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ABSTRACT

The cooling phase of thermonuclear (type-I) X-ray bursts can be used to constrain neutron star (NS) compactness by comparing
the observed cooling tracks of bursts to accurate theoretical atmosphere model calculations. By applying the so-called cooling tail
method, where the information from the whole cooling track is used, we constrain the mass, radius, and distance for three different
NSs in low-mass X-ray binaries 4U 1702−429, 4U 1724−307, and SAX J1810.8−260. Care is taken to use only the hard state bursts
where it is thought that the NS surface alone is emitting. We then use a Markov chain Monte Carlo algorithm within a Bayesian
framework to obtain a parameterized equation of state (EoS) of cold dense matter from our initial mass and radius constraints. This
allows us to set limits on various nuclear parameters and to constrain an empirical pressure-density relationship for the dense matter.
Our predicted EoS results in NS a radius between 10.5−12.8 km (95% confidence limits) for a mass of 1.4 M⊙, depending slightly
on the assumed composition. Because of systematic errors and uncertainty in the composition, these results should be interpreted as
lower limits for the radius.

Key words. dense matter – stars: neutron – X-rays: binaries – X-rays: bursts

1. Introduction

The equation of state (EoS) of the cold dense matter inside
neutron stars (NS) has remained a mystery for decades. Exper-
iments on Earth and theoretical many-body calculations have
constrained the pressure-density relation of matter near the
nuclear saturation densities. Recently, progress has also been
made in measuring the NS radii (for a review, see Miller
2013; Özel 2013; Suleimanov et al. 2015) that allow us to
constrain the behavior of the EoS at higher densities by in-
verting the Tolman-Volkoff-Oppenheimer (TOV; Tolman 1939;
Oppenheimer & Volkoff 1939) structure equations. Furthermore,
these measurements probe the phase diagram of dense quan-
tum chromodynamics at lower temperatures and higher baryon
densities than the measurements of, for example, ultrarelativis-
tic heavy-ion collisions inside earthly laboratories (see, e.g.,
Lattimer 2012). One of the most promising candidates for ob-
taining accurate astrophysical mass-radius (M − R) measure-
ments has been the thermal emission originating from NS sur-
face layers. One possibility is to use the cooling of NS surface
during type-I X-ray bursts from low-mass X-ray binary (LMXB)
systems, where the cooling tail is shown to follow theoretical
model predictions surprisingly well (Poutanen et al. 2014). In
these systems, the NS is accompanied by a lighter star, usually a
main sequence or evolved late-type star, that fills its Roche lobe
and transfers material through an accretion disk onto the NS.
After accumulating enough material, the fuel is rapidly burned

in a thermonuclear explosion occurring below the surface in the
NS ocean. Some of these bursts can be so energetic that the Ed-
dington limit is reached, causing the entire NS photosphere to
expand. These photospheric radius expansion (PRE) bursts can
then be used to obtain mass and radius measurements by compar-
ing the cooling tail of the burst to accurate theoretical predictions
(for early work, see, e.g., Damen et al. 1990; van Paradijs et al.
1990; Lewin et al. 1993).

Recent studies (Suleimanov et al. 2011a; Poutanen et al.
2014; Kajava et al. 2014) have demonstrated that the X-ray burst
cooling properties heavily depend on the accretion rate and spec-
tral state of the source. The key finding was that care must be
taken to select only those bursts that show “passive cooling”,
meaning the ones that occur at the hard spectral state and at small
accretion rate, where the extra heating from the in-falling mate-
rial appears to be negligible. Kajava et al. (2014) also showed
that the evolution of the blackbody normalization can be used
as a trace to pin down the passively cooling bursts used in the
M − R measurements. The soft state bursts, on the other hand,
show only weak or completely non-existent evolution of the
normalization that is in contradiction with the theoretical atmo-
sphere model predictions.

In addition to only using the passively cooling bursts, it is
possible to improve the analysis by using the information from
the whole cooling tail by applying the so-called cooling tail
method. In this recently developed method, the observed cool-
ing track in the blackbody normalization K vs. the flux F (or
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rather K−1/4 vs. F) plane is compared to the theoretical model
evolution of the color-correction factor versus the luminosity
(in units of the Eddington), fc − L/LEdd, that is the so-called
color-correction curve. By comparing the whole cooling track
to the models (with variable fc) – in contrast, for example, to the
“touchdown method” where fc is assumed to be constant – we
can infer more robust constraints from the data. This also allows
us to circumvent the problematic issue of deciding where the Ed-
dington limit is reached, and when the photospheric radius coin-
cides with the NS radius (see, e.g., Steiner et al. 2010). In fact,
because it is the curvature of the evolving color-correction factor
that is used to constrain the Eddington flux, the method is valid
even for bursts that do not reach the Eddington limit (see, e.g.,
Zamfir et al. 2012). So far, no work exists where the cooling tail
method has been applied with this kind of strict hard-state burst
selection criteria for many sources simultaneously. We therefore
now pay special attention to the burst selection and choose only
the most well-behaved hard-state PRE bursts for our analysis.
We then use these bursts to constrain the mass and radii of three
different NSs by applying the cooling tail method to them.

Using these constraints we can then go one step further and
address the issue of unknown EoS of the cold dense matter inside
neutron stars. To do this, we use Bayesian inference to derive
empirical pressure-density and mass-radius relations based on
our burst results. Using a Markov chain Monte Carlo (MCMC)
algorithm, we fit the three M − R constraints from each source
simultaineously and in parallel allowing us to put astrophysi-
cal constraints on some of the nuclear physics parameters, such
as the symmetry energy S and the pressure of neutron-rich mat-
ter at the saturation density L (Lattimer & Steiner 2014). In ad-
dition, the combination of cooling tail observations and param-
eterized EoS allows us to make more accurate mass and radius
measurements for each of the sources, indicating a new way of
probing individual NS characteristics.

The paper is structured as follows: in Sect. 2, we present the
methods used for the data reduction of the bursts. In Sect. 3,
we use this data to obtain separate mass, radius, and distance
constraints for the three sources in our sample. In the second part
of the paper, in Sect. 4, we use Bayesian analysis to obtain the
parameterized EoS. Finally, in Sect. 5, we discuss the constraints
and compare our results to the measurements made previously.

2. Data

In our analysis we used the data from the Proportional Counter
Array (PCA; Jahoda et al. 2006) instrument on board of the
Rossi X-ray Timing Explorer (RXTE) satellite. Our sample con-
sists of three neutron stars: 4U 1702−429, 4U 1724−307, and
SAX J1810.8−2609. These sources were selected because they
have been known to exhibit PRE bursts in the hard state (i.e.,
at low accretion rate where the NS is thought to cool passively
without any external heating; Kajava et al. 2014). They also
show the most robust evolution of the normalization down to
very low luminosities enabling us to use them as clear exam-
ples of bursts to which the cooling tail method can be applied.
These bursts are visually selected, based on the evolution of their
normalization, to be in good agreement with the model used.
We omit one long burst from 4U 1724−307 which has already
been analyzed (Suleimanov et al. 2011a,b), since there is evi-
dence that this particular burst might have a high metallicity con-
tent in its atmosphere (see Appendix A).

RXTE/PCA data were analyzed with the heasoft pack-
age (version 6.16) and response matrices were generated using
pcarsp (11.7) task of this package. All data were fitted using the

xspec 12.8.1 package (Arnaud 1996) where the recommended
systematic error of 0.5% was added to the spectra (Jahoda et al.
2006). We identified X-ray bursts using a similar method to
that in Galloway et al. (2008). The time-resolved spectra for the
bursts were extracted using an initial integration time of 0.25 s.
In order to maintain approximately the same signal-to-noise ra-
tio the integration time was doubled every time the count rate
decreased by a factor of

√
2. The exposures were dead-time

corrected following the approach recommended by the instru-
ment team1. The correction resulted in a roughly 10–15% in-
crease in the peak flux, with the difference decreasing quickly
as the observed count rate declined. A standard method of re-
moving a 16 s spectrum taken from prior to the burst was used
to account for the possible background emission (Kuulkers et al.
2002, and references therein). This standard method assumes the
background (i.e., mainly the persistent emission) to be constant
during the burst, even though this might not be the case. The
changes due to the background emission are, however, not signif-
icant in the cooling phase (see Fig. 6 in Worpel et al. 2013). The
differences in burst characteristics with and without this back-
ground subtraction was also checked and found to be negligible
at least at high burst fluxes (i.e., at fluxes larger than 20% of
the peak flux). These deadtime-corrected spectra were then fit-
ted with a blackbody model multiplied by an interstellar absorp-
tion model with constant hydrogen column density NH (value
obtained from the literature, see Table 1). The best-fit parame-
ters are the color temperature Tc and the normalization constant
K ≡ (Rbb[km]/D10)2, where D10 = D/10 kpc. From the corre-
sponding χ2 distributions (see Fig. 1) of each source, we also
conclude that the data is sufficiently well described by the black-
body model. It should also be noted that the theoretical atmo-
sphere model spectra cannot be perfectly fit by a (diluted) black-
body model either (Suleimanov et al. 2011b, 2012), so in reality
we do not even expect the observed χ2 distribution to be close to
ideal. The bolometric flux was estimated using the cflux-model
in the range 0.01–200 keV. All error limits were obtained using
error -task in xspec.

Some of these bursts show typical characteristics of a PRE:
A peak in the normalization after a few seconds of the ignition.
The evolution of the observed temperature should also show the
characteristic double-peaked structure, arising from the cooling
of the photosphere when it expands and the subsequent heating
when it collapses back toward the surface due to the changing
radiation pressure. The aforementioned signs of the expansion
also indicate that the flux has reached (or exceeded) the Edding-
ton limit during the burst. The moment when the atmosphere col-
lapses back to the NS surface – that is the normalization reaches
its minimum value Ktd and the temperature its second peak – is
defined as the touchdown. This also marks the beginning of the
cooling phase where the subsequent evolution is dependent on
the spectral state of the source, meaning that if the burst occurred
in the hard state or in the soft state. In the hard state the nor-
malization rises to a nearly constant level while the flux and the
temperature continue to decrease for the rest of the burst. This in-
crease of normalization is due to the changing color-correction
factor fc as we approximate the emerging spectrum with a di-
luted blackbody model as

FE ≈
1

f 4
c

BE( fcTeff), (1)

1 http://heasarc.gsfc.nasa.gov/docs/xte/recipes/pca_

deadtime.html
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Table 1. X-ray bursts used in the M-R analysis.

Source NH Obsid Date Ktd2/Ktd
a

(1022 cm−2) (MJD)

4U 1702−429 1.87b 50 025-01-01-00 51 781.333039 2.2
80033-01-01-08 52 957.629763 2.0
80033-01-19-04 53 211.964665 2.2
80033-01-20-02 53 212.794286 2.1
80033-01-21-00 53 311.806086 2.1

4U 1724−307 0.78c 93044-06-04-00 54526.679905 2.3

SAX J1810.8−2609 0.35d 93044-02-04-00 54325.894492 3.1

Notes. (a) Ratio of the blackbody normalizations at half-touchdown flux and at the touchdown (see Kajava et al. 2014; Poutanen et al. 2014);
(b) Worpel et al. (2013); (c) Kuulkers et al. (2003); (d) Natalucci et al. (2000).
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Fig. 1. Reduced χ2 distributions for the blackbody spectral fits con-
sisting of the points used in the cooling tail analysis. The dashed curve
shows the theoretical expected χ2 distribution. Both obtained and the-
oretical distribution are normalized so that the encapsulated area of the
curves is unity.

where BE is the blackbody function and Teff is the effective tem-
perature that is connected to the observed blackbody color tem-
perature as Tc = fcTeff(1+z)−1 , where 1+z = (1−2GM/Rc2)−1/2

is the redshift. We stress here that the decrease in the color-
correction factor during the cooling is a feature predicted by
numerous atmosphere model computations (London et al. 1986;
Lapidus et al. 1986; Suleimanov et al. 2011b, 2012). Conse-
quently, the decrease of the color correction then leads into an
increase in the (observed) normalization because

K−1/4 = fcA, A = (R∞[km]/D10)−1/2, (2)

where R∞ = R(1 + z) is the apparent NS radius (Penninx et al.
1989; van Paradijs et al. 1990). On the other hand, for the soft-
state bursts the normalization is nearly constant, contrary to the

theory2. It is also crucial to notice that the normalization value in
the tail of the soft-state bursts is different to that observed for the
hard-state bursts. In addition, the touchdown flux can also vary3

(see Fig. 1 in Kajava et al. 2014). Because of these differences,
the burst selection becomes extremely important as our model
assumptions are only valid if the NS surface alone is emitting.
This seems to be valid only in the hard state (see Poutanen et al.
2014; Kajava et al. 2014, for more information about the soft vs.
hard-state burst selection). The increasing emission area during
the PRE phase (i.e., increase in the blackbody normalization K)
before the touchdown is mostly related to the increase of the pho-
tospheric radius. In the cooling tail, one believes that the evolu-
tion of K happens just because of varying fc with the constant
actual photospheric radius equal to the NS radius. Therefore, the
ratio of the normalizations in the expansion phase and the cool-
ing tail is

Ke

Kt
=

(

fc,t

fc,e

)4 (

(1 + ze)Re

(1 + zt)Rt

)2

, (3)

where indices e and t refer to the expansion and tail, respectively.
By taking fc,t ≈ 1.4 in the tail and fc,e & 2 during the expansion
(Pavlov et al. 1991; Suleimanov et al. 2012) and demanding that
Re > Rt (which also means (1+ze)Re > (1+zt)Rt for R > 3

2
2GM

c2 ),
we end up with a simple PRE condition

Ke

Kt
&

1

4
· (4)

When the normalizations are equal Ke = Kt, we get Re & 2 Rt

(note also that zt > ze). What is remarkable with this condition is
that the observed “expansion”, can be less than unity (compared
to the tail) in order for the burst to have a PRE episode. The
PRE condition can be transformed into a requirement that the
observed peak normalization at the expansion phase Ke must be
larger than the normalization at the touchdown Ktd as both of
them should have similar values of the color-correction factors.
But this is equivalent to the standard criterion that K should have
a local minimum (at the touchdown).

2 One possible interpretation is that in the soft state the accretion
disk continues all the way down to the NS surface forming a spread-
ing/boundary layer. A combination of emission from a partly visible
NS and from the spreading/boundary layer itself can then create time-
evolving spectra that appear to have almost constant color-correction
factor (Suleimanov & Poutanen 2006).
3 In the soft state the inner disk may act as a mirror reflect-
ing part of the burst emission, therefore boosting the observed flux
(Lapidus & Sunyaev 1985).
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Fig. 2. Bolometric flux, temperature and blackbody normalization evolution during the hard-state PRE bursts. The black line shows the estimated
bolometric flux (left-hand y-axis) in units of 10−7 erg cm−2 s−1. The blue ribbon shows the 1σ limits of the blackbody normalization (outer right-
hand y-axis) in (km/10 kpc)2. Similarly, the dashed orange line shows the color-corrected angular size (R∞/D10)2 using the same axis. The red
ribbon show the 1σ errors for blackbody color temperature (inner right-hand y-axis) in keV. Highlighted gray area marks the region of the cooling
tail used in the fitting procedures.

Time-resolved spectral parameters for the bursts in our
sample are presented in Fig. 2. Additionally, we show the
color-corrected angular size with the assumption fc = 2 for the
evolution before the touchdown. For the fc values after the touch-
down, we use the cooling tail model fits from Sect. 3 to cor-
rect for the varying color-correction factor. Because of the new
PRE criteria we choose also to keep the bursts that show only
modest photospheric expansion in our sample (bursts #1 and
#3 from 4U 1702−429 and burst #1 from SAX J1810.8−2609).
Even though the expansion phase in these bursts is not very
long, it is clear from Fig. 2 that the subsequent cooling phase
is still similar (compare, for example, the bursts #1 and #2 from
4U 1702−429).

3. The Bayesian cooling tail method

For our mass and radius analysis we use the cooling tail
method (see Suleimanov et al. 2011a,b and Appendix A of
Poutanen et al. 2014). With this method the information from the
whole cooling track after the peak of the burst is used and the
observed cooling is compared to the theoretical evolution pre-
dicted by passively cooling NS atmosphere models. To relate the
observed data and the individual masses and radii of the NSs,

we use Bayesian analysis (see also Özel & Psaltis 2015). Bayes’
theorem can be presented simply as (see, e.g., Grinstead & Snell
1997)

Pr(M|D) =
Pr(D|M) Pr(M)

Pr(D)
, (5)

where Pr(M) is the prior probability of the modelMwithout any
additional information from the dataD, Pr(D) is the prior prob-
ability of the data D, Pr(D|M) is the conditional probability of
the data D given the modelM, and Pr(M|D) is the conditional
probability of the modelM given the dataD. Here the last quan-
tity Pr(M|D) is what we want and it gives us the probability that
a given model is correct, given the data. We can extend Bayes
theorem further by having many non-overlapping models Mi,
which exhaust the total model space M. Then the relation can
be written as

Pr(Mi|D) =
Pr(D|Mi) Pr(Mi)

∑

j Pr(D|M j) Pr(M j)
· (6)

In the cooling tail method the model space consists of four pa-
rameters: mass M and radius R of the NS, hydrogen mass frac-
tion X in the atmosphere, and the distance D to the source. For
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the distance D a uniform flat prior distribution is assumed with-
out any restrictions. Similarly, a uniform two-dimensional prior
distribution is assumed for (M,R) space. We also take into ac-
count the causality requirement, R > 2.824GM/c2 (Lattimer
2012) and limit the mass so that it lies between 0.8 M⊙ < M <
2.5 M⊙. For the hydrogen fraction X, a Gaussian prior distribu-
tion is used and is discussed in more detail later on.

The model parameters can be combined into two new param-
eters, related more closely to the color-correction curve fitting.
The first one is the Eddington flux

FEdd =
GMc

D2κe(1 + z)
, (7)

where κe = 0.2(1 + X) cm2 g−1. The second parameter is related
to the apparent (non-color-corrected) angular size (2). These pa-
rameters then relate our observed flux to the (relative) luminosity
as F/FEdd ∝ L/LEdd (where LEdd is the Eddington luminosity)
and observed blackbody normalization to the color-correction
as K−1/4 = fcA. We also note here that it is possible to as-
sume uniform priors for FEdd and A (in contrast to assuming
uniform flat distribution for (M,R) space; see Appendix B) as
in Suleimanov et al. (2011b, 2012), Poutanen et al. (2014).

As our actual model, we use the recently computed hot neu-
tron star atmosphere models (Suleimanov et al. 2012) that ac-
count for the Klein-Nishina reduction of the electron scatter-
ing opacity using an exact relativistic Compton-scattering kernel
(Poutanen & Svensson 1996). These models give us the color-
correction as a function of relative luminosity, fc(ℓ ≡ L/LEdd).
Model uncertainty is taken into account by considering a boxcar
distribution of a width of (1 ± ǫ) × fc (where ǫ = 0.03) centered
around the “real” value (see Suleimanov et al. 2011b, 2012 for a
discussion of model uncertainties). Compositions considered are
a pure helium (He) and a solar composition of H and He with
sub-solar metal abundance of Z = 0.01 Z⊙ (SolA001). It seems
that Z < 0.1 Z⊙ in the surface layers of the NS, because in the
opposite case the atmosphere model predicts a drop of around
20% in the fc (and correspondingly in K−1/4) at F ∼ 0.3FEdd

(Suleimanov et al. 2011b, 2012), which is not observed. Alter-
natively, the absence of the drop in the low luminosities might
be due to an extra heating because of the accretion that starts
again after the burst. In any case, owing to these uncertainties in
the low luminosity regime, we neglect this area from the fit and
consider only the regime where F > 0.2Ftd, where Ftd is the flux
at the touchdown point.

We also relax the assumption of having a fixed hydrogen
mass fraction X (X = 0.738 for SolA001 and X = 0 for He mod-
els) and use Gaussian priors around the exact values with one
sigma tails of 0.05. Both compositions are tested for each source
and the physically more justified value is selected. Note also that
this selection is simple as a wrong composition gives R . 6 km
or R & 18 km. Strictly speaking this should be taken into ac-
count by using atmosphere models that are computed with the
corresponding hydrogen fractions but the models (i.e., color-
correction factors fc) depend so weakly on this value (as our one
sigma limits were X = 0+0.05

−0.0 or X = 0.738±0.05) that it is possi-
ble to neglect the effect that this has on the FEdd and A (see, e.g.,
Suleimanov et al. 2012, where the difference is relatively small
even for X = 0 compared to X = 1). For the M, R, and D this,
however, has some non-negligible effects that introduces a small
scatter of about 5 per cent to the posterior distributions around
the “exact” value. The uncertainty in the hydrogen fraction is
also backed up by physical arguments because for hydrogen-
poor companions (in the case of X = 0, i.e., He models) the evo-
lutionary models do not exclude the possibility of the envelope

containing some fraction of H (X . 0.1; Podsiadlowski et al.
2002). The value of solar ratio of H/He is relatively accurately
measured but here the uncertainties are possible and due to the
possible stratification on top of the NS and/or because of the light
ashes from the previous bursts that may stratify and accumulate
to the surface. In the end, however, one should remember that the
value of the hydrogen mass fraction for each model is still just
a model assumption. By selecting a Gaussian prior around the
presumed value we do weaken the effect that this selection has,
but we are unable to remove it completely. If no assumption for
the hydrogen mass fraction were to be made, we could not infer
the radius at all. Reassuringly, however, the end results do seem
to gather around similar radii, which means that our assumed X
values were close to the real values.

In our method the data D is constructed as a set of N points
(Fi,K

−1/4
i

) obtained from the blackbody fits, starting from the
touchdown (i = 1) and continuing down to 0.2Ftd (i = N). The
lower limit here is selected so that we can maximize the avail-
able data (in contrast to 1/e Ftd used in previous work) as the
theoretical models nicely follow the data. Below the 0.2Ftd limit
the background emission can start to play too important a role so
we choose to leave it out even though some of the bursts might
follow the model even beyond this. These data points are then
transformed into two-dimensional probability density distribu-
tions Di(F,K−1/4) by assuming a Gaussian measurement error
model. Next we implicitly assume that all of the data distribu-
tions Di are independent of each other and also independent
of the model assumptions and prior distributions. We then as-
sume that the conditional probability of the data given the model,
Pr(D|M), is proportional to the product of every individual prob-
ability Pr(Di|M)

Pr(D|M) ∝
∏

i=1,...,NS

Pr(Di|M). (8)

Each separate probability Pr(Di|M) is assumed to be propor-
tional to the path-integral evaluated through the two-dimensional
“data space”, (F,K−1/4), along the color-correction curve as

Pr[Di|M(M,R,D, X)] ∝
1

N

∫ fc,hi

fc,lo

d fc(ℓ)

∫

Fc

Di(F,K
−1/4) J

(

ℓ, fc

F,K−1/4

)

ds (9)

where fc,lo,hi = (1±ǫ)× fc(ℓ) are the lower and upper limits of the
prior boxcar distribution of the color-correction fc evaluated at
relative luminosity ℓ and where ǫ = 0.03, Fc = Fc(FEdd, A) is the
color-correction curve in (ℓ, fc) space, J

(

ℓ, fc
F,K−1/4

)

is the Jacobian
transforming the path from the model space to the observed data
space (using Eqs. (2) and (7)) and ds is the line element of Fc.
The path-integral is also area-normalized (or length-normalized
if ǫ = 0) with the factor N that is defined as the aforementioned
integral (9) without the dataD. This normalization takes into ac-
count the variable maximum ℓ that evolves as a function of log g.
We also note that the presented Bayesian path-integral formal-
ism is related to the two-dimensional frequentist formulation of
the normalized minimum distance (see Eq. (2) in Poutanen et al.
2014).

In Bayesian interference, model parameters are determined
using a marginal estimation where the posterior probability for a
model parameter p j is given by

Pr[p j|D](p j) =
1

V

∫

Pr[D|M]

× dp1dp2 . . . dp j−1dp j+1 . . . dpNP
, (10)
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Fig. 3. Left panel: combined cooling tail in the F ∝ L/LEdd vs.
K−1/4 ∝ fc plane with 1σ error limits presented by crosses. Gray
crosses show the burst evolution before the touchdown. Best-fit theo-
retical atmosphere models are shown by blue (SolA001) or red (He)
curves. Right panel: temperature evolution of the bursts. Blackbody
color temperature Tc is shown for each cooling tail with black crosses.
Red (He) or blue (SolA001) crosses show the color-corrected temper-
atures Teff(1 + z)−1. Dashed lines show a powerlaw with an index of 4
corresponding to the F ∝ T 4 relation. Highlighted gray area marks the
region of the cooling tail used in the fitting procedures.

where NP = 4 (corresponding to M, R, D, and X) and

V =

∫

Pr[D|M] Pr[M]dNM, (11)

without the model priors that determine the integration limits.
Then the one-dimensional function Pr[p j|D](p j) represents the
probability that the jth parameter will take a particular value
given the observational dataD.

The best-fit atmosphere models are presented in Fig. 3 (left
panel). In addition, the right panel of the figure depicts the ob-
served color temperatures Tc and the corrected effective temper-
atures Teff(1+ z)−1 for a distant observer. Here the temperature is
seen to follow the L ∝ T 4

eff law, that is, it shows passive cooling.
Corresponding best-fit values of the model parameters FEdd

and A are listed in Table 2 along with the 1σ and 2σ confidence
limits of the posterior distributions. After marginalizing over the
radius R, mass M, and hydrogen mass fraction X we get the pos-
terior distribution for the distance D too, that is also listed in
Table 2. Figure 4 shows the two-dimensional mass and radius
probability posterior distributions of our analysis. The obtained
contours are arched and elongated along the curves of constant

Eddington temperature4

TEdd,∞ =

(

gc

σSBκe

)1/4 1

1 + z
= 1.14 × 108 A F

1/4
−7 K, (12)

where g is the surface gravity, σSB is the Stefan-Boltzmann con-
stant and F−7 = FEdd/10−7 erg cm−2 s−1. The width of the con-
tours are defined by the errors in TEdd,∞ that originate from
the uncertainty in FEdd, A, and X. Our location on this curve
is defined by the distance D. Because the distance is free to
vary in our analysis, we end up with the aforementioned arched
posteriors.

Contours from 4U 1724−307 and SAX J1810.8−2609 are
seen to be almost identical with the radius constrained be-
tween about 11−13 km (for a more strict lower mass limit of
M > 1.1 M⊙) where the largest scatter is being produced by
the unknown distance. Both of these sources are also best ex-
plained by a solar-like composition with an almost zero metal-
licity (SolA001 model). For 4U 1702−429 the radius is seen to
be in the same range if mass .1.8 M⊙ is assumed. The model in
this case consists of a pure helium composition.

The choice of pure helium composition causes the Bayesian
model to favor larger mass. This happens because FEdd ∝ M/(1+
X), so when the hydrogen fraction increases or decreases (be-
cause of the possible uncertainty in the X parameter) the change
can be balanced by also increasing or decreasing M. With the
solar composition of H and He our X priors are symmetrical and
this effect is canceled out. In the case of He models the lower-
limit of X = 0 makes the hydrogen fraction prior distribution
asymmetrical and hence the bias for larger mass is present. We
note, however, that in addition to this bias there is a slight pref-
erence for the 4U 1702−429 to favor larger log g values and
hence larger masses. A similar effect is also present in the M
vs. R posteriors because of our choice of flat distance prior. As
FEdd ∝ M/D2 we end up oversampling the small distance values
of our flat prior that can then create a bias that favors smaller
mass. This effect is visible as an increased probability density
around M . 1.5 for 4U 1724−307 and SAX J1810.8−2609. Be-
cause of these model biases one should be careful not to give too
much emphasis to the specific values of the M vs. R distributions
presented in Fig. 4, but to focus more on the overall structure of
the posteriors given by the confidence contours.

It is also possible to set some constraints to the unknown
distance by using the cooling tail method. From the values of
FEdd and A, inferred from the data, we can derive the maximum
distance where we still have M and R solutions (see Appendix A
of Poutanen et al. 2014, for the full set of equations) as

D10 ≤ D10,max =
1.77 × 10−2

(1 + X)A2F−7
· (13)

On the other hand, our lower-limit of the mass prior distribution
(Mmin = 0.8 M⊙) also sets a lower-limit on the distance when
combined with FEdd and A. From these two constraints we are
then also able to put some limits on the distance to the NS.

4 Eddington temperature formulated using the FEdd and A parameters
is not strictly constant in the M − R plane because FEdd has a log g de-
pendency (because of the dependence of fc on log g). This complication
is introduced through the new models (Suleimanov et al. 2012) that for-
mally have super-Eddington luminosities due to the Klein-Nishina re-
duction of the effective cross-section. We note that our new cooling tail
formalism allows us to take this into account as we use M and R as our
parameters (instead of FEdd and A).

A25, page 6 of 23

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201527416&pdf_id=3


J. Nättilä et al.: Equation of state constraints for neutron stars using the cooling tail method

Table 2. Results of the Bayesian cooling tail analysis.

Source Model FEdd A D

(10−7 erg cm−2 s−1) ([km/10 kpc]−1/2) (kpc)

4U 1702-429 He 0.80+0.01 (+0.02)
−0.02 (−0.02) 0.192+0.001 (+0.002)

−0.002 (−0.004) 5.6+0.3 (+0.6)
−0.4 (−0.9)

4U 1724-307 SolA001 0.58+0.02 (+0.04)
−0.02 (−0.03) 0.184+0.002 (+0.003)

−0.003 (−0.004) 4.9+0.5 (+0.7)
−0.6 (−1.1)

SAX J1810.8-2609 SolA001 0.79+0.02 (+0.03)
−0.02 (−0.03) 0.169+0.002 (+0.004)

−0.002 (−0.003) 4.3+0.4 (+0.6)
−0.5 (−1.0)

Notes. Errors correspond to the 68% and 95% (in parentheses) confidence levels.
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Fig. 4. Mass-radius constraints for the sources from the hard state
PRE bursts. Constraints are shown by 68% (dotted line) and 95%
(solid line) confidence level contours. The upper-left region is excluded
by constraints from the causality and general relativistic requirements
(Haensel et al. 2007; Lattimer & Prakash 2007).

4. EoS constraints

The final goal of the mass and radius measurements is to con-
strain the pressure-density relationship of the cold dense mat-
ter. Here we use these new mass and radius constraints from the
three NSs to probe the EoS by applying a Bayesian analysis to
the data.

Here the model space consists of EoS parameters pi=1,...,Np

in addition to the values of neutron star masses Mi=1,...,NM
with a

total dimensionality of our model space as N = Np + NM . The
total number of neutron stars in our sample is NM = 3 and the
number of EoS parameters Np depends on our initial choice of
the model (see Sect. 4.1).

The dataD is now constructed as a set of NM probability dis-
tributions, Di(M,R) in the (M,R) plane obtained from the cool-
ing tail posteriors presented in Sect. 3. All of these distributions
are normalized to unity by computing the integral

∫ Mhigh

Mlow

dM

∫ Rhigh

Rlow

dRDi(M,R) = 1 ∀ i. (14)

This normalization ensures that each source is treated equally in
the analysis. As integration limits we use the same constraints
as in the cooling tail method analysis where Mlow = 0.8 M⊙,
Mhigh = 2.5 M⊙, Rlow = 5 km and Rhigh = 18 km.

Next we implicitly assume again that all of the new data dis-
tributionsDi are independent of each other and also independent
of the model assumptions and prior distributions. We then as-
sume that the conditional probability of the data given the model,
Pr(D|M), is proportional to the product of the probability distri-
butions Di evaluated at some mass Mi and radius (determined
from the model) R(Mi) so that

Pr[D|M(p1,...,NP
,M1,...,NM

)] ∝
∏

i=1,...,NM

Di(M,R)|M=Mi,R=R(Mi). (15)

For the model parameters np + nM we assume a uniform distri-
bution (i.e., weakly informative physical priors) except for a few
physical constraints described below.

In order to obtain all of the posterior probability distribu-
tions for the parameters we use the publicly available bamr
code (Steiner 2014a). The TOV solver and data analysis rou-
tines were obtained from the O2scl library (Steiner 2014b). To
solve the integral (10) the code uses the Metropolis-Hastings al-
gorithm to construct a Markov chain to simulate the distribution
Pr[D|M(p1,...,NP

,M1,...,NM
)]. For each point, an EoS parameter pi

and the neutron star mass Mi is generated. A corresponding ra-
dius curve R(M) (and radius Ri) is then obtained by solving the
TOV equations. From these three masses and radii, the weight
function Pr[D|M] is computed and the point is either accepted
or rejected according to the Metropolis algorithm.

4.1. EoS parameterization

When building our EoS we follow the work by Steiner et al.
(2015) and separate our density into three effective regimes:
the crust, and regions below and above the nuclear saturation
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Table 3. Prior limits for the EoS parameters.

Quantity Lower limit Upper limit
QMC parameters

a (MeV) 12.5 13.5
α 0.47 0.53
S (MeV) 29.5 36.1
L (MeV) 30.0 70.0

Model A parameters
n1 0.2 8.0
ǫ1 (MeV fm−3) 150 1600
n2 0.2 8.0
ǫ2 (MeV fm−3) 150 1600
n3 0.2 8.0

Model C parameters
∆P1 (MeV/fm3) 0 60
∆P2 (MeV/fm3) 0 300
∆P3 (MeV/fm3) 0 500
∆P4 (MeV/fm3) 0 500

density n0. We assume nuclear binding energy of Enuc(n0) =
−16 MeV and saturation density of 0.16 fm−3, typical values
obtained from Kortelainen et al. (2010). In mass densities these
values correspond to about 2.7 × 1014 g cm−3. The nuclear sym-
metry energy (the difference between energy per baryon of neu-
tron matter and that of the nuclear matter)5 is denoted as S(nB),
where nB is the baryon number density and S ≡ S(n0). The
pressure of neutron-rich matter at the saturation density n0 is
denoted by L ≡ 3n0S′(n0). In addition, the nuclear masses
and theoretical models imply a correlation between L and S
(Lattimer & Steiner 2014) and thus we additionally restrict these
parameters as (9.17S−266 MeV) < L < (14.3S−379 MeV) en-
closing the aforementioned constraints6. The transition density
from the crust to core is fixed to be at nuclear baryon density of
0.08 fm−3. We note that the crust model has almost no effect to
the resulting radii (nor does the fixed transition density) as the
results are much more dependent on the high density behavior
of our EoS.

Near the nuclear saturation density, below the core, we em-
ploy the Gandolfi-Carlson-Reddy (GCR) quantum Monte Carlo
model (Gandolfi et al. 2012) that takes into account the three-
body forces between the particles in the high density matter.
The GCR results are accurately approximated by a two polytrope
model given in terms of the energy E for the neutron matter at
some nucleon number density n as

E(n) = a

(

n

n0

)α

+ b

(

n

n0

)β

+ mn (16)

with coefficients (a and b) and exponents (α and β) constrained
by QMC calculations and where mn is the nucleon mass. The
parameters of the first term, a and α, are mostly sensitive to the
low density behavior of the EoS and are responsible for the two-
nucleon part of the interaction. The limits of a and α are cho-
sen so that we take into account all of the possible models from
Gandolfi et al. (2012; see Table 3). On the other hand, the pa-
rameters of the second term, b and β, are sensitive to the high

5 Quartic terms are ignored, see Steiner (2006).
6 More accurately speaking, the constraints originate from nu-
clear masses (Kortelainen et al. 2010), quantum Monte Carlo model
(Gandolfi et al. 2012), chiral interactions (Tews et al. 2013), and from
isobaric analog states (Danielewicz & Lee 2014).

density physics and control the three-nucleon interactions. Fur-
thermore, in our analysis we re-parameterized b and β in terms
of S and L. Near the nuclear saturation density n0 the symmetry
energy of the neutron matter can be obtained from (16) as

S ≡ S(n0) = E(n0) − Enuc(n0) = 16 MeV + a + b, (17)

where Enuc(n0) = −16 MeV is the previously mentioned nuclear
binding energy at the saturation density. For the pressure at the
saturation density we obtain

L ≡ 3n0
dS(n)

dn

∣

∣

∣

∣

n=n0

= 3(aα + bβ). (18)

We also restrict the GCR model only up to nuclear saturation
density as the validity of the model might not hold if a phase
transition is present.

Above the saturation density n0, a set of three piecewise
polytropes are used and referred to as “model A”, similar to
Steiner et al. (2013, 2015). In this way, when parameterizing
the high-density EoS we introduce three continuous power laws
defining the pressure as

P ∝ ǫ1+1/n, (19)

as a function of the energy density ǫ. It has been shown that it is
possible to model a wide range of theoretical model predictions
with these kinds of simple polytropes with a typical rms error of
about 4% when compared to the actual numerical counterparts
(Read et al. 2009). In practice we can mimic theoretical models
with up to three phase transitions because they will appear as
successive polytropes with different indices. Model A has five
free parameters: the first transition energy ǫ1 and the first poly-
trope index n1, the second transition energy ǫ2 and the second
polytrope index n2, and a third polytrope index n3 (see Table 3
for the hard limits). Of course, we also require that ǫ2 > ǫ1 in
order to avoid double-counting of the parameter space. We have
only five parameters (in contrast to six) because the transition to
the first polytrope is already fixed by the EoS at the saturation
density.

An alternative for the high density EoS is a piecewise lin-
ear model referred to as model C by Steiner et al. (2013, 2015).
Here the low density EoS is used up to 200 MeV fm−3, after
which four line segments are considered in the ǫ vs. P plane at
fixed energy densities of 400, 600, 1000, and 1400 MeV fm−3.
The linear relation between the two last regimes is extrapolated
to higher densities, if needed. Model C has four free parameters:
∆P1 = P(ǫ = 400) − P(ǫ = 200), ∆P2 = P(ǫ = 600) − P(ǫ = 400),
∆P3 = P(ǫ = 1000) − P(ǫ = 600), and ∆P4 = P(ǫ = 1400) − P(ǫ =
1000). These pressure changes are always relative to the value of
the pressure at the previous fixed point, effectively showing how
sharply the pressure changes as a function of the energy density.
This second alternative model tends to favor strong phase tran-
sitions in the core so it is interesting to study the resulting dif-
ferences between it and the more smoothly evolving polytropic
model.

In total our EoS models have nine (QMC +model A) or eight
(QMC + model C) free parameters. In addition to the limits set
on the priors (summarized in Table 3) some combinations of the
parameters are rejected on a physical basis. More precisely, we
ensure that all

1. mass-radius curves produce 2 M⊙ NS in line with
the recent pulsar measurements (Antoniadis et al. 2013;
Demorest et al. 2010),

2. obtained EoS are causal, meaning that dP/dǫ > 0, and
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Table 4. Most probable values and 68% and 95% confidence limits for the EoS parameters.

Quantity 95% lower limit 68% lower limit Most probable value/median 68% upper limit 95% upper limit
QMC parameters (with Model A)

S (MeV) 29.6 30.4 32.2 33.3 35.0
L (MeV) 32.1 42.1 54.9 67.7 69.4

Model A parameters
n1 0.36 0.45 0.55 0.66 0.68
ǫ1 (MeV fm−3) 156 164 712 865 1020
n2 0.25 0.25 0.47 4.80 7.55
ǫ2 (MeV fm−3) 531 794 1190 1510 1560
n3 0.95 0.99 1.41 6.80 7.76

QMC parameters (with Model C)
S (MeV) 29.7 30.4 31.8 33.6 35.2
L (MeV) 32.0 41.4 54.9 68.4 69.4

Model C parameters
∆P1 (MeV fm−3) 5.0 9.9 15 23 31
∆P2 (MeV fm−3) 59 122 176 194 195
∆P3 (MeV fm−3) 44 186 345 386 390
∆P4 (MeV fm−3) 12 26 199 372 385

Notes. For the L and ∆P4 parameters we give the median value of the flat distribution between the 1σ limits.

3. EoSs are hydrodynamically stable everywhere, meaning that
their pressure increases with increasing energy density.

In addition, during the computations, if any of the three masses
obtained is larger than the maximum mass for the selected EoS,
that realization is discarded and a new one is generated.

4.2. EoS parameter results from the Bayesian analysis

The most probable value and the corresponding 1σ and 2σ lim-
its for the EoSs are summarized in Table 4 (for the computa-
tion of the confidence regions, see Lattimer & Steiner 2014).
We find that the posterior distributions for a and α, correspond-
ing to the low-density EoS behavior (which is dominated by
two-body interactions), are almost flat. Thus, the neutron star
observations do not constrain these parameters, as found pre-
viously (Steiner & Gandolfi 2012). We find that the derivative
of the nuclear symmetry energy L is only weakly constrained.
However, we do find a somewhat stronger constraint on the sym-
metry S than what has been obtained previously (Steiner et al.
2010). The origin of this constraint is the combination of the
neutron star data with the correlation between S and L found
in quantum Monte Carlo results (Gandolfi et al. 2012). It is
also remarkable that with both high-density models, model A
and model C, the symmetry energy is constrained around S ≈
32 MeV, that is in good agreement with earthly measurements
(S = 28−34 MeV, Klüpfel et al. 2009). We note, however, that
the parameters obtained here are to be considered as “local”
quantities, as they are properties of the EoS only at densities
close to the saturation density.

Histograms for the posterior distributions of the high-density
parameters of the model A are presented in Fig. 5. The index of
the first polytrope n1 peaks sharply around 0.5 corresponding to
a polytropic exponent γ1 = 1+1/n1 ∼ 3. The large value implies
a rather stiff EoS at supranuclear densities. This first polytrope,
corresponding to the n1 index, is seen to continue all the way up
to the first transition density at ǫ1 ≈ 700± 150 MeV fm−3, that is
around four times the saturation energy density ǫ0. In some real-
izations the transition occurrs as early as ǫ1 ≈ 200 MeV fm−3 but

these cases correspond to the first sharp peak seen at n2 ≈ 0.5,
meaning that, practically, we have only two polytropes span-
ning our energy density range. In this case, the role of the first
polytrope is superseded by the second segment corresponding to
index n2. In the opposite case, where all three polytropes span
the grid the second polytrope index has values around 1.5 (poly-
tropic exponent γ2 ∼ 1.7) with a long tail extending all the way
up to around 8.0 (i.e., to the upper-limit of our prior). What this
means is that the data can not constrain the high-density behav-
ior of the EoS very well. As n2 > n1, it, however, indicates that
some softening of the EoS is present at higher densities. The
third polytropic index n3 is only weakly constrained to be &1
(peaking around 1.5) indicating either no phase transitions at all
or additional softening as n3 > n2 > n1.

Alternatively to the rather smoothly behaving polytrope
model, we take the piecewise linear model C that can show
strong phase transitions. Instead of extending the n2 and n3 pa-
rameter upper-limits of model A, that would create an appar-
ent bias for softer EoS, we can characterize the effect of softer
EoSs by applying this piecewise parameterization to the data,
too. The histograms of the posterior distributions of the obtained
pressure differences (at the fixed transition densities ǫ = 400,
600, 1000, and 1400 MeV fm−3) are presented in Fig. 5. For
the first segment from ǫtrans = 200 to ǫ1 = 400 MeV the
difference is tightly constrained around ∆P1 = 15 MeV fm−3

with an almost symmetric Gaussian distribution with tails of
1σ ≈ 7 MeV fm−3. This introduces a strong phase transition
to the EoS as the pressure changes by only a little. After this
possible transition the EoS hardens out and for ∆P2 and ∆P3

(at 600 and 1000 MeV fm−3) the posterior distributions are con-
siderably asymmetric toward larger pressure changes peaking at
180 and 350 MeV fm−3, respectively. For the final possible line
segment, the EoS appears almost unconstrained. The sharp cut-
off at higher pressures for ∆P2, ∆P3, and ∆P4 appears because
we rule out EoSs where the speed of sound exceeds the value of
the speed of light. The modest high-value tail for ∆P4 originates
from a small group of EoSs where the central value does not ex-
ceed 1000 MeV fm−3 and hence every value of the parameter is
allowed.
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Fig. 6. Obtained EoS constraints in the M − R (left panel) and in the P − ǫ plane (right panel). Upper panels correspond to the QMC + model A
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confidence limit contours.

4.3. Predicted EoS

The predicted EoS obtained from the X-ray burst data is shown
in Fig. 6 in M − R and P − ǫ planes. Each panel in the figure
displays an ensemble of one-dimensional (1D) histograms over
a fixed grid in one of the axes (note that this is not quite the same
as a 2D histogram). The right-hand panels present the ensemble
of histograms of the pressure for each energy density. This was
computed in the following way: for each energy density, we de-
termined the histogram bins of pressure which enclose 68% and
95% of the total MC weight. The location of those regions for
each 1D histogram are outlined by dotted and solid curves, re-
spectively, and these form the contour lines. These 1σ and 2σ
contour lines give constraints on the pressure as a function of
the energy density as implied by the three NS data sets (see also
Tables C.1 and C.2). Very high density behavior between the
models A and C are seen to be similar as both of the models ap-
pear rather soft in this regime. At these very high energy density
regions it is actually the maximum mass requirement that con-
straints the pressure evolution (see Steiner et al. 2013, for more
extensive discussion). Most striking difference occur at lower en-
ergy densities where the sharp phase transition in the QMC +
model C EoS is seen to produce a large scatter in the pressure at
supranuclear densities (around ǫ ≈ 400 MeV fm−3).

Similarly, the left-hand panels of Fig. 6 present our results
for the predicted mass-radius relations. These panels present the

ensemble of histograms of the radius over a fixed grid in neu-
tron star mass with 1σ and 2σ constraints presented with dot-
ted and solid lines, respectively, similarly to the right-hand pan-
els. See also Tables C.3 and C.4 that summarize these contour
lines and give the most probable M − R curve. The width of the
contours at masses higher than about 1.8 M⊙ tends to be large
because the available NS mass and radius data in our sample
generally imply smaller masses which in turn leads to weaker
constraints. The obtained EoS for the QMC + model A has a
predicted radius that is almost constant over the whole range of
viable masses. The radius is constrained between 11.3−12.8 km
for M = 1.4 M⊙ (2σ confidence limits). Constraints this strong
are obtained because the combination of weak (or non-existent)
phase transitions and the NS mass and radius measurements
from the cooling tail method compliment each other well: cool-
ing tail measurements are elongated along the constant Edding-
ton temperature curve that stretches from small mass and small
radius to large mass and large radius. On the other hand, the as-
sumption of weak phase transitions in the EoS forces the radius
to be almost independent of mass. This assumption of constant
radius then eliminates some of the uncertainties present in the
cooling tail measurements (mostly due to the unknown distance)
as each individual measurement is required to have (almost) the
same radius.

With the QMC + model C, on the contrary, the first phase
transition at supranuclear densities produce a slightly skewed
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Fig. 7. Individual mass and radius constraints for the three neutron stars used in the analysis. The left-hand panel shows the projected mass and
the middle panel the projected radius histograms. Red shading corresponds to the 68% and blue to the 95% confidence regions of these parameters.
Right-hand panels show the full 2D mass and radius probability distributions. Contours of 68% (dotted, black line) and 95% (solid, black line)
confidence regions are also shown.

mass-radius curve to compensate the cooling tail burst data that
is elongated along the constant Eddington temperature. With
this possible phase transition present in the EoS the mass-radius
curve is then able to support high-mass NSs with radius of
about R ≈ 11.6 km and low-mass stars with smaller radii of
around R ≈ 11.3 km simultaneously. The phase transition also
causes large scatter on the radius below 1 M⊙ as the exact lo-
cation of the turning point where the radius starts to increase
again, cannot be constrained from the available data. Because
of these uncertainties originating from the possible phase transi-
tion, model C shows a much larger scatter in the predicted radii at
small masses. The radius is constrained between 10.5−12.5 km
for M = 1.4 M⊙ (2σ confidence limits).

4.4. Individual mass and radius results for the NSs

The combination of several neutron star mass and radius mea-
surements with the assumption that all neutron stars must lie
on the same mass-radius curve also puts significant constraints
on the mass and radius of each object. The resulting M and
R constraints for each object are given in Fig. 7 and sum-
marized in Table 5. In general, the QMC + model A EoS
tends to favor slightly larger masses and larger radii than com-
pared to the QMC + model C. With the polytropic model A,
the resulting mass is tightly constrained around M ≈ 1.5 M⊙
for 4U 1724−307 and for SAX J1810.8−2609. Slightly larger
mass of around M ≈ 1.8 M⊙ is obtained for the remaining
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Table 5. Most probable values for masses and radii for NSs constrained
to lie on one mass versus radius curve.

M R
Source (M⊙) (km)

QMC +Model A
4U 1702−429 1.8+0.2 (+0.3)

−0.3 (−0.6) 11.9+0.4 (+0.8)
−0.6 (−1.1)

4U 1724−307 1.5+0.4 (+0.6)
−0.3 (−0.4) 12.0+0.5 (+0.8)

−0.5 (−1.0)

SAX J1810.8−2609 1.4+0.4 (+0.6)
−0.4 (−0.5) 12.0+0.4 (+0.8)

−0.5 (−1.0)

QMC +Model C
4U 1702−429 1.8+0.2 (+0.3)

−0.3 (−0.7) 11.4+0.5 (+1.0)
−0.5 (−1.0)

4U 1724−307 1.3+0.6 (+0.7)
−0.3 (−0.5) 11.4+0.6 (+1.0)

−0.5 (−1.1)

SAX J1810.8−2609 1.2+0.6 (+0.9)
−0.3 (−0.4) 11.5+0.5 (+1.0)

−0.6 (−1.2)

Notes. Errors correspond to the 68% and 95% (in parenthesis) confi-
dence levels.

4U 1702−429. Resulting radii are constrained to be around
R ≈ 12.0 km for each source. With the piecewise linear
model C the mass is about M ≈ 1.3 M⊙ for the 4U 1724−307
and SAX J1810.8−2609 and, again, around M ≈ 1.8 M⊙
for 4U 1702−429. The obtained radii are located around R ≈
11.4 km. Because of the uncertainties from the possible phase
transition occurring in model C, the resulting mass and radius
constraints for each source are also much more loose.

5. Discussion

In this paper we have used the cooling tail method to constrain
the mass and radius of three NS X-ray bursters: 4U 1702−429,
4U 1724−307, and SAX J1810.8−2609. Special care was taken
to use only the passively cooling bursts as theoretical calcu-
lations of the color-correction factor fc affecting the emerg-
ing spectra do not take any external heating into account. In
practice this means that the blackbody normalization K is re-
quired to evolve during the burst (because K−1/4 ∝ fc; see, e.g.,
Poutanen et al. 2014; Kajava et al. 2014) and is indeed what we
observed for the bursts in our sample.

First we introduced a new Bayesian cooling tail method and
assumed uniform M vs. R priors in our analysis (instead of uni-
form FEdd and A priors). By marginalizing over the M, R, and X
prior distributions we also got distance estimates for our sources.
One advantage here is that measurements like this are basically
done in the X-ray band where interstellar extinction does not
play such an important role, hence reducing possible model de-
pendencies originating, for example, from selection of the in-
terstellar extinction model. One should, however, note that in
our case completely different kinds of model dependencies are
present, related, for example, to the uncertain composition of the
accreted material (i.e., the value of the hydrogen mass fraction)
or to the X-ray burst selection. Unfortunately, distance mea-
surements that we can compare against are available only for
4U 1724−307, as it is located in the globular cluster Terzan 2.
Distance estimates to this source range from 5.3 to 7.7 kpc
(Ortolani et al. 1997, using an extinction model valid for red
stars or an average value from some large sample, respectively)
in addition to the more recent measurement of 7.4 ± 0.5 kpc us-
ing near-IR observations of red giant branch stars (Valenti et al.
2010). We note that our distance constraints are consistent with
the lower-limit end of the measurements as Dmax ≈ 6 kpc.

This value is, however, dependent on our selection of hydrogen
mass fraction and should not be interpreted as a strict limit. If
we would decrease the hydrogen mass fraction (and hence in-
crease the Dmax value) our resulting radii would also rapidly in-
crease, creating tension between our other measurements. Inter-
estingly, if we would impose a cut at around 5.3 kpc into our
distance prior, our M vs. R results would be tightly constrained
around R = 12.0 ± 0.3 km and M = 1.5 ± 0.2 M⊙ as the
new distance prior would remove the low-mass solutions. For
4U 1702−429 and SAX J1810.8−2609 we constrained the dis-
tance to be around 5.6+0.6

−0.9 kpc and 4.3+0.6
−1.0 kpc (2σ confidence

limits), respectively.
Mass and radius constraints of 4U 1724−307 and

SAX J1810.8−2609 are found to be almost identical, with the
radius confined between about 11−13 km. Both of these sources
are also best modeled by a solar-like composition with almost
zero metallicity (SolA001 model). The best-fit model for the
third, remaining source 4U 1702−429 consists of pure helium.
This implies a hydrogen-poor companion like a white dwarf, that
in turn, implies a compact binary system in order for the accre-
tion to proceed via Roche lobe overflow. Best-fit values for the
radius of this source (with X = 0) give R ≈ 13 km at around
M = 1.5 M⊙, a slightly larger value compared to the two other
sources.

Some physical uncertainties are also still present in the X-ray
burst M−R measurements. For example, no rotation is taken into
account in our current work. Rotation affects the emerging spec-
trum because of the various special relativistic effects (see, e.g.,
Bauböck et al. 2015) but most importantly because the radius of
the star increases at the equator and decreases at the poles as the
star becomes oblate (Morsink et al. 2007; Bauböck et al. 2013)
It, however, also introduces two new unknown free parameters to
the fits: the spin period and the inclination. In many cases these
parameters are not known a priori (especially the inclination). In
addition, the flux distribution over the surface of the NS is un-
known. The rotation does not, however, have a considerable ef-
fect on the M and R constraints when the spin frequency is mod-
erate (.400 Hz). Luckily, most of the X-ray bursters detected
seem to have a frequency around this range. In our case, only
4U 1702−429 has a measured spin period of 329 Hz, meaning
that it is a slow rotator and no major corrections are expected. For
the two other sources, no burst oscillations nor persistent mil-
lisecond pulsations were detected and so the spin period is un-
known. Other uncertainties may arise from the composition that
can have an impact on the color-correction factors (Nättilä et al.
2015). Stratification may create an almost pure hydrogen layer
or, in the opposite situation, strong convection might mix up
the whole photosphere thoroughly, including the burning ashes
consisting of heavier elements (see e.g., Weinberg et al. 2006;
Malone et al. 2011, 2014). There are, however, convincing im-
plications that these do not affect our current measurements since
the observations of the normalization K do really seem to follow
the theoretical atmosphere models with the simple solar-like (or
pure He) compositions very closely. Additional confirmation is
also obtained from the corrected temperatures that follow the
F ∝ T 4

eff law implying that the values of fc used are correct. In
the end, the distance is still our biggest source of uncertainty in
the measurements.

Similarly to the physical uncertainties, some technical
sources of systematic errors are present. For example data se-
lection for individual bursts plays a role: fitting bursts from the
touchdown down to only half of the touchdown flux (instead of
the 20% used here) increases the uncertainties, as one would ex-
pect, because we use fewer data, but also increases the radius
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by as much as about 800 m. Also by refining the cooling tail
method (where fc − ℓ is used in the fitting procedures) into
a more accurate two parameter treatment (where our model is
w−1/4 − (w f 4

c )ℓ and w is the dilution factor that was previously
assumed to be w ≈ f −4

c ) the radius is seen to increase by about
500 m (Suleimanov et al., in prep.). Because both of these ef-
fects act to increase our radius we can understand our current
measurements as a lower limit of the real radius.

The results presented here constitute the first observational
NS M − R constraints for 4U 1702−29 and SAX J1810.8−2609
using RXTE/PCA data. In addition, we constrained the compact-
ness for the NS in 4U 1724−307 that has already been previously
analyzed by Suleimanov et al. (2011a) and Özel et al. (2016).
These three measurements were then used to create our parame-
terized EoS of cold dense matter.

In general, our EoS M − R constraints are slightly different
from those found by Özel et al. (2016) as our radii tends to be
somewhat larger, between about 10.6−12.4 km for model C and
11.2−12.7 km for model A, compared to their measurement of
10.1−11.1 km for M = 1.5 M⊙. Note also that the parameteri-
zation of the EoS in Özel et al. (2016) is closer to our QMC +
model A polytropic formalism. One possible cause for the dif-
ference might be data selection: the PRE burst we analyzed in
this paper occurred in the hard spectral state with a low persis-
tent flux level, whereas most of the bursts analyzed in Özel et al.
(2016) occur in the soft spectral state and at higher persistent
flux. As mentioned in the introduction, hard state X-ray bursts
– such as the ones analyzed in this paper – tend to follow
the NS atmosphere model predictions, whereas the soft state
bursts never follow them (see Fig. 3 and also Suleimanov et al.
2011a; Poutanen et al. 2014; Kajava et al. 2014, for discussion).
We therefore argue that in the soft state bursts there is an addi-
tional physical process (i.e. the spreading boundary layer) acting
on the burst emission, that causes the assumptions on the visi-
bility of the entire NS to break down and the value of the color-
correction factor to be different from what is predicted by the
passively cooling atmosphere models. One should also notice
the completely different shape of the M − R contours obtained
in Özel et al. (2016) where all of the M − R points are close to
the region where only one mass-radius solution exists (see, e.g.,
Poutanen et al. 2014, for more in depth discussion about this),
indicating that the lower-limit for the distance is close to the
maximum distance Dmax. This also creates tension for the so-
lutions to exists on higher masses as the one-solution point lies
on the R = 4GM/c2 line (see, e.g., Özel & Psaltis 2015). In our
case, no such a tension exists, leading, in turn, to much bigger
M − R errors.

Specifically for the 4U 1724−307 we obtain R ≈ 12.0 ±
0.5 km whereas Özel et al. (2016) obtains ∼12.2 km. Here the
difference is already well inside error-limits. Suleimanov et al.
(2011a,b) have also analyzed 4U 1724−307 using a different
hard-state burst than what is in our sample and the resulting radii
are considerably different (R > 14 km). There is, however, a
possibility that the atmosphere during this burst might not con-
sist of hydrogen and helium only, but is enriched with the nu-
clear burning ashes. These ashes would then affect the measured
color-correction factor considerably (see Nättilä et al. 2015, and
Appendix A for more in-depth discussion about this burst). In
the recent analysis of 4U 1608−52 by Poutanen et al. (2014) they
also used only the hard-state bursts from the source to constrain
the mass and the radius. The resulting radii were, again, some-
what larger at around R & 13 km for M = 1.4 M⊙. We note,
however, that 4U 1608−52 is a fast rotator with an observed
spin frequency of 620 Hz (largest observed for an X-ray burster;

Muno et al. 2002). This means that for an exact and reliable
M−R analysis, a rotation-modified cooling tail method should be
used (Suleimanov et al., in prep.7; see also Bauböck et al. 2015).

In the second part of the paper, we combined our separate
cooling tail measurements to obtain a parameterized EoS of the
cold dense matter inside NSs. Using a Bayesian framework, we
studied the possible constraints we can set on the EoS parame-
ters such as the symmetry energy S and its density derivative L.
We also relaxed our EoS priors by studying two different high-
density models: model A consisting of polytropes and model C
with piecewise linear segments in the ǫ−P plane. Here, model C
with linear segments supports strong phase transitions in the
supranuclear densities and indeed our resulting EoS is seen to
have a large transition around ǫ ∼ 400 MeV fm−3 to support both
large radius for large-mass and smaller radius for small-mass
stars. Model A, on the other hand, gives much tighter constraints
as the pressure in the core evolves rather smoothly and hence the
resulting radius is almost independent of the mass. This restric-
tion of having a constant radius then asserts tight limits to the
obtained M vs. R results.

Nevertheless, all of the obtained constraints seem to favor
an EoS that produces a radius of 10.5−12.8 km (95% confi-
dence limits) for a mass of 1.4 M⊙. One should, however, keep in
mind that in reality the aforementioned systematic errors might
increase these limits slightly. It is also interesting to note that
we do not necessarily need a far better precision for the M − R
measurements as interesting constraints can already be obtained
from the existing observations. Encouragingly, the astrophysical
constraints also seem to agree with nuclear physics experiments,
theoretical studies, and heavy-ion experiments of neutron mat-
ter (Lattimer & Lim 2013). As well as the EoS constraints of
the super-dense matter we get constraints for individual mass
and radius measurements of the single NSs. By assuming that
all of the sources must lie on the same M vs. R curve we can
set stronger constraints than what is possible with only the cool-
ing tail method alone. Particularly our results from the QMC +
model A show how the unknown distance uncertainties (i.e.,
elongated M vs. R contours along the constant Eddington tem-
perature) can be reduced by combining different sources with
this kind of joint EoS fit. Finally, the mass, for example, can be
constrained to an accuracy of about 0.2−0.3 M⊙ (1σ confidence
level) from the original limits spanning from M = 0.8 to 2.2 M⊙.

Future prospects include an extended study of uninformative
(for example, Jeffrey’s) priors in M − R space, both for the EoS
and cooling tail fit parameters. This should be done to ensure
that we do not implicitly and unknowingly transfer information
to the mass and radius posteriors that already have many uncer-
tainties present due to the poor measurements. Another obvious
prospect is the addition of all possible M − R measurements in-
cluding, but not restricted to, other X-ray bursting sources, qui-
escent LMXBs, thermally emitting isolated NSs, neutron star
seismology results, pulse profiles in X-ray pulsars, moment of
inertia, and crust thickness measurements.
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Appendix A: Two hard-state bursts

from 4U 1724–307

The cooling tail method has been previously applied to another
hard-state burst (obsid: 10090-01-01-021) from 4U 1724−307
(Suleimanov et al. 2011a,b). In this case, a rather large radius in
excess of 13 km was obtained. Since then, there has been a sec-
ond hard-state burst from the same source that does not, how-
ever, follow the same track in the K−1/4–F plane (this new burst
is the one we use in our analysis; see Fig. A.1). We also note that
the burst data presented in Suleimanov et al. (2011b, 2012) was
reduced using an older RXTE data reduction pipeline without
deadtime correction of the detectors. Since 2010, the RXTE team
also introduced a correction to the effective area of the instru-
ment that changed the measured flux by up to 10%. With our
current (and final) RXTE data reduction methods (see Sect. 2)
and with the new color-correction factors from Suleimanov et al.
(2012) the older burst results in a radius of around 15 km at
1.4 M⊙ when the cooling tail method is applied with the solar
composition model (SolA001). With pure hydrogen composi-
tion the radius is brought down to the ∼14 km range. We also
note that in Suleimanov et al. (2011b, 2012) the first five most
luminous points near the touchdown are ignored in the fit. Ignor-
ing these points, however, leads to smaller Eddington flux and,
hence, an even larger radius of around 16−17 km at 1.4 M⊙ with
our current data and new analysis methods.

The old burst also has poor χ2 values at the low luminos-
ity tail (below about <0.5Ftd) originating from an additional
powerlaw-like distribution of high-energy photons that cannot be
described by the blackbody law. This, in turn, might imply ad-
ditional surface heating by infalling material from the hot accre-
tion flow. The extra heating does not, however, explain the dis-
crepancy between the two bursts at higher luminosities. At these
higher luminosities, it is possible that the NS atmosphere does
not consist of hydrogen and helium only, but is enriched with
the nuclear burning ashes (Weinberg et al. 2006). The presence
of these ashes can then have a substantial impact on the color-
correction factor reducing it by as much as 40% (Nättilä et al.
2015). This is also supported by the exceptionally long duration
of the burst (∼100 s compared to ∼30 s for the other bursts in
our sample) that might drive up the convection. Furthermore, the
temperature evolution of this burst also shows some deviations
from the L ∝ T 4 law (see right-hand panel of Fig. A.1) that might
imply inconsistencies with pure solar composition. Because to
these uncertainties, we choose to leave this burst out from our
sample and only use the newer hard-state burst from the source
that is consistent with passive cooling.
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Fig. A.1. Left-hand panel: cooling tail in the F ∝ L/LEdd vs. K−1/4 ∝
fc plane with 1σ errors presented by black crosses for a hard-state
PRE burst from 4U 1724−307 analyzed by Suleimanov et al. (2011b).
Best-fit theoretical atmosphere model is shown with the blue curve
(SolA001). A PRE burst from the same source (used in the this paper) is
also presented with gray crosses and gray curve. Right-hand panel: tem-
perature evolution of the Suleimanov et al. (2011b) burst. Blackbody
temperature Tbb is shown for the cooling tail with black crosses. Blue
crosses show the color-corrected temperatures Teff(1+ z)−1. The straight
inclined lines show a powerlaw with an index of 4 corresponding to the
F ∝ T 4 relation.
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Appendix B: Uniform FEdd and A priors

Instead of assuming uniform M vs. R priors we can assume uni-
form FEdd and A priors (and compute M and R) as in our previous
work (see, e.g., Poutanen et al. 2014). This kind of selection of
priors, however, turns out to be problematic in many ways.

First of all, we cannot truly introduce log g dependency into
to the models as we know neither M nor R beforehand. In this
case, we are left to iteratively select the best-fit surface gravity
from the three basic values (log g = 14.0, 14.3, and 14.6) instead
of interpolating between the models, as in the current work.

Secondly, there are some issues with the transformation from
FEdd and A parameters8 to M and R since the determinant of the
Jacobian is

det

{

J

(

FEdd, A

M,R

)}

=
c G|1 − 4GM

Rc2 |
2D3/2κesR3/2(1 − 2GM

Rc2 )3/2
· (B.1)

From here we can see that we end up ignoring the so-called crit-
ical line where R = 4GM/c2, as was shown by Özel & Psaltis
(2015). Hence, some information of M and R is already present
in (M,R) space owing to our choice of uniform FEdd and A pri-
ors. The effect from this is shown visibly as a splitting of our
M vs. R posteriors into two separate regions (see Fig. B.1). For
clarity, no scatter in X or error in fc is taken into account in this
case. The lack of (M,R) solutions near this critical line also ends
up affecting our final joint-fit results as can be seen in Fig. B.2.
Because of these aforementioned issues we choose uniform pri-
ors in M and R instead, as they are final parameters that we want
to study. We note, however, that in the cases analyzed before by
Suleimanov et al. (2011b) and Poutanen et al. (2014) the error is
not critical because the solution on M − R plane is constrained
to be far from the R = 4GM/c2 line because of the distance
constraints.

8 Our definition of the second A parameter differs from the one used
in the work by Özel & Psaltis (2015) where A = R2

∞/D
2 f 4

c = ( fcA)−4.
Conclusions, however, remain the same.
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Fig. B.2. Individual mass and radius constraints for the three neutron stars used in the analysis with uniform FEdd and A priors. Left-hand
panel shows the projected mass and the middle panel the projected radius histograms. Red shading corresponds to the 68% and blue to the 95%
confidence regions of the parameters. Right-hand panels shows the full 2D mass and radius probability distributions. Contours of 68% (dotted,
black line) and 95% (solid, black line) confidence regions are also shown.
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Appendix C: EoS Tables and parameter correlations

The results for the two possible parameterized EoSs are tabulated here for easier access. Tables C.1 and C.2 list the pressure vs.
density relation for the QMC+model A and QMC+model C EoSs, respectively. Similarly, Tables C.3 and C.4 summarize the
resulting mass vs. radius relation for the two aforementioned models. Additionally, we show all possible EoS parameter correlations
in Figs. C.1 and C.2.

Table C.1. Most probable values and 68% and 95% confidence limits for the pressure as a function of energy density for QMC + model A.

Energy density 2σ lower limit 1σ lower limit Most probable value 1σ upper limit 2σ upper limit
(MeV fm−3) (MeV fm−3)
150 1.71 2.15 2.64 3.11 3.33
200 3.8 4.74 5.73 6.6 7.18
250 6.91 9.1 10.4 12.0 13.3
300 12.3 15.3 16.9 19.8 22.6
350 19.7 23.6 26.0 30.4 35.9
400 29.5 34.0 36.5 44.6 55.3
450 42.0 46.7 50.4 63.0 81.3
500 57.2 61.9 67.8 86.1 109.9
550 74.7 80.7 86.7 113.6 139.4
600 94.9 104.0 114.1 143.7 169.3
650 117.7 130.6 147.6 173.4 199.2
700 143.2 157.7 171.3 202.2 229.0
750 169.3 183.6 194.7 230.0 258.5
800 192.9 208.6 221.3 258.5 288.7
850 213.0 233.3 251.5 288.3 319.2
900 230.4 257.0 272.2 318.5 350.1
950 246.2 279.1 294.3 348.2 381.2
1000 262.3 300.2 323.7 377.2 413.9
1050 277.6 320.8 344.4 406.3 447.0
1100 293.2 341.3 372.6 435.7 481.8
1150 308.7 360.8 394.7 465.0 517.9
1200 325.1 379.9 414.8 494.6 556.1
1250 341.0 399.0 448.8 525.0 594.5
1300 357.7 418.0 462.0 555.8 634.5
1350 373.2 436.7 481.1 586.8 674.8
1400 389.2 455.6 505.5 618.8 716.4
1450 405.1 474.5 531.2 651.7 759.3
1500 421.4 493.0 558.2 685.1 804.6
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Table C.2. Most probable values and 68% and 95% confidence limits for the pressure as a function of energy density for QMC + model C.

Energy density 2σ lower limit 1σ lower limit Most probable value 1σ upper limit 2σ upper limit
(MeV fm−3) (MeV fm−3)
150 1.77 2.3 2.97 3.35 3.51
200 3.19 4.38 5.46 7.32 9.03
250 3.93 6.42 8.94 12.3 15.6
300 4.78 8.54 12.6 17.4 22.5
350 5.65 10.7 15.1 22.6 29.3
400 11.7 17.7 22.7 31.5 38.5
450 35.3 47.8 57.7 70.1 78.3
500 53.1 81.1 100.8 119.0 127.6
550 70.7 114.7 145.1 168.0 177.5
600 92.1 146.8 187.3 212.5 224.6
650 122.7 165.9 193.1 235.8 259.8
700 156.0 181.7 198.8 259.8 300.7
750 183.8 199.6 215.0 290.1 341.5
800 200.5 224.7 244.4 332.2 386.9
850 212.6 254.8 277.7 381.5 436.0
900 223.3 285.2 331.8 430.8 485.6
950 234.3 316.8 377.0 481.3 535.7
1000 249.7 345.3 414.7 523.1 578.9
1050 273.4 367.9 435.7 546.9 607.1
1100 294.9 389.4 457.9 572.5 643.0
1150 312.7 409.4 481.1 600.4 683.6
1200 328.1 430.1 505.5 632.4 726.4
1250 340.8 451.1 531.2 669.2 769.6
1300 352.4 471.7 563.2 708.8 814.1
1350 363.1 492.0 609.2 750.4 859.0
1400 373.1 512.4 647.6 793.8 904.5
1450 382.6 532.8 680.4 838.4 950.5
1500 392.3 555.0 715.0 885.7 997.0

Table C.3. Most probable values and 68% and 95% confidence limits for the NS radii of fixed mass for QMC + model A.

Mass 2σ lower limit 1σ lower limit Most probable value 1σ upper limit 2σ upper limit
(M⊙) (km)
0.5 11.60 12.05 12.79 13.20 13.73
0.6 11.45 11.88 12.19 12.95 13.44
0.7 11.37 11.81 12.12 12.82 13.25
0.8 11.34 11.78 12.12 12.73 13.13
0.9 11.33 11.78 12.12 12.69 13.03
1.0 11.31 11.77 12.04 12.63 12.95
1.1 11.32 11.75 12.04 12.57 12.90
1.2 11.31 11.73 12.04 12.52 12.84
1.3 11.30 11.71 12.04 12.47 12.80
1.4 11.27 11.67 12.04 12.42 12.75
1.5 11.23 11.62 11.88 12.36 12.71
1.6 11.18 11.55 11.80 12.30 12.68
1.7 11.10 11.45 11.72 12.22 12.63
1.8 10.98 11.33 11.64 12.14 12.58
1.9 10.81 11.17 11.48 12.05 12.52
2.0 10.49 10.93 11.40 11.95 12.46
2.1 10.65 11.03 11.48 12.00 12.52
2.2 10.91 11.30 11.56 12.20 12.66
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Table C.4. Most probable values and 68% and 95% confidence limits for the NS radii of fixed mass for QMC + model C.

Mass 2σ lower limit 1σ lower limit Most probable value 1σ upper limit 2σ upper limit
(M⊙) (M⊙)
0.5 10.17 11.61 12.76 13.63 13.87
0.6 10.04 11.00 12.68 13.24 13.57
0.7 10.02 10.63 11.16 12.96 13.41
0.8 10.05 10.38 11.06 12.28 13.30
0.9 10.10 10.45 11.00 12.07 13.19
1.0 10.15 10.54 11.02 11.96 13.04
1.1 10.22 10.63 11.08 11.90 12.84
1.2 10.32 10.72 11.16 11.86 12.68
1.3 10.42 10.80 11.16 11.85 12.56
1.4 10.52 10.88 11.24 11.85 12.47
1.5 10.59 10.95 11.32 11.85 12.41
1.6 10.63 11.01 11.32 11.86 12.37
1.7 10.63 11.06 11.40 11.88 12.34
1.8 10.61 11.09 11.40 11.90 12.32
1.9 10.53 11.10 11.40 11.93 12.31
2.0 10.38 11.06 11.45 11.98 12.31
2.1 10.45 11.09 11.48 11.99 12.30
2.2 10.63 11.13 11.48 11.97 12.30
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Fig. C.1. QMC + model A EoS parameter correlations against each other. Red coloring shows the probability density of model parameters
obtained from our Bayesian analysis with the cooling tail data.
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Fig. C.2. QMC + model C EoS parameter correlations against each other. Symbols are the same as in Fig. C.1.
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