Jacobian of T τ
c never needs to

be evaluated directly. Moreover, as a by-product, RPM produces approximations of
the largest eigenvalues of the Jacobian, which give stability information for the steady
state.

Let P ⊂ Rd be the maximal invariant subspace corresponding to the largest
d ≪ M eigenvalues of ∂T τ

c (U)/∂U , and let Q be its orthogonal complement in RM .
The space P represents the direction along which time evolution is slowest, possibly
slightly unstable. Under the loose assumptions described below, the results of repeated
calls to the time stepper can be used to adaptively approximate it. Decompose the
solution U as

U = PU + QU =: p + q, p ∈ P, q ∈ Q,

where P and Q are the projections onto P and Q, respectively. The philosophy of
RPM is to do fixed point iterations in Q and Newton type iterations in P,

pn+1 = pn − [J∗(pn + qn) − I]
−1

[PT τ
c (pn + qn) − pn] ,

qn+1 = QT τ
c (pn + qn),

where J∗ = P (∂T τ
c (U)/∂U)P ∈ Rd×d is a small size Jacobian. The invariant subspace

P, J∗ and d are dynamically updated by monitoring e.g. the convergence rate of {qn}.
The combination of (approximate) Newton iteration in the low-dimensional, slow

subspace, and fixed-point iteration (integration) to provide a contraction in its com-
plement, and its extensions, are being successfully used to perform continuation, sta-
bility and bifurcation analysis of dissipative PDEs and low-index PDAEs close to
low-codimension bifurcations [69, 78, 79, 80, 81, 82, 83, 84, 85].

Standard time stepper based bifurcation analysis using RPM wrapped around
a PDE time stepper, is represented by the (b) branch in Fig. 2.5. Substituting the
coarse time stepper, described by branch (a), for the PDE time stepper turns RPM
into a coarse bifurcation code. If the the coarse time stepper is accurate enough a
computational superstructure like RPM can indeed be wrapped around it in this way
and enable it to perform the time stepper based bifurcation analysis of the (unavailable
in closed form) coarse description of the problem. This has been demonstrated in e.g.
[1, 4, 57, 58, 63, 64, 65]. Through the lift–evolve–restrict procedure, we enable a code
doing time evolution at a fine level of description, to perform bifurcation analysis at
a completely different, coarse level of description.

The main assumption for RPM to perform efficiently is that the system has a
clear separation of time scales: a few eigenvalues of the Jacobian of F in (2.9) lie
in a narrow strip around the imaginary axis (possibly some unstable ones too); then
comes a spectral gap, and the rest of the eigenvalues are far to the left in the complex
plane. For the Jacobian of the coarse time stepper T τ

c , this translates to having a few
eigenvalues in a strip around the unit circle, then a gap, and then many eigenvalues
in a small disk around zero for the time-stepper.

While so much structure seems like a lot to expect a priori from a model, (or
from the physical process that the model springs from) the usually dissipative PDEs
modeling reaction and transport (and including diffusion, viscous dissipation, heat
conduction etc.) often do possess such a separation of time scales. Similar assump-
tions, for example, underpin the theory of Inertial Manifolds and Approximate Inertial
Manifolds [75, 13, 76], and many singularly perturbed systems that arise in engineer-
ing modeling. In addition, as we will qualitatively discuss below, even if the problem
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Fig. 2.5. Schematic description of time-stepper based bifurcation analysis, fine and coarse.
Notice the lifting of a macroscopic initial condition to an ensemble of consistent microscopic ones,
as well as the restriction of the microscopic integration results back to the macroscopic (usually
moments-based) description.

itself does not have a separation of time scales, it is possible that the Fokker-Planck
equation for the evolution of the statistics of the problem may have a separation of
time scales. The EF approach will then be used on a time stepper for that level of
(coarse, averaged) description of the statistics of the problem [77].

3. Coarse equation-free computations in space and time

The discussion up to this point combined several elements of published work, to
form an appropriate background for the new results that follow. So far we have been
concerned with systems without any reference to spatial structure; we have enabled
short-time coarse time steppers (through the lift–evolve–restrict approach, identifica-
tion, and connection with traditional scientific computation) to perform infinite-time
tasks (find steady states and bifurcations) as well as long-time tasks (coarse integra-
tion).

We will now explicitly consider also the spatial structure of the system. In this
context we discuss a different enabling technology that we will refer to as the gap-tooth
scheme. It enables a “small space, short time” time stepper to perform “large space,
short time” tasks [5]. The gap-tooth scheme is in fact an instance of the coarse time
stepper in the setting where the system has a spatial structure that we can capitalize
on.

When later we will combine the gap-tooth scheme with coarse projective inte-
gration we will obtain patch dynamics, which enables the “small space, short time”
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gap-tooth time stepper to perform “large space, large time” tasks. Similarly, the com-
bination of the gap-tooth scheme and methods like RPM enables the performance of
“large space, inifite time” tasks.

The microscopic equation will again be exemplified by a large system of ODEs,

du

dt
= f(u), u ∈ Rm, m ≫ 1, + boundary conditions. (3.1)

However, the unknowns are now connected to spatial points and there is also an
associated set of boundary conditions. The unknowns u in (3.1) can themselves in-
clude spatial locations, as in a molecular dynamics simulation, or they can simply
correspond to fixed spatial points, as in a discretization of a fine scale PDE. When
the spatial domain in which (3.1) is solved increases in size, the dimension n of the
problem also increases. We therefore assume that (3.1) can only be solved in small
domains, for short times. As in Section 2, the ODE-based description is a simplifica-
tion; the procedure is applicable for microscopic evolution laws that do not fit in this
example framework, notably Monte-Carlo simulations of stochastic systems.

When we refer to “space” we do not necessarily mean physical space but the
domain over which the solution is defined at any time instant. For example, the
solution could be in a frequency domain or it could be a probability distribution.

As before, we let u denote the coarse quantities that we are interested in, e.g.
concentrations or moments of the particle distribution functions. This defines the re-
striction operator M. The coarse solution U now also depends on the spatial variable
and M takes u(t) to U(t, x), a continuous function in x. We assume that U satisfies
some coarse evolutionary equation, possibly a PDE which, in one dimension takes the
form

Ut = L(t, x, U, ∂xU, . . . , ∂p
xU). (3.2)

for some L and integer p; integrodifferential evolutionary equations also fit this frame-
work. Even though this equation conceptually exists, it is not explicitly available in
closed form. At this point we are thus faced with

Problem C: We want to simulate (3.2) for large or infinite times over
large spatial domains, but we can only solve (3.1) in small spatial
domains and for short times.

Our strategy will follow that in Section 2: construct accurate approximate time step-
pers for a semi-discretization of (3.2) without explicitly deriving it through analytical
mean-field or averaging procedures.

3.1. Gap-tooth Scheme. In this section we introduce the gap-tooth scheme.
We use the microscopic rules (3.1) themselves, in smaller parts of the domain and,
through computational averaging within the subdomains, followed by interpolation,
we evaluate the coarse field U(t, x), the timestepper, and the time derivative field over
the entire domain. We will present in some detail an application of the gap-tooth
scheme to the diffusion equation, to motivate the scheme. We subsequently discuss
how it, in more general cases, can lead to hybrid, two-tier (e.g. finite difference–
molecular dynamics or finite difference–Monte Carlo) timesteppers for (3.2).

Consider a discretization of (3.2) on the full one-dimensional domain. Let the
computational grid {xj} have a spatial stepsize H , so that xj = jH , which is capable
of accurately approximating the true coarse solution. This is our coarse mesh and
we think of it as a set of adjacent boxes of size H , centered at the grid points. Note
that it is fine enough for the numerical approximation to the solution to be accurate
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for macroscopic purposes. We also let τ be the macroscopic time step, which is
assumed small enough for a coarse explicit finite difference scheme to be stable, i.e.
one satisfying the CFL condition.

In a finite difference scheme, the exact coarse solution would be approximated by
a grid function {UN

j } at the coarse nodal positions, UN
j ≈ U(Nτ, jH). What happens

with the solution in each H-sized box during a single time step τ is computed (approx-
imated) using fluxes, proportional to derivatives evaluated through finite differences.
For reaction-diffusion problems, reaction source-sink term would also be evaluated at
the nodal point(s)).

Centered around each discretization point of the coarse mesh, within each H-sized
box, we now consider a small box of size h ≪ H : the interval [xj − h/2, xj + h/2].
These small boxes are the “teeth” of the scheme. They are separated by the “gaps”,
each of size H − h.

We want to represent what happens in the big box of size H through what happens
in the small box of size h, appropriately weighting the various terms by box size. This
is another way of approximating the exact coarse solution U(t, x). The small box
in this approximation plays the role of the nodal point of the coarse finite difference
scheme.

As in the coarse time stepper case, we base the gap-tooth step on the evolution
of the microscopic equation in the tooth together with a lifting operator. In addition,
the gap-tooth scheme must also construct boundary conditions for the microscopic
equation (3.1) based on the coarse solution. Otherwise we follow the same steps as
in Section 2.1. Given a finite-dimensional representation {UN

j } of the coarse solution
(e.g. nodal values, cell averages, spectral coefficients, coefficients for finite elements
or empirical basis functions) the steps of the gap-tooth scheme are the following.

(a) Boundary conditions. Construct boundary conditions for each small box
based on the coarse representation {UN

j }.

(b) Lift. Use lifting to map the coarse representation {UN
j } to initial data for

each small box.
(c) Evolve. Solve the detailed equation (3.1) for time t ∈ [0, τ ] in each small box

y ∈ [0, h] ≡ [xj −h/2, xj +h/2] with the boundary conditions and initial data
given by steps (a) and (b).

(d) Restrict. Define the representation of the coarse solution at the next time level
by restricting the solutions of the detailed equation in the boxes at t = τ .

These steps thus reduce Problem C to

Problem D: We want to simulate (3.2) for large or infinite times over
large spatial domains, but we can only simulate it for short discrete
times, t = Nτ , over large domains.

We recognize that this problem is actually the same as Problem B, and we should
be able to treat it with the same tools as in Section 2. This leads us to the patch
dynamics, that we will discuss below in Section 3.2.

We should comment on the choice of boundary conditions and lifting in steps (a)
and (b) above. If (3.2) is a balance equation (diffusion, reaction diffusion) the local
boundary conditions should be the “correct” slopes (determining the fluxes) in and out
of each small box. The derivative sj+ 1

2

at the midpoint xj+ 1

2

= 1

2
(xj +xj+1) between

two adjacent coarse nodes xj and xj+1 can be approximated by the corresponding
centered finite differences

sj+ 1

2

= (UN
j+1 − UN

j )/H, (3.3)
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Fig. 3.1. An original schematic description of the gap-tooth scheme (from the 2000 AIChE
Area 10 plenary lecture, [5]); the notation is slightly different from the one in the paper. Notice the
macro-mesh and the smoothly interpolated macro solution, the teeth surrounding the macro mesh,
and the interpolated boundary conditions at the outer edges of the teeth or “patches”. For this
continuum description the buffer zones are not depicted.

if {UN
j } represents nodal values. Let the left and the right slope boundary conditions

for each small box be s−j and s+
j . They can then be computed by linear interpolation

between sj− 1

2

and sj+ 1

2

(see inset of Fig. 3.1). Therefore

s−j =
(H + h)sj− 1

2

+ (H − h)sj+ 1

2

2H
(3.4)

s+
j =

(H − h)sj− 1

2

+ (H + h)sj+ 1

2

2H
. (3.5)

See also the discussion in Section 3.3.

Initial conditions for the simulation in the small boxes with these boundary con-
ditions are given by lifting in step (b). It is reasonable to expect that the average
over the small box of the quantity we are studying will be initially equal to the nodal
value Un

j . Any initial condition with the correct average ought to do a good job in
the scheme we envision. As we discuss below, it is also possible that we may have
to run an ensemble of such macroscopically consistent initial conditions and average
over their results. If the initial condition does not satisfy the boundary conditions at
t = 0 there will be sharp startup transients close to the boundary, but in principle the
time-reporting horizon for the simulation in the small box (corresponding to one time
step of a finite difference scheme for the big box) should be enough for these transients
to smoothen out. We will return extensively to the discussion of the time-reporting
horizon of the simulation in each small tooth.
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3.1.1. An Illustration: the Diffusion Equation. We now consider a one-
dimensional example where the coarse equation (3.2) exists and we know it in closed
form. More precisely, let us study the linear diffusion equation,

Ut = Uxx. (3.6)

The corresponding microscopic equation (3.1) could be a Brownian motion model, in
which case U would be the zeroth moment of the single particle distribution function.
To further simplify the analysis, we will, however, temporarily assume that the de-
tailed description (3.1) is also the diffusion equation (3.6). In each small box we thus
solve the same transient governing balance equation as for the whole domain.

We assume that the grid function {UN
j } represents nodal values of the coarse

solution at discrete times, UN
j ≈ U(Nτ, jH). Furthermore, we let vj(t, y) denote the

continuous, detailed, solution in the small box j with appropriate boundary and initial
conditions where the spatial coordinate y is local to each box 0 ≤ y ≤ h. We select
the coarse variable to represent an average over this detailed solution. The restriction
operator is an integral that averages vj(t, y) over each small box and identifies it with
UN

j .
Given a small box size h, for each box j, we perform the following steps.
(a) Boundary conditions. Following the remark at the end of the previous section,

we use Neumann boundary condition at the small box edges. We thus require
that

∂yvj(t, 0) = s−j , ∂yvj(t, h) = s+
j , t > 0. (3.7)

The prescribed slopes, s−j and s+
j , are computed from {UN

j } using (3.3), (3.4)
and (3.5).

(b) Lift. We want to lift the coarse representation to an initial profile that is
smooth and consistent with the boundary data and whose average agrees
with UN

j . It is reasonable (from all possible such initial conditions) to choose
the simplest polynomial. In this case it is a quadratic polynomial that we
denote Q(y),

vj(0, y) = Q(y) := Ay2 + By + C (3.8)

where A, B and C are constants. For consistency, it should satisfy

Q′(0) = s−j , Q′(h) = s+
j ,

1

h

∫ h

0

Q(y)dy = UN
j . (3.9)

We get

A =
s+

j − s−j
2h

, B = s−j , C = UN
j −

1

h

∫ h

0

Ay2 + By dy.

Note that A, B and C all depend linearly on elements of {UN
j } via (3.3),

(3.4) and (3.5).
(c) Evolve. Integrate the equation in the small box for time τ . During this time

the boundary conditions remain constant and equal with their values at the
beginning of the step. Hence, solve

∂tvj = ∂yyvj , y ∈ (0, h), t ∈ (0, τ ],
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with initial data (3.8) subject to boundary conditions (3.7). In general the
solution would need to be approximated numerically, e.g. through a fine FD
scheme, within each box, and with well-chosen fine time-step, or through a
reasonable truncation of the solution obtained through separation of variables.
Here, however, we are lucky: for the diffusion equation with the particular
initial data in (3.8), it has an explicit solution:

vj(t, y) = Q(y) + Q′′(y)t = Q(y) + t
s+

j − s−j
h

. (3.10)

(d) Restrict. Compute UN+1
j , the discrete approximation of U(t, xj) at time

(N + 1)τ , by averaging in space over the small box solution vj(t, y) at the
final time τ . From (3.10) we obtain

UN+1
j =

1

h

∫ h

0

vj(τ, y)dy =
1

h

∫ h

0

Q(y)dy + τ
s+

j − s−j
h

. (3.11)

By also using (3.9), (3.4) and (3.5), this gives

UN+1
j = UN

j + τ
s+

j − s−j
h

= Un
j + τ

sj+ 1

2

− sj− 1

2

H
.

Finally, from (3.5) we get the new coarse mesh quantities,

UN+1
j = UN

j + τ
UN

j+1 − 2UN
j + UN

j−1

H2
. (3.12)

The procedure then repeats itself. We interpolate to obtain a new coarse field, i.e.
use the UN+1

j to compute the new slopes s+
j and s−j and so on.

The final scheme (3.12) is exactly the same as a standard finite difference method
for the diffusion equation. The method can be seen as a method of lines discretization
of (3.6) using forward Euler in time and central differencing in space. Hence, in
this simple case the hybrid scheme reduces exactly to a corresponding coarse FD
discretization.

In the example we used a nodal representation of the macroscopic field as well
as linear interpolation of coarse slopes to determine the patch boundary conditions.
These features are shared by the FD scheme that was used to motivate the approach.
We refer to this as the “nodal–Exact” gap-tooth scheme. The first component of the
name, “nodal,” refers to our chosen representation of the macroscopic field which
guides the number and location of coarse nodes as well as the patch boundary con-
dition procedure. The second component, “exact,” is the way by which we solve the
equation in each small box.

In the simple diffusion example, the truncation error for nodal–Exact is O(H2+τ),
independent of h. To analyze the accuracy of the scheme, consider first the limiting
case when h = H i.e., when there are no gaps between the teeth. The scheme will
then have truncation error O(Hp0 +τp1). The values of p0 and p1 depend on the order
with which the boundary conditions are interpolated in space and extrapolated in time
from the data UN

j . Furthermore, an asymptotic analysis reveals that the difference
between nodal–Exact with h < H and with h = H in one timestep is O(τ(Hq − hq)),
for some q (for h, H ≪ 1). Thus the total truncation error for nodal–Exact is bounded
by

O (Hp0 + τp1 + |Hq − hq|) . (3.13)
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When the nodal–Exact scheme described above is applied to a reaction-diffusion equa-
tion, Ut = Uxx + F (U), we will have p0 = q = 2 and p1 = 1. Since p0 ≤ q, we note
that in this case the order of accuracy is still asymptotically independent of h.

If we solve problems where the solution within each small box is not explicitly
available, we also need to compute it numerically using, for example, a finite difference
scheme on fine mesh, with Nf nodes within each small box and time step τf . This
would be the “nodal–FD” scheme. In this case, the truncation error of the FD scheme
will be O((h/Nf )r0 + τr1

f ), with r0 and r1 depending on the scheme. Assuming
stability, this is also the error for one coarse time step τ within each small box. The
total truncation error for nodal–FD is then

O

(

Hp0 +

(

h

Nf

)r0

+ τp1 + τr1

f + |Hq − hq|

)

. (3.14)

In addition to the consistency of the schemes as expressed by (3.13) and (3.14),
we also need to consider their stability at both the coarse level and at the fine level
independently. Stability conditions will typically restrict the possible sizes of τ , H ,
τf and Nf . Optimal h/H as well as τf and Nf will appropriately balance errors and
computational cost under these constraints.

3.1.2. General Systems. The diffusion equation example was chosen to
illustrate the steps in the gap-tooth scheme and to motivate it in a simple case. Of
course, the interesting applications of the scheme arise when the macroscopic balance
equations are not explicitly available. The two-tier, inner-outer structure of the gap-
tooth scheme is a persistent feature in EFM computations. In general, the inner solver
will not come from a finer description of the same representation of the physics (i.e.
the diffusion equation) but from a different level representation of the physics, i.e.
random walkers or molecular dynamics. In these situations the steps in the gap-tooth
scheme will be more involved.

• The initial condition in each small box is somehow lifted to a microscopic
initial condition consistent with the coarse profile (or an appropriate ensemble
of such consistent, microscopic initial conditions—distributions conditioned
on a few low moments); boundary conditions for each small box are computed
from the coarse field.

• Microscopic versions of the BC are applied to the small box problems. New
ensembles for doing, say, MC under various boundary conditions will need to
be invented, see for example the work of Heffelfinger et al. on Dual-Volume
Grand Canonical Molecular Dynamics or -Monte Carlo as an example of such
ensembles, [106, 107, 108, 109].

• The small box problems are propagated in time using microscopic evolution
rules (MD, MC, LB) with, in principle, constant boundary conditions over
the reporting horizon (corresponding to one coarse time step).

• The results at the end of the coarse time interval are averaged within each
small box, subsequently interpolated in space between these averaged values.
This gives the coarse field timestepper evolution for one step. The restriction
operator maps the fine to the coarse description levels.

The procedure is then repeated.
It is conceivable that we may have to average over several realizations—possibly

over several initial conditions—of the simulations in each small box to get good vari-
ance reduction (i.e., good final expected values for the coarse quantity of interest in
this tooth; good enough for the interpolation in coarse space that follows).
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It is important, as was discussed above, that the time-reporting horizon, τ , for
the microscopic simulation is long enough for any higher order moments incorrectly
initialized in the lifting process to have time to heal, i.e. to become functionals of the
governing moments, the ones for which we believe that an evolution equation exists
and closes. A comparable “healing” process should occur in terms of the spatial
interpolation—the time integration should be long enough for interpolation errors
in the higher spatial frequency components of the coarse field to get slaved to lower
spatial frequency components. Similar thoughts (through a center manifold argument)
for dissipative PDEs, at a single level of physics description, have been discussed by
Roberts [110].

While this scheme appears computationally intensive (solving in each small box,
averaging and interpolating is more expensive than the corresponding coarse FD solu-
tion), it is aimed towards the simulation of microscopic systems on large computational
domains. An extra advantage is that the small box computations for the reporting
time can be performed in parallel (a separate processor for each box or patch) signif-
icantly reducing the total wall-clock computational time. What was described here
was templated on an explicit outer solver; in the spirit of implicit projective integra-
tors, we expect that implicit (predictor-corrector) versions of this procedure can also
be constructed.

Clearly, the gap-tooth scheme can also be combined with what are traditionally
called hybrid codes [32, 25, 27, 115]: codes that combine a continuum with a micro-
scopic description at different parts of the domain, matching them at computational
interfaces. If in parts of the domain an available coarse description is valid, we evolve
the mesh quantities there with the coarse equation outer scheme directly. In the re-
gions were the explicit macroscopic description fails, we use teeth (boxes, patches in
higher dimensions) and the lift–evolve–restrict approach. It appears as if the entire
domain has been evolved with the outer scheme, but the numbers that this outer
scheme crunches come in part from simple function evaluations (in parts of the do-
main where the coarse equation is valid) and in part from the appropriately initialized
and evolved microscopic timestepper (in the regions of the domain where the coarse
description is inaccurate and we need to revert to the microscopic physics). Many
current hybrid applications have only one tooth: the entire portion of the domain
where the macroscopic equation fails is evolved microscopically, and matched to the
continuum. If this portion of the domain is large, however, the gap-tooth approach
may reduce the extent of physical space over which microscopic simulations must be
evolved. One can think of the gaptooth scheme as a limiting case of a hybrid code: the
macroscopic interpolation between teeth appears (to the computation in each tooth)
as the continuum it is coupled with.

One can also envision (although the details need to be worked out) that multi-
tiered outer solvers (e.g. multigrid solvers), can be combined with the inner micro-
scopic small-box timestepper. As a matter of fact, in the spirit of telescopic projective
integrators, different levels of physics descriptions can be used at different levels of
a composite, multitier solver. In established multigrid approaches one works with
different coarseness levels of the same description; here one would work with differ-
ent levels of description; the inner, “ultimate microscopic” solver provides the basic
detailed physics; and it is coaxed through the computational superstructure to also
provide the relaxation of the basic detailed physics to the coarse slow system-level
dynamics we want to study. That such a coarse slow description exists, and the
level at which it exists, is a basic premise of the entire numerical skeleton we build
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around the microscopic timestepper. This basic premise requires validation during
any computation.

There are several levels at which the procedure can fail; some of them are tradi-
tional numerical failures (inadequate coarse discrete approximations in space and/or
time) and the ways to deal with them on-line during a computation through refine-
ment or adaptive meshing are parts of traditional scientific computation. The more
interesting and new feature, that has to be combined with these more traditional
numerical aspects, is the “closure failure”, i.e. the possibility that equations do not
close any more (as conditions change) at the level of coarse description we have been
using up to now. A typical example would be that we need to write equations, in
chemical kinetics, not just in terms of densities, but of densities and pair probabilities.
Alternatively, in fluid mechanics, that we would need to write equations for stresses as
independent variables as the Deborah number grows, and not just have them slaved
to momentum gradients. These considerations have been discussed to some extent in
[58]; we believe that testing such constitutive failures can be reasonably done numeri-
cally, and we discuss how to do it in [65, 86]. We believe that the ability to adaptively
test for, detect, and possibly remedy such constitutive failures is one of the strong
points of the computational framework we discuss. We only mention here that ways
to test for constitutive failures have to be integrated in the framework, along with
tests for more traditional discretization-based numerical failures.

There is one more issue that is important to discuss: the repeatedly imposed,
macroscopically motivated, boundary conditions for the patches, and the appropriate
microscopic ensembles for imposing them. This discussion will follow the next sec-
tion on Patch Dynamics, since patch boundary conditions are also important in that
context.

3.2. Patch Dynamics: A Composition. In Section 2.3 we were able to
use short–time computations, embodied in calls to the microscopic timestepper, in
order to perform coarse stability and bifurcation calculations. Since the results of this
procedure are invariant objects (including elements of the ω-limit set of the unavailable
coarse equation) we can consider that the coarse bifurcation results are infinite–time.
Correspondingly, projective integration as presented above allows the use of short–
time computations, in order to perform numerical integration over larger macro-time
steps.

The gap-tooth time-stepper discussed in the previous section is a “short space,
short time” to “large space, short time” computational framework. One could, in
principle, use the gap-tooth timestepper repeatedly, tiling longer and longer inter-
vals in time completely. In the spirit, however, of our coarse projective integration
discussion, it is preferable to combine the gap-tooth timestepper with projective in-
tegrator templates to provide an EF framework bridging “small space, short time”
simulations and “large space, long time” evolution. The gap-tooth timestepper can
also be combined with coarse bifurcation calculations to provide a “short space, short
time” simulation “large space, infinite time” computational framework. We call these
combinations patch dynamics.

A schematic summary of the space-time features of the algorithms can be seen in
Fig. 3.2. In the middle (a) we see that, in order to evolve the problem with the detailed
physics description, we must tile the space-time area with extremely fine grids in both
directions. This would be practically computationally intractable. The basic building
block of our EF computational enabling technology is the same detailed description,
but in a small box in space for a short time (a small space-time region). Projective
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Fig. 3.2. Schematics of coarse integration and patch dynamics techniques. Full microscopic
simulation (a) requires impractically fine discretizations. Coarse integration (b) simulates in large
space for short times, and then projects to longer times. The gap-tooth scheme (c) simulates in
short spacial domains and periodically reinterpolates between the domains. Combining the gap-tooth
scheme with coarse integration (d) is better seen in (e): microscopic simulations are performed
over short space domains (patches) and for relatively short times (sparse space time elements).
Interpolation in coarse space and projection in coarse time is used to advance the macroscopic
quantities.

integration is shown in caricature in (b), where we evolve in large space but for short
times, and then we project, and start again (the lifting part has been suppressed). The
gap-tooth scheme is shown in caricature in (c), where we evolve in small boxes for a
short time horizon, and then we stop, estimate coarse fields, interpolate to compute
new box boundary conditions (let the boxes talk to each other) and start again.
Putting the two together is shown in (d) and—really—in (e): exploiting smoothness
in time we need only to integrate small times, and exploiting smoothness in space we
need only to integrate in boxes—as a result small space-time patches emerge from the
overlap of the temporal and the spatial strips.

It is only within these space-time patches (small space, short time) that the actual
microscopic evolution takes place—the results from this are postprocessed by the iden-
tification part of the software, and passed on to the traditional, continuum numerical
routines for number-crunching. Since this way the closures for the unavailable macro-
scopic equations have been estimated in real time (“on demand”), the macro-solvers
proceed normally, but with estimated numerical information rather than information
from functional evaluations.

The higher the dimensions of the problem we are evolving, the higher the potential
savings compared to full space microscopic simulations. Consider for example, agent
based models arising in ecology or epidemiology, where the required solution moments
are distributed not only over space and time, but also over several features of the
populations in question (e.g. cell size, age, or income); if we only solve in a fraction
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Boundaries 1

Integrate 1

Restrict 1 Boundaries 2

Integrate 2

Restrict 2

Project

Lift

Lift

Patch dynamics

Fig. 3.3. A schematic of the full patch dynamics simulation cycle, including lifting in patches,
computation and imposition of patch BC, microscopic evolution, repeated restrictions and BC re-
computations as necessary, and (after sufficient time has elapse so that the coarse time-derivatives
can be estimated) a coarse projective step, followed by a new lifting.

Fig. 3.4. A schematic summary of the gap-tooth/patch dynamics nomenclature in 1D.
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h/H of each coarse dimension, the savings grow as powers of this fraction. It will
be extremely interesting to explore and devise patch boundary conditions for such
alternative descriptions of distributed systems.

Fig. 3.3 contains a schematic summary of the patch dynamics procedure which
we now outline. First we need to define a few of the components used in the scheme.

(a) Coarse variables. Select the coarse variables that we are interested in, as well
as a finite dimensional representation {UN

j } of them as in Section 2.1. The
variables U(t, x) now also depend on coarse space x. The choice of coarse
statistics defines the restriction operator M.

(b) Lifting operator. Select the lifting operator µ that translate the finite repre-
sentation of the coarse variables, {UN

j }, to one or more consistent microscopic
initial conditions for each small box, {vj(0, y)}, where y is microscopic space
corresponding to the macroscopic space x. The basic idea is that a coarse
point in xj corresponds to an interval, a box, in y.

(c) Type of patch boundary conditions. Select the type of boundary condition to
use at the small box edges, e.g. Neumann conditions.

The subsequent steps below define the gap-tooth scheme. We assume that a
macroscopic initial profile U(t = 0, x) has been prescribed and that its finite dimen-
sional representation is {U0

j }. For each N and j we then do the following steps.

(d) Boundary conditions. Compute the values needed in the patch boundary
conditions from the coarse field. For instance, interpolate between {UN

j } to
obtain the size of the slopes used in implementing effective Neumann condi-
tions.

(e) Lift. The values {UN
j } are lifted to profiles {vj(0, y)} in the small boxes corre-

sponding to the coarse mesh points {xj}. The profiles should be conditioned
on the values {UN

j }, and it is a good idea that they are also conditioned on
the boundary conditions selected in (c) and (d) that are motivated by the
coarse field (e.g. be consistent with coarse slopes at the boundaries of the
microdomain that come from the coarse field, see the discussion below).

(f) Evolve. Each of these micro-patches is evolved for a short time based on
the microscopic description (3.1), and through ensembles that enforce the
macroscopically inspired boundary conditions—and thus generate {vj(τ, y)}.

(g) Restrict. Use M to map vj in each patch to the coarse variables UN+1
j =

Mvj(τ, y) (or more generally {UN+1
j } = M{vj(τ, y)}).

We now proceed by combining the gap-tooth scheme with the Projective Integra-
tor ideas in the last two steps.

(h) Short time steps. Repeat the gap-tooth time stepper, points (d) through (g),
a few times. (Compute patch boundary conditions, lift to patches, evolve
microscopically, restrict.)

(j) Extrapolate. Advance coarse fields a long time step into the future through
projective integration. This first involves estimation of the time-derivatives
for the coarse field variables, using the successively reported coarse fields in
(h) followed by a large projective step, as discussed in Section 2.2.

The whole procedure, (d) to (j), is then repeated.

Microscopic simulations in each patch yield averaged quantities on a macroscopic
sampling mesh. These quantities are then interpolated to define the macroscopic
fields. The macroscopic time derivatives can be estimated at the nodes directly from
the detailed computational data in the patches. Alternatively, they can be estimated
from coefficient time series of the basis function representation of the macroscopic
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fields.

3.3. Patch Boundary Conditions. In the description, above, of the nodal-
Exact gap-tooth scheme, we directly introduced slope boundary conditions for the
microscopic computational domains (teeth, boxes). We will now briefly discuss how
one would repeatedly impose such boundary conditions in the case of microscopic
simulators, and then what boundary conditions can be used for the little boxes. The
nomenclature is quickly summarized by the one-dimensional sketch in Fig. 3.4. The
boundary conditions for the microscopic dynamics will be imposed using buffer re-
gions surrounding the patches; converting the macroscale interpolant into a microscale
boundary condition is clearly a key algorithm in this framework. The appropriate
boundary conditions for the patches will, of course, be problem specific.

The macroscale average quantities are interpolated (e.g. through piecewise linear
or cubic Hermite interpolation) across the spatial gaps to give macroscopic fields.
The approach is straightforward in higher-dimensional problems, when the patches
are centered at the gridpoints of a rectangular or cuboid grid. The coarse, macroscale
variables will be defined at the grid points and interpolated through, for example,
tensor product piecewise Hermite polynomials. These interpolations are fast and
efficient on regular grids for high dimensions (e.g. [112]).

If the inner solver for the patches is based on a known partial differential equation,
then this equation acts as a guide in defining appropriate boundary conditions for the
patches. However, even for known PDEs, in many cases it is not clear how to best
choose the boundary conditions to tie the inner solution to the macro solution. If the
macroscale field is sufficiently accurate, using it to overpose the BCs for a microscale
patch may yield acceptable results if the frequent communication between the scales
regularizes the solution. That is, if the errors resulting from the temporarily frozen
BC grow slowly, so that they remain small and confined to the buffer regions, their
effect will be minimized at the next reporting horizon. Such a self-regularizing effect is
reminiscent of AMR simulations [113], where the coarse grid solution is interpolated
in time and used to overpose the boundary conditions for the fine scale imbedded
solution.

Fig. 3.5, borrowed from [24] shows an example of current practice in imposing
arbitrary field, macroscopically inspired, boundary conditions to microscopic simula-
tions. Such methodologies have resulted from extensive research in the coupling of
continuum with microscopic simulations, leading to current hybrid simulations prac-
tice [114, 115, 24, 116, 25, 117]. The so-called extended boundary conditions (EBS) are
applied in buffer regions, which are not real, physical domains, and which surround
the actual computational patch. It is the core region over which we will eventually
restrict in order to obtain coarse field information. By acting away from the region
of interest, across a buffer zone where the microscopic dynamics are allowed to re-
lax, these conditions attempt to minimize disturbances to the microscopic dynamics
in the core region. Knowing that the microscopic distribution functions will relax
within a few collision lengths dictates the size of the buffer regions. Various methods
have been proposed to impose the actual boundary conditions in the buffer regions.
These approaches include using distribution functions [116, 25] when these are known,
constrained dynamics [114], and feedback control (the Optimal Particle Controller of
[24]). Imposing a known distribution will, of course, be accurate; we hope that the
theoretical underpinnings of other approaches will gradually become more firm. The
Dual Volume Grand Canonical ensembles also use buffer zones to impose “chemical
potential Dirichlet” boundary conditions.
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Fig. 3.5. A schematic of the “extended boundary conditions” from [24] and a fluid flow appli-
cation.

The ingredients of the EBS implementation for continuum/MD fluid simulations
involve (a) A field estimator, based on maximum likelihood inference; this corresponds
to our restriction operator, obtaining moment fields from particle realizations. For
Monte Carlo simulations we have also been using the cumulative probability density
function, projected on the first few of a hierarchy of appropriate basis functions as
the field estimator. (b) Three distinct regions only the first of which is physical: (the
core region of interest, the action region of the OPC, and a buffer zone between the
two); a particular illustration is also shown in the Fig. 3.4; and (c) A method for
enforcing the macroscopic BC in the action region.

There is an overhead involved with imposing nontrivial (e.g. slope) boundary
conditions to microscopic simulations, certainly in the MD case. The conceptual
steps will be the same for any microscopic simulator; the implementation may be
easier or more difficult depending on the nature of the simulator and on the problem
under study. It might make sense to trade worse boundary conditions for larger
buffer zones. In the case, for example, of the diffusion problem, instead of lifting
to particles over a small box, and imposing slope boundary conditions, we may lift
consistently with the coarse profile over a much larger box, but make no effort to
impose particular boundary conditions at the outer boundary of the buffer region
(i.e. let the particles spill out). The inaccurate boundary conditions will slowly
degrade the accuracy of the quantities of interest in the patch; the reporting horizon
is chosen so that the computation in the core region remains accurate. Imposing
better boundary conditions will permit smaller buffer region and/or longer reporting
horizons.
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The effect of the boundary conditions on the quality of the computation also de-
pends on how often they are updated (compare, for example, the long term attractors
in Fig. 3.9 and Fig. 3.10). This can be analyzed in the ideal case where an exact inner
continuum solver is available (for example, the “inner exact” diffusion problem men-
tioned earlier). Keeping the slope boundary conditions fixed for the exact solver, will
eventually result in an infinite (or zero) average in the box; it is vital that the exact
simulation in each box is stopped periodically, a restriction followed by interpolation
to a new coarse field made, and a new round of inner simulations started. The length
of time over which the slope boundary conditions can be used in each box without
reinterpolation (without letting the boxes “talk” to each other) is clearly bounded by
the accuracy and stability of the outer scheme; for the diffusion equation example,
gap-tooth reduces to the standard finite difference method (3.12) with well known
stability and accuracy criteria. For this example, there exists a direct connection
between updating the BC in the gap-tooth scheme and the stability of an associated
finite difference scheme.

When microscopic ensembles imposing macroscopically-motivated boundary con-
ditions are used, the quality of the computation will be affected by the same factors
as for an inner continuum gap-tooth scheme, and, in addition, by how the particular
macroscopic BC are imposed on the microscale (the particular EBS ensemble).

In summary the quality of the overall patch dynamics scheme depends on the
interplay of these factors: (a) the choice of macroscopic boundary conditions; (b) the
size of the buffer region at the outer boundary of which they will be imposed; (c) how
often the BC are updated from the macroscale (how patches communicate with each
other) and (d) the details of how they are imposed on the microscale. The first three
factors would also arise in analyzing the gap-tooth scheme for a continuum problem.
It is conceptually possible (by analogy to implicit projective integrators) that implicit
patch schemes can also be constructed; the interplay between the overall patch size
and the time reporting horizon will be different for these.

For the diffusion equation, the slope boundary conditions are natural (they gov-
ern the flux of physical material in and out of the patch). In general, however, we
can only guess at the number and type of boundary conditions we should use, since
we do not know what the coarse equations actually are. What we do know (or, at
least, postulate) is what the coarse variables are (at what level of coarse description
a deterministic equation exists and closes). New challenges therefore arise for identi-
fication: from just the nature of the coarse variables and the microscopic simulator,
we must extract enough information about the unavailable equation to determine the
appropriate boundary conditions. This is an ongoing research subject, which also has
a counterpart in the legacy code context: if we are given a black box PDE solver,
which we can initialize at will, how can we use the solver to find out how many, and
what, boundary conditions to impose in a patch dynamics context? A methodology
for designing computational experiments to obtain answers to this type of qualitative
question (what boundary conditions to use, is the unavailable equation Hamiltonian
etc.) can be found in [118].

If the microscale model is in divergence form, then the natural boundary condi-
tions would be in terms of fluxes. For example, the boundary conditions for the heat
equation, ut = (Kux)x, would involve prescribing the flux (Kux) at the boundary.
Similarly, for the KdV equation, ut = (u2 + uxx)x, boundary conditions for the flux
u2 +uxx result in a well posed problem. Another consideration for these conservation
laws is to retain global conservation of the relevant quantities, including the material
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not being simulated between the patches. Not keeping track of this material between
the patches will result in only approximately conservative algorithms. For the full cal-
culation to preserve global conservation, the material in the gaps between the patches
must be accounted for. This can easily be done in one dimension by calculating aux-
iliary conserved variables in the gaps between the patches; these conserved variables
in each gap are updated on every macroscopic timestep by continuously accounting
for the fluxes in and out of its neighboring patches. These auxiliary variables play
a key role in constructing the macroscale interpolant defining the patch boundary
conditions. A conservative interpolant is constructed to agree with the average values
of the material in each patch and the integral of the interpolant in the gaps between
the patches. Conservative patch dynamics algorithms still need to be developed in
higher dimensions. A formulation for conservation problems based on the estimation
of fluxes, leading to a generalized Godunov scheme, is proposed in [119]. For a re-
cent discussion of a particular type of “effective smoothness” boundary conditions for
gaptooth particle simulations, see [120].

3.4. Numerical Examples. We use as our basic illustrative example a sim-
ple, well-known set of nonlinear coupled partial differential equations (the FitzHugh-
Nagumo, FHN) system in one spatial dimension [1, 66, 67].

ut(t,x) = uxx(t,x) + u(t,x) − u3(x, t) − v(t,x) (3.15)

vt(t,x) = δvxx(t,x) + ε(u(t,x) − a1v(t,x) − a0) (3.16)

The boundary conditions are ux = 0 and vx = 0 at x = 0 and x = L. Here u(t,x)
and v(t,x) are the local concentrations of the two participating reactants (the “acti-
vator” and the “inhibitor”), δ is a diffusion coefficient and the remaining constants
pertain to the kinetic terms; we can clearly recognize the terms corresponding to dif-
fusion and those corresponding to chemical kinetics. In all the simulations that will be
presented in this paper, the diffusion coefficient is set to δ = 4.0 and the values of the
kinetic parameters are chosen to be a0 = −0.03 and a1 = 2.0. Finally, ε was varied
as in some of our simulations it represented the continuation/bifurcation parameter.
The use of such distributed parameter models for both analysis and design purposes
then hinges on the exploitation of numerical discretization techniques to turn them
into large sets of ordinary differential or differential-algebraic equations.

One of the reasons for choosing this model in [1] was that it is possible to analyze it
through both the closed form PDE (3.15), (3.16), as well as through a kinetic theory-
motivated Lattice Boltzmann-BGK code [68]. The PDE, at the appropriate limit,
is a closed equation for the zeroth moments of the discrete velocity distribution—
so it can be considered as a coarse closed deterministic model; the LB-BGK model
is the “fine” model in this case. Another reason for choosing this example is that it
exhibits a rich variety of nonlinear dynamic patterns, including multiplicity of spatially
structured steady states (sharp, front-like ones, both stable and unstable) as well as
spatiotemporal oscillations. The rich nonlinear dynamics and the spatial sharpness of
the solutions make this simple but nontrivial one dimensional example a good testing
ground for new tools.

The LB-BGK model we have used here (and in the works referenced above)
is based on the discrete formulation on a lattice, of the Boltzmann equation [2], a
continuous equation describing the evolution (on a lattice grid) of the distribution
function of a single particle. The evolution equation for u (and respectively for v) is:

Nu
i (t + 1, x+ ci)−Nu

i (t, x) = −ωu[Nu
i (t, x)−Nu,eq(t, x)] + Ru

i (Nu,eq, Nv,eq) (3.17)
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In the above equation i = 1, . . . , 3 for a one-dimensional model. Nu
i (t, x) is the av-

erage population of particles with velocity ci at position x on the lattice at time t.
In LB models, particles can move to their adjacent sites in the lattice according to
their velocity ci; this is called streaming. In our one-dimensional implementation,
there are only two adjacent sites, left and right. For unitary spatial and temporal
increments ci = {0, 1,−1}. Therefore, particles N1, with velocity c1 = 0 will stay in
place (rest particles) while particles N2 (ci = 1) and N3 (ci = −1) will move to the

right and to the left, respectively. The quantity Nu,eq(t, x) = (1/3)
∑3

i=1
Nu

i (t, x) is
the local equilibrium population, homogeneous in all velocity directions. Thus, the
first term in the right-hand side of equation (3.17) expresses the relaxation of Ni

towards a local pseudo-equilibrium; ωu (and correspondingly ωv) is the BGK relax-
ation parameter which is proportional to the diffusion equation (0 < ω ≤ 2). From
the left-hand side and the first term of the right hand-side of equation (3.17), the
diffusion equation can be obtained through a Chapman-Enskog expansion [16]. The
reaction term Ru

i (Nu,eq, Nv,eq) can be viewed as a forcing term for the diffusion pro-
cess. The kinetic parameters ε, a0 and a1 are incorporated in the corresponding term
Rv

i (Nu,eq, Nv,eq). The (strong) assumption that reactions occur locally, respecting
the local diffusive equilibrium is used in this formulation [68]. The two concentrations
(u and v) at each lattice site can be uniquely computed as the zeroth moments of the
corresponding population densities (6 at each lattice site):

u(x, t) =

3
∑

i=1

Nu
i (x, t) v(x, t) =

3
∑

i=1

Nv
i (x, t) (3.18)

This is the restriction process MNu and MNv. The lifting process µu and µv, where
we extract the population densities from the macroscopic solution is given by

Nu
i (x, t) = wiu(x, t) Nv

i (x, t) = wiv(x, t) (3.19)

where, the weights, wi can be any three numbers summing up to 1. Thus, there
is more than one way to compute population balances from the concentrations. As
mentioned above, for our LB-BGK problem the choice of weights is not crucial, since
all initial disturbances caused by the random choice of weights decay much faster
(t ≈ 0.1 as shown in Fig. 3.6) than the macroscopic reporting horizons we have used
in all our simulations (t = 15 − 25). So, in all the simulations presented below we
have chosen wi = 1/3.

To validate EF computations for any given problem we always start in a parame-
ter regime where we know a valid macroscopic description explicitly, and we reproduce
its results. We then perform homotopy/continuation towards the regime of interest in
parameters/operating conditions, constantly “numerically” as well as “constitutively”
validating the procedure. As we gain more experience from applications, our knowl-
edge of levels of closure appropriate at different parameter regimes will give enough
confidence to avoid the overhead of constant validation.

3.4.1. Gap-tooth scheme computations. We begin with results for the
gap-tooth scheme without coupling it with projective integration or RPM. Fig. 3.7
shows our first gap-tooth integration results for the FHN equations. In the simulations
the domain length was L = 20.0 and the parameter ε was set to ε = 0.5. At this
parameter value a steady front is produced. The domain was discretized in 30 nodes.
Therefore 30 boxes were used, each of them having length, h equal to 1/4 of the
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Fig. 3.6. Decay (“healing”) of the lifting error (from [4]): comparison between the evolving
restrictions of a “mature” LB-BGK trajectory, and two distinct liftings of its restriction: (a) a local
equilibrium fine lifting and (b) a more coarse random lifting. Healing has visibly taken place at times
much shorter than the timestepper reporting horizon (here 0.5).

internode distance, H (i.e. h = 0.1724). For each overall step, starting from values
of the density (zeroth moment for the LB-BGK code) on a coarse grid we computed
a coarse density profile through interpolation (taking advantage of smoothness); we
also used this coarse profile to compute temporary (slope) boundary conditions for the
little boxes using (3.3) - (3.5). We lifted the density profile to a consistent LB profile in
each box, and then evolved the problem through LB-BGK for one reporting horizon in
each box, keeping the temporary boundary conditions constant; the outer scheme here
is an explicit finite difference scheme. Implicit (iterated to self-consistency) versions
of this evolution may also be possible [3, 4].

After the problem was left to evolve for one time horizon (Tb = 10−3) in each box
using the inner solver, we restricted the solution, computing u and v in each box using
equations (3.18). We then computed the averages of the coarse solution (u and v) for
each box, by integrating over the length of the box to obtain the new coarse profile.
We have thus created an “inner solver-assisted” map from coarse grid to coarse grid.
The procedure was then repeated.

We verified the effectiveness of this approach in a nodal-FD mode (inner code:
FD in (fine) space, trapezoidal in (fine) time; nodal macroscopic field representation)
as a sanity check. We then performed the computations in a nodal-LB code (we will
call this an LB-BOX code): inner LB in fine space and fine time, with lifting and with
slope boundary conditions; and outer nodal representation of the coarse fields. Some
of the results presented in [5] are shown in Fig. 3.7 both for “inner FD” and “inner
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Fig. 3.8. Comparisons of LB and LB-BOX spatial profiles of u at various times in the unstable
(oscillatory) FHN region (ε = 0.01) showing a palindromic movement of the reaction front.

LB” evolvers for comparison purposes.

We then embarked to more elaborate LB-BOX simulations to demonstrate the
effectiveness of the process. In the simulations for the gap-tooth procedure shown
in subsequent figures, 101 boxes were used with h/H = 0.1, i.e. the box length was
h = 0.02. Fig. 3.8 shows comparisons of full LB and LB-BOX profiles of the variable
u at various times in the oscillatory regime of the FHN (ε = 0.01). The solution
at this parameter is a spatiotemporal limit cycle, and Fig. 3.8 shows a portion of
it, involving the palindromic movement of a sharp reaction front. Fig. 3.9 shows
a projection of this spatiotemporal long-term periodic attractor computed through
full LB and through the gap-tooth LB-BOX approach. The effect of the coarse time
reporting horizon, Tc = 7.5 × 10−4, can be seen in Fig. 3.10 where a comparison
with the long-term attractor of the same scheme but with a larger coarse time horizon
(Tc = 2.5× 10−3) is shown. In the latter case the communication between the boxes,
by constructing the new coarse profile and the new box boundary conditions for the
next microscopic sumulation “era”, occurs a factor of three less frequently. It is
important in comparing these two figures to remember that what is shown are long
term attractors. The short term integration with the two different reporting horizons
will, for quite some macroscopic time, appear visually practically the same at the
resolution of these plots.

Comparable results have been obtained for the diffusion equation and also for the
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Fig. 3.11. Computed time-series comparison of the oscillatory FHN dynamics (ε = 0.01)
computed by a full LB code (solid line) and by a 100-100-200 LB-BOX projective scheme (dashed
line).

Allen-Cahn equation [111] of the form

ut = uxx + 2(u − u3), (3.20)

where the relaxation of the macroscale profile to the exact steady state of the
form u = tanh(x − x0) was observed.

3.4.2. Patch Dynamics Projective Integration. We next combine the
gap-tooth scheme with projective integration to perform patch dynamics simulations.
Fig. 3.11 compares a full LB simulation with such a combination. The algorithm now
has several tiers: There are two tiers in time: the inner integrator is a gap-tooth LB
(with 101 boxes, h/H = 0.1 and Tc = 7.5×10−4), and the outer integrator is forward
Euler on the coarse profile (to be exact, on the macroscopic mesh density values).
There are, however, tiers also in space: the coarse density profile interpolated from
the density values at the coarse mesh points; the (auxiliary) coarse profile in each
box; and the Lattice-Boltzmann profile in each box, the one that we lift to, and
which we evolve using the microscopic evolution physics. In particular we call this
a 100-100 inner 200 outer integrator, since the forward Euler step is equivalent to
200 time steps of the inner integrator (see also [4]). Fig. 3.12 shows snapshots of the
corresponding profiles at different times, and Fig. 3.13 shows the long-term periodic
attractor, successfully captured by the LB-BOX-Projective scheme.

3.4.3. Patch Dynamics Stability and Bifurcation Analysis. We finally
turn to coarse bifurcation analysis of our FHN equation, based on the LB model
discussed above together with the gap-tooth scheme and RPM. We have performed
this coarse bifurcation analysis (including stable and unstable steady states, limit
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cycles, computation and continuation of codimension one coarse bifurcation points)
and compared it with Newton-based analysis results using FD discretizations of the
PDE, (3.15) and (3.16), [1, 4]. A summary of these results is included in Fig. 3.15
(bifurcation diagram of the FHN with respect to the bifurcation parameter ε, showing
a Hopf bifurcation), Fig. 3.14 (showing representative u and v spatially varying steady
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ponentials of the eigenvalues (for the same reporting horizon) of a steady FD code (based on the
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states for a value of the parameter), Fig. 3.17 (showing the leading eigenspectrum just
before and just after the Hopf bifurcation) and Fig. 3.16 (showing the corresponding
critical eigenvectors (both the ones identified by the PDE-based method and by LB-
RPM). In all the simulations performed, 200 discretization nodes were used for the
FD simulations and 100-400 lattice points for the large–space LB coarse timestepper
simulations with and without RPM. The reporting horizons LB-RPM (without gap-
tooth) were T = 15 − 25. For the small–space patch dynamics simulations, which we
call LB-BOX-RPM, (a two-tier nodal-LB scheme) 101 lattice points were used for the
LB timestepper and correspondingly 101 boxes with h/H = 0.1 (so the inner solver
operates on only one tenth of the full spatial domain). The time horizon in each box
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was Tc = 7.5× 10−4 and the reporting horizon of the LB-BOX-RPM timestepper for
communicating with the bifurcation algorithm (RPM) was T = 15.

It is important to notice that, beyond the main features of the diagram, the actual
shapes of the computed spatially varying steady states, both stable and unstable, are
well captured as it can be seen in Fig. 3.14. Furthermore, their stability (embodied in
the coarse linearization) is also well captured. This is true both for the LB and for the
LB-BOX-RPM scheme. The LB-BOX-RPM scheme clearly captures quantitatively
the linearized stability of the detailed problem at low wavenumbers (at the coarse
level) as well as the large–space coarse LB scheme does.

This completes our illustrative computations with the simulation part of the EFM
toolkit. The results have been obtained in a regime where the coarse PDE is known
and can be used as a check, where a lot of variance reduction is not really necessary,
and where we therefore find a context for troubleshooting the computational proce-
dure and exploring the numerical analysis of the multi-tiered schemes. The accuracy
and stability analysis of patch dynamics algorithms obviously will rely on the corre-
sponding analyses of the gap-tooth scheme and the projective integrator schemes, and
is the subject of current research.

4. Some applications

Over the last few years we have tested elements of the EF computational en-
abling technology using several types of microscopic simulators in contexts ranging
from surface chemistry to small molecule folding in solution. The oscillatory be-
havior of a gas bubble rising in a liquid has been studied using an inner LB-BGK
simulator and RPM-based coarse stability bifurcation analysis in [63, 64, 121, 122].
The coarse bifurcation analysis and coarse integration (both forward and backward
in time) of kinetic Monte Carlo simulations of catalytic surface reactions, including
the computation of coarse limit cycles (boundary value problems in time) has been
the subject of a series of publications [58, 65, 95, 123]. An alternative coarse compu-
tational task (coarse controller design) for the same kinetic Monte Carlo simulations
modeling surface catalytic reaction kinetics can be found in [124]; see also [125] for
the interplay between control-based techniques and the tracing of coarse bifurcation
diagrams. Unstable stationary states and estimates of the slow linearization around
them are used in local linear observer and controller design, stabilizing these saddle-
type states. Bifurcation diagrams for stochastic PDEs, arising in the context of the
rheology of nematic liquid crystals have also been computed through Equation Free
methods in [86], where coarse integration as well as coarse control of the corresponding
Smoluchowski equation are demonstrated. The use of a coarse timestepper based on
an inner molecular dynamics simulator has also been demonstrated as a method for
performing free energy, kinetics, and long-time dynamics computations in the context
of folding of an alanine dipeptide molecule in water [126].

Equation-free computational homogenization, or, more precisely, the solution of

effective medium equations, can also be performed using coarse timesteppers without
explicitly obtaining a closed effective (at some limit, homogenized) equation. This
type of “on demand” effective medium computation was introduced and illustrated
in [57] for reaction-diffusion pulse motion in periodic media. An extension of the
approach to the effective modeling of pulse propagation in spatially discrete media
can be found in [128].

In the context of legacy code acceleration, we have assembled an EF timestepper
based wrapper around a pressure-swing adsorption model implemented in gPROMS (a
state-of-the-art commercial plant simulator). We demonstrated there the acceleration
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Fig. 4.1. Coarse renormalization flow and coarse self-similar solution calculations based on
KMC random walk simulations. The top panel shows the results of coarse renormalization flow
projective integration for the one-dimensional diffusion equation, while the bottom panel shows iter-
ations of a fixed point algorithm converging on the same coarse self-similar solution. The evolution
of the rescaled cumulative probability density is plotted at various times above, and at various it-
erations of the fixed point scheme below. The restriction operator was the cumulative distribution
function.
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of periodic computations as well as the coarse integration of envelope equations for
large, rapidly oscillatory DAE systems [127].

The last application we include is very simple, but has, we believe, important
implications. Fig. 4.1 shows the computation of a coarse self similar solution—the de-
caying self-similar solution of the diffusion equation—computed through a microscopic
timestepper (a Monte Carlo random walk simulator). We have recently proposed the
use of a template based dynamic renormalization approach to compute self-similar
solutions for evolutionary PDEs [129, 130]. This template-based approach was moti-
vated by the work of Rowley and Marsden for problems with translational invariance
and traveling solutions [131]. The solution is rescaled either continuously, or discretely
(after some time) based on minimizing its distance from a (more or less aritrary) tem-
plate function (see also [132]). Here we combine this idea with the lift–evolve–restrict
approach as follows: we start with a random walker density profile (a coarse initial
condition); for convenience, the coarse variable will be the cumulative distribution
function (percent total walkers to the left of a given location in space). We then lift
it to random walker location, and let the random walkers evolve for some time. We
interpolate to cumulative distribution function (using appropriate orthogonal poly-
nomials) and rescale the solution based on template minimization. The procedure
is then repeated giving a discrete-time renormalization evolution, which converges
quickly (the solution is stable). Successive coarse portraits are used to extract the
relevant self-similarity exponents. Finally, we find the same solution not through
successive coarse timestepping, but through a contraction mapping: a secant-based
quasi-Newton method, for the profile that is invariant under finite time evolution and
template-based rescaling—see the bottom panel in Fig. 4.1. This work [133] is in
collaboration with Prof. Aronson in Minnesota, and we hope that it will allow the
coarse study of many phenomena that involve self-similarity (“from cells to stars”,
[134]) when microscopic physics descriptions exist but the macroscopic equations are
not available. It is conceivable that even asymptotically self-similar solutions might
be treatable in some cases. We have recently located an interesting bifurcation (the
onset of dynamic self-similarity from steady state solutions) in the context of the
focusing Nonlinear Schroedinger (NLS) equation [135]. It is conceivable that similar
bifurcations, involving the onset of dynamic coarse self-similarity from coarse steady
states (e.g. in molecular dynamics equilibrium simulations) might share some features
with this instability and offer a useful computational perspective of the transitions
involved.

5. Conclusions, discussion, outlook

We have described an equation-free framework for the computer-aided analysis of
multiscale problems, in which the physics are known at a microscopic level, but where
the questions asked about the expected behavior are at a much higher, macroscopic,
coarse level. This is a closure-on-demand, system identification based framework,
which provides a bridge between microscopic/stochastic simulators and macroscopic
scientific computation and numerical analysis. The basic idea is to use short, intel-
ligent, bursts of appropriately initialized microscopic simulations (the inner code),
and process their results through system identification techniques to estimate quan-
tities (residuals, time derivatives, right-hand-sides, matrix-vector products, actions
of coarse slow Jacobians and Hessians) that, if a macroscopic model was available,
would simply be evaluated from closed formulas. The quantities thus estimated are
passed to an outer level code, usually a traditional macroscopic computational code
that performs integration, controller design, steady state calculation or optimization
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tasks. This outer code proceeds to perform its task without realizing that the model
it is studying is not available in closed form at the macroscopic level. We showed also
that these short bursts of microscopic simulation may, under some circumstances, be
performed for small patches of computational space; these patches repeatedly commu-
nicate with each other, as the computation evolves, through macroscopically inspired
boundary conditions (patch dynamics).

In our discussion, the main tool was the coarse timestepper, that evolves fields of
the macroscopic variables through microscopic simulation. Separation of time scales
(often associated with spatial scales) constitutes the main underpinning of effective
coarse behavior. Whether (a) higher order moments of microscopically evolving dis-
tributions become quickly functionals of lower order, slow, governing moments; or (b)
higher wavenumber modes of a dissipative PDE quickly evolve towards a slow mani-
fold, becoming functions of the lower wavenumber, slow, master modes; or (c) higher
moments of a Smoluchowski equation for the probability distribution of a stochas-
tically evolving problem become slaved to lower order moments, it is the physical
dynamics that lead to the quick, on demand closure that makes coarse equations
meaningful. If the timesteppers are legacy simulators (one of the original motivations
of time-stepper based enabling algorithms, like the adaptive condensation of Jarausch
and Mackens, the RPM of Shroff and Keller, but also the Arnoldi based stability
computations of Christodoulou and Scriven [136]) we are in the realm of “numerical
analysis of legacy codes”. EF-type algorithms can significantly accelerate the conver-
gence of large scale industrial simulators to fixed points (e.g. periodic steady states
for pressure swing adsorption or reverse flow reactor simulations) as well the stability
analysis of these fixed points (e.g. [127]).

This paper was focused on situations where the macroscopic model is not available
in closed form, and one needs to use microscopic simulation over the entire spatial
domain, or over patches distributed across the domain. As discussed above, it is also
conceptually straightforward to construct coarse timesteppers using existing hybrid
simulation frameworks. The map from current to future coarse fields is obtained
through the combination of the lift–evolve–restrict approach in the “molecular” re-
gions and continuum solvers in the continuum regions. If the molecular regions are
large, and the macroscopic expected solution is smooth enough across these regions,
one can conceivably evolve the microscopic simulation only in a grid of patches along
this region; one then has a hybrid continuum-patch overall coarse timestepper.

System identification based on the observation of the microscopic simulation, vari-
ance reduction, and the extraction of local coarse models, are the second important
feature of our closure-on-demand approach. On a different note, a connection be-
tween coarse timesteppers and what is termed “gray-box identification” also exists.
Frequently, we may know (e.g. from irreversible thermodynamics, or from experimen-
tal experience) a lot about the form of several terms in the RHS; and only miss a
particular phenomenological term, such as an effective viscosity, to have a useful clo-
sure. In such cases, microscopic simulations are typically done to extract a law for this
phenomenological coefficient. For engineering purposes, discrete-time data obtained
through the coarse timestepper can be fed to discrete time gray-box identification
schemes, with built-in partial knowledge of the RHS of the macroscopic equation;
only the unknown parts of the postulated equation will then be identified (fitted).
A particular framework for doing this, based on recurrent artificial neural networks
templated on numerical integration schemes can be found in [137, 138].

We discussed mostly parabolic problems in presenting coarse integration results.
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Yet matrix-free fixed point solvers (Newton-Krylov methods like GMRES) can be
used to solve elliptic problems that arise as steady states of parabolic problems. More
generally, numerical tasks that can be formulated in terms of the discrete time-one
map of the solution of an equation (independent of its type) can in principle be solved
through matrix free algorithms.

Most of the “mathematics assisted” enhancement we expect from these algorithms
comes from the estimation of coarse derivatives (in time, in space, with respect to
parameters or with respect to the coarse variables themselves) through calls to the
microscopic timestepper. Variance reduction through sheer number of copies, but also
through the best estimation we can have, is thus vital in establishing computational
savings [34, 139]; its importance cannot be overestimated.

In most of our exposition we assumed that the coarse variables of choice would be
low order moments of the distributions evolved through the microscopic timesteppers.
There will, however, exist problems where intelligently chosen phase field variables will
provide a much leaner set of equations than moments (in the same sense that good
empirical basis functions can provide a much more parsimonious description of a PDE
discretization). We believe that the discovery (through statistical algorithms that
search for nonlinear correlations across data fields) of good coarse variables from which
to lift is one of the requests this technology will have from modern computer science.
The fact that we need not come up with explicit formulas for the time derivatives
in terms of the variables generates a lot of freedom in allowing the study of systems
currently intractable (because good closures could not be explicitly computed, and
full microscopic simulations were too expensive to perform over relevant space-time
scales).

A simple case in point is the attempt to create timesteppers for expected evolution
of effective equations for the energy spectra of DNS or LES simulations of the Navier
Stokes equations; here DNS is the inner, microscopic simulator. Many other promis-
ing directions can and should be pursued, including agent based models in ecology,
economics, epidemiology and evolutionary biology (the timesteppers do not have to
be in physical time, they can involve mutations in a population). While most of the
problems we have suggested so far come from nonequilibrium statistical mechanics,
equation-free dynamic approaches may play a role in studying equilibrium phenomena
through dynamics (see recent work in [140, 141, 142, 143] as well as in [144]). It is
also conceivable that appropriate limits of quantum problems, such as the weak cou-
pling limit of the N -particle Schroedinger, which in the semi-classical limit yields the
1-body Vlasov equation [145], can be studied through coarse timesteppers. In fact
the Vlasov equation (as well as the Fokker-Planck-Vlasov) has analytically known
equilibrium states; one could try to retrieve them using time-steppers and compare to
the explicit analytic results. Another possibility is the semiclassical limit of the scalar
wave equation or a single Schroedinger equation, which, using the Wigner transform,
gives rise to a Vlasov equation. Further ad-hoc closures yield a system of conservation
laws with a dispersive correction [146, 147, 148]; coarse timesteppers could sidestep
(and/or validate) the derivation of such closures.

The availability of continuum equations underlies many of the methods devel-
oped and the results obtained in the modeling of physical systems. These continuum
equations are, in many cases, only caricatures (sometimes excellent caricatures) of
“better but dirtier” descriptions of the physics, such as those provided by micro-
scopic/stochastic models. Equation-Free approaches hold the promise of applying
our best computational/mathematical tools (whose development was targeted at con-
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tinuum evolution equations) to the “dirty” description directly, circumventing the
necessity of passing through a caricature. The transition between analytical, paper
and pencil, solution methods (based on perturbation theory and special functions) to
computer-aided analysis (based on large scale linear algebra and PDE discretization
techniques) discussed in [149, 150] serves, in some sense, as a prototype for a new
transition: from equation-based computer-aided analysis to equation-free computer
aided analysis. In the first transition, quantities that would be computed by paper
and pencil if the solution was explicitly available (e.g. eigenvalues of a lineariza-
tion) were computed numerically. In the second transition, quantities that would be
computed numerically if the equation was explicitly available (e.g., again, eigenval-
ues of a coarse linearization) are estimated numerically through appropriate calls to
microscopic/stochastic simulators.

Beyond the type of systems that one can attempt to approach through this com-
putational enabling technology, the type of tasks that are affected go beyond coarse
simulation, steady state calculation and bifurcation analysis. We have illustrated
coarse control, and timesteppers also naturally fit in a coarse optimization frame-
work, where optimal control problems (such as those arising in rare events) can be
solved without ever having to derive explicit models in terms of coarse coordinates
that meaningfully parametrize the transitions in question. The ability to find coarse
self-similar solutions by combining coarse timesteppers with renormalization flow ap-
proaches for PDEs opens up the playing field even more. It would be interesting to
see, as experience is gathered and developments are made, how much of the conceptual
promise of these techniques becomes reality.
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Note added in proof: The originally submitted (August 2002) version of this
paper, containg an extensive qualitative discussion of the underpinnings of the ap-
proach can be found as physics/0209043 at arXiv.org. Between the original submission
and this publication many additional developments have taken place; a current listing
of ”equation-free papers” can be found in http://arnold.princeton.edu/∼yannis/. In
particular, we would like to mention developments in the numerical analysis of the gap-
tooth scheme, reverse coarse projective integration and some computational biology
and computational materials science problems (physics/0312004, physics/0310014,
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physics/0308040, cond-mat/0310473, nlin.AO/0310011, nlin.CG0307016,
nlin.CD0302055 and more at arXiv.org).
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