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ABSTRACT.   This paper is focused on equational theories and equationally
defined varieties of lattices which are not assumed to be modular.   It contains
both an elementary introduction to the subject and a survey of open problems
and recent work.   The concept of a "splitting" of the lattice of lattice theories
is defined here for the first time in print.   These splittings are shown to corre-
spond bi-uniquely with certain finite lattices, called "splitting lattices".   The
problems of recognizing whether a given finite lattice is a splitting lattice,
whether it can be embedded into a free lattice, and whether a given interval in
a free lattice is atomic are shown to be closely related and algorithmically
solvable.   Finitely generated projective lattices are characterized as being
those finitely generated lattices that can be embedded into a free lattice.

Introduction.  What we do in this paper is fairly described by the phrase "equa-

tional model theory of lattices."   We take this in a broad sense, as the study of

lattices and their equational theories, with particular emphasis on finding connec-

tions relating algebraic properties of lattices to various properties of their theo-

ries.   Since many interesting properties of lattice theories can be defined ab-

stractly, purely by reference to the lattice of all such theories, we are naturally

led to investigate the structure of  S    the lattice of all equational theories of

lattices.

Recent studies in this largely unexplored field have been greatly stimulated

by a paper of Bjarni Jónsson [6]. The central result of that paper (L6, Corollary

3.2], stated below as Lemma 1.4) has already found a number of applications, in

the original paper as well as in [l], [7], L9J and the present paper.

Broadly speaking, Jónsson's result tells us that the cords binding lattices to

their theories are much more tightly drawn than one would expect on the basis of

experience with other equationally defined classes of algebras, such as groups

and rings.   The happy consequences of this fact, both for the algebraic and the

equational study of lattices, will hardly be exhausted by the present paper; and

we expect other researchers to take up the challenge.   To that end, we have given
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2 ralph McKenzie [December

explicit formulation to eleven unsolved problems, and many others are scattered

through the text.
The first section of our paper contains preliminaries:   basic concepts and

notation, a summary of some recent results, and a formulation of the very useful

facts from L6J.
The central   notion of the paper, which we analyze extensively, is the notion

of a splitting of S,, defined in §3.   The splittings we have in mind are occasioned

by those pairs of theories, (H, ©), for which every lattice theory K belongs to just

one of two intervals in  2 : H < K or K < ©.

Though perhaps it was never formulated in this way, it has long been known

that the lattice  N    (Diagram 2) gives rise to such a splitting of  5,  (or, more prop-

erly, the pair (M, 8/V,), where M is the theory of modular lattices).   Since   N,

plays, in several ways, a generic part in these considerations, we have devoted

V2 to presenting a system of equations from which all equations of  N,   can be de-

rived.   (Our system of axioms for N    is a little stronger than that once given by

Schutzenberger [lO], thus demonstrating an error in his claim.   For the details,

see [3].)
In §4, we show that the second term in each splitting pair is the theory of a

finite, subdirectly irreducible lattice.   And in §5 we show how to characterize

these lattices algebraically (Theorem 5.1).   We call them splitting lattices.   It

turns out that the generation of splitting lattices is equivalent, in a sense, to the

calculation of atomic quotients, wQ <   w., in finitely generated free lattices (Theo-

rem 5.4).
The two principal results of §5, or rather the constructive methods implicit

in the proofs and developed in §6, yield some surprising corollaries.   For in-

stance, we obtain an algorithm for checking whether one word covers another in a

free lattice (Theorem 6.2); and an algorithm for deciding whether a finite lattice

can be embedded into a free lattice (Theorem 6.3.   An essential portion of the ar-

gument was supplied by Jonsson).

The paper closes with a series of instructive examples (§7); and a discussion

of the relation of covering in the lattice of theories (§8), giving further applica-

tions of the methods developed earlier on, and a number of problems.

It is a pleasure to acknowledge the large contribution that Bjarni Jonsson has

made to this paper, through his published writings and in conversations with the

author; and the significant debt that I owe to Alfred Tarski and to my student,

Alan Kostinsky, for their patience and good advice.

1. Preliminaries.   Our treatment of the basic concepts of equational logic, and

of the algebraic theory of lattices, is adapted from Tarski [il] and Birkhoff L2j,

respectively.   Our notation differs, in a few details, from the notation of those

authors.   A fixed equational language with two binary operation symbols, + and •,
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1972] EQUATIONAL BASES AND NONMODULAR LATTICE VARIETIES 3

is required.   We call it the basic equational language of lattices.   All the equa-

tions and theories encountered below are assumed to be defined in this language.

A lattice is an algebraic system

A=(\A\,+, .)
satisfying identically the following equations of the basic language:

X*y = y X, A2.     x + y = y + x;

x-(yz) = (x-y)'Z,        À4.     x + {y + z) = (x + y) + z;

x • (x + y) = x, Àg.     x + x • y = x.

Lattice theory is the set of all equations which can be derived (using the opera-

tions of substitution and replacement of equals by equals) from   Aj— X(.    We shall

denote it by A.
Throughout the paper, we treat only equational theories 0 extending A.   They

can all be obtained in the following way.   We take an arbitrary set of equations,

X, and form the theory 0 = 8,C£] consisting of all equations derivable from A U

X.   We call 2 a base for 0 (relative to A).   If 2 is a finite set [eQ, €.,-••, e J,

the resulting theory may be denoted by 8 ,[eQ, e., • • • , c ].

The collection of all theories containing A, ordered by set-inclusion, forms

a lattice

V<T/>+' •>
whose operations are defined by the rules

00-0^0000^      ©0 + 0, = 0^00^].

Each lattice L determines a theory 0L, consisting of all equations valid in L;

and conversely, every theory 0 e T( is the theory of some lattice L.   [Given 0,

we can take for L any 0-free lattice, FL(0, X), on an infinite set X of free gen-

erators; for example, the algebra of terms of the basic language, reduced by the

relation ~e of ©-equivalence:   a -\>e t iff a= r € 0.]   Thus, %¡ is appropriately

called the lattice of equational theories of lattices.

We use the same symbolism for the theory of a class of lattices:   by defini-
tion,

eX= n¡8L: LeK|.
In case J\ is empty, the convention is 8 Jv = 0, the largest theory.

The most important classes, from our standpoint, are the varieties (equational

classes, primitive classes).   A lattice variety is a class Ö of lattices which, for

some 0 6 Tj, is defined by the condition

Leo ~>0<8L.

V
X,.
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4 ralph McKenzie [December

We write L) = 00.   We have already seen how every equation or set of equations,

likewise every lattice or class of lattices, determines a member of T.; thus each

such entity determines a lattice variety.   The corresponding variety will always

be denoted by prefixing the symbol Ö.
Two familiar theorems of Birkhoff and Tarski have concise symbolic formula-

tions in this context. Assume that 0n, 0, £ T,, that K is a class of lattices, and

that ü is a lattice variety.   Then we have

©O<0i~ö0iCÖ0o;
0Ö0o=0o,Ö0Ö=ö;

ÖK = HSPK.
The first three relations above express a basic duality between theories and vari-

eties; the last relation contains the fact that every lattice in Üa can be con-

structed algebraically as a homomorphic image of a sublattice of a direct product

of lattices belonging to A.
We will use standard notation for the intervals and the covering relation of

any lattice under consideration, and the notation     (X) for the cardinal number of

a set X.   Thus

\jx, y] = \z: x < z < y\,     [x, v) = {z: x < z < y\;

x < y{y covers x) <=>*([*, yi) = 2.

Many equations can be most simply expressed as inclusions.   The inclusion o<t

denotes the equation a = a • r in the basic language.   At times we will write

a -aT  t0 indicate that a < t £ 0.
A natural notion of independence plays a role in the discussion of covering

in 2   (§8).   A set of equations, X, is said to be independent (relative to A), or

an independent base for 0,[X], provided that 0IX J <8,[X]  for each proper sub-

set  X   C X.   We write V .0 to denote the set of cardinalities of the independent

bases of a theory 0 £ T..(2)
By reference to the corresponding theory, we can speak of the bases, and the

independent bases, of a given lattice or class of lattices.   For illustration, a the-

ory, a lattice, or a class of lattices is said to be finitely based if it possesses a

base composed of a finite number of equations.   In [9, Theorem 2.1], it was proved

that every finite lattice is finitely based; examples of nonfinitely based lattice

varieties appear in Ll] and [9J-
We will state, in §8, a number of problems involving the independent bases

of theories; but the three lemmas below are immediate.

(  ) For theories containing A, V 0 usually gives more information about 0 than does
Tarski's V0 [ll, §4].   A detailed comparison of these notions can be pieced together
from [ll, Theorem 8J, the introduction to L°J and the remarks in this paper.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] EQUATIONAL BASES AND NONMODULAR LATTICE VARIETIES 5

Lemma 1.1.  For every two equations e„, t., there is an equation e such that

SjLfQ, f¡] = 8,1e].

Lemma 1.2.   For each 0 e T,, one of the following statements is valid:

(i) 8= Aa«rfVie={0|;
(ii)  0 is finitely based and either V 8 = [l, <d), or for some integer v > 1,

V/0 = [1,V];
(iii)  0 is not finitely based and either v   0 = \co\ orV,® = 0.

The third lemma will provide a purely lattice theoretic definition of V     We

observe that the lattice of theories is a complete lattice; the least upper bound

(or join) of an arbitrary set of theories S is the theory 8,[US] for which we write

V S.   Finitely based theories 0 are also called compact because they are char-

acterized within 2. by the following property:   0 < V S implies the existence of

a finite subset of S, S' with 0 < V S'.

Lemma 1.3.  Assume that k < a> and 0 e T..   An equivalent condition for

K € V 0  is the existence of a set of compact theories, S, having the properties

(i)    #(S)=K,
(ii)   VS = 0,

(iii)    VS   < 0 for each proper subset of S, S  .

The proofs of the three lemmas are completely trivial.   We only remark that

in Lemma 1.1, assuming that e   = a   = r    {p. = 0, l)  and also that eQ and e,   have

no variables in common, one can take for ( the equation aQ • a   = r0 • t..

The values of V. are known in only a few cases.   Some examples given now

provide additional basic information that will be useful later.   At the top of the

lattice  2^ is a group of four theories forming an invented  Y [6, j?4].   0 is the

largest theory, based on the equation x = y.   The next largest is A, the theory of

distributive lattices, based on the equation x • (y + z) = x • y + x • z.   Just below

A are the theories of two lattices, M    and N,  (Diagrams 1 and 2); every remaining

theory is a subtheory of one of these two—this follows, of course, from the well-

known fact that every nondistributive lattice contains a sublattice isomorphic to

either  AL or N,.   From these facts one easily infers that V Q, = ¡1¡ and VA =

il, 2¡.   For 8 M,   the problem is more difficult, but Jónsson [7] found that there

are just three theories covered by 8 M    and we infer from §8 of this paper that

V¡%M5 = 11, 2, 3!.   Finally, [l, 16] Ç ̂ 0^ (§8), but we do not know whether the
inclusion can be replaced by equality.

Among all the lattices of equational theories (of such well-known varieties

of algebras as groups, rings, lattices, semigroups, etc.), S    itself has the simplest

equational theory.   In fact, 8 £; = A [6, Corollary 4.l].   From this, and because

every member of  2^ is a join of compact lattice theories, we actually have

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6 RALPH McKENZIE [December

0- Vs= v i0.r:ress
whenever 0 £ T, and S C T,.   (The other infinite distributive law is false in 2..

Let 0 = 0M3 and S = W: T ¿ÖMji and see Example 5.1.)
Despite the obvious simplification in calculations with theories afforded by

these distributive laws, very little is known of the detailed structure of  S,.

Kirby Baker [l, Theorem 3.1] discovered a complete sublattice of 3^ isomorphic

to the boolean lattice 2a of all subsets of a), and so we have   '"(T.) =2     .( )

From each equation e, we may obtain another equation e    by exchanging +

and • at every appearance in e.   From each theory 0, a dual theory is formed by

collecting together the duals of equations in 0: 0   = ie : e £ 0|.   The familiar,

special duality of lattice theory is expressed by the relation A = A .   The duality

map, restricted to T,, is an automorphism of S..

Problem 1.  Are there any automorphisms of  2    besides the identity map and

the duality map, d?
To close this section, we turn from theories to varieties and state some fun-

damental results of B. Jonsson, which underlie many of the developments reported

in this paper.()   An algebra A is said to be subdirectly irreducible (SI) provided

that among the congruence relations of A,   excluding the equality relation, there

is a smallest.   In other words, provided there exist two elements a, b£\A\ with

a ¿ b, but fa = fb for every homomorphism / on A which fails to be a monomor-

phism.   A theorem of General Algebra, due to Birkhoff, states that every algebra

is isomorphic to a subdirect product of its SI epimorphic images.   Consequently,

every variety is generated by its SI members, and Ö A   is generated by the SI epi-

morphic images of A.

Now the central result of [6], when stated for lattices, is the following.

Lemma 1.4 [6, Corollary 3.2]. Let A be a class of lattices. Then every SI

lattice L 6ÖA is a homomorphic image of a sublattice of an ultraproduct of lat-

tices from A.   In symbols,

LeHSP K.u

Using elementary properties of ultraproducts, Jonsson derived from this lemma

a number of corollaries, which we briefly summarize.

For instance, given 0O, 0j eTp   Ö0Q-0J    is generated by ö©0 U Ö0t;
consequently, every SI member of (J ©_•©,    belongs to either U®0 or(J0j.

Therefore, by the subdirect representation theorem, every lattice  L £{J 0.0     is

monomorphic to a direct product  LQ x L,,   L^eö©,,-   Moreover, letting t) denote

( ) For an equivalent formulation of the related problem whether 5. is monomorphic
to   ¿ , see §4, Problem 4.

( ) The following concepts can be traced through the original paper, [6j, or one may
consult [5] and \2, Chapters 6, 8].
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1972] EQUATIONAL BASES AND NONMODULAR LATTICE VARIETIES 7

the set of all SI lattices L with universe   | L| Co), we will obtain an isomorphic

representation of  2, as a lattice of subsets of o if we pair 0eT. with the set

S-Ö8.
But the most striking facts observed in [6] arise from Lemma 1.4 when Jv is

a finite set of finite lattices.   In this case, the lemma implies that every SI L 6

OJv belongs to the class  HSJv.   Now, there are only a finite number of nonisomor-

phic lattices in  US A; hence, for present purposes, it may be replaced by a finite

representative subclass J.   Then every variety  U CÖJv will be generated by a

subset of J.   Correspondingly, each theory 0 > 0.K. is generated by 00 I I J"

(and also by a finite lattice L, a direct product of the members of £30(1 5).

Therefore the interval L0JÍ, Q] in S   is finite.
Moreover, for two finite SI lattices   LQ and L„ we have

8LO=0L,- L0^ Lr
For, by the above, if they generate the same variety then each is the epimorphic

image of a sublattice of the other.

The future application of any of the above summarized results of [6] will be

marked by invoking "Jónsson's lemma."

By Jónsson's lemma, the theories of finite lattices, when taken together,

form a filter in the lattice of theories.   We may ask whether this filter has an al-

ternative definition, using only notions which apply to  S, as an abstract lattice.

An affirmative solution of the following problem would yield such a definition.

Problem 2.  Assuming that 0eT. and [0, Q]  is finite, must 0 have the form

8L,   L a finite lattice?
Alan Kostinsky noticed that this problem is directly equivalent (since   3. is

distributive) to another, now listed as Problem 2  , in V8.

2. An equational base for  N .  Consider the two following equations :

17 j -  x • (y + u) • (y + v) < x • (y + uv) + xu +■ xv,

f]2.  x • (y + u • {x + v)) = x ■ (y + ux) + x • (xy + uv).

Theorem 2.1.   (See Diagram 2.)  8/V, =8,Li7j, TfA.

Rather than verify directly that 77, and r¡2 hold in /V,, let us observe, more

generally, that 77^ and r?2 are valid in every lattice which fails to contain three

mutually incomparable elements.

Indeed, assume that L is such a lattice.   By writing a )( b we signify that

a and b are incomparable elements in L, i.e. a ¿ b and b ¿a.   Now, let fl, b, c,

de\L\.   By substituting a, b, c and d, respectively, for x, y, u and v in r¡    (¡i =

1, 2), the left and right components of these equations are assigned values LS

RS     respectively, in L.   The indicated relations between these elements reduce

to the fact that LS^< RS^ (p = 1, 2), for RS2 < LS2  clearly is a consequence of
the lattice axioms.
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8 ralph McKenzie [December

The relation LSj < RSj is immediate if any two of b, c, d are comparable.

For example, c < d implies RS, > a ■ {b + cd) = a • (b + c) > LSp b < c implies

LSj = ac • (b + d) < RSt; c < b implies LSj = ab < RSj; etc.   Hence  LS[ < RSr
Similarly, to prove that  LS2 < RS2 in L, we can assume that   a)(c, that

b)(c and that a ¿ b.   Since a, b, c are not all mutually incomparable, we must

have  b < a.   Then the cases a < d, d < a or c < d are easily handled.   Excluding

these cases and recalling that    a)(c,   we must have d < c (otherwise a, c, d are

mutually incomparable).   With all the above assumptions, we easily see that the

comparability of any two of  a • {b + c), c • [a + d), b + d implies that LS2 < RS,;

whence  LS2 < RSr

Corollary 2.2.  Assume that in the lattice L every three elements include two

comparable elements.   Then L can be embedded in a direct power of N,.

Proof.  From the preceding argument and Theorem 2.1, L £0 N .   It is trivial

that every member of HS/V,   can be embedded in  N..   Hence, by Jonsson's lemma,

L is isomorphic to a subdirect product of sublattices of N,.

For the remainder of this section, set © = ®llr/l, r¡^\.   We shall state two

lemmas, derive from them Theorem 2.1, and then prove the lemmas.

[A remark on notation:   A term constructed from the elements of a set F using

only • will be called the product of F if all elements of F are used in the con-

struction; and will be denoted by  II F.   In order for a set of terms to have a pro-

duct it must be finite and nonempty.   In that case, any two products of F, say nQ

and 77., are equivalent:   770 ~¿ 77..   Dually, we have the sum of F, denoted by

If.]
Definition 2.1.  A special term of type one (5T1 ) is any term which has the

form p • {a + r), where each of p, o, r is a finite product of variables.   The dual

of an ST1 is an ST2.   A special inclusion is any equation   v < <£>, where u is an

ST1 and <£> is an ST2.

Lemma 2.1.   For each special inclusion, e, either e£i\ orô,[e]  contains the

modular law:   x • (xy + z) < y + (x + y) • z.

Lemma 2.2.   For each term a, there are finite, nonempty sets of terms, F, and

F2, satisfying:
(i)   F.   consists of STl's v satisfying   v <    o; moreover, the equation 0 =

XFje®.
(ii)   F2  consists of STl's cf> satisfying a <   <f>; moreover, a = 11 F2 e©.

Proof of Theorem 2.1. Earlier on we observed that © Ç0N,.   Conversely,

let p = a be an arbitrary equation valid in  N,.   Applying Lemma 2.2, we choose

a set  Fj  of STl's such that p ~e XFj  and a set  F2  of ST2's such that
o ~e IlF2.   We claim that XFj <    IlF2.    To see this, choose an arbitrary pair
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1972]        EQUATIONAL BASES AND NONMODULAR LATTICE VARIETIES 9

ve F., (f>eF  .   Since 0 Ç 8 AL, the special inclusion v < <f> holds in  N_.   There-
fore v < çSeA by Lemma 2.1, since the modular law fails in N,.    Now we have

and so p <ft a.   The same argument gives a <„ p.   We conclude that p = o"60.

Proof of Lemma 2.1.  Let f be any special inclusion

p. (o- + r) <<f>+ x • <A
which fails to be provable (in A).   For each term 77, we denote by  77    the set of

all variables appearing in 77.   Because each of p, o, r is a product of variables,

and t/j, y, if/ are sums of variables, provable inclusions between {hese terms de-

pend only upon the variable sets:   e.g.  p < <7j>eA iff p   O <f>   ¿ 0.

Since e£A, we have immediately p   n <tj   =0; also either p   O y   = 0 or

p   Pi if/   =0, and either <$   Off   = 0 or <tj>   Or   =0.   We may as well assume

(i) (<p°u<A0)np0 = o,     <p°Or°=o.

Now, let u and v be distinct variables not occurring in e.   Suppose \fi   C\ r   =

0.   Then (p°U r°) n (r/>° U ¡/>°) = 0 by (1).   Replacing all variables of p° U r°
in £ by w, and all those of 0   u if/    by f, we obtain an inclusion which, together

with A, yields the inclusion   u < v, i.e. 8, [f] = Q.   Certainly the modular law is

derivable from t in this case.   So we may assume

(2) <A°nrVo.

(i)    «A°na0=0 Vv°np°=0;

(3) (ii)    r° n X° = 0 V a0 n 0° = 0;

(iii)  a0 n x° = 0 Va°n^=ovr°nx0=o.

For the negation of any one of these statements, together with (2), puts eeA.

The negation of any of the following statements, together with (1) , gives

8.U] = 0.   Therefore to complete the proof, we assume their validity.

(i)    p°nxVo Vr°nXV0;
(4) (ii)    0°OaV 0 V^nff»/o;

(iii)    cp°no-V 0 Vv°naV0  Vy°n p°¿0.

For example, if (4iii) fails, then (<p   u v ) il (p   U 0- ) = 0.   Replacing the vari-

ables of 0   U y   in e by f and those of p   U a   by u, we derive  u < v.

It is easy to check that conditions (3) and (4) imply

(5) <>0 n <x° = 0 = r° n x°,     </>°na°¿0¿P°n x°-

By (1), the three nonempty sets 1//   n r , <f>   O ct , p   O y    are pairwise disjoint.
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10 ralph McKenzie [December

To conclude, choose three distinct variables, x, y, z.   By (1), (2) and (5), we

can derive from ( another inclusion  77 < v   by means of a substitution described as

follows:   p'   n y   w^-> x,  <f>   O a   ^~-> y,  if/   O r   *^ z, all variables of (tfr   -f )u

(cp   - a ) are replaced by y • z, all variables of (p   - \ ) U (r   - i/f ) are re-

placed by x + z and all the remaining variables are replaced by y.   It  is   easy to

see,  using  (1),  (2) and  (5),  that   x • (xy + z) <    77 and   v <   y + {x + y) • z.

This concludes the proof.   It is only slightly more difficult to show that e is

equivalent to either the modular law, the distributive law {x • (y + z) < y + x • z),

or the equation x = y.   This was done independently by Jonsson's student, Dang

Xuan Hong.

Proof of Lemma 2.2.  Let us first derive from 77. and r\2  some additional equa-

tions of 0, r).—r]a below.

The symbolic statements following each of those equations, when properly de-

coded, form the sketch of a proof that the given equation belongs to 0.   For illu-

stration, suppose the equation in question  is   o~ = t.   If r< ce A, we will not men-

tion this fact (it will be obvious, if true), but proceed to show that a < re©.   If

the first line of the proof is, for example, "LS <ftRS + a. + ff-  (77.)," this indi-

cates that CT<CTQ+ <7j + (T2  is directly derivable from  77.   and the lattice axioms,

where  oQ is some term for which aQ < re A.   In the following lines, a    and a,

will be reduced in the same way, to get eventually a. <   r, a2 <ftr.   If, however,

the inclusion o2 < r can be obtained by a permutation of the variables in a. < r,

then we shall only work to show a   <    r in the remaining lines.

77,.   x • (y + z) = x • {xy + z) + x ■ (y + xz).

LS ~A x • [y+ z .(x + 2)],

~e RS    (r/2).

■qA.   x + yz = [x + (x + y) • z] . [x + y • (x + z)].

RS <QLS+ z - U+ y '(x + z)]+ y .[x + (x + y) • z]    (77,),

z • [x+ y • (x + z)] <    LS     (77,).

77 .   x • (xz7 + xv + y) = x • [xu + y) + x • (xv + y).

LS -v-jv x • [xt7 + (xw + y) • (x + y)],

~q x • [x# + x - (xv + y)] + x « (xa + y)

~ARS.

77,.   xy + z/7y = (x + t/v) • (y + «17) • (7/ + xy) • (v +• xy).

(?72),
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RS <   LS + (x + uv) • (y + uv) • u • (v + xy)
0
+ (%+ uv) - (y + uv) • v - {u+ xy)    (77^,

(x + uv) • (y + uv) • u • (v + xy)

<    LS + xu • (y + uv) ' (v + xy) + yu - (x + uv) • iv + xy)    (t7j),

xu ♦ (y + av) • (v + xy) <    LS + xu • (y + xuv) - {v + xy)    (r¡.¡),

< LS + xu ' (y + xuv) ' (v + xay)      (17,),
0

< LS + x« - (xtw + xay + yv)    (jjj)»

<eLS    (t/5).

77-,.  x + (y + uv) • if = (x + y + uv) • Lx + (y + u) • w] • [x + (y + v) • w\.

RS <   p+ a+ r    (77^,

where

p = (x + y + uv) • lx + (y + u) ' (y + v) • w],

a = (x + y + uv) - (y + u) • w • Lx + (y + v) • w],

T = (x + y + uv) - (y + v) • w • [x + (y + u) • w\;

°+T<QP    (*7i)

hence we need only show that p <    LS.

9 <e LS + (y + uv) • [x + (y + a) (y + v) • w]

+ (y + u) • (y +t/)*uf«(x+y+ ai>)     (77^,

(y + wv) • Lx + (y + a) (y + v) . w] <e LS + (y + uv) • [x + (y + u) • 7,iy]     (77.,),

<eLS    (r,2),
(y + a) • (y + y) . w • (x + y + uv)

<9LS + uw • (y + v) - {x + y + uv) + vw ■ {y + u) • {x + y +. at>)     (77^,

uw . (y + v) . (x + y + uv) <Q LS + uw • (y +to + xw)     (t/j),

<eLS    (773).

778  ( = 77 j   ).   [x + y • (a +  7;)] • (x + u) ~ (x + v) < x + yu + yv.

RS ~e x + y . {u + yf) . (u + ya)     (776),

>e LS • Lx + y • (u + yv)]     (777),

>eLS    (t;,).

^9 ( = ^2  ^'  x + y • (" + xv^ = Lx + y • (« + x)] • Lx + (x + y) • (a + v)].
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LS ~e [x + y . (u + x)] • [x + y • (u + v)]     (r/7),

~e l-% + y • (« + *)] * U + (* + y) • (" + f)l • Lx + y • (x + a + v)]     (t74),

~4 RS-
Having derived  r) —r¡„, we can quickly conclude the proof of Lemma 2.2.   Be-

cause 7/g and 77„ belong to 0, we have 0 = 0; and it is only necessary to prove

one-half of the lemma.   We will prove by induction on the complexity of terms that

every term o is ©-equivalent to a product of ST2's <7j such that cf> >A a.   F(G), with

or without subscripts, will denote a finite, nonempty set of ST2's (ST2's and

terms of the type p • o, where p and a are sums of variables).

First note that, given F, we can find G with II F<   Il G and x + H F ~e
Il \x + cp: f/S e G¡.   Indeed, setting y = uv in 77.,

X +   UVW ~q (x +   Mil)  - (x +  MU»)  • (x +  vw).

Hence,

x+ llF~eII !x+ 4>0 • 4>i: vV 0ief S-
And by several applications of 77.; if <tj„= Pu+ a„0 " ^ui' tnen

x + cp0 . (pj -X.Q (x+ <p0)(x+ cpj) . II       [x+ (p0 +a0K)(p1 + ctu)J.
K,   A — U, 1

Now the only nontrivial part of the inductive argument is the passage over +:

assume that av <\-Q II Fv and ay <    Il Fv (v = 0, 1); to similarly reduce  ctq + o"j.

By the above,

o-0+al -veIl \TIf0+ </>:</>€ G j

-e II |y + 0:<peG1>xe G0| ,

where each term  y + 0 >    oQ + a..   Thus it only remains to reduce these very sim-

ple terms  y + cf>.   That can safely be left to the reader (use  776, and then  r\-j  as

above).   The proof is concluded.

Corollary 2.3.  An inclusion a <r is valid in N,   iff every special inclusion

v < (p, for which v <. o and t <, <tj, is provable in A.

Remarks.  An effective, general method of finding a finite base for a finite lat-

tice is contained implicitly in [9, §3].
Each of the sets {77^ 772!, {77., 776, ?77i is an independent base of 9/V .   The

independence may be deduced semantically from various lattices in our diagrams.

For this theory, and also 0M,   (Diagram 1 and [7]), the minimum number of vari-

ables appearing in a base is four.

It seems remarkable that a theory can be defined as in Corollary 2.3.   A
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similar statement, obtained by replacing  N, by AL and A by the theory of modular

lattices, will be proved by Comer and Hong L3L   The mystery of these results may

be partly dissipated by what follows, for instance Remark 5.2 and Example 7.1.

Whether they have an interesting common generalization is as yet unclear.

3. Splittings of 2 .   A splitting pairO)('m S,) is an ordered pair of theories,

(H, 0), such that every theory KeT. satisfies precisely one of the conditions

H < K, K < 0.   Such a pair "splits" the lattice  2, into two disjoint intervals,

[H, 0] and LA, 0].

Lemma 3.1. Assume that(Hv, %v)(v = 0, l) are splitting pairs.   Exactly one

of the following conditions is true:

(i)    (H0, ©^(Hj,©,);
(ii)     H0 <0j andUl <0O;
(iii)    H0 + ©0<@i andiiQ<H1 ■ 0j;
(iv)     Hj +®j <&0and\il < HQ • 80.

A most accessible example is the pair (fi, A).   Another is the pair (M, 8n.),

where M is the theory based on the modular law of Lemma 2.1.   That this is indeed

a splitting pair follows from the well-known fact that an arbitrary lattice is non-

modular iff it contains  N.  isomorphically.   There are denumerably many splitting

pairs in  2   (as will be shown by Example 5.2.)

The splitting pairs in  2. evidently constitute a bi-unique function.   The do-

main and range of this function fit into a classification of irreducible theories

which we shall now discuss, deferring a deeper analysis of the splittings of 2.

until §5.

4. Irreducible theories.    Given a lattice L, a join-irreducible (JI) in L is any

element a j¿ 0 for which  a = b + c  always implies either a = b or a = c.   A JI ele-

ment of the dual lattice of L is said to be meet-irreducible (MI) in L.   One speaks

also of join-prime elements {a < b + c =>a<b\la<c) and meet-prime elements

(a > b • c =» a > b V a > c).   In case L is complete, it is customary to define four

stronger properties, using, in place of + and •, the operations of complete join and

complete meet.   To be specific, a strictly join-irreducible (SJ1) element, a, satis-

fies by definition:   « = VX=>i7£X; and a strictly join-prime (SJP) element has

the characteristic property:   a < V X =» (3x e X) [a < x).   A strictly meet-irreducible

(SMI), or strictly meet-prime (SMP), element satisfies the respective dual restric-

tion.

LRemark 4.1. With reference to §3, observe that the splitting pairs (a, b) in a

complete lattice (e.g. in  2 ) map the SJP's bi-uniquely onto the SMP's.   Given a,

(   ) We depart slightly from the terminology of Philip Whitman [l4].
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we must have  b = V (|L| - [a, l]), and dually a = A (|L| - [0, b]).]
When we apply these definitions to  S.; several give equivalent properties of

theories.   In fact, Theorem 4.2 below implies that all four categories of join-irre-

ducible theory coalesce into one class, JI.   And, of course, meet-irreducible and

meet-prime theories are the same because  S   is a distributive lattice.   Altogeth-

er, however, five distinct classes of meet-irreducible theories require our atten-

tion.   Besides MI, SMI and SMP, as defined above, they are:   the set SI, consist-

ing of all theories 0L where L is SI; and the set FSI, consisting of all theories

0L, where L is finite and SI.

Lemma 4.1 [6, Lemma 4.3].   A FSI = A.

Theorem 4.2.  Each join-irreducible theory is strictly join-prime (and conver-

sely).   An equivalent condition on © is that V © = {l¡ (^1).

Proof.  Assume that © e JI.   Then 0 ¿ A.   By Lemma 4.1, choose a finite lat-

tice L satisfying 0L ^ 0.   By Jónsson's lemma, there are only finitely many theo-

ries 0L + S^e], «re©.   If they are 0L + 8z[e„] {v <-k), then clearly

©<8l +e/[i0,---, (Kl
i.e.

0 = ©.8l+ ve,[fv].
V < K

Since © • 0L < 0 and 0 is join-irreducible, it is generated by one of the equations

(v, so 1 eV 0.   Again, we cannot have 0 =0^0» y^ unless @ = 0,[yo] or 0 =

©¿[yj].   Thus  2/sVj®.   Hence by Lemma 1.2, V;@ = {1}.   Moreover, © is compact

and join-irreducible in the distributive lattice  3     and therefore strictly join-

prime in  5  .
On the other hand, if V;@ = ¡lj and © = @0 + ©j, then 0 has a finite base

X C 0Q U ©..   By possibly discarding some equations of X we obtain an indepen-

dent base X   for 0 which, by hypothesis, consists of only one equation e, say

<re©0.   Then © = 0O.

Theorem 4.3. SMP C FSI C SMI C SI C MI.

Proof.   (1) SI C MI.   The inclusion merely reformulates a consequence of

jónsson's lemma that was proved by him and restated in our §1.   Example 4.2

below presents a meet-irreducible theory which has no subdirectly irreducible

generating lattice.
(2) SMI C SI.   Assume that 0 is strictly meet-irreducible.   00  is generated

by its subdirectly irreducible members, i.e. 0 = A ([©, fl] n SI); and so © eSI.

But if L is an infinite SI lattice which is the directed union of finite lattices, for

instance the lattice  M^ of [7], then ®L   is the proper intersection of the theories
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of these finite lattices (by Jónsson's lemma); and so 8LeSI - SMI  in this case.

A is another example.   By Lemma 4.1, A ¿SMI.   However, A is the theory of the

(SI) lattice of all partitions of co.(  )   jónsson had proved that A eMI by another

method L6, Theorem 4.6].
(3) FSI C SMI.   Let L be a finite SI lattice.   Then the interval [@L, íí]  is fi-

nite and, by (1), 0L  is meet-irreducible.   Therefore, clearly 0LeSMI.   Pass to

Example 4.1 below for the proof that inclusion (3) is proper.

(4) SMP C FSI. Assume that 0 is strictly meet-prime. Then, by Lemma 4.1,
there is a 0'eFSI for which ©' < ©. By Jónsson's lemma, 0 = 8L with L finite.

Since 0 is meet-prime, it must be generated by one of the SI images of L. There-

fore 0e FSI. For a theory in FSI - SMP, we refer to Example 5.1 below, where it

is shown that 8/M is not strictly meet-prime. This concludes the proof of Theo-

rem 4.3.
In ^5 and §6, we will attack the problem of which finite SI lattices L satisfy

8.L eSMP; and we shall find a very satisfactory solution, indeed an effective meth-

od for deciding whether L belongs to this class, and when the answer is affirma-

tive, for constructing an equation £ such that \8,[e], 8w splits 2,.

An analogous, and apparently more difficult, problem is the following.

Problem 3.   Find necessary and sufficient algebraic conditions for a SI lat-

tice to possess a SMI theory.

By Example 5.2 and Theorem 4.3, we shall have

#(SMP)= *(FSI) = N0,

and it is not difficult to modify the method of [9] to show that

#(SI) = *(MI) = 2 K°.

The cardinal K = "(SMI)  lies somewhere in between and has not been determined.

It would be of some theoretical interest to do so because k is also the least car-

dinal a for which  2. can be embedded in the set lattice  2a.   This fact, which

applies, more generally, to every complete, distributive and algebraic(  ) lattice,

is probably well known.   The argument is simple:   From L2, Chapter 8, Theorem

16], every theory 0 is a meet of strictly   meet-irreducible theories.   Therefore,

quite trivially, the map © v"-^> SMI - L©> 0] embeds 2    into the lattice of subsets

of SMI.   But conversely, if F embeds  2   into 2   , then we can inject SMI into X

by selecting, for each 0 6SMI, a point xep(0) - F(@), where © is the smallest

theory strictly extending ©.

(   ) There is a well-known theorem due to Whitman LBuII. Amer. Math. Soc. 52 (1946),
507—522], stating that every countable lattice can be embedded in this partition lattice.
O. Ore LDuke Math. J. 9 (1942), 626] proved that the lattice is simple (a fortiori, subdi-
rectly irreducible).

(   ) A lattice in which every clement is the join of compact elements.
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Problem 4.  How many SMI theories are there?

Two examples close this section.

Example 4.1.  There are several known examples ([l] and [16]) of (modular)

lattice varieties (J which are not generated by any set of finite lattices.   For such

a Ö, 0 Ö is not a meet of theories of finite lattices.   However, it is the meet of

strictly meet-irreducible theories (Birkhoff, op. cit.), and consequently the set

SMI — FSI must be nonempty.   A concrete example of a theory in this set is 0L ,

where  L    is the lattice of subspaces of a three-dimensional vector space over the

rational numbers.   The proof is beyond our means here and we must refer to [l],

in particular his remark in V2, from which it can be constructed with a little effort.

Example 4.2.  The infinite lattice R of Diagram 13 satisfies 0R 6 MI - SI.   The
proof (only sketched here) illustrates very nicely the power of jónsson's lemma.

Let us first show that 0R  is meet-irreducible.   For each v < a>, the elements 0,

1, av and all the elements above or to the left of av in Diagram 13 constitute a

sublattice of R which we will call  Rv.   Each lattice  Rv,  v > 0, is subdirectly

irreducible, in fact every proper homomorphism of Rv identifies ay and by.   In

addition, R is the union of the chain \R   \, and so 0R = A {9Rv: v > 0\, the in-

tersection of a chain of meet-irreducible theories (Theorem 4.3).   This fact alone

directly implies ®R eMI.
It requires a bit more effort to see that 0R/SI.   Suppose, to the contrary,

that B is subdirectly irreducible and 0B = 0R.   By Jónsson's  lemma, we have a

homomorphism F from C onto B, where C is monomorphic to an ultrapower of R.

But R is a special sort of lattice, whose ultrapowers are easily visualized.

Whereas R itself is composed of /?0 and a) copies of /V_, sandwiched between 0

and 1 and connected one to the next as shown in Diagram 13; every ultrapower of

R is isomorphic to some lattice D obtained from R by adding, between 0 and 1, a

set of additional components, each new component consisting of countably many

copies of  N,, strung out like the integers but connected one to the next as in R.

Thus we may assume that C is a sublattice of one such lattice D. If we agree

that the elements of R other than 0 and 1 also form a component of D, then the pro-

duct and sum of two elements from distinct components of D will be equal, respec-

tively, to 0 and 1.
Next, we apply, once again, the initial assumption 0B -QR.   Setting v > 0,

we have  Rv£yjB, and hence B contains a subset order-isomorphic to Rv.(By Jón-

sson's lemma, R^eHSP   B, and Baker [l] observed that this implies that every fi-

nite partly ordered set embedded in R^ can also be embedded in B.)   From this we

obtain a subset of C which is order-isomorphic to Rv and on which the function F

is one-to-one.   Now the crucial fact is that D contains only one subset order-iso-

morphic to Rv, namely  |ß„|.   (Induct on v.   The anomalous element ¿.was placed

just for this   purpose.)   Hence, letting v tend to infinity gives:   |ß| C \C\ and F is

one-to-one on   \R\.
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To conclude, by showing that B is not subdirectly irreducible we will contra-

dict the original assumption.   For each v > 0, the congruence relation Sv over D,

generated by collapsing the quotient \AV, bv\ in R, also collapses  [e   , d  ] and

[a   , c   ] for fi> v, but nothing more.   Since F is a monomorphism when restricted
to R,

Sv=\(Fx,Fy):x,ye\C\ & S yxy\

is a nontrivial congruence of ß.   But the intersection of all of the S y is the equal-

ity relation of B.   Hence B is not subdirectly irreducible.

5. Bounded homomorphisms.

Definition 5.1.  An equation e and a finite, SI lattice L will be called conju-

gates of one another when every theory KeT. satisfies precisely one of the con-

ditions  eeK,   L eOK; or more concisely, if \8,Le],8L) is a splitting pair.   A fi-

nite, SI lattice L, which has a conjugate equation (i.e. 8LeSMP),will be called

a splitting lattice.   And an equation e which possesses a conjugate lattice (i.e.

8,Le]eJI) will be termed irreducible.
Observe now, that, on the basis of §4, every splitting pair in 2. is associated

with a pair of conjugates, \e, L), from which it can be obtained in the manner de-

scribed above.   Observe also that, given a conjugate pair \e, U, although every

conjugate of e is isomorphic to L (jónsson's lemma), the conjugates of L are just

those equations e  which are equivalent to f in lattice theory.

With the aid of the concept of bounded homomorphism, we can draw a rather

pretty picture of these notions, the principal features of which will be two theorems
below, 5.1 and 5.4.

Definition 5.2. A lattice homomorphism g: A —► B will be called upper bound-

ed if every nonempty set of the form ixe|/4|: g(x) < b\, fc e |ß|, has a largest ele-

ment,   g: A —> B  is lower bounded iff g: A    —> B   , between the dual lattices, is

upper bounded.   Finally, we call a homomorphism bounded if it is both upper and
lower bounded.

Note that, i f A is finite, then every homomorphism from A is bounded; but, in

general, if S C C and g: A —> B is bounded, it does not follow that g: A —> C is
bounded.

Theorem 5.1.   Each of the following conditions is necessary and sufficient for

a finite, SI lattice B to be a splitting lattice:

(i)   B is a bounded epimorphic image of a free lattice (which is necessarily fi-
nitely generated).

(ii)   Every lattice homomorphism g: A —> B, where A is finitely generated, is

bounded.

This surprising characterization is a fountain rich in corollaries.   It has first
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to be primed with a proof, and that will occupy the greater part of this section.

For now, observe only that the theorem appears to present us a feasible program

for testing whether a given finite lattice L is a splitting lattice.

In outline, we would first decide whether L is subdirectly irreducible, and

that is very easy.   Next, we would "construct" some homomorphism collapsing a

finitely generated free lattice onto L, and then attempt to decide whether the ho-

momorphism is bounded, in order at last to apply Theorem 5.1.   In §6, we shall

display an effective and mechanical procedure for performing the test along these

lines.
A word about free lattices before we tackle Theorem 5 •!••   A lattice F is free

if it has a generating set  Y 4 0 such that every mapping of Y into another lattice

A can be extended to map F homomorphically into A.   Under this assumption, Y is

said to freely generate F, and we write   F = FL(Y).   The nature of free lattices

was clarified by Phillip Whitman [12].   A lattice F generated by a set   Y ^ 0 is
freely generated by Y iff Y is a set of mutually incomparable elements and when-

ever aQ, «j, bQ, èj e \F\ and y e Y, we have

(Wl)   K aQ • a¡ < y < b0+ blt then for some ft, ve\0, l|,  a    < y < bv.
(W2)   If aQ ■ «j < bQ + èj, then either aQ < bQ + bj or a^ < bQ + bl or aQ • a. <

bQ, or aQ ■ al< bv
We need, also, the more general notion of a 0-free lattice  F = FL(0, Y) (© £

T.).   Here, one assumes that  F eö® and that every map from Y into a member of

Ö® can be extended.   With every theory 0 and nonvoid set Y, there exists, up to

an isomorphism which fixes Y, exactly one 0-free lattice  FL(0, Y).   Of course,

the structure of these lattices is usually far less transparent than that of the A-

free lattices  FL(Y).
The following discussion is much smoother if we have some particular free

lattices available for instant reference.   Throughout V s5, 6 and 7, FL(w) will de-

note a fixed lattice freely generated by the denumerable set <u, and for  1 < k < a>,

FL(k) will denote the sublattice of  FL(<y), (freely) generated by k.   The elements

of FL(cu) will be called words, and when it is necessary to name a specific word,

we will use the symbols a, b, c, etc. for distinct free generators (letters of

FL(cü)).   Finally, we will make use of the obvious mapping o w^-> a', which con-

verts terms of the basic equational language into words of  FL(o>) by matching the

variables of the language with the elements of u> in natural order.   To illustrate,

for a = x + y • z, a* = a + b • c.   Of course, for an arbitrary equation  e = a = r, we

have  ( eA iff (7* = ry.   And if e involves at most the first k variables, and L is any

lattice, then e£®L <=> f(a^)= /(r^) whenever /: FL(k) —> L.   Also under this as-

sumption, if 0eT   and h is the canonical map of  FL(«) onto a FL(0, k), then ee

© «¿(r>)= b(r^>).
Proof of Theorem 5.1.  The proof will be divided into two parts.
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I.  Assume that B is finite, subdirectly irreducible, and satisfies 5.1(i).   To find

a conjugate equation for B.

Take any bounded homomorphism /: FL(k) -» B, where  1 < k < cy, and let u,

ve\B\  be such that  u < v (v covers u) and every proper homomorphism of B iden-

tifies u with v (u, v exist because B is SI and finite).   Because / is bounded and

onto, the set f~  {u\ has a largest element, wQ, and /"  \v\ has a smallest ele-

ment, »j.

Now let 77 be any term representing w^, i.e. tt' = w0; similarly, let p^ = w..

Denote by £ the equation p< n.   I claim that £ is a conjugate irreducible equation

of the lattice ß.   Certainly f¿0B, because fin9 ) = u while f(p' ) - v.   But if ©
is a theory not contained in 8B, then, directly from Lemma 5.1 below, © contains

an inclusion a< r in which /(ff'>) = v and f(r?) - u.   By construction, w. < o* and

r   < tfg in FL(k), or what is equivalent, p < .a and r < A 77.   And this last, combined
with a <qT, puts ££©.

We require five secondary lemmas for the proof of Theorem 5.1.   The second

and the fourth of these seem independently interesting.

Lemma 5.L Assume that  1 < k < u> and that f: FL(k) -» B  is an epimorphism.

Assume also that the lattice B has an atomic quotient lu, v] (i.e. v covers u) col-

lapsed by every proper homomorphism of B.   Then an equivalent condition for a

theory @eT, to satisfy 0 ¿ 0B is that 0 contains some inclusion a < t where

/(£/>) = v andf(.T^>)= u.

Proof.  Under the assumptions, each of these inclusions certainly fails in B.

In the other direction, suppose that 0 ¿ 0B.   Let R be the congruence relation of

FL(k) induced by the map /, and let  R(®) be the congruence induced by the can-

onical map FL(k) -» FL(@, k).   Now, the congruence  R' = R + /?(©) is larger than

R, otherwise B would be an epimorphic image of FL(®, k) and we should have

© <0B.   Therefore, the obvious map B -» FL(k)/R    is not monomorphic, and must
collapse  Lu, v\.

Consequently, choosing words  wQ < w such that f(wQ) = u and f(w) = v, we

will have wQ R   w, and w/n can be connected to w by some finite sequence  w„,

WV * " ' wl¡±= w satisfying u>2v R wJv^ f and w2v+ , R(Q) wJv  2 (for < p.). We can even

require that wQ < w^ < w for 0 < A < 2¡i, whence we get f(wx)e\u, v\ for A < 2p, be-

cause   u < v in B.   Now, we can choose a  A < 2p for which f(w. ) = u and f(w.    .) =

v.   Clearly zt^ Ri©) w     }  must hold.   Therefore, picking a and T to satisfy a^ =

"'x+l' T^ = w\' we Wl^ have o <re® (r> R(&) a^> is equivalent to r= 06®),
f(a') = v and fir*) = a.   This is the desired result.

Lemma 5.2. Assume that g: A —> F where A is finitely generated and F is a
free lattice.   Then g is bounded.(  )

(   ) This lemma overlaps recent results of Gratzer and Lakser concerning "covers"
in free lattices.
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Proof.   It will suffice to show that g is upper bounded.   A dual argument gives

the lower bounds.
Let F = FL(Y) and let G be a finite (nonvoid) generating set for A.   Call an

element, w, of F "good" if g~   ({x£F: x < w\) is either empty, or has a greatest

element.   We use Whitman's description of the ordering in F ((Wl) and (W2) above)

to show that the good elements of F form a sublattice including Y, thereby com-

pleting the proof.
Step 1.  Let w£ Y and assume g'1 (< w) ¿ 0.   Let a = V LG O g~l (< w)].

Clearly g(a) < w.   Induct on x e \A | to show g(x) < w => x < a.   If x e G, it is triv-

ial.   If it is true for x and y, it is surely true for x + y; and if g(x • y) = g(x) •

g(y) < w, then g(x) < w or g(y) < w (by (Wl)), so x < a or y < a—a fortiori x • y < a.

Step 2.  Let w = uig + wl where w Q, w.   are good.   Then the sum

a= V [(G Dg"1 (< w)) Ug-1 (< w0) Ug_1 (<U7j)]

certainly exists in A, and if g~ (< w) is nonempty then a is its largest element.

To see this, just induct on x as before to show g(x) <w=>x<a, using now (W2)

in place of (Wl).
Step 3. Let w = u/n ■ w^ where w Q, w^ are good. If g~l (<w)¿ 0, then the

largest element of the set is obviously the product of the corresponding elements

for Wq and w,.   Hence w is good.

For the next two lemmas, let (P) denote any one of the three properties of ho-

momorphisms given by Definition 5.2.   Lemma 5.3 is obvious.

Lemma 5.3.  Assume that j: B —> C and g: A —> B  are lattice homomorphisms.

// / and g are (P) homomorphisms (in particular, if B is finite and g is (P)), then

so is fg.   If fg is (P) and g is epimorphic (f is monomorphic), then f (respectively

g) is also a (P) homomorphism.

Lemma 5.4.  Assuming that the lattice B is finitely generated, the following

conditions are equivalent:

(i)   There exists a (P) homomorphism collapsing a free lattice onto B.

(ii)  Every lattice homomorphism g: A —> B, where A is finitely generated, is

a (P) homomorphism.

Proof.  That (ii) implies (i) is obvious.   Conversely, assume that /: F -» B

is a (P) homomorphism, with F free, and let g: A —> B where A is generated by k

elements, 1 < k < cj.   Choose some h: FL(k) -» A.   Since / is epimorphic and

FL(k) is free, there is an by FL(k) —> F such that fhj = gh.   By the two preced-
ing lemmas, gh = fh. is (P).   Hence, again by Lemma 5.3 (h is epimorphic), g is

(P).   The proof is complete.
Definition 5.3.  Given 1 < k < co and À < a>, the lattice  C(k, à) is constructed

by the following procedure.   As the universe of C(k, à), we take the finite subset
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of FL(k) consisting of the largest element, together with all the words a7 e

|FL(k)|  where the term a contains at most A occurrences of+, •, and all the words

which are finite products of these.   The sum and product in  C(k, A) are defined in

the only possible way to make the lattice ordering the same as in FL(k).   Thus

products are the same as in  FL(k), but many sums are increased.

D(k, A) is constructed by a dual treatment.   Its universe consists of the

smallest word in FL(k), all words in FL(k) having "complexity" < A, and all the
sums of these words.

The utility of these lattices in this context arises from the following lemma,

part of which is well known and implies Lemma 4.1.

Lemma 5.5. Given k and A, every equation (.£A having complexity at most A

and containing at most k variables, fails in C(k, A) and in D(k, A).   Moreover,

C(k, A)  is an upper bounded epimorphic image of FL(k), while D(k, A)  is a lower

bounded epimorph of FL(k).

All assertions of this lemma follow readily from a consideration of the mor-

phisms /: FL(k) -»» C(k, A) and g: FL(k) -» D(k, A) which map the generators of
FL(k) identically.   If w€\C(k, A)|, then f(w) = w and, for w e|FL(/<)|, f(w  )<w
iff w   < w.   Dual considerations hold for g.

Proof of Theorem 5.1. II.  By Lemma 5.4, conditions 5.1(i) and 5-1 (ii) are
equivalent for every finite lattice B.   Hence, in view of part I of the proof, it only

remains to demonstrate 5.1(i) under the assumption that B is a splitting lattice.

We now make that assumption.   £ denotes a conjugate equation of B.

Take, by Lemma 5.5, k, A so large that £ fails in C{k, A) and D(k, A).   By the
defining property of splitting pairs, we must have 8C(k, A) + 8D(k, A) < 8ß.   Then

by Jónsson's lemma, applied to these three finite lattices (B is SI), each of

C(k, A), D(k, A) has a sublattice which collapses homomorphically onto B.   From

this fact, with several applications of all the Lemmas 5.3, 5.4 and 5.5, one can

obtain that B is the upper bounded epimorph of a free lattice, and also the lower

bounded epimorph of a free lattice.   This is decisive; it gives, immediately, 5.1(i)

via Lemma 5.4.   The straightforward details of these last steps are left to the

reader.   Our proof of Theorem 5.1 is now complete.

The remainder of the section carries some easy corollaries of Theorem 5.1

and its proof, results concerning the splittings of 2;> free lattices and their fi-

nite, bounded homomorphic images, which should help to clarify the significance

of these related concepts.   The most important of these, perhaps more interesting

than Theorem 5.1, are Theorems 5.4 and 5.5.

All these results may be thought to have a rather special flavor because the

kernel of reference, the class of splitting lattices, is admittedly somewhat re-

stricted.   Yet we feel that the connections and applications demonstrated below

and in §§6—8 argue otherwise.   Many concrete examples will be developed in §7.
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This whole theory depends heayily on Jónsson's lemma and appears to have no

analogue in the equational model theory of well-known algebraic varieties other

than lattices, for example the variety of groups.

Our first observations concern the class A which consists of the finite lat-

tices which are bounded epimorphic images of free lattices.   By Theorem 5.1, the

splitting lattices are the SI members of m.   By Lemma 5.2, among the members of

A we find every finite sublattice of FL(tu).   (However, see Example 7.10 below.)

Now, a very simple argument, based on Lemmas 5.3 and 5.4, shows that $> is

closed under the formation of sublattices, homomorphic images, and direct products

with finitely many factors.   Therefore, by jónsson's lemma, Í0L: L £ £\ is a sub-

filter in  5   of the filter comprised of the theories of finite lattices (§1, Problem

2); and we have the following useful complement of Theorem 4.3:

Corollary 5.2.  // B is a splitting lattice, or more generally if B £ jj, and if

A is a SI lattice belonging to ÜB, then A is a splitting lattice.   In the symbolism

of §4, if H e SMP, © e MI and H < ©, then also 0 e SMP.

The free lattices possess one very strict structural property that is obviously

preserved by bounded epimorphisms and is therefore shared by the lattices of $>.

Corollary 5.3.   // B is a splitting lattice, or more generally if B £ m, and if

u, x, y, z £ \B\, then
(i)   u = x • y = x • z implies u = x • (y + z);

(ii)   u=x+y~x+z implies u = x + y • z.

Proof.  Assume, for instance, that /: F -»♦ B  is bounded, that F is free and

that x • y = x • z in Ö.   Let  wQ, w. and w2  be the largest elements of F mapping

onto x, y and z, respectively.   Then wQ . w^ and wQ • w2  are the largest elements

mapping onto x • y and x • z.   Whence wQ ■ wj = w0 • w_.   Hence by [8, Tl l],

w q ■ wl = wQ ■ (w1 + w 2).   Applying /, we get x • y = x ■ (y + z).

Example 5.1.   From this corollary, M,   (Diagram 1) is [subdirectly irreducible

but]  not a splitting lattice; the same applies to the lattices of Diagrams 3, 4 and

10.   Thus the intersection of all theories  0 ¿ 0/VL   is itself a subtheory of 0M

We do not know whether the intersection is A.   (It is, if the answer to Problem 6

below is yes.)

Example 5.2.  It is a well known fact that FL(&>) contains a copy of N,.   For

its universe we can take the words c, ac, ab + c, ab + ac and a(ab + c).   By a re-

sult of Jonsson, the quotient Lab + ac, a • (ab + c)] contains a copy of FL(cu),

hence also a copy of  N  ; therefore a copy of N6 (Diagram 11) can be found in

FL(&>).   Iteration of this argument serves to embed all the SI lattices   N     (Diagram

11) into FL(ty).   So here we have an infinite family of splitting lattices descended

from  N
Problem 5.  Are conditions 5.3(i) and 5.3(ii) of the corollary sufficiently strong
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to characterize S?   Or what is equivalent, does every finite, SI lattice fulfilling

these conditions possess a conjugate equation?

Remark 5.1.   It was conjectured in L8] that all finite lattices isomorphic to a

sublattice of FL(o>) can be characterized by three conditions( ):   5.3(i), 5.3(a)

and Whitman's (W2)   (p.   18 of this section).     In view of Theorem 6.3 of the following

section, this conjecture would be proved by an affirmative solution of our Problem

5.
Remark 5.2. We do not need this, and will not prove it, but it seems note-

worthy that a finite lattice belongs to % iff, for some k, A, it belongs to both

ÖC(k, A) and ÜD(k, A)  (Definition 5.3).   In fact, if B e S, then B is a homomorph
of both lattices when k and A are sufficiently large.

It hardly seems remarkable that irreducible equations (Definition 5.1) should

be closely related to the atomic quotients in free lattices.   In fact, the two no-

tions are, in   a sense, equivalent, and that is the topic of the next group of obser-

vations.   Our interest here is naturally confined to the   FL(k),  k < a>, since the

covering relation in FL(w) is trivially empty.

Let us remark that, outside of a few comments in Whitman's papers, very lit-

tle has been published on the covering relation in free lattices, and so, in view of

what follows, most of our results concerning the splittings of 2. (irreducible

equations, splitting lattices) should add to the knowledge of that subject.

First we return to the proof of Theorem 5.1, part I.   There it was shown that

if / is a bounded map of  FL(k),  1 < k < &>, onto a finite, SI lattice B, then a con-

jugate equation for B of the form  p < 77 is constructed by choosing any atomic

quotient  lu, vi which witnesses the subdirect irreducibility of B and taking 77, p

to satisfy:   77'' is the largest word in FL(k) representing u by /; p7   is the small-

est representing v.   The equivalent conjugate equations  p • u = p and 77 = 77 + p

may then each be obtained by "equating the endpoints of an atomic quotient of

FL(k)."   Indeed, for example, any word w e |FL(k)|   which satisfies p? • rr? <

co < p7  will be equal to either p7 • n7 or p7  depending on whether f(w) = u (and

w < 77") orf(w)= v (and w > p7); and so Lp • 77]' -<   p7 in FL(k) (but not in
FL(k + 1), of course).

To expand on this, recall that with any atomic quotient  Lx, y] of an arbitrary

lattice L, L possesses a largest congruence relation separating x and y.   Still

keeping the assumptions of the last paragraph, it now becomes obvious that the

kernel of the map / must be the largest congruence over FL(k) which separates

p7 • 77" from p7.

Now we may ask what happens in the other direction.   We take w„ = r7 and

w j =u7 such that wQ <   w. in FL(k) (k < <y is fixed), and we let R denote the

(J) One might speak instead of sublattices of  FL(3) since FL(cy) C FL(3) Ll3, Cor-
ollary 3.1].
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largest congruence of FL(k) which fails to collapse iwQ, w^].   For À large, the

projections onto  C(k, À) and D(k, A) separate wQ and w^, by the proof sketched

for Lemma 5.5.   The projection of FL(k) onto B = FL(k)/R therefore factors

through both maps and so, in view of Lemmas 5.3 and 5.5, it is bounded.   B is

clearly finite and SI—by all rights (and Theorem 5.1) a splitting lattice.   Finally,

r =d  and B aie conjugates.    In fact, r=v ¿0 iff the kernel R(&) which maps

FL(k) -** FL(@, k) satisfies R(&) C R  (definition of R) and this implies  B  e Ö©
(ß e HS FL(@, k)).

To summarize the last three paragraphs:

Theorem 5.4.   Let f: FL(k) -»♦ B, k < &>.   Then B is a splitting lattice iff
there exist two terms r,v   in the first k variables such that

(i)   t* < v9  in FLU); and
(ii)   Ker(/) is identical with the largest congruence of FL(k)  that separates

rv from v?.

Moreover, in this case, t = v   is a conjugate equation of B.

Theorem 5.5.  (Compare Theorem 4.2 and Definition 5.1.)   Let e be any equa-

tion.   ( is irreducible iff 0.[t] = 0.[r = u], where ry < v'   in some FL(k).

One further remark introducing a problem:   If  \pv, p?l contains an atomic quo-

tient  [r^, ir] in FL(k), then r = u is derivable from a = p, and the latter equation

fails in the splitting lattice conjugate to the former.   Conversely, if a <p and

a = p fails in a splitting lattice B, there will be a bounded homomorphism  h:

FL(k) -» B  {k < (o) where oK p* e |FL(k)| and h(a^) < h(p^).   Choosing u and v so
as to have  hko7) < u <  v < h(p?) and taking for wQ the smallest word representing

v by h and for w.   the largest representing u, one can show that [iwQ + a') • Wy

Wq + cr7]  is an atomic quotient contained in  la'', p9\.

Problem 6.   The following statements are equivalent.   Are they valid?

(1) A SMP = A.
(2) Every theory 0 > A  contains an irreducible equation.

(3) Whenever  1 < k < co and wQ < w.   are words in  FL(k), there are words  w7

and w     satisfying wQ <w2<  w^<w. in FL(k).

Three little corollaries are yet to come and then we will let the case rest.   In

the light of Theorem 5.5, the second of these merely restates the first.

Corollary 5.6. Every splitting lattice other than a two-element lattice contains

N, as sublattice. Every irreducible equation, other than x = y and its equivalents,

belongs to the modular theory M.

Proof. Any subdirectly irreducible lattice with more than two elements con-

tains either N or M,. From Corollary 5.2 and Example 5.1, no splitting lattice

contains  AL.
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Again, if £ is irreducible and e i M  then the conjugate lattice of £, L, is modu-

lar (i.e. L e ÜM).   Hence if L has more than two elements, M   C L and we get the

same contradiction.   So  *\L\ = 2 and 8,Ld = ß-

Corollary 5.7. Any atomic quotient in FL(k) which collapses in FL(A, k)

collapses also in  FL(M, k).   (A is distributive theory.)

Corollary 5.8.  (See Theorem 8.1 for a related fact.)  Assume that L is a finite

lattice with more than one element.   Then  2 e v0L.

Proof.   Otherwise (§1 and Theorem 4.2) 0L  is join-irreducible.   By Corollary

5.6, that gives 8L = ii or 8L < M.   But 8L < M is ruled out by Jónsson's lemma

for there are infinitely many theories extending M L7].   Hence 8L = Q.   This im-

plies     |L| = 1, contradiction.

6. Constructive methods.  This section makes a constructive supplement to the

theory of splittings developed over the past three sections.   It contains a simple

algorithm to decide whether a homomorphism is bounded; reveals some connections

with well-known decision problems; and hints at possible improvements and gen-

eralizations—in particular the algorithm is useful in cases where a finite lattice

"splits" some proper interval L®> fl] of theories.   As a consequence of the basic

result (Lemma 6.1) we shall obtain an algorithm for deciding whether a finite lat-

tice is a splitting lattice, and constructing a conjugate equation (Theorem 6.1);

an algorithm for testing whether one word covers another in a free lattice (Theorem

6.2); and an algorithm for recognizing whether a finite lattice can be embedded

into  FL(&>) and for constructing an embedding if one exists (Theorem 6.3).

LRemark 6.1.   Upon learning of the results that were to go into this section,

Bjarni jónsson kindly lent to the author some unpublished jiotes concerning sub-

lattices of free lattices.   The notion of bounded homomorphism was absent but, in

a different setting, some of our results were already present in jónsson's notes.
Namely, the concept of a "limit table" (Definition 6.2) was used in what I call

the standard form, and a statement equivalent to Theorem 6.4 was proved.   Fur-

ther, an important result of this section, Theorem 6.3, was suggested by reading

these notes and would not have appeared otherwise.   The argument for Theorem

6.3, as indicated in the proof, incorporates a crucial idea due to jónsson.   I have

adopted jónsson's perspicuous notation for the table of limits.]

The precise, mathematical use of the term "recursive" to indicate, loosely

speaking, the existence of an algorithm—an "effective," "mechanical" method—to

determine membership (as applied to sets of equations, or to isomorphism invariant

classes of finite algebras, and to various other sets or classes of finitary entities)

should be familiar.   The problem whether a given lattice theory 0 is recursive is

synonymous with what has been called the word problem for  FL(0, co):   An equa-

tion o = r belongs to 0 iff a and T represent the same element of FL(0, co); and
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we ask for an algorithm whereby one may determine, for every pair of words pre-

sented in this way, whether they are equal.   Every finite lattice has, of course, a

recursive theory.   And A is recursive; we use Whitman's solution of the word prob-

lem   for  FL(<u)   (derived directly from (Wl) and (W2), §5) all the time.   But, after
these, the next simplest theory, M, already presents a very difficult word problem.

(We attained a minor result on this problem with Corollary 5.7:   if o7 <   r7 in

FL(k), then a ~   r iff a ~A r.)   At present, it is not known whether M is recursive

(see [15]).
Because of this, we do not really expect that an algorithm for recognizing ir-

reducible equations will fall into our lap; even though we will have an algorithm

for the corresponding lattices.   Indeed, let e be any equation.   By Lemma 1.1, we

can construct immediately a one element base {e  \ for M + 0,[e].   Then by Corol-

lary 5.7, e £ M iff í    is irreducible and  e   £ A.   Thus, if we had such an algorithm,

we could solve the modular word problem.   We do have a weaker result:   The irre-

ducible equations are recursively enumerable.   By Theorem 5.5, they may be enu-

merated by first using the algorithm that justifies Theorem 6.2 below, to obtain a

list of all equations  o = p such that  a7 <   p7 in some FL(k), and then augmenting

the list to include all equivalent equations (relative to A).

Definition 6.1. Suppose that g: A  -» B, and x e |ß|.   The upper limit of x

(for g) will be the largest element of A which represents x under g, if such an ele-

ment exists.   The lower limit of x will be the least representative of x, when it ex-

ists.   The limits of x will be denoted by  g~(x) and g_(x), respectively.

If g is bounded, then clearly g     is additive, g~ is multiplicative, and both

are one-to-one.

The central problem that must be solved to get constructive results from Theo-

rems 5.1 and 5.4 is obviously the following:   Suppose that we have obtained in

some way a complete description (or a diagram) of a finite lattice B, together with

a selected system of generators of B, say  bQ, • ■ • , b      ^  (k < <u).   Then the canoni-

cal map /: FL(k) -»♦ B that matches the letters (free generators) of FL(k) in nat-

ural order with  bQ, • • • , b      ,   is completely determined.   How do we decide whether

/ is bounded and find the limits if it is?
Definition 6.2. Given g: A -►♦ ß, a limit table for g consists of two systems

of functions ct. , j8. (A. < a>) mapping |ß| into |A| and satisfying, for every À < a>

and x e |ß|,

(i) gax(x) = gßxix) = x;

(ii)   /3A+1(x)< ßx(x), ax(x) < ax+1(x);
(iii)   whenever g(y) = x, there is a  p < a> such that /3„(x) < y < a (x).

If ß is finite, a limit table for g will eventually close iff g is bounded; if the

limits exist, for some À we will have a,x = g~ and ßx = g_ and of course a. = &x

and ß    = /3A for all p > À.   In §7, we will be depicting these tables by rectangular
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arrays.   The xth row will be devided into a lower half, containing from left to right

the entries ß0(x), /3j(x), • • • ; and an upper half containing aQ(x), a^x), • • • .   The
Ath column,  ax, /3X , may be viewed as the Ath simultaneous approximation to the

limits of g.
Now let us return to the central problem and, for the moment, assume that each

element of B occurs just once in the list bQ, - • • , ¿/<_¡.   Then we define the stan-

dard limit table for B in the following manner.   For b € \B\, let S(B, b) be the fam-
ily of all nonempty sets   U C |ß| such that b < V U, and define M(B, b) dually.
Now we put ao(bv) = ßoibj) = v-<  the letter of FLU) representing bv under /.
And for A > 0, put

a. (x) =       V A a       (y),

/Sx(x)=      A V   j8x   x(z).
VeS(.B,x)    zeV

In the general case of an arbitrary /: FL(k) -» B, we construct a special

limit table for / on a different pattern.   For b e \B\, let SQ(B, b) be the family of
all sets   U = \c, d\ C |ß| such that b < c + d while b ¿ c,  b ¿ d, and if cQ < c and
í/q < ¿a? and b < c0 + dç, then cQ = c and tsL = i/.   Define  M0(B, b) dually.   For the
first column of a special table we choose representative words, aQ(x) and ß0(x)

for x, so that aQ and ßQ are isotonic functions  (x < y <=> aQ(x) < ct-0(y) «=» ß0(x) <

ßQ(y)), and for every letter a of FL(k),  /S0/(a) < a < aQ/(a).   This presents no
problem.   Then for A > 0 we put

ax(x) = aA_j(x) +      V       A ax_i(y);
UeMQ(B,x)     y€U

and the  ß\ are defined by a dual process.

We remark that condition 6.2(iii) defining a table of limits is verified for the

standard and the special tables just defined, by inducting on the complexity of

the word y; and the other conditions are obvious.   All the columns in these tables,

with the exception of the first column in a standard table, are isotonic functions.

In theoretical considerations the standard table is most amenable.   But the special

tables are the best means available for the actual calculation of limits (V7).   Both

types of tables have the obvious and desirable property, deriving from the uniform

manner of passing from one column to the next, of closing with the column (a.,

ßx^ = (f~, /_) just as soon as (ax, ßx) =(a .   j, /3X+ j); to test whether the table
has closed we need only apply Whitman's algorithm (for  FL(k))  to determine if the
last two columns are identical.

At this juncture the basic algorithm, rumored to exist, is almost visible. Given

/: FL(k) -+» B (k, B finite) we begin to construct the columns of a special limit
table for /, one at a time.   If / is bounded, the table will close with a repeated
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column.   As soon as this happens, the limits of / will be displayed to satisfaction

in the last column.   There is a fly in the ointment:   If / is not bounded, we are pre-

sumably committed to calculate forever.   But the fly is a ghost.

Lemma 6.1. Assume that B is a finite lattice of cardinality ¿f, and that g:

FL(k) -» B where 1 < k < a>.   Then
(i)   // the standard table of limits for B closes, the limits will be attained on

or before the  2 th column.

(ii)   // a special table of limits for g closes, the limits will be attained on or

before the B.-l' '    th column.

These numbers bounding the number of steps required to reach a decision by

our algorithm are undoubtedly grossly excessive.   The lemma is, of course, actu-

ally true for each of the independent halves of the tables.   We will prove it only

for the sequences of upper approximations.   If U and V are subsets of a lattice,

write  V « U if for every u £ U there is v £ V with v < u.

Proof of Lemma 6.1.  To prove (i), let \cx\ be the upper approximants from

the standard limit table for B, and assume that eventually a    = a.       ..   Analogous

considerations will hold for the lower approximants.

(P)  Suppose that W is a finite nonvoid subset of FL(f ), that A > 0, and that

A W < ax(b) where b e |ß|.   Then one of the following is valid:

(1) w < ax(b) for some w £ W;

(2) À > 0 and there is a set  U e M(B, b) satisfying W « \ax _ j(y): y £ U\.
We can prove this by induction on A, with W fixed.   The case A = 0 is imme-

diate from the argument for A = 1, so we begin with A = 1.   Assume that  A W <

O-^(b).   By Whitman's (W2) (or rather its valid extension to an arbitrary number of

terms), either (PI) holds or   AW  is dominated by one of the summands of a.(b).

Assume the latter, say

Aw< A¡a0(y):yeu!

where   U £ M(B, b).   From the construction of the standard table, every O-0(y) is a

letter of FL(£); hence by (Wl) there is ai    £ W such that w   < aQ(y).   Thus (P2)
holds with this choice of U.

Now suppose that (P) is true of W for A = p - 1 > 0.   Assume that    /\W < a (b).

Again, we use (W2) to reduce to the case

where  U £ M(B, b).   Letting  U    be the set of those y £ U for which W « {a/Li_1(y)!
we choose, with the help of the induction assumption, for each y £ U - U   a set

U   £ M(B, y) satisfying W « |au_2(z): z £ U \.   Now, to complete the proof of

(P), set
Ul= U°U U\Uy:y£U- U°\.
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Then clearly  U1 e M(B, b) and, since afM_ 2 < afl_ p W « \a/x_1(z): z e Ul\.
To get on with the proof of 6.1 (i) let us consider the equivalence relation over

co defined by:  ppv iff for every b, b'e\B\ we have a^+ ¿b') < a^b) *=> 0-v + l(b')< ay(b).
(Q)   ppv implies   p p. + 1 v + 1.
Indeed, assume that ppv, and that a     2(b') < a     Ab).   To get that

clv   2(b') < av    A.b), we must consider a typical summand of a.v    2(b ), say wQ =

Á  ¡av + 1(y)-- y e  U\ where the set  U e M(B, b').   Let W = !aM+1(y): y e fj}.
Since a.   +2^'^ - au + l^' a f°rti°ri>   A ^ < au + i^)» an(^ we P'ug tnis relation

into statement (P).   In case (PI) holds we have a      A.y) < a      j(¿)  for a certain

y e U.   Then  y < ¿> and hence

^0<a,+ iW<aniW'

On the other hand, if (P2) holds then we have a set  V € M(B, b) such that  W «
\a (v): v 6 Vj.   Then for each v e V there is y    e (7 satisfying a.     ,(y ) < a, (t>).

These relations imply their twins ay    ^ (y ) < ay(v), since we assumed that ppv. •

Whence

"o< Aiav+1(yJ:veV!

<  A{ay{v): v6V\<av+l(b),

since  V eM(B, b).   Thus, in every case wQ < ay   Ab); and because &v    Ab ) is

a sum of such words, we have a y   2(b ) < <x„ +i(b).   The remainder of the proof

of (Q) just repeats the above argument.

With (Q) completely proved, 6.1(i) comes very quickly.   We can assume that

ç> 1, and with that assumption a simple combinatorial argument shows that p di-
£? • cfvides co into less than 2   "s   classes of integers.   We infer the existence of p <

v < 2^ "=   such that  ppv.    By (Q), p will be p-equivalent to arbitrarily large inte-

gers; in particular, from the initial assumption, we will have   ppy where a    =

°~y + j.   But then the definition of p requires a     .< a   , and so a      . = a   .

We have here a much better estimate of how far the standard table must be

calculated to reach a decision:   one need only carry the upper table far enough to

uncover a relation  ppv with p < v; and analogously for the lower table  i/3x \.

To prove 6.1(ii) we switch notation and now let  \a. x S denote the upper ap-

proximants in some special table of limits for g.   Again we assume that eventually

ay = ay . i>   Then g is upper bounded, and by Lemma 5.4 and the proof of 6.1(i),

the upper approximants of the standard table will also come to a standstill—at least

by the 2^'^th column.   Now we consider another sequence of functions W^\, con-

structed on exactly the same pattern as the upper approximants in the standard

table, but beginning with aQ = aQ.   Because the first entries of the standard table

are the letters of FL(<f ), the upper part of that table translates onto \a^\ in a nat-

ural way and we infer that a   = ay, where p = 2^ "=  < v.   The proof is concluded
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by an easy induction showing that, in general, a^ < ax<a£ ^.

Recall from 55 that ® is the class of finite lattices which are bounded epi-

morphs of free lattices, and that splitting lattices are the SI members of J).

Theorem 6.1. Jo is recursive.

Proof.  Let B be any finite lattice, f = *\B\ and A = ^-2^'^.   To decide
whether  B £ S, we construct the first A + 1   columns, a   , ß    (p < A), of a special

table of limits for some g: FL(£) -** B.   By Lemmas 5.4 and 6.1, ß £ % iff 0-x_l =

ax andßx-i = ß\-
Now suppose we do have  B £ Jo and B is SI.   Choose   u  < v in B witnessing

the subdirect irreducibility of ß.   Then by the proof of Theorem 5.1, part I, p < 77

is a conjugate equation of B whenever p7 = ßx (1) and n7 = ax (u).   If we merely

assume   u < v in B   (SI  not   required)  then   we   can   only   conclude   that

ax (u)-ßx(v)  < ßx (v) in FL(f).
Remark 6.2.  If B 4 x>, but u < v witnesses the subdirect irreducibility of B,

we can still obtain some useful information by extending a special table indefi-

nitely.   We then have a system of equations decreasing in strength—f   = p    < 77

where p7 = ßß(v) and 77^= aÁu)—with the property that, in general, B £ U0iff,

for some p,   e    £ 0 (by Lemma 5.1).   A sequence of equations with these properties

will be called a discriminating system for B.   We may also have occasion to speak

of a discriminating system for a theory.   The proper definition is obvious.

Theorem 6.2.   The relation of covering in free lattices  FL(k)  is recursive.

Proof.  Suppose that we are given two words, w„ <w., of FL(k), where   1 <

k < cu.   To test whether w Q -< w^ in FL(k), we first find an upper bound A for the

complexity of the words.   Then the projection / of FL(/<)  onto the finite lattice

C\k, A)  of Definition 5.3 separates  wQ from w.; and by Theorem 5.4 we infer that

if wQ < u/j, then there will be some homomorphism  h: C(k, A) -» B where ß is a

splitting lattice, satisfying  hf(w0)< hf(w.).
Next we make a list of the (finitely many) congruences R over  G(k, A) which

separate f(wQ) and f(w2)—testing in each case whether C(k, X)/R  is a splitting

lattice, using the algorithm of Theorem 6.1.   If no such h as above turns up, then

we are done; Wj  does not cover wQ.   Otherwise we will have constructed a defi-

nite h: C(k, A) -» B with the above properties.

In this case, g = hf is bounded (Theorem 5.1), and we continue by construct-

ing the upper and lower limits for g, a and ß, using Lemma 6.1.   Finally, after all

the preliminaries we will have  wQ <  w. iff simultaneously g(w„)  < g(w.),  w   ■

ag(w0^ ~ wo anc* w0 + ßg(w0 = wv   Indeed, the necessity of these conditions is

quite clear (g(wx .ag(wQ))= g(wQ) giving wQ < wy -ag(w0)< wv etc.).   For the

sufficiency, assume that  u> Q < w < m>j,  we |FL(k)|, and the three conditions are
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valid. Then either g(w) = g(wQ) or g(w) = g(wx). If the former, then w < ag(wQ)

and w < wx .ag(wQ) = wQ, a contradiction. Thus g(w) = g(wj), ßg(wx) < w; and

we get u' = ii',.

One-half of the second assertion of the next theorem was proved by B. Jóns-

son, using essentially  the argument given below; see Remark 6.1.

Theorem 6.3.  Finite sublattices of free lattices form a recursive class.   This

class consists of the lattices  Be® which satisfy Whitman's (W2).

Proof.  The first statement follows from the second by Theorem 6.1.   One-half

of the second statement was proved in §5.   To get the other half, assume that B

belongs to x> and satisfies (W2).   We must construct an embedding of B into FL(<u).

Denote by f the cardinality of B and set A = 2*     .   Choose /: FL(<f) -» B and
construct /"  from a table of limits.

Now construct functions ß    (p < A) employing the same iterative procedure

used to generate the lower half of the standard table of limits of B; but beginning

with ßQ = f~.   Then, whenever p < A and be \B\, we shall have f ßjib) = b; so
ßx  is one-to-one.   We now assert that  /3>   is the desired embedding.

First, observe that /3X  must be additive; because, by Lemma 6.1, the Ath

lower approximant in the standard table of B is an additive function, and this

function can be translated into ß^ by composing with an appropriate endomorphism

of FL(<f).   Finally, and decisively, ßQ = /""  is multiplicative and Jónsson ob-

served that, since B satisfies (W2), this multiplicativity is inherited by all the

functions  ß  — in particular, ß^ is multiplicative.   The inductive proof of jóns-

son's  observation  is  left to the reader.

Remark 6.3.  The concept of a projective object in a category is well known.

A lattice P is "projective" (in the category of lattices) iff every lattice homomor-

phism g: A -» P is split by some homomorphism /: P '—» A, i.e.  gf is the identity

function of P.   An equivalent condition is that some homomorphism  F ->* P splits,

where F is a free lattice.   A. Kostinsky has supplied an entirely different proof

for Theorem 6.3 which proves a more general result:   A finitely generated lattice

B can be embedded into FL(a>)  iff B is a bounded image of a free lattice and, in

addition, satisfies (W2); and also yields:   Every finitely generated sublattice of a

free lattice is projective.   LThe history of these two results is actually rather com-

plicated; without going into details, they should be attributed to Kostinsky, jóns-

son and the author.]

Kostinsky's argument combines various ideas of this paper, in    particular the

proof of Lemma 5.2.   Assume that F is a finitely generated free lattice and that

g: F -» B  is a bounded epimorphism.   Let a and ß be the upper and lower limit

functions for g, and let cr be the endomorphism of F which coincides with the func-

tion a.g on the generators of F.   Obviously, the map h = aß is a section of g,

gh = lg.   Kostinsky shows that i is a monomorphism B >—< F iff B satisfies (W2).
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There is a property—sufficient to imply ß e 55—which can be checked visually

on a diagram of B, without recourse to pencil and paper (as opposed to the method

of limit tables),. To define this property, we reintroduce the sets M(B, b) from the

construction of a standard table, and the relation between sets of a lattice—U « V—

used to prove Lemma 6.1. Now let M (B)= 0—the empty set—and in general, for

x e |ß|, let

xeMx+1(B) ^\/U£tA{B,x)\U<£\x\ => 3VeM(ß, x)[U « V & V Ç Mx(ß)]|.

A system of sets  S    (B) is defined by dual considerations.   Clearly these are in-

creasing sequences, constant after k terms if *|ß| = k.

Theorem 6.4 (B. Jonsson).  Assume that B is a finite lattice and A < co.   //

M    (B) = \B\, then the upper standard limit table for B closes on or before the

(A + l)th column.   If also  SX (B) = \B\ then B £ 55.

The proof of this theorem is by induction, showing that if p < a>, then C-„(x) =

a      j(x) in the standard table for ß, whenever x e M^(B).   For the details, sup-

pose that a„ and a coincide on M^.   Let y e Mß + 1 and let U £ M(B, y), so

that w = A a      j(7 is a typical summand of au + 2(y)-   If  ^ « Syi> i.e. if uQ < y

for some uQ £ U, then w < a-      .(y).   Otherwise, we have a set  V £ M(B, y) satis-

fying V CMß and U « V (since y e M^*1).   Then

w< AaM+lV = AaMV/<a/i+1(y)

since a   = & on V.   Summing over similar relations then gives  a        (y) <

a.      j(y), and the rest is trivial.

There is a similar property, at least as strong, which implies that  B £ 55 via

the special tables.   Here we put

M0X + 1(B)=   j*e|B|: Um0(B, x)C MX(ß)> ,

S0X + 1(B)=   |xe|ß|: US0(B, x) Ç 5X(ß) j   ;

and the condition is that, for some A,  MQ = S0 = |ß|.

Examples of 55 lattices failing either of these conditions have not been found.

In fact the whole problem of finding a good intrinsic characterization for 55, or for

the finite sublattices of a free lattice, is still open (see Problem 5 and the follow-

ing).

Problem 7 (B. Jonsson).   For B £ 55, must  MX (B) = SX (B) = |ß| for some A?
Discussion.  One may well ask what happens to the results of the last four

sections when the role played by A, implicitly in that discussion, is assumed by

some larger theory ©.   We should then consider the splittings of an interval sub-

lattice of  S^  [0, Q],   An attempt to extend the comprehensive theory of §v3—5
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to this case has led more to unsolved problems than to new results.   However, the

limit tables of this section have found some interesting applications in the more

general situation (e.g. in Examples 7.1, 7.8 and 7.11 below).

To get much information about the splittings of proper intervals of  2., new

ideas will surely be needed.   Nevertheless, given 0, one might attempt to proceed

by direct analogy with what we have done, only considering theories containing 0,

replacing arbitrary lattices in those considerations by lattices of 00, and using

the 0-free lattices  FL(@, k) in place of absolutely free lattices.   It remains true

that every splitting pair of L®> ß] is of the form (0X0 U if!], 0L) where L is SI
and belongs to U0.   We might call e, L a conjugate pair over ©—their characteris-

tic property is that every T > 0 satisfies just one of the conditions £ e T,

L e ÜT-^and we will say that L is a splitting lattice over 0.   But it does not seem

likely that every splitting of the interval will determine such a lattice uniquely.

The concept of bounded homomorphism remains the same.   With these changes,

many of the results of 'S§3—5 become questionable.

For example, setting © = M, we ask:   Does every equation £ / M fail in some

finite modular lattice (a problem of jónsson L6])?   Is every splitting of  [M, Q]  ef-

fected by a finite lattice?   By a bounded epimorph of a free modular lattice?   By

an atomic quotient in a free modular lattice?   (As in Theorem 5.4, every atomic

quotient in a FL(M, k) causes a splitting.)  If g: A —» FL(M, k), where A is a

finitely generated modular lattice, must g be bounded?

Nonetheless, it is highly significant that the analogue of Lemma 5.1 is true

in full generality.   Repeating the proof of Theorem 5.1, part I, we therefore have

the following result, where © is arbitrary:   Assume that g: FL(@, k) -** L is

bounded, and that L is finite and SI (or, more generally, that L has an atomic quo-

tient collapsed by every proper homomorphism of L).   Then L is a splitting lattice

over 0, and a conjugate equation for L can be obtained directly from the limits of

g.   In fact, just as before, the equation can be chosen so that it induces an atomic

quotient in  FL(0, k), and so that g is the "largest" homomorphism of FL(@, k)

separating the ends of the quotient.

Thus far, limit tables were only constructed for homomorphisms of a free lat-

tice, but they can obviously be employed in exactly the same way to find limits

and conjugate equations in this broader context.   (Remark 6.2 is still relevant in

this case.)  Let us observe that, having constructed a special table for /: FL(k)->*

L, (L finite) we can use the same table for the corresponding map g: FL(@, k) -»

L, if Le 00.   We simply factor / = gh and think of the tabular entries w as repre-

senting the corresponding elements  h(w).   The table may fail to close (over A) and

yet close over ©—i.e., g may be bounded when / is not; in fact the greatest signifi-

cance of these methods probably derives from this possibility (see, in particular,

Examples 7.8 and 7.11).   In the general case, discovering the consequences of a
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table becomes less mechanical than when 0 = A—because we have no analogue

of Lemma 6.1, and because we may have no effective way of testing whether two

columns are equal in FL(0, k).

7. Examples.  In the last section we saw that certain questions are "decid-

able" in the mathematical sense of the word.   In this section we find that the

methods involved are sufficiently efficient to be useful in concrete applications.

Most of the facts obtained and stored here are needed elsewhere in the paper.

The lattices of Diagrams 1—12 are all subdirectly irreducible.   Q0—Q ,, all

the  ¿V     and the lattice in Diagram 12 are splitting lattices, whereas no homomor-

phism from a free lattice onto  M,, PQ or P,   is either upper or lower bounded

(proof of Corollary 5.3).   Q    is not a splitting lattice but it is a lower bounded

epimorph of FL(3).   These remarks are justified below.   One concludes from Theo-

rem 6.3, by inspection of the diagrams, that /V   and Q0—Q4 have isomorphic cop-

ies in FL((u) and the other lattices do not.

Each table accompanying an example below is a special limit table, con-

structed according to the specifications of §6, for a homomorphism of a free lat-

tice which replaces the free generators, denoted by boldface letters in the table,

by the generators of the given lattice, designated by corresponding light face let-

ters in its diagram.   Tables not given can be easily supplied by the reader.   It is

not necessary to enter rows for the 0 and 1 of the lattice unless the limit words of

these elements are required, because they do not enter into the construction of the

other rows (review the definition).   Rather than make two successive identical en-

tries in a row we always mark the second with "*".

Example 7.1 (Diagram 1 and Table 1). The table for M, of course cannot

close. The first two equations in a discriminating system (Remark 6.2) for M,

are the distributive law and the equation

x • [y • (x + z) + z . (x + y)j < y + (x + yz) . (z + xy),

both obtained from the lower a and upper b rows.   But when we relativize the table

to modular theory, M (as in the Discussion §6,41 5), it closes with the second col-

umn, proving the well-known fact that M3 and the distributive law are conjugate

over M.
Example 7.2.  Limit tables for Ny PQ and P x  are left to the reader.   The in-

finite sets of discriminating equations that will be obtained for   PQ and Pj   have

an interesting pattern.   The table for N,  closes in two columns and yields the

modular law.
Example 7.3 (Diagram 5 and Table 2). The limit table for Q0 closes in two

columns, and the conjugate equation, computed from the limits of b and (a + b) •

(b + c) displayed in column two, is

C0.  [x + y . (z + xy)] ° {z + xy) < y + [x + z • (x + y)] • (y + z).
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Example 7.4 (Diagram 6).   The limit table for Qj  closes in three columns and

the conjugate equation simplifies to

£,.  x • {xy + z . '(w + xyz)\ < xy + (z + w) • Lx + w • (x + z)].

Example 7.5 (Diagram 7).  The conjugate equation of Q2 is

C2-  (x + y) ' (x + z) m x + (x + y) • (x + z) • (y + z).

Example 7.6 (Diagram 8).  The conjugate equation of Q^  is

£,.  (x + yz) • (z + xy) = z « (x + yz) + x • (z + xy).

Example 7.7 (Diagram 9).  A limit table for QA closes in three columns giving

a conjugate equation we have been unable to simplify:

£4.   y • \z + y . (x + yz)( < x + (x + y) • \.z + x • (y + z)].

Example 7.8 (Diagram 10 and Table 3).  By Corollary 5.3, the upper limit
table for Q   cannot close and this is borne out by Table 3.   However, since

QA i HS(g*),by Jónsson's lemma QA ¿ ÜQ ; and hence Q   satisfies £4, the con-

jugate of Q.  (Example 7.7).   If we put © = 8,L^4], then it is easy to see that the

second and third columns of Table 3 become identical in  FL(0, 3).

In fact, replacing y by (x + y) • (y + z) in £4 gives that

(x+ y) • \z + (y + z) • [x + z • (x + y)]\ <Qx + (x + y) • [z + x • {y + z)],

which certainly implies that a, (a) = a^a) and a2(c) = a^(c) in FL(0, 3).

Therefore (Discussion §6) Q   is a splitting lattice over 0.   The conjugate of

Q   over 0, obtained from the entries  ß,(a + b) and d^(a) in Table 3, is equivalent

to the equation

¿,y   y • (x + z) < x + (x + y) . ]_z + x • (y + z)].

To summarize:   If © e T/; then CA e 8 iff © ¿ 8GJ4; and if CA e 8, then
¿5 e0iff0¿8Q*.

Example 7.9 (Diagram 11).  A limit table for Nfi closes in three columns giv-

ing a conjugate equation which simplifies to

£6> y . 'Lx • (w + xz) + z .'(w + xz)] < x + Lx + y + w • (x + z)] • Lz + m> • (x + z)].

By Example 5.2 (or Theorem 6.4), all the N are splitting lattices. The equations

conjugate to these lattices quickly become rather complex.

Example 7.10 (Diagram 12).  Since 2 fails Whitman's (W2) (witness  a • (b + c)

< ab + c) it cannot be embedded in a free lattice.   Nevertheless it is a splitting

lattice and a limit table gives

£7.  (x + yz) • (y + xz) . (z + xy) < x • (y +z) + y . (x + z) + z . '(x + y)

as its conjugate equation.   Incidentally, Q was constructed from the free distributive

lattice, FL(A, 3)> by adding the two elements represented by the terms of £y.

Example 7.11.  In L7], Jónsson considered a certain eight element simple mod-

ular lattice  Mj 3, and he showed, in effect, that if P is the theory of any infinite

lattice having no four element chain, then (P, 8 M      )   is a splitting pair for  LM,

iî] (cf. the Discussion V6).
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Now it turns out that M, ,  is a bounded image of FL(M, 4), and a limit table

for this homomorphism yields an equation equivalent over M to the one given by

Jonsson (as a base, together with the modular law, for P).

8. Covering in  S„   In [6, Corollaries 4.4, 4.7] Jonsson obtained the intriguing

result that every theory 0 > A covers another theory H > A—in symbols:   H < ©

in   ¿,.   When we attempt to go beyond this result to gain a better understanding

of the relation of covering in   2     a multitude of problems arise to challenge our

ingenuity.   In this section we will state explicitly a number of these which seem

to us most interesting.   Contact will be made with the theory of splittings.

We begin the discussion by observing the negative result that not every 0 < Q

can be covered by another theory; 0 = A gives an example [6].   In fact, if 0 is a

meet-irreducible theory then it will be covered (and then uniquely) iff it is strictly

meet-irreducible.   (Compare Theorem 4.3.)  Next, note that a finitely based theory

0 covers only one theory just in case it is join-irreducible; in this case the

covered theory is © • 0 L where L is the conjugate lattice of 0.   (Compare Theo-

rem 4.2 and Corollary 5.8.)
In order to extend this result, we now introduce a convenient notation:   C.,0

is the set of all theories  H £ T. such that H < 0.   Recall the definition of V ©
in §1.

Theorem 8.1. Assume that © has a finite base and that A < ©.   Then

V;© = \k: 1 <k < a, and k < ?(CV@)!.

Proof.   First, assume that  /< e V © and let {f 0, • • - , e     . \ be some K-element

independent base of 0.   For each  v < k choose a maximal theory %v < 0  from

among all the subtheories of 0 which contain all equations  e   ,  p ^ v, but not e   .

Then of course we have ©,, ■<   © whenever v < k, and ©,, + ©   ,  = © whenever

v¿v'.   Hence  k <  *(CV@).

Next, assume that  1 < k < új and k <   "(C^©).   (We already know that  1 £

V^@ by Lemma 1.2(a).)   Choose any k theories covered by ©, say ©0, • ■ • , ©      ..

For v < K, set

ry= Af©M:p^!.
Then, since  ¿, is distributive, we have

© = A [0^+ ©y: p 4 v\ = V srv v < k\.

Now, because 0 is finitely based, the above relation yields the existence of a

system of compact (finitely based) theories  Ky < Tv such that 0 = V ÍKjJ.   By

Lemma 1.2(a), this leads to a system of equations  £v £ Tv such that 0 =

0,[fo, • • • , fK_ []•    Finally, since
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U¿p¿v\C V ¡r^: p ¿ 7,1 < @v
whenever v < k, \ey\ is an independent base of 0; and we have  k e V.0.   (Here

we have given the proof of Lemma 1.3.)   The theorem is proved.

If now 0 is an arbitrary theory having an independent base of k equations,

where k < co, then we can still assert the existence of at least k theories covered

by 0, and the proof is just the same as above.   But, besides these facts, the au-

thor has been unable to establish essentially any other relationships between V.

and Cy.   Even worse, we do not know what values these functions can assume.

Many of the problems that come to mind in this connection are included in the

following scheme.   First we list several conditions on the theory 0:

(1) 0 = 0L for some finite lattice L.
(2) 0 = 8L for some splitting lattice L, i.e. 0 is strictly meet-prime.

(3)K (l<K<co) V/0=Li,k].
(4) V/0=[l,<a).
(5) vze= 0.
(6) V 8 = {<u}.

By Lemma 1.2, every lattice theory other than A satisfies just one of the condi-

tions (3) through (6).
Now we ask:   For each of the above conditions, how does it restrict the num-

ber and the nature of the theories covered by ©?   Let me give two of these prob-

lems a more definite formulation.

Problem 2°.  If H<8L,  L finite, does  H = 8 L ' for some finite L ' ?
(We can, analogously, ask whether compactness is a hereditary property of

theories under the covering relation.)

Problem 8.  If © = 8L,  L finite, must we have #(CV@) <   N0? or <   KQ?
(Again we can ask the same question under the weaker assumption that © is

compact, or under the stronger assumption of (2).)

A negative solution of either of these problems would be of great interest.   A

positive solution of both would add some impetus to the attempt to actually de-

scribe  C„8 L when L is finite.
This latter task has been accomplished for  M     ([4] and L7]), while the au-

thor's attempt to do it for  AL led to the present paper.   It is very much an open

question whether a sufficient knowledge of the splittings of  2    and its intervals

would be adequate to handle all specific problems of this sort.   But, to demon-

strate this possibility, we will now derive the known facts about  CyQM-, and

Cy%N,  from the existence of certain splittings.   The (incomplete) results for N,

were obtained by the  author and, in part, by Stephen Comer at Vanderbilt, and by

Mr. Lee, Bruns' student at McMaster.

From L7], the members of C^fôM^  are the theories of three finite lattices:

M3 x Ny and those which he called M4 and M^ y   Now (M, 8/V.) splits £,;
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(P, 0M     ) splits [M, Q] (Example 7.11); and the interval [P, 0] is a chain, or-
dered like 1 + (ú*, two consecutive terms of which are 0M3 and 0M4-whence

(0M , 0M4) splits [P, fi].   Using these facts, we can argue as follows:   Suppose

that H ■< 0M3.   Then if H < 0/Vy we must have H = 0M3 • 0/V5  (= 0M3 x N5);
otherwise M < H.   Then if H < 0M3 3, we get H = 0M3  3; otherwise P < H.   In
this last case, either H < 0M. or 0AL < H; and we can only have H = 0M4.   From

this argument, the only theories possibly covered by 0AL  are the three listed,

and of course it was easy to see that 0M,  covers each of the three theories.

Turning now to N     we clearly have 0AL • 0/V    < ®/V5  (because  S; is dis-

tributive and 0AL <   A).   And trivial algebraic considerations deriving from Jons-

son's lemma   show that, for each lattice L among  Pn, Pp Q0—Q4, Ö*. N6 and

their duals (diagrams of this paper), we have 0L ■<  0/V,.   In fact, each of these

SI lattices embeds   N    as proper sublattice, and one simply verifies that every

smaller SI lattice in HS L belongs to HS/V,.   Altogether, then, we have found six-

teen distinct theories covered by 0N,.

Problem 9.  Does  Cy&N,  include any theories besides the sixteen catalogued
above?

Having found these sixteen theories one can draw considerable aid, for the

further resolution of this problem, from the facts developed earlier in this paper.

The relevant splittings were calculated in V7.

Indeed, assume that we have a theory H < 0/V,  which contains, for each one

of the lattices  M., PQ, P., Q0—Q¿, Q  , /V6 and their duals, an equation which
fails in this lattice.   By Examples 7.3—7.9, H then contains each one of the irre-

ducible equations   £0—£    and their duals, the (reducible) equation  £,  and its

dual; and also equation £&.

If we let ZQ denote the theory based on all these equations, then ZQ < H.

Moreover, for each one of the lattices  B = M,, PQ, P0 or P.,  H  contains one equa-

tion from any discriminating system of equations computed from a limit table for B.

(We are sadly unable to decide whether any of these tables close over ZQ; cf. the

Discussion §6.)   In this manner, we find that Problem 9 reduces to the question

whether, with every choice of equations eQ, • ■ •, e,  from these discriminating sys-

tems, the two equations r¡{ and r¡2 (§2) can be derived from f n, • • • , e   combined
with ZQ.

Let us return briefly to the question of the existence of theories satisfying

conditions (3)—(6) above.   In [9] it was shown that condition (6) is nonvacuous.

We have no examples of lattice theories satisfying (4), (5), or (3L for any k > 12.

However, by Lemma 1.2, Theorem 8.1 and the above, 0/V,  satisfies either (4) or

(3)K for some  k > 16.   For the theory ZQ defined above, V ZQ = [l, 12].   And one
obtains from  ZQ  theories satisfying (3)j through (3)u by subtracting the equations

£from its generating set, one at a time, beginning with Ù and then £■?.  For
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00

o

a + be

a • (b + c)

b + ac

b • (a + c)

c + ab

e • (a + b)

a + (b + ae) • (c + ab)

a • [b • (a + e)+ c • (a + b)]

b + (a + bc) • (c + ab)

b • La ■ (b + c) + c • (a + b)]

c + (a + bc) ■ (b + ae)

e • [a • (b + c) + b • (a + c)]

Table 1

a + c • (a + b)

b + a • (b + c) + c • (a + b)

b • (e + ab)

b + La + c ■ (a + b)] • (b + c)

a + b
(a + b) . (a + c) a + b • (c + ab)

b + e

c + ab

(a + b) • (b + e)
(a + b) • (b + c)

(a + b) • (c + ab) La + b • (c + ab)] • (c + ab)

• (b + e) + c • (a f b)
ab

La + f • (a + b] • (b + c)

Table 2
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1 < K < 10, this follows from the fact that the theory in question has an indepen-

dent base of k irreducible equations.   (It is not true, conversely, that if V 0 =

[l, k] then 0 has a base of irreducible equations; see Corollary 5.6.)  The follow-

ing problem, deferred from V4 and §5, is clearly relevant here.

Problem 10.  Describe the ordered structure of join-irreducible theories.   Or

at least determine the possible cardinalities of independent sets of irreducible

equations.

We conclude with a question whose positive solution is not expected, even

though it would make some of the problems of this section much easier; it concerns

a possible extension of Jónsson's result with which we opened the section.   The

answer is obviously yes if 0 is a compact theory.

Problem 11.  Given T < 0, must there exist a theory H such that T < H < 0?

If the answer to this problem were positive, we could prove, for example, that

*(CV®)<  k0=» 7,0^0.

0,

a + c • (a + b) |e + a • (b + c)( . (a + b) a + cXjdr) • (a + b)

(a + b) • (b + c)

b ■ (a + c)

c + a ■ (b + c) + ja + e • (a + b)| • (b + c) c + a^a) . (b + c)

a + b

(a + b) • (a + c) + b ■ (a + c)

b + e

(b + e) • (a + c) o + b ■ (a + e)

Table 3
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