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Abstract.
There is currently tremendous interest in the role of hyperons and other exotic forms of matter in neutron stars.
This is particularly so following the measurement by Demorest et al. of a star with a mass almost 2 solar masses.
Given that we know of no physical mechanism to stop the occurrence of hyperons at matter in beta–equilibrium
above roughly 3 times nuclear matter density, we discuss the constraints on the possible maximum mass when
hyperons are included in the equation of state. The discussion includes a careful assessment of the constraints
from low energy nuclear properties as well as the properties of hypernuclei. The model within which these
calculations are carried out is the quark-meson coupling (QMC) model, which is derived starting at the quark
level.

1 Introduction

The recent observations of not one but two high mass
neutron stars, the millisecond pulsar, PSR J1614-2230 at
1.97± 0.04 M� [6] and more recently of PSR J0348+0432
at 2.03 ± 0.04 M� [5], have imposed the most stringent
constraints to date on the equation of state (EoS) of dense
matter. These observations have spurred re-examinations
of exotic forms of matter and, in particular, led to ques-
tions of whether or not hyperons can play a significant role
in interior of neutron stars, given the anticipated softening
of EoS. There is no known physical mechanism preventing
the appearance of hyperons in dense β-equilibriated matter
and as such they should not be ignored.

The NN interaction can be fit to NN scattering data,
where typically 20 − 30 parameters are fit, but to fit nu-
clear data we also need the 3 body force, which requires
additional parameters to be fit to the energy levels of light
nuclei. When we want to include hyperons using this ap-
proach we run into trouble due to lack of data. There is
very limited to no data on YN and YY scattering and cer-
tainly not enough to fit the large number of parameters of
a realistic potential, which suggests a different approach
should be taken.

There has been a systematic study of Λ hypernuclei
and a search for Σ hypernuclei, where contrary to reports
in the 80s there are no Σ hypernuclei, with the exception
of one very light case. The absence of medium to heavy Σ

hypernuclei means phenomenologically that the Σ-A inter-
action is repulsive. Its repulsive nature implies that their
concentration in dense nuclear matter should be signifi-
cantly reduced. This is not the case for Λ, whereas for
Ξ hypernuclei currently nothing is known, but experimen-
tal studies are underway at JPARC. The mass differences

(MΛ − MN) ∼ 170 MeV and (MΞ − MN) ∼ 380 MeV, sug-
gest that for matter in β-equilibrium we could have Ξ− and
Λ competing for dominance depending on their internal
structure and its modification through interaction with the
surrounding medium. This is possible since µΞ− = µn +µe,
where µe ∼ 200 MeV1.

There are many EoS available in the literature and to
describe the matter in neutron stars we need an EoS which
is both relativistic and includes hyperons. To separate the
more realistic EoS from the rest a global approach would
be to try them all and filter them by general properties ex-
tracted from terrestrial experiments and astronomical ob-
servations. While reconciling the observations with real-
istic model predictions is a challenging and ongoing prob-
lem we present a discussion on the constraints on the pos-
sible maximum mass when hyperons are included in the
equation of state [3, 4]. Our discussion includes assess-
ment of low energy nuclear and hypernuclear properties
within a relativistic quark level model, the Quark-Meson
Coupling (QMC) model. This model was used in the ear-
lier work of Stone et al. [7], who already predicted the ex-
istence of neutron stars containing hyperons with masses
as large as 2 M� in 2007. It has the advantage of being
derived from the quark level, with a very small number of
adjustable parameters, while being consistent with a broad
range of constraints derived from hypernuclei as well as
normal nuclear properties. We find that the stability under
variation of the very small number of adjustable param-
eters is such that if a star were discovered with a mass
significantly above 2.1 M�, we would need to consider
more exotic physics, because it could not be accommo-
dated within the current version of QMC model.

1Neutrinos neglected.
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Table 1. Meson-nucleon coupling constants determined for our baseline scenario (for which Λ = 0.9 GeV, and Rfree
N = 1.0 fm) and

subsequent scenarios in which differences from our standard parameter set are given in column 1. Also shown are the saturation
incompressibility, K0; stellar radius and maximum stellar mass.

Model gσN gωN gρ
K0 R Mmax

(MeV) (km) (M�)

Standard 10.42 11.02 4.55 298 12.27 1.93
Λ = 1.0 10.74 11.66 4.68 305 12.45 2.00
Λ = 1.1 11.10 12.33 4.84 312 12.64 2.07
Λ = 1.2 11.49 13.06 5.03 319 12.83 2.14
Λ = 1.3 11.93 13.85 5.24 329 13.02 2.23
R = 0.8 11.20 12.01 4.52 300 12.41 1.98
Fock δσ̄ 10.91 11.58 4.52 285 12.29 1.98
Dirac Only 10.12 9.25 7.83 294 12.56 1.79
Hartree Only 10.25 7.95 8.40 283 11.85 1.54
Nucleon Only 10.42 11.02 4.55 298 11.64 2.26

2 The QMC Model

2.1 Background on the QMC Model

We recall that QMC is based upon the self-consistent mod-
ification of the structure of a baryon embedded in nuclear
matter. At Hartree level it involves only three adjustable
parameters which describe the effective couplings of the
σ, ω and ρ mesons to the u and d quarks. These are fixed
by adjusting them to fit the properties of symmetric nu-
clear matter, namely its saturation density and binding en-
ergy as well as its symmetry energy. We note that the σ
meson used here simply serves as a convenient representa-
tion of the scalar-isoscalar attraction arising from two-pion
exchange.

In the most recent development of the QMC
model [11], the self-consistent inclusion of the gluonic hy-
perfine interaction led to a very successful description of
the binding energies of Λ-hypernuclei—as well as the ob-
served absence of medium and heavy mass Σ-hypernuclei
—with no additional parameters. We stress that this is
achieved without any coupling of the strange quark to
the σ,ω and ρ mesons (which would be OZI suppressed)
and without the need to introduce any further mesons.
While the model could be supplemented with much heav-
ier mesons containing strange quarks [12], Occam’s razor
suggests that one should not introduce them if they are not
needed.

A clear connection has been established between the
self-consistent treatment of in-medium hadron structure
and the existence of many-body [13] or density depen-
dent [15] effective forces. Dutra et al. [16] critically ex-
amined a variety of phenomenological Skyrme models of
the effective density dependent nuclear force against the
most up-to-date empirical constraints. Amongst the few
percent of the Skyrme forces studied which satisfied all of
these constraints, the Skyrme model SQMC700, derived
from the QMC model, was unique in that it incorporated
the effects of the internal structure of the nucleon and its
modification in-medium.

While the earlier study of Stone et al. [7] demonstrated
the importance of exchange (Fock) terms in calculations
of the EoS of dense baryonic matter in β-equilibrium, it
included only the Dirac vector term in the vector-meson-
nucleon vertices. In this work we include the full vertex
structure which one might expect to enhance the pressure
at high density. This is especially so in the case of the ρ
meson for which the tensor coupling is much larger than
that of the ω. Our calculation[3] extends the work of Krein
et al. [17], who considered nucleons only, by evaluating
the full exchange terms for all octet baryons and adding
them in the same way as Stone et al. [7]; as additional con-
tributions to the energy density. Our investigation com-
plements the important work of Miyatsu et al. who per-
formed a relativistic Hartree-Fock calculation incorporat-
ing the tensor interaction [21]. Furthermore, we carefully
explore the limit on the maximum mass of a neutron star
containing hyperons while ensuring consistency with criti-
cal nuclear properties, such as the incompressibility of nu-
clear matter.

2.2 Formulation of the QMC Model with Pauli Term

As mentioned above in the QMC model one starts with a
model of hadronic structure such as the MIT bag [8, 9]
(or NJL [10]) and solves self consistently for the inter-
nal structure of the baryons in medium. This can then be
parametrized [11] by a polynomial in gσN(0)σ̄,

M∗B = MB − wσBgσσ̄ + w̃σB
d
2

(gσσ̄)2 (1)

where the weightings wσB and w̃σB simply allow the use
of a unique coupling to nucleons, gσN(0) = gσN = gσ.
The response of the baryons internal structure to the scalar
field is of great interest. This modification in medium de-
velops a natural non-linear dependence (in this version,
through the bag model equations) on the scalar field giv-
ing rise to the scalar polarisability, d, which can be in-
terpreted as the physical origin of the non-linear scalar po-
tential in non-linear versions of Quantum Hadro-dynamics
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(QHD)[2]. The consequence of polarisability in atomic
physics is many body forces and the same is true in nu-
clear physics [13, 14].

The baryon energy density, εB, in the QMC model is
then given by

εB =
2

(2π)3

∑
B

∫
|p|<pF

dp
√

p2 + M∗ 2
B , (2)

where the effective, in-medium baryon masses, M∗B, are
calculated self-consistently for an MIT bag immersed in
(and in Ref. [11], parameterized as functions of) a mean
scalar field, designated here by a barred symbol. At a
given density, σ̄ is self-consistently expressed as

σ̄ = −
2

m2
σ(2π)3

∑
B

∫
|p|<pF

dp
M∗B√

p2 + M∗ 2
B

∂M∗B
∂σ̄

. (3)

An additional contribution, δσ̄, to the scalar field arises
if we include the Fock terms in the minimization of the en-
ergy density. This provides only a small correction to the
mean field, and its effect is included only in the scenario
denoted δσ̄. The total hadronic energy density, εH , is the
sum of baryonic, εB, and mesonic, εσωρπ contributions, for
which

εσωρπ =
∑

α=σ,ω,ρ

1
2

m2
αᾱ

2

+
∑

α=σ,ω,ρ,π

∑
BB′

Cα
BB′

(2π)6

"
|p|<pF
|p′ |<pF′

dp dp′ ΞαBB′ ,(4)

where Cσ
BB′ = Cω

BB′ = δBB′ . Cρ
BB′ and Cπ

BB′ , which arise
from symmetry considerations, are given in Ref. [7]. Note
that the π meson only contributes to the second term in
Eq. (4) as it is coupled via a pseudo-vector current. For
εσωρ, the integrand has the form

Ξm
BB′ =

1
2

∑
s,s′
|ūB′ (p′, s′)ΓmBuB(p, s)|2∆m(k) , (5)

where ∆m(k) is the Yukawa propagator for meson m with
momentum k = p − p′. For the vector mesons, the full
vertex structure is included in the manner of Ref. [17] as

ΓσB = gσBCB(σ̄)Fσ(k2)1 = −
∂M∗B
∂σ̄

Fσ(k2)1 , (6)

~ΓηB = ε
µ
η
~ΓµηB (7)

= ε
µ
η

[
gηBγµFη

1(k2) +
i fηBσµν

2M∗B
kνFη

2(k2)
]
~τ ,(8)

~ΓπB = i
gA

2 fπ
Fπ(k2)γµkµγ5~τ , (9)

with the isospin matrix only applicable to isovector
mesons and η ∈ {ω, ρ}.

As usual, the effect of short distance repulsion on the
Fock terms is simulated by the replacement

~q 2

(~q 2 + m2)
→ 1 −

m2

(~q 2 + m2)
(10)

from which the unit term is subtracted, thus eliminating a
δ-function. The form factors Fα

1,2 all have the same dipole
form with the cutoff mass Λ varied from 0.9 to 1.3 GeV
to test the sensitivity. In our standard scenario we take
Λ = 0.9 GeV and the ratio of tensor to vector couplings
( fρN/gρN = 3.70) consistent with values derived within
QMC. These ratios correspond to those from vector meson
dominance.

Of the baryon-meson coupling constants gσB(σ̄), gωB,
and gρB, only gσB is density dependent. Its model param-
eterisation [11] is dependent on the free nucleon radius,
which is taken to be Rfree

N = 1.0 fm – with an alternate sce-
nario having Rfree

N = 0.8 fm. The density dependence is
given by

∂

∂σ̄

[
gσB(σ̄)σ̄

]
= gσBCB(σ̄) = −

∂M∗B
∂σ̄

. (11)

Values of the coupling constants gαN for various
mesons α and a selection of scenarios considered in this
work are presented in Table 1. The couplings gωB and gρB

are expressed in terms of the quark level couplings

gωB = nB
u,dg

q
ω ; gρB = gρN = g

q
ρ , (12)

where nB
u,d represents the number of light quarks in baryon

B. The σ, ω and ρ couplings to the quarks are con-
strained to reproduce a saturation energy per baryon of
Esat = −15.86 MeV and an asymmetry energy coeffi-
cient of aasym = 32.5 MeV at the saturation density n0 =

0.16 fm−3. The ω, ρ and π masses are constrained to their
experimental values, whereas the σ mass is taken to be
700 MeV.

For a compact object in β-equilibrium we solve the
familiar system of equations for the number densities of
the baryons and leptons [19]. The lepton energy den-
sity and pressure are given by the usual formulas for
a degenerate Fermi gas. In order to obtain the neu-
tron star properties shown in Table 1, we solve the
Tolman–Oppenheinmer–Volkov equations for the gravita-
tional mass and radius [19]. The resulting dependence of
the neutron star mass on radius, for a selection of the vari-
ations of the model, is shown in Fig. 2.

3 Discussion

In Fig. 1 we present the pressure versus total baryon den-
sity as calculated within the QMC model for both symmet-
ric (Top) and pure neutron (Bottom) matter. The shaded
regions have been inferred from a comparison of experi-
mental data on matter flow in energetic heavy ion colli-
sions by Danielewicz et al. (see Ref. [1] and references
therein). In both cases the QMC model predicts somewhat
higher pressure at a given density than the extrapolation of
the transport theory. This may not be surprising because
the QMC model and the model used in Ref. [1] are based
on very different physics and make very different assump-
tions.

In Table 1 we present the coupling constants, in-
compressibilities of symmetric nuclear matter, and stellar
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Figure 1. (Color online) (Top) Pressure in SNM as a function of
density as predicted in the QMC model. The shaded area is taken
from [1]. (Bottom) The same as (Top) but for PNM. The upper
and lower shaded areas correspond to two different estimates of
the contribution of the symmetry pressure to the total pressure.
For more detail see [1].

properties, for a number of variations of the QMC model,
in each scenario including the σ, π, ω and ρ Fock terms.
We note that in all scenarios Ξ− hyperons are present in
significant quantities in the the maximum mass stars.

It is remarkable that in all of the scenarios investigated,
the stellar properties are largely consistent, and similar to
those reported by Stone et al. [7]. Scenarios in which
the maximum stellar mass lies outside of the range 1.9–
2.14 M� correspond to nuclear matter compressibilities
above the upper limit set in the recent comprehensive anal-
ysis of giant monopole resonance data [20]. While this
cannot be true in general, it is certainly the case for the
QMC model.

Turning to the effects of the inclusion of the full ex-
change terms on stellar properties, we find that the thresh-
old density for Ξ− is lowered, while those of Λ and Ξ0 are
raised, as demonstrated in Fig. 3. In all scenarios there is
a greater splitting between the thresholds of the Ξ baryons
than that found by Stone et al. [7].

In our standard or baseline scenario, the Ξ− threshold
occurs at 0.42 fm−3, followed by Ξ0 at 0.91 fm−3. We find
that Λ production is not energetically favoured at densities
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Figure 2. Gravitational Mass versus radius relationship for var-
ious scenarios described in the text. The black dots represent
maximum mass stars and the coloured bars represent observed
pulsar constraints. At low density the BPS [24] EoS is used.

considered here, in agreement with Ref. [21]. Similarly, it
is insensitive to the choice of free nucleon radius, despite
a moderate impact on the couplings.

The correction (δσ̄) to the scalar mean field arising
from the Fock terms decreases the incompressibility by
13 MeV, yet other observables remain largely unaltered by
this addition. The cutoff, Λ, used in form factors (which
controls the strength of the Fock terms) exhibits a more
pronounced relationship with the observables in Table 1.
Increasing Λ beyond 0.9 GeV raises the incompressibility
with the case denoted Λ = 1.3 GeV already exceeding the
limit of K < 315 MeV. We stress that Λ could not take a
lower value without impacting the masses of the σ, ω, and
ρ. The π, however, has a much lower mass and as such
could involve a lower cutoff. We investigated this possibil-
ity but found only a minimal effect on the EoS, as expected
from the small contribution the pion makes to the EoS at
high density[3]. Overall, increases in the cutoff correlate
with increases in both the saturation incompressibility and
maximum stellar mass.

We stress that the QMC model does not predict the ap-
pearance of Σ hyperons at any density where the model
can be considered realistic. This is in contrast to a number
of other relativistic models which do predict the Σ thresh-
old to occur, even prior to that of the Λ [22, 23]. We note
that Schaffner-Bielich [22] considered a phenomenolog-
ical modification of the Σ potential with additional repul-
sion, which significantly raised its threshold density. In the
case of the QMC model the physical explanation of the ab-
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Figure 3. (Color online) Species fraction as a function of baryon
number density in GBEM, using the standard scenario EoS.

sence of Σ-hyperons is very natural, with the mean scalar
field enhancing the repulsive hyperfine force in the bound
Σ. Recall that the hyperfine splitting is due to one-gluon-
exchange, which determines the free Σ–Λ mass splitting in
the MIT bag model.

It is worth remarking that upon inclusion of the tensor
coupling, the proton fraction increases more rapidly as a
function of total baryon density. Thus the maximum elec-
tron chemical potential is increased, making the Ξ− more
energetically favourable. This is likely to increase the
probability of the direct URCA cooling process in proto-
neutron stars. As a further consequence, it may well influ-
ence the production of π− and K̄ condensates. Changes
to the Λ threshold (occurs at higher density with lower
maximum species fraction) reduces the possibility of H-
dibaryon production as constrained by β-equilibrium of
chemical potentials.

For comparison purposes, we also include a ‘Nucleon
Only’ scenario, in which hyperons are artificially ex-
cluded. In this case the EoS is increasingly stiffer at den-
sities above 0.4 fm−3, leading to a large maximum stellar
mass of 2.26 M�, consistent with many other nucleon-only
models.

4 Summary

In summary, taking into account the full tensor structure
of the vector-meson-baryon couplings in a Hartree-Fock
treatment of the QMC model gives increased pressure at
high density—largely because of the ρN tensor coupling
—while maintaining reasonable values of incompressibil-
ity at saturation density. The conceptual separation be-
tween the incompressibility at saturation density and the
amount of pressure or ‘stiffness’ at higher densities is crit-
ical. It is the latter that leads to neutron stars with maxi-
mum masses ranging from 1.90 M� to 2.14 M�, even when

allowance is made for the appearance of hyperons. This
suggests that hyperons are very likely to play a vital role
as consituents of neutron stars.
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