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Uncertainties in our knowledge of the properties of dense matter near and above nuclear saturation density

are among the main sources of variations in multimessenger signatures predicted for core-collapse supernovae

(CCSNe) and the properties of neutron stars (NSs). We construct 97 new finite-temperature equations of state

(EOSs) of dense matter that obey current experimental, observational, and theoretical constraints and discuss how

systematic variations in the EOS parameters affect the properties of cold nonrotating NSs and the core collapse

of a 20-M⊙ progenitor star. The core collapse of the 20-M⊙ progenitor star is simulated in spherical symmetry

using the general-relativistic radiation-hydrodynamics code GR1D where neutrino interactions are computed for

each EOS using the NULIB library. We conclude that the effective mass of nucleons at densities above nuclear

saturation density is the largest source of uncertainty in the CCSN neutrino signal and dynamics even though it

plays a subdominant role in most properties of cold NS matter. Meanwhile, changes in other observables affect

the properties of cold NSs, while having little effect in CCSNe. To strengthen our conclusions, we perform six

octant three-dimensional CCSN simulations varying the effective mass of nucleons at nuclear saturation density.

We conclude that neutrino heating and, thus, the likelihood of explosion is significantly increased for EOSs

where the effective mass of nucleons at nuclear saturation density is large.

DOI: 10.1103/PhysRevC.100.055802

I. INTRODUCTION

Stars with masses above roughly eight times the mass

of the Sun (M⊙) end their lives in a core collapse event,

in many cases leading to core-collapse supernovae (CCSNe)

explosions. Core collapse sets in once electron degeneracy

pressure in the nickel-iron core of a massive star can no longer

support it against gravity [1].

Core collapse proceeds until the inner core reaches nuclear

saturation density, ρsat � 2.7 × 1014 g cm−3, at a tempera-

ture of 10–20 MeV. At this point, the residual nuclear force

prevents the inner core from contracting any further and it

rebounds into the still infalling outer core, creating a shock

wave. As the shock wave propagates through the outer core

it eventually stalls because of energy losses resulting from

dissociation of heavy nuclei and to a lesser extent due to

neutrino losses from behind the shock.

A few mechanisms that revive the shock and lead to

successful CCSNe have been suggested; see discussion in

Refs. [2–7] and references therein. Simulations have shown

that it is likely that a multitude of macroscopic (e.g., progen-

itor structure, large-scale convection, magnetohydrodynamic
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forcing) and microscopic properties and processes (e.g., neu-

trino heating) couple nonlinearly to drive an explosion. Still,

it is believed that the main contributor to shock revival is

the neutrino heating mechanism [8,9], whereby ≈10% of the

outgoing electron-flavor neutrino luminosity is deposited be-

hind the shock. This provides the shock with thermal support,

drives turbulence, and aids in shock runaway [2,10,11].

One of the fundamental ingredients to understand the

dynamics of core collapse events is the equation of state

(EOS) of dense matter. The density at which the collapse

halts, how many protons are converted into neutrons during

the collapse, the spectra of neutrinos, how much energy is

deposited behind the shock and its expansion rate, the ejecta

mass and its composition, the proto neutron star (PNS) mass,

its radius, cooling rate, and whether it later collapses into a

black hole (BH) as well as the gravitational wave (GW) signal,

are all dependent on the EOS. In a CCSN, and also in NS

mergers, matter exists in a wide range of temperatures, 0 �
T � O(100 MeV), densities, ρ � 1015 g cm−3, and proton

fractions, 0.0 � y � 0.5. Some of these conditions are so ex-

treme they are not readily available to laboratory experiments

and, thus, such regions of parameter space can only be probed

indirectly from observations in consent with computational

and theoretical models.

Recently, Ref. [12] introduced the concept of metamod-

eling for the nuclear EOS (see also Ref. [13]). In their

model, the EOS is parametrized in terms of empirical param-

eters, i.e., nuclear matter binding energy, saturation density,
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incompressibility, symmetry energy, and so on. The average

values of the empirical parameters and their uncertainties

are estimated based on experimental and theoretical nuclear

physics constraints. In follow-up studies metamodeling was

used to study the effects of uncertainties in the empirical

parameters on NS properties [14], finite size effects in the

description of nuclear masses and radii of ground state nuclei

[15], and to compute correlations between empirical parame-

ters from known constraints [16].

We follow the metamodeling approach [12,14] and analyze

how uncertainties in properties of nuclear matter affect cold

NS properties and the core collapse of a 20-M⊙ progenitor

star. We use the metamodeling formalism to construct a family

of finite temperature EOSs of dense matter. The EOSs are

built using the recently developed open-source SROEOS code

[17], which is itself based on the Lattimer and Swesty liquid-

drop model of nuclei [18], with a few improvements. The

main improvements relevant to this work are the possibility

to compute EOSs where (1) the effective mass of nucleons

is different from their vacuum values and (2) for any desired

value of the incompressibility of nuclear matter Ksat, instead

of the canonical values of 180, 220, and 375 MeV to which

the code of [18] is essentially limited. The SROEOS model

has also been extended to transition to a description of many

nuclear species in nuclear statistical equilibrium (NSE) at low

densities.

The main goal of this study is to separately determine

how each empirical parameter of the EOS may affect a core

collapse event and the resulting PNS. This is only possible us-

ing many EOSs obtained within a single formalism. Previous

studies have studied the effect of the EOSs on CCSNe and

their observables, e.g., Refs. [6,19–31]. The main drawback

of these studies is that often the EOSs being compared were

obtained with distinct approaches, used different prescriptions

to describe low density matter, and, with the exception of

Ref. [27] which analyzed changes resulting from using 18

different EOSs in their simulations, the number of EOSs

investigated was rather small. Thus, in many cases, it was

challenging to disentangle how a parameter of the EOS con-

tributed to a given observable.

In this paper, we focus on EOS effects on the neutrino heat-

ing mechanism and delay the study of GW signals to future

work. We simulate the core collapse of a single nonrotating

20-M⊙ progenitor star taken from [32] using 97 distinct EOSs

that each vary in at most two different empirical parameters

from a baseline EOS. The SROEOS code is ideal for this

type of sensitivity study as it allows one to compute many

EOSs within the same framework using arbitrary Skyrme-type

parametrizations of the nuclear forces. Furthermore, to limit

our assessment only to the effects of the high-density part of

the EOS, we use the same nuclear surface parametrization

for all EOSs and the same NSE EOS at low densities for

all simulations. The CCSN simulations are performed us-

ing the open-source general-relativistic multigroup radiation-

hydrodynamics code GR1D [33,34]. Since the GR1D code

is limited to spherical symmetry, we also perform six three-

dimensional (3D) simulations, limited to an octant of the 3D

cube to keep computational demands manageable. For this,

we employ the open-source 3D general-relativistic radiation-

hydrodynamics code ZELMANI [35,36], which is based on the

EINSTEIN TOOLKIT [37,38]. We perform the octant 3D runs for

five variations of the SLy4 EOS [39] and the LS2201 EOS

[18].

This paper is structured as follows. In Sec. II, we discuss

a variant of the meta EOS model of Ref. [12] that suits

our needs. We proceed to discuss how each of the empirical

parameters affects the properties of cold beta-equilibrated NSs

in Sec. III and spherically symmetric core collapse in Sec. IV.

In Sec. V, we discuss 3D runs with octant symmetry. We

conclude in Sec. VI.

II. META EOS

Motivated by Ref. [12], we use a metamodeling formalism

to compute Skyrme parameters for the nucleonic EOS in

terms of empirical nuclear parameters. In this work, matter is

assumed to be made solely of nucleons, electrons, positrons,

and photons.2 Electrons, positrons, and photons are treated as

uniform free gases and charge neutrality is assumed. There-

fore, their contributions to the EOS decouple from the nucleon

contributions. Our treatment of these components of the EOS

is discussed in detail in Appendix A of Ref. [17].

A. Skyrme model

The bulk nuclear contribution to the EOS is computed

assuming nonrelativistic effective Skyrme-type nucleon-

nucleon interactions. In this approach the energy per baryon

ǫB of nucleonic matter with number density n and proton

fraction y can be separated into its kinetic and potential energy

density contributions i.e.,

ǫB(n, y, T ) = ǫkin(n, y, T ) + ǫpot(n, y). (1)

The kinetic energy density term is

ǫkin(n, y, T ) =
1

n

(

h̄2τn

2m⋆
n

+
h̄2τp

2m⋆
p

)

, (2)

where

τt =
1

2π2

(

2m⋆
t T

h̄2

)5/2

F3/2(ηt ), (3)

and the density dependent effective nucleon masses m⋆
t are

given by

h̄2

2m⋆
t

=
h̄2

2mt

+ α1nt + α2n−t . (4)

Above, nt and mt are, respectively, the density and vacuum

mass of a nucleon with isospin t , where t = n for neutrons and

1LS220 is the Lattimer and Swesty EOS with incompressibility

Ksat = 220 MeV. In this work the LS220 EOS was recomputed using

the SROEOS code [17].
2It is expected that the EOS softens at very high temperatures

and densities due to the appearance of heavy leptons, hyperons,

condensates, and quark-gluon plasmas [40,41]. They are not ex-

plicitly included here since we take a parametrized approach to the

high-density EOS.
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t = p for protons, and, if t = n then −t = p and vice versa.

The neutron and proton densities are related to the proton

fraction y and the nucleon density n by nn = (1 − y)n and

np = yn, respectively. The quantities α1 and α2 are parame-

ters of the model and establish a simple dependence of the

nucleon effective masses on the density and proton fraction

of the system. We stress that the Skyrme model treatment

of effective masses is rudimentary, other models allow for

much more complex dependencies of m⋆ [42]. Nevertheless,

we use this model as a guide to teach us how each piece of the

EOS affects neutron star (NS) properties and the dynamics of

CCSNe.

The Fermi integral in Eq. (3) is defined as

Fk (η) =

∫ ∞

0

ukdu

1 + exp(u − η)
, (5)

and is a function of the degeneracy parameter

ηt =
μt − Vt

T
. (6)

Here, μt is the nucleon chemical potential and Vt is the single-

particle potential (see [17] for more details).

The temperature-independent potential energy density

term in Eq. (1) has the form

ǫpot(n, y) =

N
∑

i=0

[ai + 4biy(1 − y)]nδi , (7)

where ai, bi, and δi are constant parameters of the Skyrme

model. The i = 0 term is chosen to represent two-body nu-

cleon interactions. Therefore, we fix δ0 = 1 for all models.

Meanwhile, the i > 0 terms approximate effects of many-

body interactions [18]. The summation in most Skyrme

parametrizations ends at N = 1, while only a small number

of studies in the literature consider N > 1 [43]. To allow

for more flexibility in our empirically fitted models, we

choose to fix N = 3 and δ0 = 1, δ1 = 4/3, δ2 = 2, and δ3 =

7/3 (the last three terms amount to an expansion in terms

of the Fermi momenta of the nucleons kt ∝ n
2/3
t [44,45]).

Therefore, the EOS model contains ten free parameters

{a0, b0, a1, b1, a2, b2, a3, b3, α1, α2} that we fit using a set of

empirical properties of nuclear matter.

B. Empirical parameters

Now, we would like to define a set of empirical properties

with which to constrain our Skyrme EOS parameters. First, we

consider measurable properties of nearly symmetric nuclear

matter near nuclear saturation density. In these conditions,

the zero-temperature nuclear EOS can be expanded about

nuclear saturation density, n = nsat ≃ 0.155 fm−3, for sym-

metric matter (y = 1/2) in a Taylor series, giving rise to a set

of expansion parameters that can be empirically constrained.

This expansion is written as

ǫB(n, y) = ǫis(x) + δ2ǫiv(x), (8)

where x = (n − nsat )/(3nsat ) and δ = 1 − 2y is the isospin

asymmetry. Here, the isoscalar (is) and isovector (iv) expan-

sion terms are [12,46]

ǫis(x) = ǫsat +
1

2!
Ksatx

2 +
1

3!
Qsatx

3 + . . . , (9)

ǫiv(x) = ǫsym + Lsymx +
1

2!
Ksymx2 +

1

3!
Qsymx3 + · · · , (10)

shown here explicitly up to third order. The empirical pa-

rameter ǫsat is the energy per baryon at nuclear saturation

density nsat, Ksat is the isoscalar incompressibility modu-

lus, and Qsat the isoscalar skewness. Similarly, ǫsym is the

symmetry energy, Lsym is related to the slope of symmetry

energy in the direction of increasing density, Ksym is the

isovector incompressibility modulus, and Qsym is the isovector

skewness. By definition of the saturation density nsat, the

linear term in x of ǫis vanishes. In principle, all of these

expansion parameters can be determined experimentally, with

varying degrees of difficulty. Nevertheless, the lower-order

parameters are substantially easier to constrain. Therefore, we

only include the well constrained saturation density empiri-

cal parameters {nsat, ǫsat, Ksat, ǫsym, Lsym, Ksym} in our Skyrme

model fits described below.

Although this expansion is useful near saturation density, it

cannot accurately describe the behavior of the nuclear EOS at

densities larger than a few times saturation density since x is

no longer small and the expansion breaks down. Densities this

large are reached in CCSNe and in the cores of NSs. There-

fore, we also require empirical constraints at higher density.

Most experiments probe densities near saturation density, but

there are some results available for higher densities. Using

measurements of flow in heavy ion collisions and theoretical

transport models, [47] constrained the baryonic pressure PB =

n2∂ǫB/∂n of symmetric nuclear matter (SNM) and pure neu-

tron matter (PNM), albeit in a model dependent way, at four

times nuclear saturation density, P
(4)
SNM = PB(n = 4nsat, y =

1/2) and P
(4)
PNM = PB(n = 4nsat, y = 0). Constraints on these

pressures have recently been made sharper by combining the

results of these flow experiments with constraints on the tidal

deformability of NSs inferred from GW170817 [48].

Finally, although they do not enter into the expansion

above, the nucleon effective masses at saturation density can

also be considered a quasiempirical parameter [12]. However,

there is considerable complexity involved in extracting this

property of the single quasiparticle energies. Nevertheless, the

nucleon effective masses are particularly important for deter-

mining the temperature dependence of the nuclear EOS [see

Eq. (2) above]. Therefore, we include the nucleon effective

mass at saturation density in SNM, m⋆ ≡ m⋆
n(n = nsat, y =

1/2), and the neutron-proton effective mass splitting in PNM,

�m⋆ ≡ m⋆
n(n = nsat, y = 0) − m⋆

p(n = nsat, y = 0), in our list

of empirical parameters.

In total, this gives ten empirical parameters that

we consider in this work, {nsat, ǫsat, Ksat, ǫsym, Lsym,

Ksym, m⋆,�m⋆, P
(4)
PNM, P

(4)
SNM}. Due to their small uncertainties,

we fix the values of the nuclear saturation number density

nsat = 0.155 fm−3 (mass density ρsat = 2.7 × 1014 g cm−3)

and of the energy at nuclear saturation density ǫsat =

−15.8 MeV. Other saturation density quantities are allowed

to vary within their experimental or theoretical uncertainties
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TABLE I. Constraints of nuclear matter properties used in this

work grouped in sets defined in Sec. II C. Nuclear matter empirical

parameters were compiled in Ref. [12]; see references therein for

details. Meanwhile, nuclear matter pressure at 4nsat , P(4), for SNM

and PNM is from Ref. [47]. We use values similar to the ones in

Refs. [12,47], but exclude from our analysis regions of parameter

space that fail to reproduce 2-M⊙ NSs and, in the case of Lsym, values

that lead to too large radii for NSs [52]. We show the averages and

one-standard deviations compiled or assumed in this work.

Set Quantity Range This work Units

sM m⋆ 0.75 ± 0.10 0.75 ± 0.10 mn

�m⋆ 0.10 ± 0.10 0.10 ± 0.10 mn

nsat 0.155 ± 0.005 0.155 fm−3

ǫsat −15.8 ± 0.3 −15.8 MeV baryon−1

sS ǫsym 32 ± 2 32 ± 2 MeV baryon−1

Lsym 60 ± 15 45 ± 7.5 MeV baryon−1

sK Ksat 230 ± 20 230 ± 15 MeV baryon−1

Ksym −100 ± 100 −100 ± 100 MeV baryon−1

sP P
(4)
SNM 100 ± 50 125 ± 12.5 MeV fm−3

P
(4)
PNM 160 ± 80 200 ± 20 MeV fm−3

(as compiled in Ref. [12]) as long as they are able to produce

2-M⊙ NSs [49–51]. The exception to this choice is the

slope of the symmetry energy Lsym. Instead of using the

average values of Ref. [12], Lsym = 60 ± 15 MeV, we set

Lsym = 45 ± 7.5 MeV. Although this choice only probes the

lower half of possible values compiled in Ref. [12], we choose

these limits so that the mass-radius relationships of NSs in this

work are centered near the center of the constraints computed

from observations of x-ray bursts [52]. These limits also agree

with combined theoretical calculations of pure neutron matter

and astrophysical observations [45,53,54]. Even though Lsym

is correlated with radii of low mass NSs [55], for the systems

we study, our limited choice for Lsym has little effect on PNS

properties in the first second after core collapse. Finally, we

ignore existing correlations between the different empirical

nuclear matter parameters [16,45,55]. Note, however, that

the allowed ranges for empirical parameters contain EOSs

that do not fulfill expected correlation between ǫsym and

Lsym determined on the basis of unitary gas considerations

[45]. We justify our choice with our primary interest in how

different parameters of the EOS affect CCSNe. Our focus is

less on particularly intricate details of the EOS. In Table I we

summarize the constraints used in this work.

C. Empirically constrained Skyrme EOS models

For a given set of Skyrme parameters, the empirical pa-

rameters described in the last section can be calculated from

the Skyrme energy density [Eq. (1)], its derivatives, and the

Skyrme expression for the effective masses [Eq. (4)]. Con-

versely, for a given choice of the ten empirical parameters

given above, the ten Skyrme parameters are fixed. Our method

for finding the Skyrme parameters from the empirical param-

eters is given in Appendix B. We stress that the fitted Skyrme

parametrization only matches the saturation density expansion

[Eq. (8)] at saturation density since the Skyrme model has a

different functional form from the polynomial expansion.

To investigate the impact of EOS uncertainties on cold NSs

and core collapse, we build a set of 97 Skyrme EOSs by

picking 97 sets of the empirical parameters in the ranges given

in Table I. We initially set the quantities used to obtain the

Skyrme parametrization to their average values. Then, two-

sigma variations in the nuclear properties are implemented for

four sets of nuclear properties with two quantities each. The

sets are

sM = {m⋆,�m⋆}, (11a)

sS = {ǫsym, Lsym}, (11b)

sK = {Ksat, Ksym}, (11c)

sP =
{

P
(4)
SNM, P

(4)
PNM

}

. (11d)

Thus, for set sM the values of m⋆ and �m⋆ can be their average

values (m⋆ = 0.75 and �m⋆ = 0.10), or their average val-

ues plus or minus one standard deviation (m⋆ = 0.75 ± 0.10

and �m⋆ = 0.10 ± 0.10) or two standard deviations (m⋆ =

0.75 ± 0.20 and �m⋆ = 0.10 ± 0.20). Similar variations are

implemented for all other sets, leading to a total of 97 different

parametrizations for the EOS.3 For each of the parametriza-

tions we build an EOS table using the open-source SROEOS

code we have recently developed [17].

D. Nonuniform and low density matter

To limit our focus to the effects of the empirical param-

eters on CCSNe, we set the same parametrization of the

nuclear surface for all EOSs. This is different from what

we presented in Ref. [17], where the parametrization of the

surface properties was computed self-consistently based on

the Skyrme parameters. We defer to future work a detailed

study of nuclear surface effects on CCSNe. Here, the surface

parameters are chosen to be σs = 1.15 MeV fm−2, q = 16,

λ = 3.0, and p = 1.5; see Eqs. (19) and (20) in Ref. [17]. The

surface parametrization chosen here leads to a surface sym-

metry energy SS = 57.8 MeV, in agreement with the value

SS = 58.9 ± 1.1 MeV of Ref. [56], and a surface level density

AS = 0.13 MeV fm−1.

Once empirical and surface parametrizations are set, we

use the SROEOS code to obtain the EOS table. The EOSs in

the Skyrme model are obtained in the single nucleus approx-

imation (SNA) [17,18] although extensions to accommodate

multiple nuclear species have recently been proposed [57,58].

We take the same approach discussed in our previous work

and match our Skyrme-type EOSs to an EOS of 3335 nuclei in

nuclear statistical equilibrium (NSE) [17]. A unified method

to connect SNA and NSE EOSs is the subject of Refs. [59,60].

Here we follow the simple prescription to transition between

SNA to NSE EOSs using a density dependent function as dis-

cussed in Sec. VII A of Ref. [17]. Here, we set the transition

parameters ntr = 10−3 fm−3 and nδ = 0.33; see Eqs. (57) and

3There are 25 EOSs in each set s. However, the baseline EOS with

the average values of the observables is the same for all four sets.
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FIG. 1. Plots for variations in the effective mass m⋆ and effective mass splitting �m⋆ of (a) the pressure of SNM and (d) of PNM as a

function of density, of (b) the mass-radius relations for cold beta-equilibrated NSs and (e) the NS baryonic mass above critical proton fraction,

ycrit = 0.11, as a function of the total gravitational NS mass, and of (c) the density and (f) proton fraction as function of the radius for a

canonical 1.4-M⊙ NS. Effective masses are computed in units of the neutron vacuum mass mn. Nuclear matter pressures are compared to

results of Danielewicz et al., Ref. [47]. For PNM there are two bands in Ref. [47] based on a strong (top band) and weak (bottom band) density

dependence of the symmetry energy proposed in Ref. [61]. PNM pressure is also compared to chiral effective field theory results of Tews et al.,

Ref. [62]. Mass-radius relations are compared to the mass of a NS observed by Antoniadis et al., Ref. [50], the mass-radius relations obtained

from observations of x-ray bursts by Nättilä et al., Ref. [52], and the radius of a 1.4-M⊙ NS computed from the limits of tidal deformability

of NSs by Most et al., Ref. [63]. Note that the outer ≃1 km of canonical 1.4-M⊙ NSs have densities below 1014 g cm−3. All quantities plotted

show only minor dependence with respect to variations in the effective mass at nuclear saturation density m⋆ and the neutron-proton effective

mass splitting �m⋆.

(58) of Ref. [17]. Note that the parameter ntr is different from

ntr = 10−4 fm−3 used in Ref. [17]. The reason for this change

is that the time to bounce in core collapse is insensitive to ntr in

the range 10−2 fm−3 � ntr � 10−3 fm−3, while it is a function

of ntr for ntr < 10−3 fm−3. We note that setting nδ � 0.5 has

little effect on CCSN simulations. However, larger values may

have an effect since the SNA (NSE) EOS will have significant

contributions at low (high) densities.

III. COLD NEUTRON STARS

We study how variations in the empirical parameters of the

EOS and of the pressure of nuclear matter at high densities

affects the zero-temperature EOS and properties of cold non-

rotating beta-equilibrated NSs using the suite of EOSs dis-

cussed in Sec. II. We consider each set of empirical parameter

variations [see Eqs. (11)] separately.

A. Effective mass

The Tolman-Oppenheimer-Volkoff (TOV) equations of

NS structure only depend on the relationship between the

pressure and energy density for the cold, beta-equilibrated

EOS, Pβ-equil,T =0(ǫBn), where n is the baryonic number den-

sity and ǫB is the energy per baryon defined in Eq. (1). Since

ǫB and its first few derivatives are fixed at saturation density by

the empirical expansion parameters, varying only the effective

masses, set sM defined in Eq. (11a), has a limited impact

on Pβ-equil,T =0(ǫBn) and one expects small variations in the

nonrotating NS mass radius relation.4

The limited impact of the effective masses on the zero-

temperature EOS is visible in the first column of Fig. 1,

where we plot the zero-temperature pressures of SNM (top)

and PNM (bottom) as a function of density. No perceptible

4Due to our choice of fixing the empirical parameters of order 2 and

lower in Eq. (8) as well as the baryonic pressures for SNM and PNM

at 4nsat , the zero-temperature baryonic pressure, PB = n2∂ǫB/∂n, is

almost independent of m⋆ and �m⋆. Small variations in the cold

EOS for distinct choices of m⋆ and �m⋆ result from how the Skyrme

parameters, and, thus, the empirical parameters of order 3 and higher

in Eq. (8), adjust to reproduce the fixed empirical parameters and

the pressure at 4nsat . Our method contrasts with the one in Ref. [64],

where a large effect in the EOS and mass-radius relations of cold beta

equilibrated NSs due to variations of the effective mass is observed.
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differences are seen for the EOS of SNM as the effective

masses are changed. Meanwhile, only minor changes in the

EOS of PNM occur for the different effective masses. As in

the SNM case, the EOS of PNM is, by construction, within

the bounds determined from flow experiments [47], since we

fix the pressure of PNM at four times saturation density. There

are two bands shown for the pressure of PNM where the

lower (higher) pressure band represents the pressure of PNM

considering the softest (stiffest) density dependence of the

PNM EOS proposed in Ref. [61]. Our results cross the two

different bands and, at the highest densities, coincide with the

upper limit of the range obtained in Ref. [47]. The explored

range agrees with results from Ref. [48], which compares

results from flow experiments [47] with the tidal deformability

computed for the NS merger event GW170817 [65]. We

add to our comparisons the pressure of PNM obtained from

chiral effective field theory (EFT) [62]. For densities up to

n ≃ 1.5nsat, the values from the Skyrme EOSs are within the

constraints of chiral EFT, although they are slightly above the

limits for higher densities.

In the second column of Fig. 1, we plot the mass-radius

relations of cold beta-equilibrated NSs obtained solving the

TOV equations (top) and the baryonic mass of the cold NS

with proton fraction y above a critical value set to ycrit =

0.11 (bottom) as is the condition necessary for direct Urca

processes to take place inside a NS [66]. Because we limit

our analysis to EOSs that predict a large pressure at high

densities, see Table I, all EOSs satisfy the observational con-

straints for the mass of PSR J0348 + 0432, 2.01 ± 0.04 M⊙

[50]. A similarly large NS mass, M = 1.93 ± 0.02 M⊙, has

been observed for PSR J1614-2230 [51]. Furthermore, our

choices of the other empirical parameters guarantee that the

mass-radius relations are within the 1σ range of “model A”

of Ref. [52] obtained from observations of x-ray bursts. The

EOSs also obey the constraints for the radius of a 1.4-M⊙ NS,

12.00 km < R1.4 < 13.45 km, computed from the data for the

NS merger observation GW170817 [63]. This constraint is

more stringent than obtained by others for the same event, e.g.,

Ref. [67] constrains radii of NSs to be in the 8.9 km < R̄ <

13.2 km range while results from the LIGO and Virgo Col-

laborations suggest R = 11.9 ± 1.4 km [68]. The constraint

of Ref. [67] was computed assuming hadronic EOSs for

high density matter and from inference of the dimensionless

tidal deformability deduced from the GW170817 event that

suggests �̃ < 800 [65]. Meanwhile, the LIGO/Virgo results

require that both bodies that generated the GW170817 event

are NSs described by the same EOS with spins within the

range observed in Galactic binary NSs and are able to produce

1.97-M⊙ NSs. We notice only minor differences in the mass-

radius relations as a function of the effective masses, mostly

in the mass range 0.5 M⊙ � M � 1.5 M⊙.

Recently, it has been shown that the cooling rate of the

NS in the transient system MXB 1659-29 while in quiescence

is consistent with direct Urca reactions occurring in a small

fraction of the core, ≈0.03 M⊙ [66]. Assuming hadronic

matter, this is only possible if nucleons in the core are un-

paired and the proton fraction exceeds a critical value ycrit

in the range 0.11–0.15 [69]. Here we set ycrit = 0.11 and

compute for each NS the total baryonic mass in the core which

exceeds ycrit, Mbaryon(y > ycrit ). We define Mbaryon(y > ycrit )

as the integrated baryonic mass in regions of the star where

y � ycrit excluding the crust, i.e., the outer ≃1 km of the star,

as densities there are too low to induce direct Urca reactions.

If the values chosen for the empirical parameters hold, the

EOS described by those parameters implies that the NS in the

MXB 1659-29 system has a mass in the range 1.6–1.8 M⊙

as lower mass values would imply that the proton fraction in

the core never reaches the critical value ycrit to start the direct

Urca process. Meanwhile, NSs with larger masses would cool

at a much faster rate through direct Urca processes. Thus,

under the assumption that matter in the core of a NS is made

of unpaired nucleons, combined measurements of NS masses

and cooling rates may be used to improve constraints on the

EOS of dense matter.

Finally, in the last column of Fig. 1, we compare the

interior properties of a canonical 1.4-M⊙ NS for the different

EOSs. Although there are no clear visible changes for the

density as a function of NS radius, we notice that there are, as

in the case of the gravitational mass with proton fraction above

ycrit, small changes in the proton fraction in the core region as

a function of the nucleon effective masses. These variations in

proton fraction in the inner core of a 1.4-M⊙ NS are inversely

(directly) correlated with m⋆ (�m⋆). However, these changes

are small, and the nucleon effective masses affect the central

proton fraction y1.4 at the center of a 1.4-M⊙ NS by at most

0.02. Nevertheless, a clear trend is observed here: EOSs that

predict smaller radii for the same mass NS also predict a larger

isospin asymmetry in their cores.

B. Symmetry energy and its slope

We now discuss the variation set sS [Eq. (11b)], where

the symmetry energy ǫsym and its logarithmic derivative with

respect to density Lsym at saturation density are varied.

In Fig. 2, we plot the pressure as a function of density and

properties of cold beta-equilibrated NSs considering changes

in these quantities according to Table I. Because we are only

modifying parameters of the symmetry energy, the pressure of

SNM remains unchanged across EOSs; see the top left panel

in Fig. 2. Meanwhile, there are some variations in the pressure

of PNM, as depicted by the bottom left panel of Fig. 2. The

differences between the EOSs are largest below ≃2nsat since

the higher density behavior of the symmetry energy is strongly

constrained by the fixed values of P
(4)
SNM, P

(4)
PNM, and Ksym for all

EOSs in the variation set sS [Eq. (11b)]. Therefore, all EOSs

obey the flow constraints from Danielewicz et al. [47] across

a wide range of densities. In comparison, some of the sS EOSs

become slightly inconsistent with the subsaturation density

chiral effective field theory constraints [62] at low density.

The mass-radius curve of cold beta-equilibrated NSs, the

top center plot in Fig. 2, is most impacted by symmetry energy

variations at lower NS mass. For NSs with mass M � 1.5 M⊙,

larger symmetry energies at saturation density ǫsym and sym-

metry energy slopes Lsym result in larger NS radii. This is

consistent with the results of Refs. [13,70], which highlight

the impact of the density dependence of the symmetry energy

on the NS radius. However, there are only minor changes

in the mass-radius relationship in the region M � 2 M⊙, as
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FIG. 2. Same as Fig. 1 but for variations in the symmetry energy ǫsym and the slope of the symmetry energy Lsym. Both quantities are shown

in units of MeV baryon−1. Because only the two lowest order isospin asymmetry terms are varied, the pressure of SNM (top left) is unchanged

while the effects on the pressure of PNM (bottom left) are more pronounced in the region n � 2nsat . These changes impact the mass radius

relationship of NSs more significantly for low mass NSs (top center). Meanwhile, the inner NS composition is affected even for massive NSs

(bottom center). The difference in compositions can also be seen for canonical 1.4-M⊙ NSs, which have similar density profiles in their core

(top right) but proton fractions that may differ by a factor of 2 (bottom right).

these NSs reach quite high densities in their cores where the

pressure is fixed by P
(4)
SNM and P

(4)
PNM. Nevertheless, massive

NSs with approximately the same radius have very different

inner compositions. See the bottom center panel of Fig. 2.

For the variations considered here, we observe an inverse

relationship between the NS radius and the amount of matter

with proton fraction larger than the critical value ycrit = 0.11,

i.e., the isospin asymmetry. This is also clearly seen in the

composition of the 1.4-M⊙ NS, see bottom right plot in Fig. 2.

At densities near or above nsat, the density profile of 1.4-M⊙

NSs is similar for all EOS parametrizations that differ only

in ǫsym and Lsym, top right of Fig. 2. However, these NS radii

may differ by up to 800 m due to different density profiles at

densities lower than nsat.

C. Incompressibility

We now consider set sK [Eq. (11c)], where we analyze

variations in the isoscalar incompressibility Ksat, which is well

constrained, and the isovector incompressibility Ksym, which

is poorly known (see Sec. II).

In Fig. 3, we plot the pressure of SNM (top left) and of

PNM (bottom left). Small differences are evident in SNM for

different Ksat, while the differences in PNM are substantial

due to the large range of values allowed for Ksym. Since we

keep the pressure of SNM and PNM at n = 4nsat fixed for all

EOSs, the curves for the pressures cross at this value and at

n = nsat. This limits the effect of both Ksat and Ksym at high

density.

Variations in the incompressibilities cause drastic differ-

ences in the mass-radius relationships and compositions of

cold NSs (see the center upper and center lower panels of

Fig. 3, respectively). There is an inverse correlation between

the radius of a NS predicted by a given EOS and its isospin

asymmetry, which is similar to what we see for variation

sets sM and sS , Secs. III A and III B, respectively. This is

particularly obvious in the rightmost panels of Fig. 3, which

show the internal properties of 1.4-M⊙ NSs.

We also observe different qualitative behaviors in the core

composition that relate to the isovector incompressibility

Ksym. While for Ksym � −200 MeV the proton fraction in the

NS core is almost constant, for Ksym � −200 MeV the core

asymmetry decreases with Ksat. Similar properties are found

across NSs with the same mass but different EOSs except for

the most massive ones, M � 2 M⊙.

D. Pressure at high density

Finally, we consider the variation set sP [Eq. (11d)], where

the pressures of SNM and PNM are varied at four times the

nuclear saturation density, while leaving all other empirical

parameters constant. These variations begin to have an impact

at densities �2nsat, since the saturation density properties of

the EOSs are unaltered. This is clearly visible in the top and

bottom left panels of Fig. 4.
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FIG. 3. Same as Fig. 1 but for variations in the isoscalar and isovector incompressibilities Ksat and Ksym, respectively, measured in

MeV baryon−1. Because of the lower uncertainty in Ksat relative to Ksym the variations in the pressure of SNM (top left) are smaller than

those of PNM (bottom left). Due to the imposed constraints the pressures of both SNM and PNM match at n = nsat and n = 4nsat . For NSs

with masses lower than ≃2.0 M⊙ there is a direct correlation between increasing incompressibility and NS radius (top center) and inverse

correlation with phase space available for direct Urca processes (bottom center). These correlations are inverted for NSs with masses higher

than 2.0 M⊙. Canonical 1.4-M⊙ NSs are more compact for lower incompressibilities (top right) and the core proton fraction is impacted almost

exclusively by the isovector incompressibility (bottom right).

Changes in the pressure at high densities translate directly

into variations in the mass-radius relationship of high-mass

NSs, which probe these high densities in their cores (see the

center panels of Fig. 4). Since the pressure in the NS core is

somewhere between the SNM and PNM pressures, increasing

either one stiffens the EOS and gives rise to a larger radius

for a fixed NS mass. Additionally, increasing the pressure of

either SNM or PNM increases the predicted maximum NS

mass.

Varying these pressures also impacts the predicted lepton

richness of NSs. In the lower left panel of Fig. 4, it can

be seen that the pressure of PNM is anticorrelated with the

isospin asymmetry in the NS core while the pressure of SNM

is correlated with the isospin asymmetry.

IV. SPHERICALLY SYMMETRIC CORE COLLAPSE

We now focus on how variations in the empirical pa-

rameters of the EOS and of the pressure of nuclear matter

at high densities affects the core collapse of a massive star

and its evolution. We will mainly investigate the impact of

the EOS on neutrino emission during the postbounce phase.

The details of neutrino emission from high-density matter

in a CCSN is interesting both because these neutrinos can

be directly detected from a galactic CCSN (e.g., [71]) and

because these neutrinos can be reabsorbed in the lower density

matter behind the CCSN shock and play a role in powering

the explosion [8]. Uncertainties in the nuclear EOS translate

into uncertainties in predictions of CCSN neutrino fluences,

which in turn introduce uncertainty in the detectability of

the neutrino emission and into the CCSN mechanism itself.

Both the explosion mechanism and detectability are sensitive

to changes in the neutrino energy spectra, which we will

characterize by the root-mean-square (RMS) neutrino energy,
√

〈ǫ2
ν 〉, and in the neutrino luminosities Lν . Larger luminosi-

ties and RMS energies of electron neutrinos and antineutrinos

result in higher predicted neutrino detection rates and more

favorable conditions for explosion due to the quadratic energy

dependence of neutrino interaction cross sections.

Specifically, we study the collapse and bounce of a 20-M⊙

progenitor star (s20WH07 of [32]). We study this progenitor

star since it (1) has been studied by many other groups

[24,31,36,72–84], so comparisons can be readily made,

(2) produces a massive PNS, (3) does not collapse into a black

hole within the first second after bounce, and (4) often exhibits

the onset of an explosion in multidimensional simulations

[36,72,74,78,83] soon after the density discontinuity from the

Si/Si-O shell boundary crosses the shock radius. Furthermore,

(5) the PNS central number density during the first second

after bounce is in the range 2–3nsat. Since we constrain our

EOS with empirical properties at saturation density and at four

times saturation density, this maximum density does not go
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FIG. 4. Same as Fig. 1 but for variations in the pressure of symmetric nuclear matter and pure neutron matter at n = 4nsat . Pressure values

are given in MeV fm−3. In the first column we plot the pressure of SNM (top left) and PNM (bottom left). Higher pressures allow for higher

NS masses (top center). Proton fraction in the core is higher for lower (higher) pressure of SNM (PNM) (bottom center). Meanwhile, canonical

1.4-M⊙ NSs are more compact if the pressure at high densities is lower (top right). Again, the proton fraction in the core is higher for lower

(higher) pressure of SNM (PNM) (bottom right).

beyond the range of densities over which the EOSs have been

fit.

Core collapse, bounce, and up to ≈1-s postbounce are

simulated in spherical symmetry using the general-relativistic

radiation-hydrodynamics code GR1D [19,34]. In GR1D, the

general-relativistic hydrodynamic equations of [85,86] for

the conserved quantities are discretized in space using a

finite-volume scheme [86–88]. Time integration of conserved

variables is performed using a second order Runge-Kutta

integrator with a Courant factor of 0.5. Variables are defined

at cell centers and reconstructed at cell interfaces, where inter-

cell fluxes are computed, using a total-variation-diminishing

(TVD) reconstruction with monotonized central (MC) limiter

[89] before core bounce and a piecewise-parabolic method

(PPM) during and after bounce [90]. Interface fluxes are

evaluated using the HLLE Riemann solver [91]. The neutrino

transport is based on [34,92,93] and is performed operator

split from the hydrodynamics. It is based on a M1 scheme,

where the zeroth (energy density) and first (momentum den-

sity) angular moments of the neutrino distribution function

are evolved utilizing an analytic closure to describe higher-

order moments. The neutrino-matter interactions that couple

the hydrodynamics and the neutrino transport are determined

using NULIB [34]. NULIB is an open-source neutrino-matter

interaction library designed for use in high-energy astrophys-

ical simulations. It is used here to generate a table of neu-

trino interaction coefficients: absorption opacities, scattering

opacities and kernels, and emissivities. These coefficients are

based on [94–96]. For our spherically symmetric simulations,

we consider the same neutrino-matter interactions as [34],

shown in their Table I and reproduced here in Table II for

completeness. For each EOS table described in Sec. II, a

consistent set of neutrino opacities is generated using NULIB.

For the neutrino transport, we consider electron neutrinos

and electron antineutrinos separately and group the heavy

TABLE II. List of neutrino reactions considered in the NULIB

library, reproduced from [34]. Interactions with ν are flavor insen-

sitive, while interactions with νi are flavor sensitive. A
Z X denotes an

element with Z protons and mass number A.

Production

Charged-current interactions Thermal processes

νe + n ←→ p + e− e− + e+ ←→ νx + ν̄x

ν̄e + p ←→ n + e+ N + N ←→ N + N + νx + ν̄x

νe + A
Z X ←→ e− + A

Z+1X

Scattering

Isoenergetic scattering Inelastic scattering

ν + α ←→ ν + α νi + e− ←→ νi
′ + e−′

ν + p ←→ ν + p

ν + n ←→ ν + n

ν + A
Z X ←→ ν + A

Z X
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flavored neutrinos and antineutrinos into a single composite

species. For each species, we follow 24 logarithmically spaced

neutrino energy groups running from 1 MeV to ≃269 MeV.

The computational grid is set to have 1500 grid cells, constant

cell size of 100 m out to a radius of 20 km, and then geometri-

cally increasing cell size to an outer radius of 20 000 km. We

map stellar mass rest-mass density ρ, proton fraction y, and

pressure P from the progenitor star to GR1D as described in

Ref. [17].

A. Effective mass

First, we consider the impact of variation set sM [Eq. (11a)]

on core collapse, where the effective mass m⋆ and the effective

mass splitting �m⋆ are varied. Since the temperature enters

only through the factor m⋆T in the Skyrme model we use [see

Eq. (1)], one expects the finite temperature behavior of the

EOS to be substantially impacted by changes in the effective

mass. As shown in Sec. III, varying the effective mass in

our EOS fitting procedure has a negligible impact on the

zero-temperature EOS and therefore a negligible impact on

cold-NS structure. On the other hand, in CCSNe, temperatures

of tens of MeV can be reached and the finite-temperature

properties of the EOS may have a substantial impact.

The high-density EOS impacts the neutrino emission by

changing the structure and thermodynamic state of the region

from which most neutrinos are emitted, the neutrinospheres.

The position of the neutrinosphere depends on both the energy

and neutrino species (flavor, neutrino/antineutrino). Here,

we consider the properties of a neutrino-energy averaged

neutrinosphere, which qualitatively captures the state of the

material from which the bulk of the neutrinos are emitted. The

neutrinosphere is defined as the location where the opacity

is equal to τν = 2/3 [97]. Generally, before explosion, the

neutrinospheres move to smaller radius, higher density, and

higher temperature over time. The electron neutrinospheres

and antineutrinospheres also stay nearly in neutrino-free beta

equilibrium since they can efficiently lose lepton number by

definition.

In Fig. 5, the influence of varying the effective mass on

the neutrinosphere properties is shown. Increasing the SNM

effective mass at saturation density m⋆ increases the tempera-

ture of the neutrinosphere for all flavors and at all times. On

the other hand, increasing m⋆ decreases the neutrinosphere

radii for all flavors. For electron neutrinos and antineutrinos,

increasing m⋆ causes a decrease in the neutrinosphere density.

Higher temperatures result in larger values of the beta equilib-

rium ye. For heavy-lepton neutrinos, increasing m⋆ increases

the neutrinosphere density slightly. The impact of variations

in �m⋆ on the neutrinosphere properties is relatively small.

It is somewhat counterintuitive that the neutrinosphere

temperatures increase with the effective mass, since the ef-

fective mass enters the EOS in the combination m⋆T . Never-

theless, it is easy to understand this behavior. First, note that

deviations in the nucleon effective masses from their vacuum

mass depends linearly on the density. Since the density of

the neutrinospheres is less than a hundredth nuclear saturation

density this means that m⋆ at the neutrinosphere is essentially

the bare nucleon mass. Therefore, the impact of varying the

effective mass on the neutrinosphere properties must be indi-

rect. For small temperatures where the Sommerfeld expansion

is valid, the entropy in nucleon species t is given by (see

Appendix A)

st ≈

(

π

h̄

)2
m⋆

t T

(3π2nt )2/3
. (12)

In the same approximation, the temperature dependent con-

tribution from species t to the nucleon pressure is given by

Pth,t = T nt st/3. Therefore, insofar as the density and entropy

throughout the outer layers of the PNS are not impacted by

changes in the effective mass, the pressure of material below

the neutrinosphere goes down with increasing effective mass

since T ∝ (m⋆)−1. This suggests that increasing the effective

mass results in more compact outer layers of the PNS. This

is consistent with what our simulations show. As can be seen

in Fig. 5, increasing the effective mass results in a smaller

radius neutrinosphere which, in turn, results in a larger virial

temperature for the neutrinosphere.

Variations in the neutrinosphere properties are directly

imprinted in the CCSN neutrino emission itself. In Fig. 6 we

plot the RMS energy (top) and luminosity (bottom) of the

three neutrino species considered, i.e., νe, ν̄e, and νx = νμ/τ =

ν̄μ/τ . Soon after core bounce, t − tbounce � 200 ms, all EOSs

predict RMS energy and luminosity of neutrinos emitted that

differ only by �5% in the most extreme cases. However, after

the first ≃200 ms, neutrino energies and luminosities start to

diverge. The average RMS energy of all neutrino flavors and

the luminosity for νe and ν̄e neutrinos is higher the larger the

nucleon effective mass m⋆ at saturation density is. Meanwhile,

there is barely any change in the neutrino luminosity for

the heavy-lepton neutrinos νx as the effective mass changes.

Moreover, differences in neutrino properties are only affected

at the ≃1% level by the change of the nucleon effective mass

difference �m⋆.

In Fig. 6 we see that the largest variation in the RMS en-

ergies occurs for the heavy-lepton neutrinos νx after ≃400 ms

after core bounce, although the heavy lepton neutrino lumi-

nosities are barely affected. Nevertheless, supernova electron

neutrinos and antineutrinos have a larger impact on the su-

pernova explosion mechanism with the latter being easier to

detect [98]. We observe that an increase in the effective mass

m⋆ also leads to an increase in the RMS electron neutrino

and antineutrino energies by about 2–3 MeV soon after core

bounce, t − tbounce � 200 ms, while luminosities increase by

up to 30%. An interesting question is whether different neu-

trino interactions, e.g., inelastic neutrino-nucleus scattering,

will result in the same qualitative and quantitative differences.

Recently, Ref. [30] showed for 2D CCSNe simulations that, in

proximity to criticality, the cumulative effect of small changes

in neutrino transport could convert an anemic into a robust

explosion, or even a dud into a blast. However, this same

sensitivity was not observed in spherically symmetric simu-

lations. We postpone further investigation of this question to

future work.

An increasing effective mass increases the luminosity and

average energy of electron neutrinos and antineutrinos and

thereby increases the rate of neutrino heating behind the
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FIG. 5. Neutrinosphere (a) radius, (b) density, (c) temperature, and (d) proton fraction for electron neutrinos νe (left), electron antineutrinos

ν̄e (center), and heavy neutrinos νx (right) for the spherical core collapse of the 20-M⊙ star of Woosley and Heger [32]. We observe that

increasing the EOS effective mass m⋆ leads to smaller neutrinosphere radii and densities as well as higher neutrinosphere temperatures and

proton fractions. The only exception is the νx neutrinosphere density which has the opposite behavior. Increasing the effective mass splitting

�m⋆ has the same qualitative effect as increasing the effective mass, but to a lower order.

SN shock. Therefore, it might be expected that a higher

effective mass makes conditions more favorable for shock

runaway. Nevertheless, we find that larger effective masses

result in smaller shock radii in spherically symmetric runs.

In Fig. 7 we observe that the shock radius Rshock follows

the PNS radius R12. In these spherically symmetric simula-

tions, the impact of the reduced PNS radius on the shock

overwhelms the increased neutrino heating rate when the

effective mass is increased. Nevertheless, in multidimensional

simulations, the larger neutrino luminosities and average en-

ergies may instead lead to shock radii that expand faster

for larger nucleon effective masses m⋆. This is discussed in

Sec. V.

Besides neutrinos emitted during core collapse, we also

discuss the hot PNS evolution during the first second after

collapse; see Fig. 7. In Ref. [78], it is argued in the context of

2D simulations that the LS220 EOS leads to fast contracting

PNSs because this EOS generates compact cold beta equili-

brated NSs. In our simulations we see that the collapse of a

massive star simulated using EOSs that differ only in their

effective masses predict very similar mass-radius relations

for cold NSs; see Fig. 1. Although all these EOSs produce

very similar cold beta equilibrated NSs, they predict distinct

behaviors for the PNSs formed in core collapse. In Fig. 7,

we plot the core temperature Tc and density ρc as well as

shock radius Rshock and core radius R12, the latter defined as
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FIG. 6. Time evolution of (a) neutrino RMS energies and (b) luminosities for νe (left), ν̄e (center), and νx (right) as a function of variations

in the effective masses in the EOS for the spherical core collapse of the 20-M⊙ star of Woosley and Heger [32]. We observe that increasing the

EOS effective mass m⋆ leads to higher neutrino RMS energies and luminosities. Increasing the EOS effective mass splitting �m⋆ leads to the

same qualitative effect as increasing the effective mass m⋆, but to a lower order.

the radius where mass density is ρ = 1012 g cm−3. There is a

clear correlation between the effective mass m⋆ and the core

density after bounce as well as how fast the PNS radius and

shock contract after reaching their maximum values. The core

temperature, on the other hand, is higher (lower) the lower

(higher) m⋆ is. Long term effects of effective mass on PNS

evolution have been recently considered in Ref. [99].

Density, temperature, and proton fraction profiles of the

PNS at 500 ms after bounce are plotted in Fig. 8. It is clear that

EOSs with higher m⋆ produce less thermal support since their

temperatures are lower in most of the PNS interior and hot

mantle, although the temperature is higher in the region where

it peaks. Thus, we deduce the reason the LS220 EOS leads

to faster contraction when compared to other EOSs is better

explained by its assumptions about its effective mass, set by

m⋆ = mn, rather than by the mass-radius relation it predicts

for cold beta equilibrated NSs, which is barely affected by the

effective mass.

Figure 4 of Ref. [21] shows that the PNS radius that

follows from the core collapse of a 11.2-M⊙ progenitor star

simulated with the LS220 EOS contracts significantly faster

than the radius of PNSs simulated with other EOSs that

have m⋆/mn ≃ 0.61–0.76. However, the EOSs in that work

use diverse prescriptions to compute the EOSs at low and

high densities, which makes a direct comparison between our

results and their results nontrivial. In this work, by unifying

the formalism used for all EOSs, we are able to draw stronger

conclusions about the effect of each parameter of the EOS on

the core collapse, and specifically on the role of the effective

mass.

B. Symmetry energy and its slope

We perform core collapse simulations using variation set

sS , where the symmetry energy and its slope are varied. We

observe that for the range of variations considered for ǫsym

and Lsym, the changes in the neutrino spectra and the PNS

properties are rather small. They are of comparable in mag-

nitude to the changes seen from varying the nucleon effective

mass splitting, �m⋆. Thus, for the purpose of simulations

of CCSNe, these two quantities are rather well constrained

and we expect that even substantial variations around the

current best estimates for these two observables will not affect

simulation results significantly.

It may be the case, however, that if we were to simulate

these CCSNe for longer time scales, including into the cooling

phase, that larger differences between EOSs could become

apparent. We defer this, as well as CCSN simulations of

different progenitors, to future work.

C. Incompressibility

We now discuss effects in CCSN simulations due to

changes in the incompressibility parameters Ksat and Ksym of

the EOS. As in the case of variations in the symmetry energy

ǫsym and its slope Lsym, the relative changes in the neutrino

spectra are rather small and at most twice those observed
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FIG. 7. Plot of PNS (a) central density ρc, (b) central temperature

Tc, (c) shock radius Rshock , and (d) radius R12 where ρ = 1012 g cm−3

for the spherical core collapse of the 20-M⊙ star of Woosley and

Heger [32] for variations in the effective mass of SNM at saturation

density m⋆ and the neutron-proton effective mass splitting in the

PNM limit �m⋆.

for changes in the nucleon effective mass splitting, �m⋆.

Nevertheless, it is likely that this is the case only for the short

times we evolved the collapsing star, t � 1.0 s. For longer

evolutions or more massive progenitors, larger differences

between the EOSs are likely. This may be inferred from

Figs. 9 and 10. The former shows the evolution of the core

density, core temperature, shock radius, and PNS radius. The

latter shows the PNS density, temperature, and proton fraction

as a function of radius. The central density and temperature

of the PNS at ≃1 s after bounce differ by ≃20% between

the most extreme cases. Meanwhile, changes in the shock

radius and PNS radius are affected only in the ≃5% range. At

that time, the maximum PNS mantle temperature is correlated

with both Ksat and Ksym. On the other hand, the PNS and shock

radius are anticorrelated with these quantities. We observe that

despite the much larger error bar in Ksym when compared to

Ksat, both lead to uncertainties in PNS structure of similar

magnitudes. We expect these differences to be amplified in

multidimensional simulations due to the interplay between

neutrino heating and hydrodynamic instabilities that can lead

to shock revival [5]. Hence, it is important for realistic simu-

lations that these two parameters are constrained further in the

future.

FIG. 8. Plot of PNS (a) density, (b) temperature, and (c) proton

fraction profiles at 500 ms after core bounce for the 20-M⊙ star

of Woosley and Heger [32] for variations in the effective mass of

SNM at saturation density m⋆ and the neutron-proton effective mass

splitting in the PNM limit, �m⋆.

D. Pressure at high density

We also study the differences in the neutrinos spectra and

in the PNS evolution during the first second of collapse for the

20-M⊙ progenitor star due to changes in the pressure of SNM

and PNM at n = 4nsat, set sP in Eq. (11d). As expected, by

the end of our runs neither the emitted neutrinos nor the PNS

properties were significantly altered by changes in the pres-

sure at high densities. Except for changes of ≃5% with respect

to the baseline EOS for the density and temperature in the core

near the end of the runs, none of the other quantities studied

(neutrino luminosity and RMS energy, and shock and PNS

radii) differed by more than 1% during the run. This is due

to the maximum density in the PNS still being below 2.5nsat

at t − tbounce ≃ 1 s and, thus, the EOSs used in all runs did

not reach regions were the differences become large. Lower

pressures at high densities cause densities (temperatures) in

the core to increase faster (slower). As in the cases of changes

in the symmetry energy ǫsym and its slope Lsym, we expect

that longer evolutions will show differences for the different

EOSs, as the densities reached throughout the PNS will be

higher. Furthermore, we expect the pressure at high densities
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FIG. 9. Plot of PNS (a) central density ρc, (b) central temperature

Tc, (c) shock radius Rshock , and (d) radius R12 where ρ = 1012 g cm−3

for the spherical core collapse of the 20-M⊙ star of Woosley and

Heger [32] for variations in the isoscalar and isovector incompress-

ibilities Ksat and Ksym, respectively.

to play a significant role in setting the time of collapse of the

PNS to a BH. Such a study is currently underway.

V. THREE-DIMENSIONAL CCSN SIMULATIONS

In order to further investigate the insights gained from

performing spherically symmetric (1D) core collapse simu-

lations discussed in Sec. IV for different EOSs, we perform

six three-dimensional (3D) octant runs, i.e., limited to one

octant of the 3D cube, for the same nonrotating 20-M⊙ pre-

supernova model s20WH07 [32]. In our 1D simulations, we

find that increasing the nucleon effective mass makes the PNS

atmosphere more compact and increases the neutrino energies

and luminosities. In the spherically symmetric simulations,

the impact of a reduced PNS radius overwhelmed the impact

of increased neutrino heating. Hence, larger effective masses

result in smaller maximum shock radii. Nevertheless, spheri-

cal symmetry inhibits hydrodynamic instabilities that may be

present behind the shock and these conclusions may not hold

in more realistic three-dimensional simulations. Five of the

3D runs are performed using variants of the finite temperature

SLy4 EOS [17,39]. Additionally, we perform one run with the

often used Lattimer and Swesty EOS with Ksat = 220 MeV,

FIG. 10. Plot of PNS (a) density, (b) temperature, and (c) proton

fraction profiles at 500 ms after core bounce for the 20-M⊙ star of

Woosley and Heger [32] for variations in the isoscalar and isovector

incompressibilities Ksat and Ksym, respectively.

LS220. The SLy4 and LS220 EOS properties at T = 0 are

listed in Table III.

The variants of the SLy4 EOS are computed using the

methods described in Sec. II and Appendix B by keeping

all empirical quantities except the effective mass for SNM

TABLE III. Zero-temperature properties of the SLy4 and LS220

EOSs.

Quantity SLy4 LS220 Units

m⋆ 0.694 1.000 mn

�m⋆ −0.185 0.000 mn

nsat 0.1595 0.1549 MeV baryon−1

ǫsat −15.97 −16.00 MeV baryon−1

ǫsym 32.00 28.61 MeV baryon−1

Lsym 45.96 73.81 MeV baryon−1

Ksat 229.90 219.84 MeV baryon−1

Ksym −119.70 −24.04 MeV baryon−1

P
(4)
SNM 127.12 107.75 MeV fm−3

P
(4)
PNM 142.15 162.08 MeV fm−3
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FIG. 11. Plot of (a) neutrino RMS energies,
√

〈ǫ2
ν 〉, and (b) luminosities, Lν , for νe (left), ν̄e (center), and νx (right) for our octant runs.

After ≃100 ms after core bounce a clear trend appears and we observe that simulations using EOSs with higher m⋆ lead to higher neutrino

RMS energies and neutrino luminosities.

at saturation density m⋆ constant. The values used for the

effective mass are m⋆/mn = 0.6, 0.7, 0.8, 0.9, and 1.0. In the

discussion that follows we differentiate between the different

SLy4 EOSs by adding a subscript that corresponds to the

effective mass used, SLy4m⋆/mn
. As in Sec. IV, the SLy4 EOSs

as well as the LS220 EOS are connected to a low-density

EOS of 3 335 nuclei in NSE using the prescription outlined

in Sec. II D.

Following Sec. IV, we simulate the collapse of the pro-

genitor star using the GR1D code [34,97]. In this phase, the

neutrino reactions are considered in the exact same manner

as discussed in the previous section. Following Ref. [35], we

map the spherically symmetric collapsing progenitor 20 ms

after core bounce to a high-resolution octant 3D geometry

with reflecting boundary conditions on the xy, yz, and zx

planes. The remainder of the simulation is performed using

the general-relativistic radiation-hydrodynamics code ZEL-

MANI [35], which is itself based on the EINSTEIN TOOLKIT

[37,38]. The high-resolution simulation grid uses a Cartesian

adaptive mesh refinement (AMR) with eight levels of refine-

ment, where each level increases the resolution by a factor

of 2. The finest grid covers the PNS and has a linear size

�x = 370 m. The postshock region is completely covered

by the third-finest grid, which has resolution �x = 1.48 km,

until the average shock radius reaches 300 km. At this point,

we switch the postshock region coverage to the fourth-finest

grid, resolution �x = 2.96 km. ZELMANI uses a fully three-

dimensional, two-moment M1 neutrino transport as described

in Ref. [35] and only uses 16 energy groups due to computa-

tional limits. As in Ref. [36], we employ the subset of neutrino

opacities from Ref. [94], see also Table II above, but now

leave out velocity dependence and inelastic neutrino-electron

scattering, although elastic neutrino-electron scattering is in-

cluded.

In Fig. 11, we plot the neutrino RMS energies
√

〈ǫ2
ν 〉

and luminosities Lν after core bounce for the three consid-

ered neutrino species. As in the spherically symmetric case,

both neutrino energies and luminosities, for the Skyrme-type

EOSs, increase as the effective mass is increased. In the range

of effective masses studied, differences in neutrino RMS ener-

gies are approximately 1.5 MeV for all neutrino species. We

observe that neutrino energies and luminosities, especially for

the heavy-lepton neutrinos νx, computed for the LS220 EOS

are higher than for the SLy41.0 EOS, even though both have

the same effective mass for SNM at saturation density, m⋆ =

mn. The reason for this is that most of the empirical parameters

that differ between the two EOSs, see Table III, shift neutrino

luminosities and energies to higher values for the LS220 EOS

with respect to the SLy41.0 EOS. The exception is Ksym, which

slightly decreases the neutrino output for the LS220 when

compared to the SLy41.0 EOS. The pressure at high densities,

represented by P
(4)
SNM and P

(4)
PNM, meanwhile, does not have a

significant effect for this progenitor within the first second of

core bounce.

Although variations of the effective mass have a similar

impact on the RMS neutrino energies in the 3D simulations

as they had in the 1D simulations, the resulting shock radius

evolutions differ substantially. The s20WH07 progenitor has

a steep density and specific entropy discontinuity at the Si/Si-

O shell interface. In the full 3D simulations of Ref. [36]

for the same progenitor star but using the SFHo EOS [21],

the abrupt decrease in the ram pressure at the shock as the

discontinuity is accreted results in shock runaway. In Fig. 12,

we plot the shock radius and accretion rate for our six octant
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FIG. 12. Shock radius Rshock (solid lines, left axis), and accretion rates at 400 km, Ṁ400 (dashed lines, right axis), for our octant simulations.

Thick solid line shows the average shock radius while thin lines show the maximum and minimum shock radius. Accretion rates are mostly

independent of the EOS and are only plotted up to the point where shock radius reaches 400 km. The shock radius is very sensitive to the EOS

used in the simulation, particularly after it crosses the Si/Si-O interface ≃220 ms after core bounce. EOSs with a higher effective mass m⋆

predict longer expansion of the shock radius with the LS220 EOS predicting shock runaway.

3D simulations. The accretion rates for all octant runs agree

within 1% or less, while the shock radius after the shock

crosses the Si/Si-O is very sensitive to the EOS, with only

the LS220 EOS predicting shock runaway.

In this paper, we choose not to carry out a direct com-

parison between our results and that of Ref. [36]. We do

so for a number of reasons. First, full 3D runs appear to

more readily lead to shock runaway than octant runs [35].

Second, when setting the initial conditions of the run we

choose to preserve density ρ, proton fraction y, and pressure

P, while in Ref. [36] chose density ρ, proton fraction y, and

temperature T . This leads to different times of core bounce

and a different accretion history. Finally, the SFHo EOS,

including its low-density part, is generated using a relativistic

mean-field approach and not a Skyrme model. Figure 15 of

Ref. [17] shows how changes in the low density EOS affect the

postbounce accretion rate. Understanding how the difference

in the low density EOS as well as in the initial conditions

lead to differences in the PNS profile and CCSN evolution

is beyond the scope of the present work.

With respect to the shock radius evolutions resulting from

the different EOSs, we note that for the octant runs EOSs

with higher effective masses for SNM at saturation density

m⋆ generally lead to larger shock radius after bounce. In the

LS220 run, the shock runs away approximately 350 ms after

core bounce reaching, on average, 500 km by the end of the

run. In the SLy41.0 run, on the other hand, the average shock

radius grows up to 220 km at 320 ms after core bounce, only

slightly lower than what is predicted for the LS220 EOS, but

then recedes. Although this is opposite to the pattern seen

for the shock radii in 1D runs, see Fig. 7, this is expected

in 3D simulations due to the higher neutrino luminosities

and RMS energies for EOSs that have higher m⋆. Compare

Fig. 6 for 1D runs and Fig. 11 for the 3D octant runs. An

exception is the SLy40.6 EOS, whose 3D simulation predicts

shock radius behavior similar to the SLy40.8 run and higher

radii than what we observe in the SLy40.7 run, despite its lower

neutrino luminosities and average energies. This is likely due

to counteracting effects of lower neutrino production, but

larger initial mass in the gain region for EOSs with lower

effective masses; see Fig. 13.

In Fig. 13, we present diagnostics that help us understand

variations in the results for the different EOSs. First, higher

neutrino energies and luminosities lead to higher integrated

neutrino heating, heating minus cooling Q̇, and higher heating

efficiency, η = Q̇(Lνe
+ Lν̄e

)−1, in the gain layer. Reference

[36] showed that for the first 80–100 ms after bounce, the

heating efficiency η is almost independent of the progenitor.

Here we observe that η is also almost completely EOS inde-

pendent early after bounce. However, it is clearly correlated

with the effective mass m⋆ at later postbounce times. At the

time when the Si/Si-O interface reaches the shock, η is ≃50%

higher for EOSs with m⋆ = mn compared to the ones with

m⋆ � 0.8mn.

Next, from Fig. 13, we see that the mass in the gain

layer Mgain is mostly EOS independent until the Si/Si-O shell

crosses the shock radius. After this occurs, EOSs that predict

higher PNS compactness, (GMPNS)/(RPNSc2), also predict

larger mass in the gain layer, another indicator of favorable

conditions for shock runaway. The ratio between the time

scales τadv ≃ MgainṀ−1 for material to advect through the gain

layer and τheat ≃ |Egain|Q̇
−1 for neutrino heating is another

such indicator [10,100,101]. Following implementation de-

tails of Ref. [102], we find that two of the EOSs, LS220 and
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FIG. 13. Plots of (a) neutrino heating rate Q̇, (b) mass in the gain layer Mgain, (c) total gain-layer-integrated turbulent kinetic energy Eturb

across radial and angular directions, (d) heating efficiency η = Q̇/(Lνe
+ Lν̄e

), (e) ratio τadv/τheat between the mass advection time scale τadv

and neutrino heating time scale τheat , and (f) PNS compactness (GMPNS)/(RPNSc2). We observe a clear correlation between quantities plotted

and the effective mass m⋆ of the EOS used in a given simulation. EOSs with larger m⋆ lead to simulations with higher neutrino heating rates,

higher heating efficiency, more mass in the gain region, a larger ratio between the advection and the heating time scales, which favors shock

runaway, as well as a more compact PNS. Total gain-layer-integrated turbulent energy is anisotropic on large scales, i.e., Eturb,r ≃ Eturb,θ+φ ,

nearly EOS independent up to ≃240 ms, and depends on the shock radius behavior at late times; see discussion in text.

SLy41.0, cross the τadv/τheat � 1 threshold set as a condition

that favors shock runaway, while SLy40.9 comes very close

to it. While the LS220 EOS results in shock runaway, none

of the simulations using variants of the SLy4 EOS lead to

shock runaway within 400 ms of core bounce. Not even the

SLy41.0 EOS, despite reaching a ratio between advection and

heating time scales τadv/τheat � 1.5. As discussed in Ref. [36],

τadv/τheat serves more as a diagnostic of shock runaway than

a condition for explosion. Even at times where τadv/τheat � 1

for the simulations employing the SLy41.0 EOS, the mass in

the gain layer continues to decrease and the shock stabilizes

at 〈Rshock〉 ≃ 200 km before receding. In the simulation using

the LS220 EOS, the mass in the gain layer stabilizes and then

grows once explosion sets in.

Finally, we also plot in Fig. 13 the total, gain-layer-

integrated radial and angular turbulent energies as defined in

Ref. [103]. As argued in Refs. [11,35,104,105] we find that

the total turbulent energy is anisotropic on large scales, i.e.,

Eturb,r ≃ Eturb,θ+φ . Furthermore, Eturb is mostly EOS indepen-

dent until ≃240 ms after core bounce, when shock behavior

becomes very sensitive to the EOS. As the Si/Si-O shell ad-

vects through the shock, the initially increasing total turbulent

energy Eturb suddenly drops. For simulations using the SLy4

EOSs with m⋆ � 0.9mn shock radius recedes quickly in the

late stages of the run while the total turbulent energy Eturb

stabilizes after the large drop ≃200–240 ms after core bounce.

On the other hand, simulations using the LS220 EOS leads to

increasing Eturb as its shock runs away, Fig. 12. The SLy41.0

EOS predicts a behavior for the turbulent energy density

that is a mix of the predictions by the simulations using

the LS220 and the other SLy4 EOSs: a momentary increase

of Eturb is achieved while 〈Rshock〉 ≃ 200 km followed by its

stabilization as the shock radius recedes. The values of Eturb at

the end of the run are correlated with the shock radius.

VI. CONCLUSIONS

We carried out a detailed study of the impact of variations

of different experimentally accessible parameters of the nu-

clear matter EOS on the properties of cold beta-equilibrated

neutron stars (NSs) and on the core collapse and postbounce

evolution of a massive star.

Using the SROEOS code [17], we constructed 97 finite-

temperature EOSs in which we systematically varied the

empirical parameters of the EOS based on the experimental

and theoretical constraints compiled in Refs. [12,14,47]. We

then used these EOSs to compute the properties of cold beta-

equilibrated NSs and to simulate the core collapse of the

20-M⊙ presupernova stellar model of Ref. [32]. We carried out

CCSN simulations using the spherically symmetric general-

relativistic radiation-hydrodynamics code GR1D [19,33,34].

We carried out the simulations to approximately 1 s after core

bounce and investigated the neutrino signals and protoneutron

star (PNS) evolution for each EOS.

Although the uncertainty in the effective nucleon mass at

saturation density has a negligible impact on the properties
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of cold NSs in our EOS model, we find variations in the

effective mass have a substantial impact on the postbounce

evolution of our CCSN models. The effective nucleon mass

mainly regulates the temperature dependence of the Skyrme-

type EOSs we consider, so it impacts the structure of the

shock heated material in the PNS. Specifically, we found that

the effective mass of nucleons in SNM at saturation density,

m⋆, impacts the interior structure of the PNS, the PNS radius,

the CCSN neutrino emission, and the evolution of the CCSN

shock. Increasing the effective mass increases the average

neutrino energies for all neutrino types and their total lumi-

nosity. This is because increasing the effective mass m⋆ leads

to more compact PNSs with hotter neutrinospheres, although

the larger effective masses result in lower PNS core tempera-

tures. Recently, similar conclusions regarding the impact of

the effective mass were reported from spherical-symmetric

simulations of a 15-M⊙ progenitor star [64]. The differences

described here due to variations in the effective mass have

been seen elsewhere in the literature, e.g., Refs. [6,21,23,31].

However, due to the low number of EOSs explored in previous

works, it was unclear that the effective mass was the main

culprit of variations seen in simulations employing different

EOSs.

Variations in other parameters of the EOS, such as changes

in the neutron-proton effective mass splitting in PNM, have a

small impact on CCSN evolution. Moreover, changes in the

isoscalar part of the incompressibility, Ksat, affects tempera-

ture and density in the core of PNSs, but has limited impact

on the neutrino signal, and the outer regions of the PNS.

Although it is more weakly experimentally constrained, vary-

ing the isospin incompressibility, Ksym, leads to variations in

neutrinos signal and PNS evolution of the same order of mag-

nitude as the isoscalar incompressibility, Ksat. Furthermore,

for the purpose of CCSNe evolution, symmetry energy terms

and the pressure at high densities, n � 4nsat, have even smaller

impact on the outcome of the core collapse than changes

in the incompressibility. Based on the spherically symmetric

simulation results, we conclude that most of the uncertainty

introduced into simulations of core collapse evolution and

its neutrino signal by uncertainties in the EOS is due to the

temperature dependence of the EOS and, to a lesser degree,

due to the nuclear incompressibility.

To confirm these spherically symmetric results, we per-

formed six octant 3D simulations using the LS220 EOS and

five variants of the SLy4 EOS where the effective mass of

nucleons for SNM at saturation density was varied in the

m⋆ = 0.6–1.0 mn range. The runs were performed using the

same setup as the spherically symmetric runs up to 20 ms

after bounce and using the ZELMANI code [35] leaving out the

velocity dependence and inelastic neutrino-electron scattering

in the neutrino transport.

Among the octant runs, lower m⋆ causes lower neutrino

average energies and luminosities, as was the case in the

spherically symmetric runs. The lower neutrino energies result

in less neutrino heating of the gain layer which subsequently

leads to lower shock radii and failed explosions. Only the

simulation using the LS220 EOS (m⋆ = mn) shows shock

runaway at ≈350 ms after core bounce. For the SLy4 EOS

variants there is a strong correlation between the shock radii

and the value of m⋆. For runs employing the SLy4 EOS variant

with m⋆/mn = 1.0, SLy41.0, and 0.9, SLy40.9, the average

shock radius reaches ≃220 km and 180 km, respectively,

before starting to recede. For the other SLy4 EOS variants, the

maximum average shock radius is limited to 160 km. Analysis

of our simulations shows that the run using the SLy41.0 EOS

reached conditions very close to those that induce shock

runaway. Specifically, the ratio between the advection and

heating time scales is well above the limit τadv/τheat � 1,

usually indicative of impending shock runaway. It is likely that

the small differences in nuclear saturation density properties

between SLy41.0 and LS220, which play only a secondary

role in our spherically symmetric runs, determine that the

shock runs away in the latter simulation while it does not

in the former. We expect full 3D simulations to more easily

lead to shock runaway than the octant simulations considered

here [35]. Thus, it is likely that for such conditions, the

SLy41.0, and maybe even some of the other SLy4 EOS variants

with lower m⋆, may experience shock runaway in full three

dimensions.

Our octant runs may be compared to the full 3D run of Ott

et al. for the same progenitor [36]. That run used the SFHo

EOS [21], which has m⋆ = 0.76mn. Nevertheless, despite the

relatively low value of m⋆, that simulation saw shock runaway.

It is likely that full three dimensions, differences in the high

and low-density EOS, and differences in the setup of the initial

conditions all played a role in the outcome of that simulation.

This highlights the difficulty of comparing the role of the EOS

between simulations that differ in many ways.

Understanding the effects each element of the EOS has

on the outcome of a core collapse event is a long standing

problem in nuclear and computational astrophysics. Using the

SROEOS code [17] we have, for the first time, determined

in a consistent manner the pieces of the EOS that most sig-

nificantly affect core collapse dynamics and PNS evolution.

We demonstrated that uncertainties in the temperature depen-

dence of the EOS affect neutrino energies and luminosities

and play an important role in determining whether shock

runaway takes place. We stress the need to extend our study

to understand the EOS effects with different progenitors, full

3D simulations, and using other CCSN simulation codes [84]

to confirm our findings.

If our findings are confirmed by full 3D simulations as

well as for other presupernova progenitor models, then the

outcome of CCSNe is considerably sensitive to variations in

the finite-temperature component of the EOS. In such case,

substantial progress in constraining the finite-temperature

EOS would still be required to accurately predict the evolu-

tion of CCSNe. Particularly, as also discussed in Ref. [64],

constraints in the temperature dependence of the EOS are

still lacking, but may be indispensable to correctly describe

CCSNe. Efforts to further constrain the effective mass of

nucleons, which directly impact the thermal component of the

EOS [42], are currently being undertaken both experimen-

tally [106,107] and theoretically [108–111]; see Ref. [112]

for a recent review. Furthermore, stronger constraints on

the cold EOS will be obtained from observations of NS

mergers [68,113,114], by modeling of NS cooling curves

[66,99] and from heavy-ion collisions [47,115] in the near
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future. However, it is also possible that core collapse of the

progenitor model studied here is particularly sensitive to the

EOS through a critical interplay between accretion rate and

neutrino emissions and that the core-collapse outcome for

other progenitors is less dependent on particular details of the

EOS. Finally, we recall that the temperature dependence of

Skyrme-type models is quite simple as the effective mass only

has density dependence [18,42,116]. If, as suggested by some

theoretical calculations [111], the effective mass of nucleons

at temperatures similar to that found in PNSs is similar to

that of nucleons in vacuum, then our conclusions would be

affected. Thus, additional systematic CCSN simulations that

use other families of EOSs would help to further quantify how

uncertainties in the temperature dependence of the EOS affect

CCSNe.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with H. Nagakura, I.

Tews, C. Constantinou, M. Prakash, C. J. Horowitz, S. Couch,

MK.L. Warren, and H. Yasin. This research was funded by the

National Science Foundation under Award No. AST-1333520,

CAREER Grants No. PHY-1151197, No. PHY-1404569, and

No. OAC-1550514, and by the Sherman Fairchild Foundation.

This research used resources of the National Energy Research

Scientific Computing Center (NERSC), a US Department

of Energy Office of Science User Facility operated under

Contract No. DE-AC02-05CH11231. The authors acknowl-

edge the Texas Advanced Computing Center (TACC) at The

University of Texas at Austin for providing HPC resources

that have contributed to the research results reported within

this paper. E.O.C. acknowledges support from the Swedish

Research Council (Project No. 2018-04575).

APPENDIX A: SOMMERFELD EXPANSION

To compute the Sommerfeld expansion we make use of

lim
T →0

Fk (η) =

∫ η

0

ukdu +
π2

6
T 2

(

d (uk )

du

)

η

+ · · · . (A1)

Some algebra leads to

nt ≃
2κt

3
μ̃

3/2
t

[

1 +
π2

8

(

T

μ̃t

)2
]

, (A2)

where we defined κt = (1/2π2)(2m⋆
t /h̄2)3/2, μtF =

(h̄2/2m⋆
t )(3π2nt )

2/3, and μ̃t = T ηt . We may invert Eq. (A2)

to obtain

μ̃t = μtF

[

1 −
π2

12

(

T

μtF

)2
]

, (A3)

where μtF = h̄2k2
tF /2m⋆

t is the Fermi chemical potential with

ktF = (3π2nt )
1/3 the Fermi momentum.

A similar procedure implies that the kinetic energy density

is

τt ≃ τtF

[

1 +
5π2

12

(

T

μtF

)2
]

, (A4)

with τtF = 3
5
k2

tF nt . Thus, the low temperature limit of the

specific entropy

sB =
1

T

1

n

∑

t

[

5

3

h̄2τt

2m⋆
t

− T ηt nt

]

≃
T

n

π2

2

∑

t

[

nt

μtF

]

=
∑

t

nt

n
st , (A5)

where st is given in Eq. (12). The thermal contribution to the

pressure is readily obtained from

Pth =
∑

t

[

nt (μ̃t − μtF ) −
h̄2

2m⋆
t

(τt − τtF )

]

+ T nsB, (A6)

which reduces to Pth ≃ 1
3
T nsB. Expressions containing higher

order terms can be found in Ref. [117].

APPENDIX B: LINEAR EQUATIONS

We present the linear equations discussed in Sec. II used

to obtain the Skyrme parametrization given the set of EOS

properties in Table I.

The α1 and α2 parameters are computed from the properties

of the effective masses m⋆(n, y) at two distinct points in the

n, y phase space. We set the neutron effective mass value

at m⋆
n(nsat, 1/2) and �m⋆(nsat, 0) = m⋆

n(nsat, 0) − m⋆
p(nsat, 0)

and compute the α parameters from the coupled equations:

(α2 + α1) = 2(β⋆
n − βn)/nsat, (B1)

β� = (βn + α1nsat )
−1 −

(

βp + α2nsat

)−1
. (B2)

Here βt = h̄2/2mt and β� = h̄2/2(m⋆
n − m⋆

p). Equation (B2)

reduces to (α2 − α1)nsat = (βn − βp) when �m⋆(nsat, 0) = 0.

We decided to compute the parameters α that set the effective

mass of nucleons separately from the other Skyrme parame-

ters to avoid negative effective masses at high densities and/or

large isospin asymmetries.

The parameters ai and bi in Eq. (7) are computed by

solving the system of linear equations Ax = B where

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a0 a0 a1 a1 a2 a2 a3 a3

a
′
0 a

′
0 a

′
1 a

′
1 a

′
2 a

′
2 a

′
3 a

′
3

0 −a0 0 −a1 0 −a2 0 −a3

0 −3a′
0 0 −3a′

1 0 −3a′
2 0 −3a′

3

a
′′
0 a

′′
0 a

′′
1 a

′′
1 a

′′
2 a

′′
2 a

′′
3 a

′′
3

0 −a
′′
0 0 −a

′′
1 0 −a

′′
2 0 −a

′′
3

b0 b0 b1 b1 b2 b2 b3 b3

b0 0 b1 0 b2 0 b3 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(B3)

where we defined

ai = n
δi

sat, (B4)

a
′
i = δin

δi

sat, (B5)

a
′′
i = 9δi(δi − 1)nδi

sat, (B6)

bi = δi(4nsat )
δi , (B7)
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x = (a0, b0, a1, b1, a2, b2, a3, b3)T , and

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ǫsat − ǫkin(nsat, 0.5)

n−1
sat Pkin(nsat, 0.5)

ǫsym − ǫsym,kin(nsat, 0.5)

Lsym − Lsym,kin(nsat, 0.5)

Ksat − Kkin(nsat, 0.5)

Ksym − Ksym,kin(nsat, 0.5)

P
(4)
SNM − Pkin(4nsat, 0.5)

P
(4)
PNM − Pkin(4nsat, 0)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (B8)

In Eq. (B8) nsat, ǫsat, ǫsym, Ksat, Ksym, Lsym, P
(4)
SNM, and P

(4)
PNM,

are, respectively, the nuclear saturation density, energy at

saturation, symmetry energy at nuclear saturation density,

isoscalar incompressibility, isovector incompressibility, the

slope of the symmetry energy, and the pressures of SNM

and PNM at 4nsat. Furthermore, ǫkin(n, y) is the kinetic

energy term of the specific energy and was defined in Eq. (2)

while

Pkin(n, y) = n2 ∂ǫkin(n′, y)

∂n′

∣

∣

∣

∣

n

, (B9)

Kkin(n, y) = 9n2 ∂2ǫkin(n′, y)

∂n′2

∣

∣

∣

∣

n

, (B10)

Ksym,kin(n, y) = 9n2 ∂4ǫkin(n′, y′)

∂y′2n′2

∣

∣

∣

∣

n,y

, (B11)

ǫsym,kin(n, y) =
1

8

∂2ǫkin(n, y′)

∂y′2

∣

∣

∣

∣

n,y

, (B12)

Lsym,kin(n, y) =
3

8
n

∂3ǫkin(n′, y′)

∂y′2∂n′

∣

∣

∣

∣

n,y

. (B13)
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