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ABSTRACT

We obtain a new equation of state for the nucleonic and hyperonic inner core of neutron stars that fulfils the 2Me

observations as well as the recent determinations of stellar radii below 13 km. The nucleonic equation of state is
obtained from a new parameterization of the FSU2 relativistic mean-field functional that satisfies these latest
astrophysical constraints and, at the same time, reproduces the properties of nuclear matter and finite nuclei while
fulfilling the restrictions on high-density matter deduced from heavy-ion collisions. On the one hand, the equation
of state of neutron star matter is softened around saturation density, which increases the compactness of canonical
neutron stars leading to stellar radii below 13 km. On the other hand, the equation of state is stiff enough at higher
densities to fulfil the 2Me limit. By a slight modification of the parameterization, we also find that the constraints
of 2Me neutron stars with radii around 13 km are satisfied when hyperons are considered. The inclusion of the
high magnetic fields present in magnetars further stiffens the equation of state. Hyperonic magnetars with magnetic
fields in the surface of ∼1015 G and with values of ∼1018 G in the interior can reach maximum masses of 2Me

with radii in the 12–13 km range.
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1. INTRODUCTION

Neutron stars are the most compact known objects without
event horizons. They are formed in the aftermath of core-
collapse supernovae and are usually observed as pulsars. Their
features, such as the mass and radius, strongly depend on the
properties of their dense interior. Thus, neutron stars serve as a
unique laboratory for dense matter physics.

With more than 2000 pulsars known up to date, one of the
best determined pulsar masses is that of the Hulse–Taylor
pulsar of 1.4Me (Hulse & Taylor 1975). Until very recently,
the most precise measurements of neutron star masses clustered
around this canonical value. Higher masses in neutron star
binary systems have been measured in recent years with very
high precision, using post-Keplerian parameters. This is the
case of the binary milisecond pulsar PSR J1614-2230 of
M=1.97±0.04Me (Demorest et al. 2010) and the PSR
J0348+0432 of M=2.01±0.04Me (Antoniadis et al. 2013).

While the measurement of neutron star masses is accurate,
the observational determination of their radii is more difficult
and, as a consequence, comparably accurate values of radii do
not yet exist. The radius of a neutron star can be extracted from
the analysis of X-ray spectra emitted by the neutron star
atmosphere. The modeling of the X-ray emission strongly
depends on the distance to the source, its magnetic field and the
composition of its atmosphere, thus making the determination
of the radius a difficult task. As a result, different values for the
stellar radii have been derived (Verbiest et al. 2008; Ozel
et al. 2010, 2016; Suleimanov et al. 2011; Bogdanov 2013;
Guillot et al. 2013; Guver & Ozel 2013; Lattimer & Lim 2013;
Steiner et al. 2013; Guillot & Rutledge 2014; Heinke
et al. 2014; Lattimer & Steiner 2014; Poutanen et al. 2014;
Ozel & Psaltis 2015; Lattimer & Prakash 2016; Ozel & Freire
2016). In general, the extractions based on the spectral analysis
of X-ray emission from quiescent X-ray transients in low-mass
binaries (QLMXBs) favor small stellar radii in the 9–12 km

range, whereas the determinations from neutron stars with
recurring powerful bursts may lead to larger radii, of up to
16 km, although they are subject to larger uncertainties and
controversy (see the discussion in the analysis of Fortin
et al. 2015). The very recent work of Lattimer & Prakash
(2016) indicates that the realistic range for radii of canonical
neutron stars should be 10.7 km to 13.1 km. This analysis is
based on observations of pulsar masses and estimates of
symmetry properties derived from neutron matter studies and
nuclear experiments. It is expected that robust observational
upper bounds on stellar radii will be within reach in the near
future. With space missions such as NICER (Neutron star
Interior Composition ExploreR; Arzoumanian et al. 2014),
high-precision X-ray astronomy will be able to offer precise
measurements of masses and radii (Watts et al. 2016), while
gravitational-wave signals from neutron star mergers hold
promise to determine neutron star radii with a precision of 1 km
(Bauswein & Janka 2012; Lackey & Wade 2015).
In anticipation that these upcoming astrophysical determina-

tions could confirm small neutron star sizes, it is important and
timely to explore the smallest radii that can be delivered by the
theoretical models of compressed matter that are able to fulfil
the 2Me maximum mass constraint, while reproducing at the
same time the phenomenology of atomic nuclei. The masses
and radii of neutron stars are linked to the physics of their
interior, that is, the equation of state (EoS) of dense matter
(Lattimer & Prakash 2004, 2007; Oertel et al. 2016). Many of
the current nuclear models for the EoS are able to satisfy the
2Me constraint required by the discovery of massive neutron
stars (Demorest et al. 2010; Antoniadis et al. 2013). However,
the possible existence of neutron stars with small radii
suggested by recent astrophysical analyses (Guillot
et al. 2013; Guver & Ozel 2013; Guillot & Rutledge 2014;
Heinke et al. 2014; Lattimer & Steiner 2014; Lattimer &
Prakash 2016; Ozel & Freire 2016; Ozel et al. 2016) poses a
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difficult challenge to most of the nuclear models (Chen &
Piekarewicz 2015a; Dexheimer et al. 2015; Jiang et al. 2015;
Ozel & Freire 2016).

A small neutron star radius for a canonical neutron star
requires a certain softening of the pressure of neutron matter,
and hence of the nuclear symmetry energy, around 1–2 times
saturation density n0 (n0≈0.16 fm−3

) (Lattimer & Prakash
2007; Tsang et al. 2012; Ozel & Freire 2016). The star radius
could also be reduced by decreasing the pressure of the isospin-
symmetric part of the EoS in the intermediate-density region,
but this is only possible with severe limitations due to the
saturation properties of nuclear matter and the constraints on
the EoS of dense nuclear matter extracted from nuclear
collective flow (Danielewicz et al. 2002) and kaon production
(Fuchs et al. 2001; Lynch et al. 2009) in high-energy heavy-ion
collisions (HICs). Moreover, the requirement of maximum
masses of 2Me does not allow a significant reduction of the
total pressure. Indeed, very few models seem to exist that can
meet both constraints (small radius and large mass) simulta-
neously, and fewer such models can in addition render accurate
descriptions of the finite nuclei properties (Horowitz &
Piekarewicz 2001a, 2001b; Chen & Piekarewicz 2015a; Jiang
et al. 2015; Sharma et al. 2015).

It has also been long known that the transition from nuclear
to hyperonic matter is energetically favored as the density
increases inside neutron stars (Ambartsumyan & Saakyan
1960). The opening of hyperon degrees of freedom leads to a
considerable softening of the EoS (Glendenning 1982). As a
consequence, the maximum neutron star masses obtained are
usually smaller than the 2Me observations (Demorest
et al. 2010; Antoniadis et al. 2013). The solution of this so-
called “hyperon puzzle” is not easy, and requires a mechanism
that could provide additional repulsion to make the EoS stiffer.
Possible mechanisms could be: (1) stiffer hyperon–nucleon
and/or hyperon–hyperon interactions (see the recent works by
Bednarek et al. 2012; Weissenborn et al. 2012; Maslov et al.
2015; Oertel et al. 2015); (2) the inclusion of three-body forces
with one or more hyperons (see Vidana et al. 2011; Yamamoto
et al. 2014; Lonardoni et al. 2015 for recent studies); (3) the
appearance of other hadronic degrees of freedom such as the Δ
isobar (Drago et al. 2014) or meson condensates that push the
onset of hyperons to higher densities; and (4) the appearance of
a phase transition to deconfined quark matter at densities below
the hyperon threshold (Alford et al. 2007; Klahn et al. 2013;
Zdunik & Haensel 2013). For a detailed review on the
“hyperon puzzle,” we refer the reader to Chatterjee & Vidana
(2016) and references therein.

The presence of strong magnetic fields inside neutron stars is
another possible source for a stiffer EoS that could sustain
masses of 2Me. Anomalous X-ray pulsars and soft γ-ray
repeaters are identified with highly magnetized neutron stars
with a surface magnetic field of ∼1014–1015G (Vasisht &
Gotthelf 1997; Kouveliotou et al. 1998; Woods et al. 1999).
This class of compact objects has been named “magnetars,”
i.e., neutron stars with magnetic fields several orders of
magnitude larger than the canonical surface dipole magnetic
fields B∼1012–1013 G of the bulk of the pulsar population
(Mereghetti 2008; Rea & Esposito 2011; Turolla et al. 2015). It
has been shown that magnetic fields larger than =B B 10c

e 5,

with = ´B 4.414 10c
e 13 G being the critical magnetic field at

which the electron cyclotron energy is equal to the electron
mass, will affect the EoS of dense nuclear matter (Chakrabarty

et al. 1997; Bandyopadhyay et al. 1998; Broderick et al. 2000;
Suh & Mathews 2001; Harding & Lai 2006; Chen et al. 2007;
Rabhi et al. 2008; Dexheimer et al. 2012; Strickland
et al. 2012). The study of the effects upon the EoS of
hyperonic matter of very strong magnetic fields (B∼1018–
1019 G in the star center) was initiated by Broderick et al.
(2002) and has been recently addressed (Rabhi & Providen-
cia 2010; Lopes & Menezes 2012; Sinha et al. 2013; Gomes
et al. 2014).
In the present paper we reconcile the 2Me mass observa-

tions with the recent analyses of radii below 13 km for neutron
stars, while fulfilling the constraints from the properties of
nuclear matter, nuclei, and HICs at high energy. This is
accomplished for neutron stars with nucleonic and hyperonic
cores. The formalism is based on the covariant field-theoretical
approach to hadronic matter (see for example Serot &
Walecka 1986, 1997, and chapter4 of Glendenning 2000,
and references therein). The nucleonic EoS is obtained as a new
parameterization of the nonlinear realization of the relativistic
mean-field (RMF) model (Serot & Walecka 1986, 1997;
Glendenning 2000; Chen & Piekarewicz 2014). Starting from
the recent RMF parameter set FSU2 (Chen & Piekarewicz
2014), we find that by softening the pressure of neutron star
matter in the neighborhood of saturation one can accommodate
smaller stellar radii, while the properties of nuclear matter and
finite nuclei are still fulfilled. Moreover, we are able to keep the
pressure at high densities in agreement with HIC data and
sufficiently stiff such that it can sustain neutron stars of ≈2Me.
We denote the new parameterization by FSU2R. Next we
introduce hyperons in our calculation and fit the hyperon
couplings to the value of the hyperon–nucleon and hyperon–
hyperon optical potentials extracted from the available data on
hypernuclei. Whereas the radius of the neutron stars is
insensitive to the appearance of the hyperons, we find a
reduction of the maximum mass of the neutron stars due to the
expected softening of the EoS. However, we find that the 2Me

constraint is still fulfilled when hyperons are considered by
means of a slight modification of the parameters of the model,
denoted as FSU2H, compatible with astrophysical observations
and empirical data. We also analyze the effect of strong
magnetic fields in the mass and radius of neutron stars. The
origin of the intense magnetic fields in magnetars is still open
to debate and the strength of the inner values is still unknown
(Thompson & Duncan 1993; Ardeljan et al. 2005; Vink &
Kuiper 2006). Nevertheless, it is worth exploring the
modification on the EoS and on the neutron star properties
induced by magnetic fields that are as large as the upper limit
imposed by the scalar virial theorem (Chandrasekhar &
Fermi 1953; Shapiro & Teukolsky 1983), which is of the
order of ~ ´ -

 B M M R R2 108 2( )( ) . For a star of
R∼10 km and M∼2Me the magnetic field could then reach
around 2×1018 G. In our study we have magnetic fields close
to this value only at the very center of the star and assume a
magnetic field profile toward a value of 1015 G at the surface,
hence fulfilling the stability constraint. From the calculations
with the proposed EoS we conclude that nucleonic and
hyperonic magnetars with a surface magnetic field of
∼1015 G and with magnetic fields values of ∼1018G in the
interior can reach maximum masses of 2Me with radii in the
12–13 km range.
The paper is organized as follows. In Section 2 we present

the RMF model and the inclusion of magnetic fields for the
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determination of the EoS in beta-equilibrated matter. In
Section 3 we show how we calibrate the nucleonic model
FSU2R by fulfilling the constraints of 2Me mass observations
and small neutron star radii, as well as the properties of nuclear
matter, nuclei, and HICs at high energy. Then, in Section 4 we
introduce hyperons and magnetic fields and provide a slightly
changed parameterization, FSU2H, that also fulfils the
observational and experimental requirements while allowing
for maximum masses of 2Me. We finally summarize our
results in Section 5.

2. FORMALISM

Our starting point is the RMF model of matter, where
baryons interact through the exchange of mesons and which
provides a covariant description of the EoS and nuclear
systems. The Lagrangian density of the theory can be written as
(Serot & Walecka 1986, 1997; Glendenning 2000; Chen &
Piekarewicz 2014)

   å å= + +
m=

, 1
b

b m

l e

l

,

( )

with the baryon (b), lepton (l = e, μ), and meson (m = σ, ω, ρ,

and f) Lagrangians given by
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where Ψb and ψl are the baryon and lepton Dirac fields,

respectively. The mesonic and electromagnetic field strength

tensors are w wW = ¶ - ¶mn m n n m, r r= ¶ - ¶mn m n n mR ,

f f= ¶ - ¶mn m n n mP , and = ¶ - ¶mn m n n mF A A . The electro-

magnetic field is assumed to be externally generated and, as

we will discuss below, we do not consider the coupling of the

particles to the electromagnetic field tensor via the baryon

anomalous magnetic moments. The strong interaction cou-

plings of a meson to a certain baryon are denoted by g (with N

indicating nucleon), the electromagnetic couplings by q and the

baryon, meson, and lepton masses by m. The vector Ib stands

for the isospin operator.
The Lagrangian density (2) incorporates scalar and vector

meson self-interactions as well as a mixed quartic vector meson
interaction. The nonlinear meson interactions are important for
a quantitative description of nuclear matter and finite nuclei, as
they lead to additional density dependence that represents in an
effective way the medium dependence induced by many-body
correlations. The scalar self-interactions with coupling con-
stants κ and λ, introduced by Boguta & Bodmer (1977), are
responsible for softening the EoS of symmetric nuclear matter
(SNM) around saturation density and allow one to obtain a

realistic value for the compression modulus of nuclear matter
(Boguta & Bodmer 1977; Boguta & Stoecker 1983). The
quartic isoscalar–vector self-interaction (with coupling ζ)
softens the EoS at high densities (Mueller & Serot 1996),
while the mixed quartic isovector–vector interaction (with
coupling Λω) is introduced (Horowitz &
Piekarewicz 2001a, 2001b) to modify the density dependence
of the nuclear symmetry energy, which measures the energy
cost involved in changing the protons into neutrons in nuclear
matter.
The Dirac equations for baryons and leptons are given by

*g g

g w g f g r

¶ - -

- - - Y =
m
m

m
m

w f r

i q A m

g g g I 0, 3

b b

b b b b b0
0

0
0

3 0 3
0

(

) ( )

g g y¶ - - =m
m

m
mi q A m 0, 4l l l( ) ( )

where the effective baryon masses are defined as

* s= - sm m g . 5b b b ( )

The field equations of motion follow from the Euler–Lagrange

equations. In the mean-field approximation, the meson fields

are replaced by their respective mean-field expectation values,

which are given in uniform matter as s s= á ñ¯ , r r= á ñ
3
0

¯ ,

w w= á ñ0¯ , and f f= á ñ0¯ . Thus, the equations of motion for the

meson fields in the mean-field approximation for the uniform

medium are

ås
k

s
l

s+ + =s s s sm g g g n
2 3

, 6
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!
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!
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år w r+ L =r w r w rm g g g I n2 , 8
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b
b b b

2 2 2 2
3¯ ¯ ¯ ( )

åf =f fm g n , 9
b

b b
2 ¯ ( )

where I b3 represents the third component of isospin of baryon

b, with the convention =I 1 2p3 . The quantities = áY Y ñnb
s

b b
¯

and g= áY Y ñnb b b
0¯ are the scalar and baryon density for a

given baryon, respectively.
In the presence of a magnetic field, the single-particle energy

of the charged baryons and leptons is quantized in the
perpendicular direction to the magnetic field. Taking the
magnetic field in the z-direction, =B Bẑ , the single particle
energies of all baryons and leptons are given by (Broderick
et al. 2000)

* n
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+ + +
n
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n= + +nE k m q B2 , 12l
z l l
2 2 ∣ ∣ ( )

with cb denoting charged baryons and ub uncharged baryons.

The quantity n s= + - = ¼n 0, 1, 2,
q

q z
1

2

1

2( )∣ ∣
, with n

being the principal quantum number and σz the Pauli matrix,
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indicates the Landau levels of the fermions with electric

charge q.
As mentioned above, we have omitted the coupling of the

baryons to the electromagnetic field tensor via their anomalous
magnetic moments. The interaction of the baryon anomalous
magnetic moments with the field strength has been found to
partly compensate for the effects on the EoS associated with
Landau quantization (Broderick et al. 2000). However, to see
some appreciable changes in the EoS and the neutron star
composition, intense fields of the order of 5×1018 G are
needed. Moreover, those effects are mostly concentrated at low
densities (2n0) for such a field strength (Broderick et al. 2000;
Rabhi et al. 2008). Therefore, neglecting the effects associated
to the anomalous magnetic moments is a reasonable approx-
imation in the present work since we consider neutron stars
with magnetic fields at the core of at most 2×1018 G and
magnetic field profiles that do not reach 5×1017 G in the
region 2n0.

The Fermi momenta of the charged baryons, nkF
cb
, , uncharged

baryons, kF
ub, and leptons, nkF

l
, , are related to the Fermi energies

EF
cb, EF

ub and EF
l as

*
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while the chemical potentials of baryons and leptons are

defined as

m w r f= + + +w r fE g g I g , 14b F
b

b b b b3¯ ¯ ¯ ( )

m = E . 15l F
l ( )

The largest value of ν is obtained by imposing that the square

of the Fermi momentum of the particle is still positive, i.e., by

taking the closest integer from below defined by the ratio
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With all these ingredients, the scalar and vector densities for

baryons and leptons are given by(Broderick et al. 2000)
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where rν is the degeneracy of the ν Landau level, which is 1 for

ν=0 and 2 for n ¹ 0.

We can now obtain the energy density ε and pressure P of

the system. The energy density of matter, εmatt, is given by
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where the energy densities of baryons and leptons have the

following expressions
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The pressure of matter, Pmatt, is obtained using the thermo-

dynamic relation

åm e= -P n . 19
i

i imatt matt ( )

While the contribution from the electromagnetic field to the

energy density is pB 82 , we use the so-called “chaotic field”

prescription for the calculation of the pressure of the system

(Menezes & Lopes 2016), so that we have

e e
p

= +
B

8
, 20matt

2

( )

p
= +P P

B

24
. 21matt

2

( )

2.1. Neutron Star Matter in β-equilibrium

In order to determine the structure of neutron stars one needs

to obtain the EoS over a wide range of densities. For the inner

and outer crust of the star we employ the EoS of Sharma et al.

(2015), which has been obtained from microscopic calcula-

tions. In the core of neutron stars, we find β-equilibrated

globally neutral, charged matter. Consequently, the chemical
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potentials, μi, and particle densities, ni, satisfy the conditions

å
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n n
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0 ,

, 22
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cb l
i i

cb ub

i
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with bi the baryon number and qi the charge of the particle i.

These relations together with Equations (3), (4) and the field

Equations (6)–(9) for σ, ω, ρ and f have to be solved self-

consistently for total baryon density n in the presence of a

magnetic field. In this way, we obtain the chemical potential

and the corresponding density of each species for a given n, so

that we can determine the energy density and pressure of the

neutron star matter at each density.
Once the EoS is known, the mass M and the corresponding

radius R of the neutron star are obtained from solving the
Tolman–Oppenheimer–Volkoff (TOV) equations (Oppenheimer
& Volkoff 1939)
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where r is the radial coordinate. To solve these equations one

needs to specify the initial conditions, namely the enclosed

mass and the pressure at the center of the star, M(r=0)=0
and P(r=0)=Pc, while the energy density is taken from the

assumed EoS. The integration of the TOV equations over the

radial coordinate ends when P(r=R) = 0.

3. CALIBRATION OF THE NUCLEONIC MODEL

3.1. Equation of State, Stellar Masses, and Stellar Radii

We start our analysis by defining the baseline model for
nuclear matter to compute masses and radii of neutron stars.
Nuclear models that perform similarly well in the description of
finite nuclei often extrapolate very differently at high densities,
as usually no information on the high-density sector of the EoS
has been incorporated in the fitting of the model. In this work
we are interested in a model that gives neutron star radii as
small as possible and massive enough neutron stars, in order to
reconcile in a unified formalism the new astrophysical
indications of small stellar radii and the existence of stars of
2Me masses, while still meeting the constraints from the
nuclear data of terrestrial laboratories.

For the nuclear model we start from the Lagrangian density
of Equations (1), (2) by only considering nucleons and mesons.
As mentioned in Section 2, the ζ self-coupling of the ω meson
(see Equation (2)) is efficient in softening the EoS at
supranormal densities while the Λω cross-coupling of the ω
and ρ mesons (Equation (2)) regulates the density dependence
of the symmetry energy. In order to show the effect of these
nonlinear contributions to the EoS, in Figure 1 we plot for
selected interactions the pressures of SNM in the upper panel
and of pure neutron matter (PNM) in the lower panel. The two
shaded areas in the SNM panel depict the regions that are
compatible with the data on collective flow (Danielewicz

et al. 2002) (gray area) and on kaon production (Fuchs
et al. 2001; Lynch et al. 2009) (turquoise region) according to
the modeling of energetic HICs. The shaded areas in the PNM
panel correspond to the constraints from the flow data
supplemented by a symmetry energy with weak (gray area)
or strong (brown area) density dependence (Danielewicz
et al. 2002).
We first consider the well-known parameter sets NL3

(Lalazissis et al. 1997) and FSU (also called FSUGold)
(Todd-Rutel & Piekarewicz 2005). NL3 has ζ=Λω=0 while
FSU has ζ=0.06 and Λω=0.03 (the full set of parameters of
the models can be found in Table 1). Both NL3 and FSU
reproduce quite well a variety of properties of atomic nuclei.
However, they render two EoSs in SNM with different
behavior at supranormal densities due to the different ζ value
(we recall that the Λω coupling does not contribute in SNM).
We can see in Figure 1(upper panel) that above density
n∼1.5–2n0 the FSU model with ζ=0.06 (dot-dashed blue
line) yields a much softer SNM pressure than the NL3 model
with ζ=0 (dotted magenta line). In PNM, the isovector
coupling Λω tunes the change with density of the EoS, as it

Figure 1. Pressure vs. baryon density for SNM (upper panel) and PNM (lower
panel) for the different models presented in the text: NL3 (Lalazissis
et al. 1997), FSU (Todd-Rutel & Piekarewicz 2005), FSU2 (Chen &
Piekarewicz 2014), FSU2R (this work), and FSU2H (this work, Section 4).
The regions compatible with the experimental data on collective flow
(Danielewicz et al. 2002) and on kaon production (Fuchs et al. 2001; Lynch
et al. 2009) in HICs are depicted in gray and turquoise, respectively, in the
upper panel. The shaded areas in the panel of PNM correspond to the
constraints from the flow data supplemented by a soft (gray area) and a stiff
(brown area) symmetry energy (Danielewicz et al. 2002).
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softens the symmetry energy. Indeed, if we compare the same
models FSU and NL3 in PNM (see Figure 1(lower panel)),

FSU (Λω=0.03) has its pressure strongly further reduced with
respect to NL3 (Λω=0) in the density window from around

saturation density n0 up to n∼1.5–2n0. For densities above
2n0 the softening effect from Λω is less prominent and the PNM

pressures of FSU and NL3 show comparable differences with
the case of SNM. We therefore note, consistently with the
systematics in earlier works (Horowitz &

Piekarewicz 2001a, 2001b; Carriere et al. 2003; Chen &
Piekarewicz 2014), that the Λω and ζ couplings have a

complementary impact on the EoS by each one influencing
almost separate density sectors. This will be important for our

goals for stellar radii and masses as we shall see below.
Next, we obtain the mass–radius (M–R) relation of neutron

stars for a given EoS by solving the TOV equations

(Oppenheimer & Volkoff 1939). As mentioned in Section 2,
for the crust region of the star we have employed the EoS

recently derived in Sharma et al. (2015).4 In this section we
focus on neutron stars with cores of purely nucleonic matter;

hence, we compute the EoS of the core assuming a β-
equilibrated and charge neutral uniform liquid of neutrons,

protons, and leptons (electrons and muons). As expected from
its stiff EoS, the NL3 set predicts a large maximum mass
(Mmax≈2.8Me) and large stellar radii (≈13km for Mmax and

≈15km for a typical neutron star of 1.5Me); see the M–R
relations plotted in Figure 2 and the values in Table 2. In

comparison, the soft EoS of the FSU model brings in a
dramatic reduction of the stellar masses and radii. The two

shaded bands in Figure 1 portray the observed masses of the
heaviest neutron stars known, i.e., M=1.97±0.04Me in the

pulsar PSR J1614–2230 (Demorest et al. 2010) and
M=2.01±0.04Me in the pulsar PSR J0348+0432

(Antoniadis et al. 2013). These two astrophysical measure-
ments are arguably the most accurate constraints available so
far to validate or defeat the model predictions for the high-
density EoS. The recently formulated relativistic parameter set
FSU2 (Chen & Piekarewicz 2014)—based on the same
Lagrangian we are discussing—is one of the first best-fit
models to take into account the condition of a limiting stellar
mass of 2Me in the calibration of the parameters (also see Erler
et al. 2013; Chen & Piekarewicz 2015b). The FSU2 model has
been optimized to accurately reproduce the experimental data
on a pool of properties of finite nuclei with the maximum
neutron star mass observable included in the fit (Chen &
Piekarewicz 2014). The resulting FSU2 set has ζ=0.0256 and
Λω=0.0008, see Table 1. In consonance with these values, we
can appreciate in Figure 1 that FSU2 predicts an intermediate

Table 1

Parameters for the Models NL3 (Lalazissis et al. 1997), FSU (Todd-Rutel & Piekarewicz 2005), FSU2 (Chen & Piekarewicz 2014), FSU2R (This Work), and FSU2H
(This Work, Section 4)

Models NL3 FSU FSU2 FSU2R FSU2H

mσ [MeV] 508.194 491.500 497.479 497.479 497.479

mω [MeV] 782.501 782.500 782.500 782.500 782.500

mρ [MeV] 763.000 763.000 763.000 763.000 763.000

sg N
2 104.3871 112.1996 108.0943 107.5751 102.7200

wg N
2 165.5854 204.5469 183.7893 182.3949 169.5315

rg N
2 79.6000 138.4701 80.4656 247.3409 247.3409

κ 3.8599 1.4203 3.0029 3.0911 4.0014

λ −0.015905 0.023762 −0.000533 −0.001680 −0.013298

ζ 0.00 0.06 0.0256 0.024 0.008

Λω 0.00 0.03 0.000823 0.05 0.05

n0 [fm−3
] 0.1481 0.1484 0.1505 0.1505 0.1505

E/A [MeV] −16.24 −16.30 −16.28 −16.28 −16.28

K [MeV] 271.5 230.0 238.0 238.0 238.0

*m mN N 0.595 0.610 0.593 0.593 0.593

E nsym 0( ) [MeV] 37.3 32.6 37.6 30.2 30.2

L [MeV] 118.2 60.5 112.8 44.3 41.0
-P n MeV fm0
3( )[ ] 5.99 3.18 5.81 2.27 2.06

Note. The mass of the nucleon is set to 939 MeV. Also shown are the corresponding energy per particle (E/A), compression modulus (K ), and effective nucleon mass

*m mN N at saturation density n0, as well as the symmetry energy (Esym), slope of the symmetry energy (L) and PNM pressure (P) at n0.

Figure 2. Mass vs. radius for neutron stars for the models NL3 (Lalazissis
et al. 1997), FSU (Todd-Rutel & Piekarewicz 2005), FSU2 (Chen &
Piekarewicz 2014), and FSU2R (this work). The two shaded bands portray
the masses M=1.97±0.04 Me in the pulsar PSR J1614–2230 (gray band)
(Demorest et al. 2010) and M=2.01±0.04 Me in the pulsar PSR J0348
+0432 (turquoise band) (Antoniadis et al. 2013).

4
We did not find sizable changes in our results when we repeated some of the

M–R calculations using the crustal EoS from the Baym–Pethick–Sutherland
model (Baym et al. 1971).
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EoS between the stiff EoS of the NL3 set (ζ=Λω=0) and the
soft EoS of the FSU set (ζ = 0.06, Λω = 0.03). Accordingly,
FSU2 produces a neutron star M–R relation located in between
the curves of NL3 and FSU in Figure 2. FSU2 yields a heaviest
stellar mass = M M2.07max with a radius of 12.1km, and
predicts 1.5Me stars with a radius of 14km, see Table 2.

While the limiting stellar mass is governed by the stiffness of
the EoS above several times the saturation density n0 (see
column n M nc max 0( ) in Table 2), the radius of a canonical
neutron star is dominated by the density dependence of the EoS
of PNM at 1–2 times n0 (Lattimer & Prakash 2007; Ozel &
Freire 2016). Thus, observational information on masses and
radii of neutron stars has the potential to uniquely pin down the
nuclear EoS in a vast density region. As mentioned in the
Introduction, several of the recent astrophysical analyses for
radii (Guillot et al. 2013; Guver & Ozel 2013; Guillot &
Rutledge 2014; Heinke et al. 2014; Lattimer & Steiner 2014;
Ozel & Freire 2016; Ozel et al. 2016) are converging in the
9–12 km range (also see Fortin et al. 2015 for a detailed
discussion). The review study of Lattimer & Prakash (2016)
indicates a similar range around 11–13 km for the radii of
canonical neutron stars. The possibility that neutron stars have
these small radii is as exciting as it is deeply challenging for
nuclear theory. Note that small radii demand a sufficiently soft
EoS below twice the saturation density, while the observed
large masses require that the same EoS must be able to evolve
into a stiff EoS at high densities. It is therefore timely to
explore whether such small radii can be obtained by the EoS of
the covariant field-theoretical Lagrangian (1), (2), while
fulfilling at the same time the maximum mass constraint of
2Me and the phenomenology of the atomic nucleus.

To construct the new EoS we start from the FSU2 model and
increase the Λω coupling. This softens the PNM pressure
especially up to densities of 1.5–2n0. For a given stellar mass
there is less pressure to balance gravity, thereby leading to a
more compact object of smaller radius. The increase of Λω also
produces a certain reduction of the PNM pressure in the high-
density sector. This may spoil the 2Me maximum mass but can
be counteracted by a decrease of the strength of the ζ coupling.

During the change of the (Λω, ζ) couplings, we refit the
remaining couplings ks w rg g g, , ,N N N , and λ of the nucleon–
meson Lagrangian (1), (2) by invoking the same saturation
properties of FSU2 in SNM (i.e., same saturation density n0,
energy per particle E/A, compression modulus K, and effective
nucleon mass *mN) and a symmetry energy Esym=25.7MeV at
subsaturation density n = 0.10 fm−3. The last condition arises
from the fact that the binding energies of atomic nuclei
constrain the symmetry energy at an average density of nuclei
of ∼0.10 fm−3 better than the symmetry energy at normal
density n0 (Horowitz & Piekarewicz 2001a; Centelles
et al. 2009). We found that under this protocol a noteworthy
decrease of neutron star radii is achieved with Λω=0.05 and
ζ=0.024. We refer to the resulting model as FSU2R. The
coupling constants and several bulk properties of FSU2R are
collected in Table 1.
We observe in Figure 1 that the EoS of the new FSU2R

model is within the boundaries deduced in the studies of
energetic HICs (Fuchs et al. 2001; Danielewicz et al. 2002;
Lynch et al. 2009). It is worth noting that FSU2R features a soft
PNM EoS at n n1.5 2 0– and a stiff PNM EoS at n2n0—
apparently a necessary condition to satisfy small radii and
heavy limiting neutron star masses. The reduction of the stellar
radii in FSU2R compared with the other parameterizations of
the Lagrangian (1), (2) is very clear from Figure 2, also see
Table 2. The maximum mass of 2.05Me calculated with
FSU2R is compatible with the heaviest neutron stars (Demorest
et al. 2010; Antoniadis et al. 2013) and is characterized by a
radius of 11.6 km. For canonical neutron stars of 1.4–1.5 solar
masses, FSU2R predicts radii of ≈12.8 km, which are more
compact than in the other EoSs, see Table 2. Hence, the smaller
radii reproduced by the new model point toward the
reconciliation between the nuclear EoS, the largest neutron
star masses (Demorest et al. 2010; Antoniadis et al. 2013), and
the recent extractions of small neutron star sizes from the
astrophysical observations of quiescent low-mass X-ray
binaries (Guillot & Rutledge 2014) and X-ray bursters (Guver
& Ozel 2013) (also see Guillot et al. 2013; Heinke et al. 2014;
Lattimer & Steiner 2014; Lattimer & Prakash 2016; Ozel &

Table 2

Neutron Star Properties Obtained for the Different Nuclear Models Discussed in This Work

Composition Models M Mmax R(Mmax) nc(Mmax)/n0 R(1.5 Me) Y onset

(km) (km) (n/n0)

NL3 2.77 13.3 4.5 14.8 L

FSU 1.72 10.8 7.8 12.2 L

pneμ FSU2 2.07 12.1 5.9 14.0 L

FSU2R 2.05 11.6 6.3 12.8 L

FSU2H 2.38 12.3 5.3 13.2 L

NL3 2.27 12.9 5.3 14.8 1.9

pnYeμ FSU2 1.76 12.1 6.3 13.9 2.1

FSU2R 1.77 11.6 6.5 12.8 2.4

FSU2H 2.03 12.0 5.8 13.2 2.2

pneμ FSU2R 2.11 11.6 6.1 12.8

(Bc=2×1018 G) FSU2H 2.42 12.3 5.2 13.2

pnYeμ FSU2R 1.88 11.6 6.3 12.8 2.4

(Bc=2×1018 G) FSU2H 2.15 12.3 5.3 13.2 2.2

Note. Results are shown for nucleonic-only (pneμ) or hyperonic (pnYeμ) stars, and including or not a magnetic field having the profile of the solid line in Figure 6

(Section 4). The quantity nc(Mmax)/n0 denotes the central baryonic density at the maximum mass, Mmax, normalized to the corresponding saturation density, n0,

whereas Y onset is the onset of appearance of hyperons normalized to n0.
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Freire 2016; Ozel et al. 2016). We are only aware of similar
models RMF012 and RMF016 (also called FSUGarnet)
introduced in a recent work (Chen & Piekarewicz 2015b).
The RMF012 and RMF016 models were fitted with the same
procedure of the FSU2 model of Chen & Piekarewicz (2014)
but requiring values for the neutron skin thickness of the 208Pb
nucleus of, respectively, 0.12 fm and 0.16 fm. As reported in
Chen & Piekarewicz (2015a, 2015b), the RMF016 model
supports 2Me neutron stars and leads to a radius of 13 km for a
1.4Me star, similarly to the predictions we obtain with our
FSU2R model.

3.2. Implications for Finite Nuclei: Symmetry Energy, Slope of
the Symmetry Energy, and Neutron Skin Thickness

Once the new EoS has been calibrated for neutron stars, it is
important to review its implications for the physics regime of
atomic nuclei since this regime is accessible in laboratory
experiments. We first verify that the new model FSU2R is able
to provide a satisfactory description of the best known
properties of nuclei, i.e., nuclear ground-state energies and
sizes of the nuclear charge distributions. We display in Figure 3
our results for the energies and charge radii of a set of
representative nuclei ranging from the light 16O to the heavy
208Pb. The experimental data of these same nuclei were used in
the fit of the FSU2 model in Chen & Piekarewicz (2014). In
Figure 3, we show the predictions of our FSU2R model
alongside the experimental values and the results from the
parameter sets NL3, FSU, and FSU2. It can be seen that the
four models successfully reproduce the energies and charge
radii across the mass table. The agreement of FSU2R with
experiment is overall comparable to the other models. We find
that the differences between FSU2R and the experimental
energies and radii are at the level of 1% or smaller. We mention
that we have not drawn error bars of the experimental data in
Figure 3, because the nuclear masses and charge radii are
measured so precisely (Wang et al. 2012; Angeli &

Marinova 2013) that the experimental uncertainties cannot be
resolved in the plot.
For our purposes, of special relevance is the fact that the

neutron density distributions and other isospin-sensitive
observables of atomic nuclei are closely related to the density
dependence of the symmetry energy, which in FSU2R has been
tailored to supply small stellar radii. The stiffness of the
symmetry energy with density is conventionally characterized
by its density slope L at the saturation point:

= ¶

¶
L n3

E n

n n
0

sym

0
( )( )

. The L parameter and the pressure P(n0)

of PNM at saturation density are related as =P n n L0
1

3 0( )

(Lynch et al. 2009; Lattimer & Prakash 2016). The new FSU2R
EoS yields =E n 30.2 MeVsym 0( ) for the symmetry energy at
saturation and a slope parameter L=44.3 MeV, which
corresponds to a mildly soft nuclear symmetry energy. The
PNM pressure at saturation is P(n0)=2.27MeV fm−3. We
have collected these values in Table 1 along with the results for
Esym(n0), L, and P(n0) from the other discussed EoSs; now,
large differences can be appreciated among the models.
Despite the fact that a precise knowledge of the density

dependence of the symmetry energy remains elusive, the
windows of values for Esym(n0) and the slope parameter L have
been continuously narrowed down as the empirical and
theoretical constraints have improved over recent years (see,
e.g., Li et al. 2014 for a topical review). Remarkably, the values
of 30.2MeV for Esym(n0) and 44.3MeV for L that we find
after constraining the EoS to reflect small neutron star radii turn
out to be very consistent with the newest determinations of the
symmetry energy and its slope at saturation, see Figure 4.
Indeed, the quoted FSU2R values overlap with the ranges
30Esym(n0)35MeV and 20L66MeV extracted in
Roca-Maza et al. (2015) from the recent high-resolution
measurements at RCNP and GSI of the electric dipole
polarizability αD in the nuclei 208Pb (Tamii et al. 2011),
120Sn (Hashimoto et al. 2015), and 68Ni (Rossi et al. 2013). We
note that the dipole polarizability αD, related to the response of
nuclei to an external electric field, has been identified as one of
the strongest isovector indicators (Reinhard & Nazarewicz
2010). Also note that, compared to hadronic experiments used
to probe the symmetry energy, the electromagnetic reactions

Figure 3. Energy per nucleon E/A and charge radius rch over A
1/3, where A is

the mass number, of several nuclei with magic proton and/or neutron numbers.
The values calculated with the models discussed in the text are compared with
experiment. The experimental data are from Wang et al. (2012) for the energies
and from Angeli & Marinova (2013) for the charge radii.

Figure 4. Slope of the symmetry energy (L) vs. symmetry energy (Esym(n0)) at
saturation for the models FSU2R discussed in this section, and FSU2H
discussed in Section 4. The rectangular areas are the determinations from
Lattimer & Lim (2013) Hagen et al. (2015), and Roca-Maza et al. (2015).
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involved in the measurements of the αD observable (Tamii
et al. 2011; Rossi et al. 2013; Hashimoto et al. 2015) are
particularly suited because they are not hindered by large or
uncontrolled uncertainties. The FSU2R predictions for Esym(n0)

and L also fit within the windows 29Esym(n0)33MeV
and 40L62MeV obtained in Lattimer & Lim (2013)
from the combined analysis of a variety of empirical nuclear
constraints and astrophysical information, which are in line
with similar windows obtained in other recent studies (Tsang
et al. 2012; Li et al. 2014; Lattimer & Prakash 2016). It also
deserves to be mentioned that the Esym(n0) and L values of the
FSU2R EoS are quite compatible with the theoretical ranges
25.2Esym(n0)30.4MeV and 37.8L47.7 MeV that
have been derived from the latest progress in ab initio
calculations of nuclear systems with chiral forces(Hagen
et al. 2015).

The neutron skin thickness D = -r r rnp n p (difference
between the neutron and proton matter radii) of a heavy
nucleus such as 208Pb, also provides strong sensitivity to
the symmetry energy and the pressure of neutron-rich
matter near saturation (Alex Brown 2000; Horowitz &
Piekarewicz 2001a, 2001b; Centelles et al. 2009). Basically,
the same nuclear pressure that is responsible for determining
the radius of a canonical neutron star determines how far
neutrons extend out further than protons in a nucleus. By the
same token, models that produce smaller stellar radii are
expected to predict thinner neutron skins. We find that the
FSU2R model, constrained to small neutron star radii, predicts
Δrnp=0.133 fm in 208Pb. Unfortunately, neutron skins are
difficult to extract from experiments in a model-independent
fashion. The new experiments to measure neutron skins are
being designed with electroweak and electromagnetic probes
where, unlike hadronic experiments, the interactions with the
nucleus (Abrahamyan et al. 2012), or at least the initial state
interactions (Tarbert et al. 2014), are not complicated by the
strong force. The challenging, purely electroweak (nearly
model-independent) measurement of the neutron skin of 208Pb
by parity violating electron scattering at JLab (Abrahamyan
et al. 2012; Horowitz et al. 2012) has been able to provide
Δrnp=0.302±0.177 fm for this isotope (Horowitz
et al. 2012), although the data are not conclusive due to the
large error bars (a follow-up measurement at JLab with better
statistics has been proposed). The recent measurement of the
neutron skin of 208Pb at the MAMI facility from coherent pion
production by photons (Tarbert et al. 2014) has obtained
Δrnp=0.15±0.03 fm. A similar range 0.13Δrnp0.19
fm for 208Pb is extracted (Roca-Maza et al. 2015) by comparing
theory with the accurately measured electric dipole polariz-
ability in 208Pb (Tamii et al. 2011), 120Sn (Hashimoto
et al. 2015), and 68Ni (Rossi et al. 2013). Thus, the FSU2R
prediction of a neutron skin of 0.133 fm in 208Pb turns out to be
fairly compatible within error bars with the recent determina-
tions of this isospin-sensitive observable.

In summary, when the nuclear EoS has been constrained to
encode the recent astrophysical indications of small neutron
star radii, yet without compromising massive stars, a high
degree of consistency has emerged between the predictions of
the model and the latest terrestrial information on the symmetry
energy, its density dependence, and neutron skins, as well as
with the constraints inferred from state-of-the-art ab initio
microscopic calculations (Hagen et al. 2015). All in all, we
believe that the present findings make a compelling case in

favor of the prospect that neutron stars may have small, or
moderate-to-small, radii.

4. HYPERONS AND MAGNETIC FIELD

Having calibrated the nuclear model to produce small
neutron star radii and fulfil maximum masses of 2Me, while
at the same time reproducing the phenomenology of atomic
nuclei and the empirical constraints from collective flow and
kaon production in HICs, we explore in this section the effect
on the EoS and neutron stars of including hyperons and
magnetic fields.
We should first determine the value of the hyperon couplings

in our RMF model. Those couplings are calculated by fitting
the experimental data available for hypernuclei, in particular,
the value of the optical potential of hyperons extracted from
these data. In our model, the contribution to the potential of a
hyperon i in j-particle matter is given by

s w r f= - + + +s w r fU n g g g I g , 24i
j

j i
j

i
j

i i
j

i
j

3( ) ¯ ¯ ¯ ¯ ( )( ) ( ) ( ) ( ) ( )

where s j¯ ( ), w j¯ ( ), r j¯ ( ) and f j¯ ( )
are the values of the meson fields

in the j-particle matter and I3i stands for the third component of

the isospin operator.
The couplings of the hyperons to the vector mesons are

related to the nucleon couplings, wg N and rg N , by assuming
SU(3)-flavor symmetry, the vector dominance model and ideal
mixing for the physical ω and f mesons, as e.g., employed in
many recent works (Schaffner & Mishustin 1996; Weissenborn
et al. 2012; Colucci & Sedrakian 2013; Miyatsu et al. 2013;
Banik et al. 2014). This amounts to assuming the following
relative coupling strengths:
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and =fg 0N . Note that the isospin operator I i3 appearing in the

definition of the potentials in Equation (24) implements the

relative factor of 2 missing in the 1:1 relation between rSg and

rg N displayed in Equation (25), so that the effective coupling of

the ρ meson to the Σ hyperon (I3=−1, 0, +1) is twice that to

the nucleon (I3=−1/2, +1/2), as required by the symmetries

assumed.
The coupling of each hyperon to the σ field is adjusted to

reproduce the hyperon potential in SNM derived from hyper-
nuclear observables (see, e.g., Hashimoto & Tamura 2006; Gal
et al. 2016). The Λ binding energy of Λ-hypernuclei is well
reproduced by an attractive Woods–Saxon potential of depth

~ -LU n 28 MeVN
0( )( ) (Millener et al. 1988). The analyses of

the (π−, K+) reaction data on medium to heavy nuclei (Noumi
et al. 2002) performed in Harada & Hirabayashi (2006) and
Kohno et al. (2006) revealed a moderately repulsive Σ-nuclear
potential in the nuclear interior of around 10–40MeV, while
the fits to Σ

− atomic data (Friedman & Gal 2007) indicate a
clear transition from an attractive Σ potential in the surface, to a
repulsive one in the interior, although the size of the repulsion
cannot be precisely determined. As for the strangeness −2
systems, the Nagara event (Takahashi et al. 2001) and
other experiments providing consistency checks established
the size of the ΛΛ interaction to be mildly attractive,
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D = LL LLB He 0.67 0.17 MeV6( ) (Ahn et al. 2013), while the
knowledge obtained for the Ξ–N interaction is more uncertain.
Analyses of old emulsion data indicate a sizable attractive Ξ-
nucleus potential of = - XU n 24 4 MeVN

0( )( ) (Dover &
Gal 1983), while the missing-mass spectra of the - +K K,( )
reaction on a 12C target suggest a milder attraction of
−20MeV (Fukuda et al. 1998) or ∼−14±2MeV
(Khaustov et al. 2000). These values are compatible with the
recent analysis of the nuclear emulsion event KISO, claiming
to have observed a nuclear bound state of the Ξ

−

–
14N system

with a binding energy of 4.38±0.25MeV (Nakazawa
et al. 2015). From the above considerations, we fix the hyperon
potentials in SNM to the following values:

=-

=+

=-

L

S

X

U n

U n

U n

28 MeV

30 MeV

18 MeV, 26

N

N

N

0

0

0

( )

( )

( ) ( )

( )

( )

( )

which allow us to determine the couplings sLg , sSg and sXg ,

from Equation (24). We finally note that the coupling of the f

meson to the Λ baryon is reduced by 20% with respect to its

SU(3) value in order to obtain a ΛΛ bond energy in Λ matter at

a density nΛ;n0/5 of D =LLB n 5 0.67 MeV0( ) , thereby

reproducing the Nagara event (Ahn et al. 2013).
Let us comment on the fact that the presence of hyperons in

the neutron star interior and their influence on the EoS suffer
from uncertainties tied to our lack of knowledge of the
hyperon–nucleon and hyperon–hyperon interactions around the
hyperon onset density of ∼2n0 and beyond. This freedom has
been exploited by different groups to build up RMF models
that ensure the existence of neutron stars with masses larger
than 2Me even with the presence of hyperons (see for example
Bednarek et al. 2012; Weissenborn et al. 2012; van Dalen
et al. 2014; Oertel et al. 2015). While the radii of neutron stars
are essentially determined by the nucleonic part of the EoS, the
uncertainties in the hyperon interactions reflect on maximum
masses that are scattered within a 0.3Me band, as can be seen
from the thorough analysis of various models done by Fortin
et al. (2015), which is consistent with admitting a deviation by
at most 30% of the symmetries assumed to determine the
hyperon coupling constants (Weissenborn et al. 2012). These
results provide an estimate of the uncertainties that one must
admit in the hyperonic sector until data on the hyperon
interactions at higher densities, coming for instance from HIC
experiments (Morita et al. 2015), become available. As
explained in the preceding paragraph, in this work we have
simply made a minimal adjustment of the hyperon parameters
away from the symmetry constraints imposed by Equation (25)
in order to reproduce the known hypernuclear properties.

In Figure 5 we show how the presence of hyperons affects
the M–R relationship for some representative nuclear EoSs
selected from the previous section: the highly stiff EoS of the
NL3 model and the FSU2 and FSU2R EoSs. These models
differ essentially on the lower density ( n n2 0) and/or the
higher density ( n n2 0) stiffness of the EoS. As already noted
(see Horowitz & Piekarewicz 2001b; Chen &
Piekarewicz 2014, 2015a) and also discussed in the previous
section, models with a larger value of the Λω coupling produce
a softer symmetry energy and, in consequence, become more
compressible leading to stars with higher central densities and
smaller radii. The presence of hyperons softens the EoS by
essentially releasing Fermi pressure. Thereby, the stars get

further compressed than their nucleonic counterparts, and the
maximum masses get reduced by about 15%, as seen by the
thick lines in Figure 5. It is also seen from this figure that the
occurrence of hyperons leaves the stellar radii almost
unaffected.
Except for the NL3 model, which has shown to be

exceedingly stiff at supranormal densities, the maximum
masses of hyperonic stars attained by the other two models
are too low, of about Mmax=1.8Me, to reproduce the 2Me

limit. The specific values of the maximum masses of hyperonic
stars for all these models can be seen in Table 2 in the “pneYμ”
section. We observe a weak sensitivity to the slope of the
symmetry energy, as FSU2 and FSU2R produce essentially the
same maximum masses. This was already noted in the context
of nucleonic-only EoSs in Horowitz & Piekarewicz (2001b).
As the symmetry energy softens, the star simply becomes more
compressed and attains a larger central density, but reaches a
similar maximum mass value. This phenomenology remains
when hyperons are present, as was also found in Providencia &
Rabhi (2013), the only difference being that the hyperonic stars
attain a lower maximum mass and have a higher central density
than their nucleonic-only counterparts, as expected for a softer
EoS. This can be seen upon comparing the values shown in the
“pneμ” and “pneYμ” sections of Table 2.
Since the hyperonic EoS based on the FSU2R model does

not produce Mmax>2Me, we tense the parameters of this
nuclear model a little further so as to make it stiffer. We
essentially reduce the value of ζ from 0.024 to 0.008, which
stiffens the EoS at densities larger than twice the saturation
density, i.e., around the region where hyperons start appearing
(see the hyperon onset density for the different models in
Table 2). The remaining parameters of the model are refitted so
as to reproduce the SNM saturation properties of the FSU2
model and a symmetry energy Esym=26.2 MeV at density n
= 0.10 fm−3. The values of the parameters of this new
interaction, named FSU2H, are listed in Table 1, together with
the predicted Esym value at saturation density and its slope L,
which fall comfortably within the newest empirical and
theoretical constraints of these quantities, as can be seen in
Figure 4. The couplings of the hyperons to the different vector

Figure 5. Mass vs. radius for neutron stars for the models NL3 (Lalazissis
et al. 1997), FSU2 (Chen & Piekarewicz 2014), and FSU2R (this work) with
hyperons (thick lines) and without hyperons (thin lines). The two shaded bands
portray the masses M=1.97±0.04 Me in the pulsar PSR J1614–2230 (gray
band) (Demorest et al. 2010) and M=2.01±0.04 Me in the pulsar PSR
J0348+0432 (turquoise band) (Antoniadis et al. 2013).
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mesons can be readily obtained from Equation (25), and those
to the σ meson, determined from fixing the hyperon potentials
in SNM, are =sLg 0.6113, =sSg 0.4665 and =sXg 0.3157.

We note that the FSU2H interaction produces a certain
overpressure in SNM at n2n0, since the pressure falls above
the allowed region obtained from the modeling of collective
flow in HICs, as seen by the long dashed line in the upper part
of Figure 1. Nevertheless, the EoS for PNM, seen in the lower
panel of this figure, falls within the PNM extrapolated band
compatible with collective flow. Since neutron-star matter in
beta equilibrium is highly asymmetric we consider this model
to be sufficiently realistic to describe neutron stars, whose
properties are presented in Table 2. We observe that the
maximum mass of 2.38Me obtained for a “pneμ” neutron star
with the FSU2H model gets reduced to 2.03Me, with a radius
of 12 km, when hyperons are present. We also observe that the
radius of a canonical star of ∼1.5Me gets slightly enhanced
from 12.8 km for FSU2R to 13.2 km for FSU2H, which is the
price one pays for having stiffened the EoS.

On comparing the “pneμ” with the “pneYμ” parts of Table 2
we essentially see, as in Figure 5, a reduction of about 15% on
the maximum mass when hyperons are allowed to appear in the
neutron star cores. Since the hyperonic EoSs become more
compressible, the “pnYeμ” stars attain higher central densities,
but the radii of the maximum-mass stars stay rather similar to
their nucleonic-only counterparts.

We note that the FSU2H parameterization, which produces
Mmax>2Me even in the presence of hyperons, fulfils the
pressure constraint in neutron star matter at saturation density
n0:

< <- -P n1.7 MeV fm 2.8 MeV fm , 273
0

3( ) ( )

estimated in Fortin et al. (2015) from the results shown in

Hebeler et al. (2013), which were obtained from microscopic

calculations of PNM based on chiral two-nucleon and three-

nucleon interactions, and which are in remarkable agreement

with the quantum Monte Carlo results of Gandolfi et al. (2012),

obtained from the phenomenological Argonne v18 NN

potential plus three-nucleon forces. It is argued in Fortin

et al. (2015) that nearly all hyperonic EoS models that are able

to sustain Mmax>2Me produce large PNM pressures of about

5 MeV fm−3 at saturation density, leading to an overpressure of

the nucleonic (pre-hyperon) segment and resulting in large

radii of around 14 km or more for neutron stars in the range

1<M/Me<1.6. Our FSU2H model does not encounter this

problem, since it gives a PNM pressure of ∼2MeV fm−3 at n0
(see Table 1), well within the constraint of Equation (27), and

as a consequence is able to reach a smaller radius of 13 km. We

note that the symmetry energy slope parameter L of the

hyperonic models analyzed in Fortin et al. (2015) lies in the

range of values 67–118MeV, which deviate considerably from

the recent constraints displayed in Figure 4.
We now discuss the effect of including a magnetic field in

our nucleonic and hyperonic stars. We consider a density-
dependent magnetic field with a profile of the type

b= + - - gB n B B n n1 exp , 28s c 0( ) { [ ( ) ]} ( )

introduced in Chakrabarty et al. (1997) and employed in

several other works (Rabhi & Providencia 2010; Lopes &

Menezes 2012; Sinha et al. 2013). We take a surface magnetic

field value of Bs=10
15 G, consistent with the surface

magnetic fields of observed magnetars (Vasisht & Gotthelf

1997; Kouveliotou et al. 1998; Woods et al. 1999) and a core

magnetic field value of Bc=2×1018 G, which is sufficiently

strong to produce distinguishable effects on the properties of

neutron stars. The parameters β and γ control the density where

the magnetic field saturates and the steepness of the transition

from the surface to the core field, respectively. We take

β=0.0065 and γ=3.5 which ensure that the magnetic field

has practically saturated to its maximum value at around n5 6 0– ,

a range that covers the typical central densities of the maximum

mass neutron stars explored in this work. Moreover, the

indicated β and γ values produce moderate field values below

saturation density, as can be seen by the solid line in Figure 6.

We note that this field profile does not incur on instabilities of

the parallel component of the pressure P associated to rapidly

rising magnetic field toward relatively strong central values

(Sinha et al. 2013).
The effect of this magnetic field on the M–R relationship is

displayed in Figure 7. On the left (right) panel we show the

Figure 6. Magnetic field vs. baryonic density for a function of the type of
Equation (28), taking Bs=10

15 G and Bc=2×1018 G, for (β, γ)=(0.0065,
3.5) (solid line), (β, γ)=(0.05, 2) (dashed–dotted line), and (β, γ)=(0.1, 1)
(dashed line).

Figure 7. Mass vs. radius of neutron stars for FSU2R (left panel) and FSU2H
(right panel) models, with (thick lines) or without (thin lines) hyperons, and
without (solid lines) or with (dashed lines) a magnetic field with the profile of
Figure 6, for β=0.0065 and γ=3.5 The two shaded bands portray the
masses M=1.97±0.04 Me in the pulsar PSR J1614–2230 (gray band)
(Demorest et al. 2010) and M=2.01±0.04 Me in the pulsar PSR J0348
+0432 (turquoise band) (Antoniadis et al. 2013).
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results obtained for the EoS employing the FSU2R (FSU2H)

model. The solid lines correspond to vanishing magnetic field,
while the dashed lines include the effects of the magnetic field
with the density profile discussed above. The thin black lines
show the results for nucleonic neutron stars and the thick red
lines correspond to the hyperonic stars. As observed in earlier
works (Lopes & Menezes 2012), including the magnetic field
produces stars with larger maximum masses. This is essentially
a consequence of the increase in the total pressure which, apart
from the matter pressure Pmatt, also includes the extra average
field pressure component, as seen in Equation (21). The size of
this enhancement is larger for the hyperonic than for the
nucleonic stars, which is essentially due, as we will show
below, to the additional effect of de-hyperonization that takes
place in the presence of a magnetic field. The reduction of
hyperons is responsible for enhancing the value of the matter
pressure Pmatt, since the Fermi contributions of the other
species are larger than in the B=0 case. Nevertheless, the
increase in the maximum mass induced by magnetic field
effects is not enough to produce hyperonic star masses of the
order of 2Me in the case of the FSU2R model, as the dashed
red line on the left panel does not reach the observational
bands. The effects of the magnetic field on the M–R
relationships obtained with the FSU2H EoS (right panel) are
similar to those for the FSU2R EoS, the only difference being
that the constraint Mmax>2Me is now amply fulfilled, since
the FSU2H model served this purpose even in the absence of a
magnetic field.

We now explore the effect of employing different magnetic
field profiles having the same surface and central values,
Bs=10

15 G and Bc=2×1018 G, but different β and γ
parameters. To this end, we consider, in addition to the profile
obtained with the parameters (β, γ)=(0.0065, 3.5) chosen in
this work, the profiles with (β, γ)=(0.05, 2) (Rabhi &
Providencia 2010) and (β, γ)=(0.1, 1) (Sinha et al. 2013),
which are represented, respectively, by the dashed–dotted and
dashed lines in Figure 6. We observe that our parameterization
produces a substantially lower magnetic field in the n<2n0
region and reaches 90% of the saturation value around 5n0,
while the dashed-dotted parameterization does it right after 6n0.
The parameterization of the dashed line does not even reach the
value B=1018 G within the densities of interest (n6n0).

In Figure 8 we display the M–R relationships obtained with
these profiles, together with the zero magnetic field case,
represented by a thin solid line. A noticeable dependence of the
M–R relationship on the magnetic field profile is observed. The
results for the (β, γ)=(0.05, 2) case (thick dashed–dotted line)
are similar to those obtained with our (β, γ)=(0.0065, 3.5)
parameterization (thick solid line), but the stars are produced
with a somewhat larger radius since the magnetic field and,
hence, the total pressure are larger in the pre-hyperon region.
This is even more evident for the M–R relationship obtained
with the (β, γ)=(0.1, 1) profile (thick dashed line), which
produces stars that are ∼0.5 km wider than the other two cases
and deviates from the 13 km maximum radius constraint. The
reason is that this profile clearly gives larger magnetic fields in
the nn0 region, hence producing a larger total pressure and
making the star less compressible.

The particle fractions for beta-stable neutron star matter
obtained using the FSU2H EoS are shown in Figure 9 as
functions of the baryonic density. The upper panel displays the
fractions in the absence of magnetic field, while the other

panels implement the magnetic field with the three different
profiles shown in Figure 6. Landau oscillations are seen in the
charged particle fractions when a magnetic field is applied,
reflecting the successive filling of the Landau levels as the
quantity *-E m q B2F

2 2( ) ∣ ∣ reaches integer values. For a fixed
density, smaller magnetic fields accommodate more Landau
levels and, correspondingly, more oscillations are observed, as
seen for instance when comparing the three ¹B 0 panels in the
n<2n0 density region, where the smallest field corresponds to
the (β, γ)=(0.0065, 3.5) case. As density increases, so does
the magnetic field in all the considered profiles, eventually
needing only one Landau level to accommodate the population
of the charged particles. The oscillations then tend to smooth
out and disappear with increasing density. As is evident, the
magnetic field mostly affects the charged particles, which in
general increases their population with respect the B=0 case.
At low and intermediate densities up to n∼4n0, we clearly
observe an increase in the occupation of negatively charged
electrons and muons. This delays the appearance of the
negatively charged hyperons, an effect that is especially visible
for the Σ

− baryon, whose onset moves to n4n0 for all the
considered magnetic field profiles.
According to the results shown in the second panel of

Figure 9, in the case of a magnetized hyperonic star having a
mass of about 2Me with a maximum density of about 5n0 (see
Table 2), the baryon fractions at the center would be 38% for n,
28% for Λ, 26% for p, 6% for Ξ− and 2% for Σ−. In the B=0
case (upper panel), these fractions would be 45% for n, 31% for
Λ, 13% for p, 6% for Ξ− and 5% for Σ−. We then see that the
proton abundance can be twice as large in a magnetar as it is in
a field-free star. Our results are qualitatively consistent with
those obtained by other works in the literature studying the
effect of magnetic fields in hyperonic stars (Broderick
et al. 2002; Yue et al. 2009; Rabhi & Providencia 2010; Lopes
& Menezes 2012; Sinha et al. 2013). We can conclude that, in

Figure 8. Mass vs. radius of hyperonic neutron stars obtained with the FSU2H
model and including a magnetic field with the different profiles displayed in
Figure 6. The field-free case is shown by the thin solid line. The two shaded
bands portray the masses M=1.97±0.04 Me in the pulsar PSR J1614–2230
(gray band) (Demorest et al. 2010) andM=2.01±0.04 Me in the pulsar PSR
J0348+0432 (turquoise band) (Antoniadis et al. 2013).
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general, hyperonic magnetars re-leptonize and de-hyperonize
with respect to zero-field stars, while the proton abundance
increases substantially. This might facilitate direct Urca
processes, drastically altering the cooling evolution of the star.

5. SUMMARY

We have obtained a new EoS for the nucleonic inner core of
neutron stars that fulfils the constraints coming from recent
astrophysical observations of maximum masses and determina-
tions of radii, as well as the requirements from experimental
nuclear data known from terrestrial laboratories. This EoS
results from a new parameterization of the FSU2 force (Chen &
Piekarewicz 2014), the so-called FSU2R model, that repro-
duces: (i) the 2Me observations (Demorest et al. 2010;
Antoniadis et al. 2013), (ii) the recent determinations of radii

below 13 km region (Guillot et al. 2013; Guillot & Rutledge

2014; Heinke et al. 2014; Lattimer & Steiner 2014; Lattimer &

Prakash 2016; Ozel et al. 2016), (iii) the saturation properties of

nuclear matter and finite nuclei (Tsang et al. 2012; Chen &

Piekarewicz 2014) and (iv) the constraints extracted from

nuclear collective flow (Danielewicz et al. 2002) and kaon

production (Fuchs et al. 2001; Lynch et al. 2009) in HICs.
The FSU2R model is obtained by modifying the Λω and ζ

couplings of the Lagrangian simultaneously, while recalculat-

ing the couplings ks w rg g g, , ,N N N , and λ to grant the same

saturation properties of FSU2 in SNM and a symmetry energy

of 25.7 MeV at n = 0.10 fm−3. On the one hand, radii of

12–13 km are obtained, owing to the fact that we softened the

symmetry energy and, consequently, the pressure of PNM at
densities ∼1.5–2n0, while reproducing the properties of nuclear

matter and nuclei. Indeed, we obtain Esym=30MeV and

L=44MeV, which lie within the limits of recent determina-

tions (see Lattimer & Lim 2013; Hagen et al. 2015; Roca-Maza

et al. 2015). Moreover, the FSU2R model predicts a neutron

skin thickness of 0.133fm for the 208Pb nucleus, which is

compatible with recent experimental results (Abrahamyan

et al. 2012; Horowitz et al. 2012; Tarbert et al. 2014; Roca-

Maza et al. 2015). On the other hand, we have stiffened the

EoS above twice the saturation density, which satisfies the

constraints of HICs (Fuchs et al. 2001; Danielewicz et al. 2002;

Lynch et al. 2009) and allows for maximum masses of 2Me

(Demorest et al. 2010; Antoniadis et al. 2013). All in all, the

FSU2R parameterization allows for a compromise between

small stellar sizes and large masses, a task that seemed difficult

to achieve in up-to-date RMF models.
We also analyze the consequences of the appearance of

hyperons inside the core of neutron stars. The values of the

hyperon couplings are determined from the available exper-

imental information on hypernuclei, in particular by fitting to

the optical potential of hyperons extracted from the data. On

the one hand, we find that the radii of the neutron stars are

rather insensitive to the appearance of the hyperons and, thus,

still respect the observations of radii <13 km. On the other

hand, we obtain a reduction of the maximum mass below 2Me

once hyperons appear due to the expected softening of the EoS.

However, by refitting the parameters of the FSU2R model

slightly, the new parameterization FSU2H fulfils the 2Me limit

while still reproducing the properties of nuclear matter and

nuclei. The price to pay is a stiffer EoS in SNM as compared to

the constraint derived from the modeling of HICs. Nonetheless,

the HICs estimate in PNM is still satisfied by the FSU2H

parameterization (Danielewicz et al. 2002).
We finally study the effect of high magnetic fields on the

nucleonic and hyperonic EoSs. This is of particular interest for

understanding the behavior of highly magnetized neutron stars,

the so-called magnetars. Employing magnetic fields with

crustal and interior values of ∼1015 G and ∼1018 G,

respectively, we find EoSs that are stiffer and produce larger

maximum-mass stars, while keeping radii in the 12–13 km

range, both for nucleonic and hyperonic magnetars, as long as

the magnetic field does not reach values larger than about

1017 G at saturation density. The particle fractions in the

interior of the stars depend on the specific profile of the

magnetic field, but the general trend with respect to zero-field

stars is that hyperonic magnetars re-leptonize and de-

hyperonize, while the amount of protons may double, a fact

Figure 9. Particle fractions as functions of the baryonic density for the FSU2H
model without magnetic field (first panel) and including the magnetic field
profile of Equation (28), taking Bs=10

15 G and Bc=2×1018 G and for (β,
γ)=(0.0065, 3.5) (second panel), (β, γ)=(0.05, 2) (third panel), and (β,
γ)=(0.1, 1) (fourth panel).
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that may trigger direct Urca processes affecting the cooling and
other transport properties of the star.
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