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New, accurate equations of state for fluids of chain molecules are derived as generalizations of
the well-known Flory and Flory—Huggins lattice theories to continuous space. Comparison
with the results of new Monte Carlo simulations of athermal chains (freely jointed hard disks
and spheres), extending over a wide range of densities, reveals that the generalized Flory—
Huggins equation of state provides an accurate prediction for the pressure.

I. INTRODUCTION

Fluids composed of chain molecules are of increasing
interest, owing to their richly varied static and dynamic
properties, and to their obvious importance in the natural
gas and petroleum industries. While the techniques com-
monly employed in theories of simple liquids (integral equa-
tions, perturbation theory) have been extended to molecular
fluids,' such approaches often pose formidable computa-
tional difficulties when applied to chain molecules. In view
of these difficulties, and of the relatively primitive level of
understanding of such fluids, the development of simple
mean field theories for estimating their properties is desir-
able. Two mean field theories—the Flory (F) and Flory-
Huggins (FH) approximations,”*—have, since their intro-
duction over forty years ago, found wide application in the
statistical mechanics of polymer solutions*™® and mixtures.’
In this paper we develop accurate equations of state, based
on the Flory and Flory—Huggins approaches. We shall show
that quantitative predictions for the pressure may be de-
rived, provided that (1) the equation of state for a fluid com-
prised of the individual chain elements (monomers) is
known to good approximation, and (2) the fact that real
fluids exist in continuous space (as opposed to a lattice) is
properly accounted for. The resulting equations of state are
simple in form and are in excellent agreement with simula-
tion results for athermal chains.

The original F and FH arguments appealed to a lattice
picture for estimating the number of configurations, but cer-
tain of the resulting expressions (for example, the entropy of
mixing), are free of lattice-related parameters, and would
appear to be applicable to continuous-space systems. One
may interpret the lattice coordination number as represent-
ing the average number of neighbors in a fluid, thereby elimi-
nating from the final results any overt reference to the lattice
picture. Nevertheless, certain predictions of the F and FH
theories—in particular the equation of state—betray, in
their basic structure, their discrete-space provenance. For
chains on lattices, detailed comparisons with simulation re-
sults®!! have shown that the mean field theory predictions
for the osmotic pressure are rather accurate at moderate to
high densities. However, it has recently become apparent
that direct application of the lattice formulas yields severe
underestimates for the pressure in continuous-space mod-
els.'*!7 In this paper we shall uncover the reason for this
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discrepancy, and then show how the probabilistic assump-
tions employed in the lattice model derivations may be taken
over to a continuous-space context to yield accurate equa-
tions of state. The predictions of the continuous-space ver-
sions of mean field theory will then be compared with results
of new Monte Carlo simulations of athermal chains. The
latter are also of intrinsic interest, since our studies extend to
higher densities than have been investigated before.

We begin, in Sec. II, by reviewing the derivations of F
and FH theories for chains on a lattice. By casting the argu-
ment in terms of simple, precise probability concepts, we are
able to pinpoint the assumptions and approximations re-
quired. The application of analogous assumptions and ap-
proximations to continuous-space models is explored in Sec.
111, leading to what may be termed “generalized”” F and FH
equations of state. In Sec. I'V we describe our Monte Carlo
simulation method, and compare the results with the predic-
tions of the generalized mean field theories.

Il. LATTICE MODEL

We consider chains of » segments on a lattice, which
interact via a pairwise segment-segment interaction. The in-
tramolecular contribution to the potential energy may also
depend on the relative orientation of successive bonds. We
write the total potential energy of a system of N, chains as

1

2 Z i u(lx(k) (l)|)+ Z w(x(l) ’x(n))
k=1

NP =
i=1

(2.1)

where x*’ denotes the position of the k th segment of the ith

chain. We shall assume that ¥ = u, + 4’ and v =v, + V',

where u, and v, are site—exclusion interactions which assign

infinite energy to any configuration in which a site is occu-

pied by two or more segments. The partition function for a
system of NV, n-mers on a lattice of NV sites is

1
Z(Np, n, N, ﬁ) —N—"

pix{PeAy

BUy

z z e T (22)
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where A, is a region of the lattice encompassing NV sites, and
B=1/kgT.

Let Y denote an n-mer configuration, and let X’ denotea
configuration of N, n-mers on a lattice of N sites. A quantity
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of key interest is the insertion factor

PN, mN, B) = ({e ")y )y (2.3)

where U7 is the potential energy of “test-chain” configura-
tion ¥, when inserted into the many-chain configuration X,
The brackets indicate ensemble averages over the system and
test-chain configurations. Referring to Eq. (2.2), we have

P(N,,n,N,B)

3 3 e BUy, 11
(1 ** (n)
X] XNp+ 1

= —BUy, - BU,
[2x§" Exl(v,;,e "] [Exi,) X me ‘]

Z(N,+1,n,N,8)
Z(N,,n,N,B)Z(1,n,N,B)
The partition function may therefore be written as

Ny Np— 1
[Z(1,n,N, )] II »G.n N, B).

N,! A
(2.5)

Using 7 and u to denote, respectively, the pressure and
chemical potential of the chains, we have the thermodynam-
~ ic relation
uN, =E—TS+ 7N.
If we use the relations
AN, n,N.B)=E—-TS= — kyTInZ(N,,n, N,B)

=(N, +1) (2.4)

Z(N,,n,N,B) =

(2.6)

(2.7)
and
ﬂ(pr n, N:B) = — kBT[an(Np + 1’ n, N)B)
—'an(Np) n,MB)]
(2.8)
together with Eq. (2.5), then we have
7™ (N,, n, N, B)
N,—1
_—_N~1[ > Inp(jnN,B) —N, Inp(N,,n, N, B)
i=1
+N,In(N,+1)~1In Np!], (2.9)

where m*=87.
We shall assume the existence of the limiting insertion
factor

p(¢’ n: ﬁ)Eth, Npﬁm;an/N=¢P(Np: n: N’ B)‘ (2'10)

Taking the limit N, N,— 0, with fixed occupation fraction
¢, Eq. (2.9) becomes the osmotic equation of state

T*(é, n, B)

= %[1 —Inp(é,n,B)] + %flnp(cﬁ’, n,B)d¢'.
0
(2.11)

We now specialize to the case 4’ = v’ =0, ie., fully
flexible, athermal chains on a lattice. Since the only interac-
tions are site~exclusion, e ~#Y = | if the configuration is free
of overlap, and is zero otherwise. Thus P(N,,n,N) (we
drop the argument £ since p is now temperature indepen-
dent) may be interpreted as the probability that a randomly
chosen n-mer may be inserted without overlap into a ran-
domly chosen configuration of N » n-mers on a lattice of N

sites. The Flory (F) and Flory—-Huggins (FH) theories pro-
vide simple estimates for p(é,n) for athermal lattice chains.
We shall review the F and FH derivations, so as to highlight
the approximations involved, and to facilitate their exten-
sion to off-lattice models in the following section.

Let y (Y,X) be 1if chain ¥ does not overlap with any of
the N, chains in configuration X, and let y be zero otherwise.
Then we may express the insertion probability as an average
over configurations:

PN,y n, N) = (¢ (Y, X)) y)x, (2.12)

where averages over all the Y and X are indicated. We may
also define

Py o n(X) = (Y, X))y (2.13)

which is the probability that n-mer configuration ¥ may be
inserted without overlap into a randomly chosen configura-
tion of N, n-mers, so that p(N,,, n, N) = (PN,,...N( y.

For y,, y;, etc, € Ay, define PN,,, a8 Di|Vir¥m ) as the
probability that y; is vacant in a randomly chosen configura-
tion of N, n-mers on a lattice of N sites, given that sites
Yicr-sYm are vacant. Let Y= (y,, »,,....y, ), where the sites
are listed in their order along the chain. Then

PN,,,,,_N(Y) = (1-— ¢)PNP_"’N(}’21J’1)PN,,',,'N(.V:a,yvyz)
XeoXPy (W, VsV ). (2.14)

In the Flory approximation sites y,,....,y, are regarded as
occupied independently with probability ¢, so that for k>2,

PN,,‘,,_N(}’kLVn---,J’k_J =(1—-4¢), (2.15)
which immediately yields
Pr(d,n) =(1—-¢)". (2.16)

The Flory approximation treats the occupied sites as if they
were scattered randomly over the lattice, rather than
grouped in chains.

To derive the FH formula for p, we first invoke a Marko-
vian assumption

Py (VrlyiseVi—1) =Py

pon N P’",N(yklyk..l) (2.17)
for £>2. As a result of this approximation, the insertion

probability
Py

mnn (D=0 =@) [Py G)]""! (2.18)
is independent of Y, since y and y’ are an arbitrary pair of
neighboring sites. Thus pey (N2, N) = (1 — ¢)(1 — )",
where ¢, is the probability that a neighbor of a randomly
chosen vacant site is occupied. While this represents a con-
siderable simplification over Eq. (2.14), determination of oy
is not trivial, since knowledge of the pair correlation for va-
cant sites is required. In the FH theory ¢, is approximated as
the occupation probability 4 of a neighbor of any site (occu-
pied or vacant), excluding pairs of sites occupied by succes-
sive segments of a chain. The accuracy of this approximation
is difficult to assess, but it clearly represents an improvement
over the complete disregard for chain structure inherent in
the Flory approximation. ¢ may be evaluated as follows. If a
fraction ¢ of the sites are occupied by chain segments, then
N¢(n — 2)/n sites are internal to chains. Denoting the lat-
tice coordination number by z, the density of occupied neigh-
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bors of the internal sites is

z—2~ 2
¢in= ¢+—’

4 z

(2.19)

since each internal site has two neighbors which are surely
occupied. Similarly, neighbors of the 2N¢/n chain-end sites
are occupied with probability

1+ 1
¢end = ¢ +—
z z
and, by assumption, neighbors of the N(1 — ¢) vacant sites

are occupied with probability &. Since the overall fraction of
occupied sites is ¢, we must have

Zz —

(2.20)

2 2 ~

¢=¢[(1 —‘n—)¢m +';'¢end] + (1 —¢)¢’ (2.21)
which implies that
~_ 1=2z"'"(1—n"")

¢ =@ 1 1y

1—24z7'(1 —n")

The insertion probability in the FH approximation is there-
fore

Pru(d,n) = (1 —¢)(1_$)n~1

=(1-@)"[1=2¢z7"(1 =n" "]~ "= 1,
(2.23)
8—11:

Numerical studies®™" " indicate that at low and moderate
densities the F and FH formulas tend to underestimate the
insertion probability. However, the FH estimate for the pres-
sure is quite accurate over a wide range of densities. The
disparity between F and FH predictions and numerical re-
sults worsens with increasing chain length, which is not sur-
prising, given that (1) the F and FH theories are exact for
n =1, and (2) correlations within and between chains (ig-
nored in these theories) assume greater importance for long-
er chains.

(2.22)

1Il. EXTENSION TO OFF-LATTICE MODELS

In the theory of athermal polymers and mixtures, the F
and FH approximations, originally derived for lattice mod-
els, are frequently applied to off-lattice models.*~” The tran-
sition from lattice to continuous space is accomplished by
replacing the site occupation fraction ¢ appearing in Egs.
(2.16) and (2.23) with %, the fraction of the total volume
occupied by molecules. (In the case of chains composed of #
tangent hard spheres of diameter o, 7 = nwo’p, /6, where
pn = N,/Vis the density of n-mers). However, recent stud-
ies!?!” reveal that such an approach yields a severe underes-
timate for the pressure. As the following discussion makes
clear, the lattice formulas are fundamentally inappropriate
for describing continuous-space systems. However, it is not
difficult to extend the F and FH approaches to a continuous-
space context, and to derive expressions analogous to Egs.
(2.16) and (2.23), which provide accurate predictions for
the pressure in a system of athermal chains.

Let Z(N,, n, ¥, B) be the partition function for a sys-
tem of N, n-mers in volume V,and let p(N,, n, ¥, B) be the
insertion factor, i.e., Eq. (2.3) with N replaced by V. The
relation between p and Z is again given by Eq. (2.4), if we
replace N by V. In analogy with Eq. (2.10), we assume the
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existence of
P(77, ny ﬁ)ElimNp,V—»w;Npun/V= np (Np9 n’ I/) ﬁ)! (3° 1 )

where v, is the volume of an n-mer. If Nis replaced by V, Eq.
(2.9) also holds for continuous-space systems, and in the
thermodynamic limit the continuous-space version of the
osmotic equation of state is

(7, n,B) = vl[l —Inp(y,n,B)]

1 n
+U—J Inp(y',n,B) dy'. (3.2)
n vY0

Comparing this with Eq. (2.11), one may be tempted to
conclude that the continuous-space system is described by
the lattice formula, with ¢—» and n—v, . However, it will be
seen presently that p.opinuum (7) #Pranice (7). In fact, the de-
pendence of the insertion probabilities on the volume frac-
tion is radically different in the two cases.

To begin, we consider the case of athermal chains with
n = 1, for which the lattice F and FH theories both give
p(#,1) = (1 — ¢), which is exact. In this case, Eq. (2.9)
yields the familiar result

m™(¢,1) = —In (1 —¢). (3.3)

For arbitrary n, the Flory approximation predicts the com-
pressibility factor

p T (g =1 —%[ln(l—m +41, (3.4)
where p,, is the number of chains per unit volume. Equation
(3.4) (with ¢ replaced by 77) is commonly cited as the Flory
theory prediction for the compressibility factor in a system
of athermal chains in continuous space. Since, on the lattice,
the F and FH theories are exact for n = 1 and only approxi-
mate for n > 1, we should not expect Eq. (3.4) to be a good
approximation for the continuum unless the pressure in a
system of monomers (e.g., hard spheres) is well-approxi-
mated by — In (1 — 7). But this is obviously a gross under-
estimate of the pressure. For example, the pressure in the
fluid phase of hard spheres is accurately described by the
Carnahan-Starling equation'?

l+n+7° -7
(1—n)?
while in the case of hard rods of length o on a line, we have

the exact result'

e () ZTP_’

mE&s () =p (3.5)

(3.6)

where 77 = op. We see that as the volume fraction ap-
proaches unity, the pressure increases much more rapidly in
continuous-space models than on the lattice. (The same con-
clusion applies to the FH lattice approximation, which pre-
dicts a compressibility factor somewhat smaller than in the F
approximation. )

We shall now derive generalizations of the F and FH
theories for athermal chains in continuous space, by argu-
ments which parallel the lattice model derivations of the pre-
vious section. In the lattice model derivations, estimation of
p(é,n) was based on the knowledge of the monomer inser-
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tion probability p(¢, 1) = (1 — ¢). Itis not possible, in gen-
eral, to derive an exact expression for the monomer insertion
probability p(7,1), for a continuous-space model. However,
from Eq. (3.2) we have

’ P
Inp(n,1) = J'"dllll _yp A, D)
o 7 dn

so that, given an approximate equation of state for mon-
omers, we can derive an estimate for the monomer insertion
probability. One case for which an exact evaluation is possi-
ble is the hard rod system; inserting Eq. (3.6) into the above
expression we find

3.7

(3.8)

As 7 approaches unity, the insertion probability for rods
vanishes much more rapidly than the corresponding lattice
probability. The reason is that most of the volume fraction
1 — 7 not occupied by rods occurs in segments shorter than
o, and is therefore unavailable for occupancy by additional
rods. The monomer insertion probability for hard spheres,
derived from the Carnahan-Starling equation (3.5), is read-
ily found to be

Proas (131) = (1 — 77)6—’7/(1"7).

_ (8 =97+ 39°)
(1-mn°
which again decays rapidly with increasing 7.

In deriving the Flory formula for the lattice model, the
n-mer insertion probability was taken to be [p(¢4,1)]",
which follows from the assumption that sites are occupied
independently and with equal probability. To extend this
approach to athermal continuous-space models, we intro-
duce the concept of the exclusion region associated with an
n-mer. We present the argument for chains composed of
freely jointed, nonoverlapping tangent hard spheres. Other
molecular models may be treated in an analogous manner.

In a fluid composed of hard sphere molecules (mon-
omers) of diameter o, if a molecule is centered at x, then no
other monomers may have their centers within the sphere of
radius o, centered at x. The exclusion volume associated
with a monomer is v, (1) = 4m0°/3, and p(7,1) is the prob-
ability that a sphere of volume v, (1), placed into the fluid at
random, is free of centers of any molecules. Let p, (7, n) be
the probability that a sphere of volume v, (1), inserted at
random into a fluid of hard-sphere n-mers is free of centers of
any chain segments, i.e., p, (%, n) is the probability for inser-
tion of a single spherical segment into the n-mer fluid. We
shall approximate p,(7, n) by p(7, 1), the insertion prob-
ability for the monomer fluid. With each n-mer configura-
tion Y we may associate an exclusion region: the region of
space which must be free of centers of monomers, if insertion
of Y is possible. The insertion probability P(Y) is the prob-
ability of finding the corresponding exclusion region, cen-
tered at a randomly chosen point in the fluid, free of centers
of monomers. Clearly, an exact evaluation of P(Y) would
require knowledge of the probability distribution for voids in
the fluid. In the absence of detailed information regarding
the distribution of voids, we shall assume that P(Y) is a
function of the exclusion volume v, (Y) only. As in the Flory
lattice argument, we shall also assume that the vacancies of
disjoint regions constitute independent events, Under these

) (3.9)

Pcs (1,1) =exr>[

assumptions, the insertion probability becomes

Pp(Y) = [p(n, )] P70 (3.10)
and therefore,
pe(m,m) = [p(n, 1]V D, (3.11)

where v, (#) is the n-mer exclusion volume, and the sub-
script F denotes the extension of the Flory-type argument to
continuous space.

It is important to note that in general, v, (n) #nv, (1).
For example, in the case of hard spheres, the overlap
between exclusion regions associated with neighboring mon-
omers is such that

v, (2) =37 =G, (1). (3.12)
For n>3, v, (Y) may depend on the particular choice of Y;
v, (n) is then the exclusion volume averaged over all n-mer
configurations. The evaluation of v, (n) for chains of freely
jointed hard spheres and disks is considered in the Appen-
dix.

Inserting Eq. (3.11) into the equation of state, Eq.
(3.2), we find

v, (n)
_—1 , 1
o Inp(n >]

e

ﬂ'i‘é(n,n)=1[1

4 v, (n)
v, (D,

n
f Inp(y', 1)y’
0

(3.13)

vnln
=/1n7*(77) 1) +pn(1 e )’
v

I
where A, =v,v, (n)/v,v, (1). Equations (3.11) and (3.13)
constitute the extension of Flory theory to a continuous-
space system of athermal chains. The dependence of 7 on
is inherited from the monomer equation of state, and so we
should not expect the severe underestimate of the pressure
inherent in the lattice formulas, Egs. (3.3) and (3.4).

Our generalization of the FH approach to continuous-
space models is based on the idea that the volume fraction %
in the neighborhood of a void large enough to accommodate
a monomer, is smaller than the average volume fraction 7,
because monomers are grouped together in chains. Thus the
FH estimate for the insertion probability is

Pru (7, 1) = p(n, D[p(F, 1], (3.14)

In deriving 7 for continuous-space models, we may follow
the chain of reasoning employed in Egs. (2.17)-(2.23), the
sole modification being that the lattice coordination number
zis replaced by Z, the average coordination number at close
packing. Since we are considering a disordered phase, the
coordination number characteristic of random close packing
is appropriate: Z = 9 for hard spheres,'® and Z = 5 for hard
disks.'® By analogy with Eq. (2.22),
5—1 —1
F=n 1-2z7'0—=r"") n(l—-a)

S =2z '0=n"Y) l—ap

, (3.15)

where a=2z"'(1 —n—1).
Our generalization of the FH approximation to contin-
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uous-space systems yields the equation of state

A
T (g, n) = Za* (g, 1) —( d —i)
vl vn

n

i
XI:’)] lnp(‘?i, 1) —f lnP(ﬁ’, l)d"?'],
0
(3.16)

where 7' is given by Eq. (3.15) with %’ in place of 7. Using
Egs. (3.7) and (3.15), and integrating the last term by parts,

one finds
A, g '
ﬂ}{(ﬂ,n)zﬂ’ﬂ'*(ﬂ,l)—( __l_)J- ;di__l.
v, v, v, /b l—ag
* .
X[l—vl am*(y; 1) ]
dy y=U—a)y/l —ay

(3.17)

for the pressure in the generalized FH approximation. If we
take 77*(7, 1) to be the Carnahan—Starling equation (3.5),
the above expression yields

Thucs (17, 1)

=n"'r&(n, 1) +v,.“(ve(n) — 1)(1 —a)
v, (1)

x(2a(1+3a)1n(1— y 4+ —2
K (1—m)°

X{2a(1 + 3a) + [4 — S5a(l + 3a)]y

—Q+a-— 11a2)772}). (3.18)

The generalized F and FH theories will be compared against
other theories and simulation results in the following sec-
tion.

While Egs. (3.13) and (3.17) have been derived for ath-
ermal models, the following argument suggests that they are
valid for more general interactions. Consider models in
which the intermolecular potential 4 includes a steep repul-
sion (e.g., hard-core square-well or Lennard-Jones poten-
tials), with which a hard-core diameter o, may be associat-
ed. Then we may takev, = wog /6 and 7 = np,v,, so that the
parameters in Eq. (3.17) are well defined. [Of course,
m* (7, 1, B) is now the pressure in a monatomic system with
interparticle potential ».] For those configurations which
make the dominant contribution top (7, n, 8) (i.e., those for
which U; is small), the presence of a test-chain segment
effectively excludes segments of other chains from a sphere
of radius o,,. The argument based on the overlap of exclusion
regions of successive segments along a chain therefore re-
mains valid, and so we may expect Eqgs. (3.13) and (3.17) to
be applicable to nonathermal models with an effective hard
core.

IV. MONTE CARL.O SIMULATIONS

In order to test the generalized F and FH theories de-
rived above, it is desirable to compare their predictions with
the results of simulations of athermal chains. We therefore
undertook a series of Monte Carlo simulations with the aim

of estimating the pressure for as wide a range of densities as
possible.

In our simulations we studied athermal chains com-
posed of n freely jointed, nonoverlapping tangent disks (in
two dimensions) and spheres (in three dimensions), of unit
diameter. The simulation cell was a square or cube with peri-
odic boundary conditions. In a straightforward application
of the Metropolis algorithm'® to an athermal system, a trial
configuration is accepted if and only if it is free of overlap.
The configuration of the ith chain is specified by the position
x{" of the center of the first element, and a set of unit vectors
eV,...e" 7V, (e =xU+ D _ x), A trial configuration
is generated by subjecting x{ "’ and the ¢/’ (for some i chosen
at random) to random displacements, with the |e{”’| held
fixed. (The magnitudes of the random displacements were
adjusted so as to achieve an acceptance rate of 30%-50%.)

As in our simulations of lattice chains,'' we sample the
configuration space of N, n-mers in volume V (the “sys-
tem’ ), as well as the configurations of an isolated test chain.
(Each step in the simulation involves the generation of a trial
main configuration and an independent trial configuration
for the test chain.) At each step it is determined whether the
test chain would overlap with any of the chains of the main
configuration, were it to be inserted at random into the simu-
lation cell. An unbiased estimator for the insertion probabil-
ity p(N,, n, V) is the average rate of overlap-free insertion of
the test chain. Estimates for p(N,, n, V') were derived by
averaging the insertion rate over 10 runs, each consisting of
between 5X 10% and 3 X 10° steps, the first 10% of which
were discarded in order to allow for relaxation.

In Fig. 1, the solid circles show a possible configuration
of the system. The volume fraction 7 is the fraction of the
system area which lies within the disks. (For chains com-
posed of n tangent hard disks of unit diameter, » = n7N,/

FIG. 1. A possible system configuration (solid circles) in the Monte Carlo
simulation of hard-disk chains. The broken circles indicate a possible inser-
tion of the test chain.
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FIG. 2. Monte Carlo estimates for In p(1, ) vs In (1 — #) for chains of 5
hard disks. Open circles: L = 20; filled circles: L = 25; diamonds: L = 30.
The curves represent predictions of Flory lattice theory, and the generalized
Flory (GF) and generalized Flory-Huggins (GFH) theories.

44, where A is the total area; 7 is related to the monomer
density p through 5 = 0.9069 p/p,,, where p., = 1.1547 is
the close-packing density for disks of unit diameter.) A pos-
sible insertion of the test chain (broken circles) is also de-
picted. The insertion probability p(7, n) is the probability,
averaged over all system and test-chain configurations, that
the test chain may be inserted into the system without over-
lapping with any of the existing chains.

To test the mean field theory predictions, we require an
estimate of the limiting insertion probability p(7, ). In the
course of adding a new chain to a finite system, the volume
fraction grows from v, N,/V tov, (N, 4+ 1)/V, and so we
regard the finite-size insertion probability p(n,, n, V), as an
estimate for p(m;n) at the mean volume fraction
7 =v,(N, +1)/V. Our simulations of hard-disk chains
were carried out on a square cell of length L /v/2, with
L = 20 in most cases. (The disks were of unit diameter.) As
a test for finite-size effects several simulations were per-
formed with L =25 and L =30. Qur estimates for
In p(7; n) for chains composed of five tangent hard disks are
plotted vs In (1 — %) in Fig. 2. For 17 <0.3, the L = 20 and
L =25 estimates agree to within uncertainty, while for 5 in
the range 0.38-0.45, the L = 20 estimates for In p(7, n) are
about 3% smaller than the L = 25 estimates. For 7 = 0.44,
the L = 20 and L = 30 estimates do not differ by more than
3%, and so the difference between In p(%; n) and the L = 20
estimate is not likely to exceed 3%-4%. Inlight of Eq. (3.2),
we may therefore expect estimates for the pressure based on
the L = 20 data to be a few percent too large for 7> 0.38.
[ Note that there will be a partial cancellation of the error in
the pressure, since In p appears with opposite sign in the first
and second terms of Eq. (3.2)].

The curves in Fig. 2 represent the predictions of the F
lattice formula, Eq. (2.16), and of our generalized F and FH
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FIG. 3. Comparison of the compressibility factor o, '7*, vs  for chains of 5
hard disks, as obtained from Monte Carlo simulations, with predictions of
the Flory lattice formula, and generalized Flory (GF) and Flory-Huggins
(GFH) theories. The circles are Monte Carlo estimates derived by Oka-

moto (Ref. 17) for the pressure in a system of hard-disk chains (7 = 5) in
which bond angles are restricted to the values: 7, + 7/2.
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theories [Egs. (3.11) and (3.14), respectively]. The gener-
alized mean field theory predictions were evaluated using a
Padé approximant expression'® for the hard-disk monomer
equation of state. As expected, the F lattice formula severely
overestimates the insertion probability at moderate and high
densities. The lattice FH formula (not plotted) is in some-
what worse agreement with the simulation data since, as is
evident from Eq. (2.23), pgy < pr for n > 1. The generalized
F formula underestimates the insertion probability, but does
predict its order of magnitude correctly. Evidently the gen-
eralized FH formula is quite accurate at moderate and high
densities, although it tends to overestimate the insertion
probability as the density increases. The relation between the
generalized F and FH theories and the simulation data in the
present study is very similar to the relation between the lat-
tice F and FH theories and simulation data for lattice
chains.' In each case, the F approximation consistently un-
derestimates the insertion probability, while FH theory
yields an underestimate at low densities and an overestimate
at high densities.

An important aspect of Fig. 2 is the evident smoothness
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ofIn p(n,n) asafunction ofIn (1 — 7). An earlier analysis'°
of Okamoto’s data'’ (less extensive than ours), suggested
that d In p(n,n)/d In(1 — ) suffers a discontinuity at low
density (7~0.2 for n = 5). We have already shown'! that
the insertion probability is a smooth function of density in
systems of chains on the square lattice, and it is now clear
that the same conclusion must be drawn for athermal chains
in continuous space. One expects hard-disk chains to un-
dergo a fluid—solid transition at the high volume fraction,
but our studies were limited to the fluid phase, owing to the
inefficiency of the test-chain insertion method at high vol-
ume fractions.

In Fig. 3 we compare the predictions of our generalized
F and FH theories, and of the F lattice formula with simula-
tion results for the compressibility factor of a system of
chains composed of five freely jointed, nonoverlapping tan-
gent disks. The Monte Carlo estimate for the compressibility
factor was derived using the L = 20 data for the insertion
probability. Equation (3.2) was integrated numerically,
with linear interpolation of the Monte Carlo estimates for
2(n,5). The numerical estimates for the pressure are there-
fore plotted as a continuous curve. Based on the uncertain-
ties in the values for the insertion probability, we estimate
the statistical uncertainty in the compressibility factor as 1%
or less for 7<0.45, increasing to about 3% at 5 = 0.53.

It is evident that the generalized FH theory provides a
rather accurate prediction for the pressure. The generalized
F theory yields a substantial overestimate for the pressure,
but is far superior to the F lattice formula, Eq. (3.4). The FH
lattice formula (not plotted) predicts a slightly lower pres-
sure than that given by the F lattice theory. Also plotted in
Fig. 3 are the results of a simulation by Okamoto!” of a sys-
tem of hard-disk chains (# = 5) in which the angles between
successive bonds are restricted to the values + #/2, 7. Ap-
parently this constraint on internal conformations has very
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FIG. 4. Comparison of the compressibility factor p,” '7*, for chains of 4
hard spheres, as obtained from Monte Carlo simulations, with predictions
of the Flory lattice formula, and generalized Flory (GF) and Flory—Hug-
gins (GFH) theories.

little effect on the pressure. (Insensitivity of the pressure to
the intramolecular potential is in fact predicted by F and FH
theories, since the insertion probability is taken to be inde-
pendent of chain configuration. )

Preliminary results of Monte Carlo simulations of
three-dimensional, freely jointed tangent hard sphere chains
(n = 4) are presented in Fig. 4. The numerical estimates
were obtained via the test-chain insertion method described
above, using a periodic cell of length L = 10¢. (For chains
composed of n tangent hard spheres of unit diameter,
n=nmN,/6V =0.74 p/p.,, where V is the volume and
Pe, = 1.4133is the close-packing monomer density.) Due to
the rapid decay of p(7, n) with density, it is difficult to ob-
tain accurate estimates of this quantity for 7> 0.24. (The
statistical uncertainty in the compressibility factor is 1% or
less for 17<0.18, increasing to 4% at % = 0.24.) The mean-
field theory predictions plotted in Fig. 4 were obtained using
the Carnahan-Starling formula for the hard-sphere mon-
omer equation of state. As in the two-dimensional example,
the generalized FH prediction for the pressure is in excellent
agreement with the simulation data. The discrepancy
between the lattice-based prediction and the numerical data
is even greater than in the two-dimensional case.

In view of the uncontrolled approximations invoked in
the derivations, the agreement between the generalized
mean field theories and the simulation data is perhaps sur-
prising. Since the n-mer fluid has been treated on the basis of
the monomer equation of state, this agreement suggests that
the structures of the n-mer and monomer fluids are rather
similat. (Conversely, the agreement between theory and
simulation is poorest at low density, where the n-mer and
monomer fluids are quite dissimilar.) It is of interest to de-
termine whether the mean field theories continue to provide
an accurate prediction for the equation of state at higher
densities and for longer chains. Simulations bearing on these
questions are in progress.
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APPENDIX: EVALUATION OF EXCLUSION VOLUMES

Consider chains of freely jointed, nonoverlapping tan-
gent hard sphere monomers of diameter ¢. The region ex-
cluded by a chain is the union of the spheres, of radius o,
centered on each monomer. If we denote the exclusion vol-
ume of an n-mer (averaged over all n-mer configurations)
by v, (n), then v, (1) = 47m0>/3, and for a dimer

v,(2) = 2v,(1) —vy(0), (Al)
where v, (r) is the volume of intersection of two circles of

radius o, whose centers are separated by a distance r. From
elementary considerations

2 r 1 r\?
= 77-03 —_—— — A — — 20 s A2
vu(r) 2 [3 20 3(20)] (r< ) ( )

which immediately yields Eq. (3.12).
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Now consider a trimer, with monomers centered at
r, = (0,0,0), r,=(0,0,0), and r;, with |r;| =0, and
|r, — r3| >0. The volume of the associated exclusion region is
Ve (Fisrars) = 30, (1) — v15(r3) — 015(713)

— V12(723) + Vo3, (A3)
where r,; = |r, — ;|, and v;,5 is the volume of intersection
of the three spheres. Let 0 be the angle between r; and the z
axis. If we note that r,, = r,; = 0, and that v,,(753) = ;53
for 8> 27/3, then the average exclusion volume for a trimer
may be written as

v, (3) =3v, (1) — 2v5(0)
2 27/3
~ 2 absin O o) — vl (A
3Jens

Since ry; = 20 sin(6 /2), the integral over v;,(r,;) may be
evaluated using Eq. (A2). For a given 6, the region of triple
intersection extends from z=0 to z= (0/2)[cos 6 + 3
sin #]. In a plane of fixed z this region is delimited by the
intersection of two circles, centered at R, = (o sin 6, 0) and
R, = (0, 0), with radii

o, = [0 — (o cos 8 —2)2]'/?

and
[20z — 221'3, z<%
02=
[o? —22]V2, z>—g—.

Using this information, the integral over the three-sphere
overlap volume may be evaluated numerically, yielding
27/3

/3
Collecting results, one then finds
v,(3) =2v,(2) — v, (1) —0.307 13¢°
=9.641250°. (A6)

The last term is only about 3% of the total trimer exclusion
volume. It therefore appears that for n>4, the error in writ-
ing

v, (n)=v,(3) + (n—3)[v.(3) —v.(2)] (A7)

is at most a few percent. Given the approximate nature of the
theories under consideration, a more precise evaluation of
v, (n) is not warranted, and we shall employ Eq. (A7) for
n>4.

For chains of freely jointed, nonoverlapping tangent
disks, the exclusion volumes may be evaluated in a similar
manner, yielding v, (1) = 70%, v,(2) = 5.054 820%, and
v, (3) = 6.533 407, and we again employ the approximate
relation Eq. (A7) for n>4.
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