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1 Introduction

Equational logic is the logic of equality, a concept that looks familiar and is often

encountered, but that has actually different facets. In high-school mathematics,

equality is a binary relation between objects meaning that two objects are identi-

cal, in the sense that replacement of one by the other in an expression does not

change its value. An equality is written with the predicate symbol “=” and two

expressions of the same nature, in mathematics usually numbers, vectors, func-

tions, sets, matrices, . . . Equalities are used in many different situations, either to

abbreviate expressions (e.g. ∆ = b2− 4ac), to express the result of a calculus (e.g.

2 + 3 = 5), to write identities (e.g. E = mc2), to model a problem under the form

of an equation (e.g. x2 + y2 = z2) and to describe the axiomatic properties of a

given structure (e.g. x + y = y + x) . It may happen that this variety of usage

introduces some confusion.

If equality looks so familiar, it is maybe also because it has a very long history.

It is generally admitted that the first printed occurrence of the = sign is found in the

book entitled The Whetstone of Witte by the mathematician and physician Robert

Recorde (1510-1558) in 1557. The sign was found also in italian manuscripts

earlier in the 16th century and was already used by egyptians to denote friendship.

Equality could also be associated to the result of a calculation, i.e. mathematical

determination of the amount or number of something. Not surprisingly, it is also

a primary concept in computation, i.e. the action of mathematical calculation,

and associated to mechanical calculators, invented by Blaise Pascal since 1642,

followed by Leibniz in 1685 who gave a definition of equality intuitively stating

that two entities are identical if and only if they have the same properties so that

they are undistinguishable.

Logicians have addressed early the need for clarification and rigourous defini-

tion. Axiomatization of equality on natural numbers provided by Peano in 1889

can be considered as the first step to define equational logic. Later on, in the

20th century, with Russel, Tarski and Church, set and type theories were devel-

oped and also addressed equality. In set theory for instance, a set is completely

characterized by its elements, although it may be defined by different properties.

Formally, ∀x, y, (x = y) iff (∀P, P (x) iff P (y)) where P denotes a pred-

icate. However this definition needs a quantification on predicate and so does

not belong to first-order logic. In set theory, its instance is the property of ex-

tensionality: is A and B are two sets, A = B iff (∀x, x ∈ A iff x ∈ B).
The idea that types comes equipped with an equality relation was made explicit

by Bishop in 1967 and in Martin-Löf’s type theory in 1972. In Church’s type

theory, only one notion of equality exists: it expresses that two expressions de-

note the same object, either as a consequence of a definition or as the result of

a more complex reasoning such as replacement of equals by equals. In that case

the two expressions contain variables that are universally quantified. For instance

∀x, y ∈ Reals, (x + y)2 = x2 + y2 + 2xy. Intuitionistic type theory introduces

a second notion called equality by definition, where two propositions are equal if
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every proof of one of them is also a proof of the other one.

The transition between logic and computer science is largely due to Alan Tur-

ing (1912-1954), by giving a formalisation of the concepts of "algorithm" and

"computation" with the Turing machine. After Turing’s famous work on the halt-

ing problem, showing the existence of a problem unsolvable by mechanical means,

Church and Turing then proved that the lambda calculus and the Turing machine

used in the halting problem were equivalent in capabilities, and subsequently pro-

vided a mechanical process for computation. With this mechanization and the need

to give an operational (implementable) version of equality, while avoiding the halt-

ing problem intrinsically related to the symetrical nature of equality, the notion of

rewriting as an oriented equality came up. Then rewrite relation and equality, stud-

ied as two different concepts, nevertheless have had interleaved developments, at

the intersection of logic and computation, i.e. of proof and algorithm.

In this survey, we do not address higher order logics nor type theory, but rather

restrict to first-order concepts. We focus on equational logic and its relation to

rewriting logic and we consider their impact on automated deduction and program-

ming languages.

We organize our view of equational logic and rewriting history along three

lines of approach, corresponding more or less to time periods where the research

has been especially active on these respective approaches:

• From 1935 to 1970, the theory and model settings main period, studying

equational logics and their models, with the development of data types and

algebraic specification languages;

• From 1970 to 2000, the operational semantics period, based on the study

of rewriting on words or terms, with its use in main algebraic language im-

plementations as well as automated deduction for a large class of equational

theories;

• From 2000, the logical framework period with the formalisation of rewrit-

ing calculi and logics, covering different types of structures (words, terms,

graphs, formulas, proofs) with types, sorts, conditions, constraints,. . . and

abstracted in the concept of abstract reduction systems.

In this survey, our intention is to describe the evolution of ideas rather than

to cover all places where equality and equational logic are useful and have been

embedded. Therefore, we do not attempt to be exhaustive in the description of

all the results but rather give our personal perception and vision of this field main

historical steps. However, references to technical surveys are expected to provide

detailed information to interested readers.

2 Equational logics and their models

At the beginning of the 20th century, the notions of abstract algebra, algebraic logic

and universal algebra emerge in particular in the works of Alfred Tarski and Garrett
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Birkhoff. Function symbols and equalities at the logical level are interpreted by

operations on algebras.

In equational logic, formulas are built from the equality predicate and first-

order terms, i.e. well-formed expressions built on a set F of function symbols

with arity (the number of arguments) and a set X of variables. The set of terms is

denoted T (F ,X ). Variables of a term may be instantiated by substitutions, defined

as as mappings σ from a subset of variables to terms and extended on terms by

preserving their structure.

An equational axiom or equality is denoted (∀X, l = r) where X is the set

of variables occurring in the terms l and r. From a set of axioms, new equalities

can be deduced via inference rules. A deduction system for equational deduction

is given in Figure 1.

Reflexivity

t = t

Symmetry
t = t′

t′ = t

Transitivity
t1 = t2 t2 = t3

t1 = t3

Congruence For any f ∈ Fn

ti = t′i, i = 1 . . . n

f(t1, . . . , tn) = f(t′
1
, . . . , t′n)

Substitutivity. For each substitution σ

t = t′

σ(t) = σ(t′)

Figure 1: Deduction rules for Equational Logic

Given a set of equational axioms E and a set of terms T (F ,X ), the equational

theory of E, denoted T h(E), is the set of equalities that can be obtained, starting

from E, by applying the inference rules given in Figure 1. We write

E ⊢ s = t if (s = t) ∈ T h(E).

A more compact inference system is the so-called replacement of equals by

equals: given a set E of axioms, we write s ←→E t if there is an equality l = r
(or r = l) in E, such that the subterm of s at position ω, denoted s|ω, is an instance

σ(l) of l for some substitution σ and if t just differs from s by containing σ(r)
at position ω, which is denoted as t = s[σ(r)]ω. The reflexive transitive closure

of the above symmetric relation is denoted
∗
←→E . It is a congruence relation, the
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quotient of the set of terms T (F ,X ) by
∗
←→E is denoted by T (F ,X )/E and the

equivalence class of a term t is denoted 〈t〉E .

The following theorem due to Birkhoff [23] states the equivalence between the

two inference systems for equality deduction:

E ⊢ s = t iff s
∗
←→E t.

Models of equational logic are F-algebras, that are non-empty sets (called the

carriers), with operations interpreting the symbols in F . Mappings preserving the

symbol interpretations are called homomorphisms.

In a non-empty class C of F-algebras, there may exist two particularily inter-

esting algebras: one is an initial algebra I such that for any algebra A in C, there

exists a unique homomorphism φ : I → A. The other one is the free algebra T
over a set of variables X such that: for any algebra A in C and any assignment

ν : X → A, ν can be extended by a unique homomorphism φ : T → A.

Note that by definition, the initial algebra can also be seen as the free algebra

over the empty set of variables. When it exists, it is unique up to an isomorphism.

Given a set E of equality axioms, an algebra A is a model of E if for every

axiom s = t in E, for any assignment ν of the variables from s and t into the

carrier of A, ν(s) = ν(t). We also say that the equality s = t is valid in A,

and this is denoted by A |= s = t. Mod(E) denotes the set of models of E. The

fondamental theorem due to Birkhoff [23] relates models and equational deduction:

for any set of axioms E, for any terms s, t ∈ T (F ,X ),

Mod(E) |= s = t iff T (F ,X )/E |= s = t iff E ⊢ s = t iff s
∗
←→E t

i.e. validity in the models is equivalent to replacement of equals by equals, there-

fore a semantic check can be achieved completely syntactically. We write s =E t
iffMod(E) |= s = t. Thanks to these results, the notations s =E t and s

∗
←→E t

may be used interchangeably.

In the class of algebras that are models of E, the free algebra over X is (iso-

morphic to) the algebra T (F ,X )/E. In the class of algebras that are models of E,

the initial algebra is (isomorphic to) the algebra T (F)/E.

When only arity of functions is specified, it is easy to build terms such as

divide(2, 0) that do not have interpretations. By introducing a type Nat for nat-

ural numbers and Nat+ for non-zero natural numbers, and by typing the function

divide with the rank Nat,Nat+ 7→ Nat, such written terms do not satisfy the

typing constraint. Sorts have been introduced for classifying terms and typing ar-

guments and results of functions. In a many-sorted signature, a function f has a

rank (or type) f : s1 . . . sn 7→ s, with si, s in a set of sorts S and variables are

typed too, for instance x : s means that variable x has sort s. Many-sorted terms

are built on many-sorted signatures and classified according to their sorts. Many-

sorted algebras have carriers corresponding to each sort and operations with sorted

arguments.
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Deduction rules for equational deduction given in Figure 1 generalize to the

many-sorted framework provided there is no empty sort. Goguen and Meseguer

made a precise analysis of the possible problems that may arise when this hypoth-

esis is not satisfied [115]. For keeping valid the deduction rules of Figure 1 for

many-sorted logic, only models with non-empty sorts should be considered.

Such type structure supports conceptual clarity and detection of many errors.

However, implementing strong typing in many-sorted logic is quite rigid and lacks

the expressive power needed for handling errors and partiality, see the survey by

Mosses and all of different approaches to address these problems [117]. One of

them, initiated in 1977 by Goguen leads to [62], where an order-sorted type struc-

ture is proposed, making many seemingly partial or problematic functions total and

well-defined on the right subsort. This order-sorted type structure is provided by

a partial ordering on the set of sorts that is interpreted as set inclusion in order-

sorted algebras. For instance, a subsort relation Nat < Int is interpreted as the

inclusion N ⊆ Z of the naturals into the integers in the standard model. In addi-

tion, operator symbols such as _+_ may have overloaded declarations, for instance

_+_: Nat Nat -> Nat, _+_: Int Int -> Int, that are required to

yield the same result when restricted to arguments of the same subsorts. Overload-

ing is a syntactical facility for handling operators defined on different subsets that

may intersect, for achieving a kind of polymorphism. Moreover such operators are

in general partial functions, which is expressed thanks to the subsort relationship.

Although all basic results of equational logic generalize to the many-sorted

case, order-sorted deduction is more subtle [64]. For example, replacement of

equals by equals and term rewriting require a careful analysis that was initiated

in [60] and is further developed in [78, 94].

All these concepts have been used to define the semantics of several specifica-

tion and programming languages. Let us mention two of them.

The OBJ programming language originates from Goguen’s pioneering work at

UCLA [63, 65] in the late seventies, later fully developed at SRI International by

Goguen, Meseguer and several invited collaborators [56, 61, 80, 93]. OBJ is alge-

braic programming language whose latest versions (OBJ-2 [56] and OBJ-3 [61])

are based on order-sorted equational logic. Programs are order-sorted equational

specifications and computation is order-sorted equational deduction [94].

In the late 1990’s, the CoFI initiative has been created and sponsored by the

IFIP working group WG1.3. It was an open collaborative effort to produce a

Common Framework for Algebraic Specification and Development, together with

the so-called Common Algebraic Specification Language Casl, a general-purpose

specification language based on first-order logic [6] that also supports partial func-

tions and subsorting. Casl has been designed with the aim to subsume many exist-

ing specification languages and to implement the most important features of alge-

braic specifications.
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3 Rewriting techniques

From about 1970, the need for an operational version of equational deduction came

up in two different communities, in formal specifications and functional program-

ming on one hand, in automated reasoning on the other. With the emergence of

equationally specified abstract data type, the question was to get executable speci-

fications and to define operational semantics of function evaluation. In automated

reasoning, the problem was to mechanize equational deduction and find decision

procedures for equational theories. Giving a common solution to these two ques-

tions also provides a bridge between programming language theory and program

verification.

In both situations, automating equational deduction needs to compute which is

the right axiom to be applied at each step, in which direction, and possibly to back-

track. The idea of rewriting is to suppress the need for backtracking, first by using

oriented axioms from left to right only, second by giving enough oriented axioms

to have the same deduction power than originally. For instance, group theory is

defined by three axioms (neutral element, inverse and associativity) but deciding

equality in group theory needs ten oriented axioms (equivalent to the three previ-

ous ones), first discovered in the pioneer work of Knuth and Bendix [100]. We now

recall the basic notions of rewrite systems, together with properties that rewriting

must satisfy in order to provide a decision procedure for equational theories.

3.1 The initial concept

With the purpose to operationalize equation deduction, term rewriting was first

proposed by Evans [51], then by Knuth and Bendix [100]. The original purpose

was to generate canonical term rewriting systems which can be used as decision

procedures for proving the validity of equalities in first-order equational theories.

The central idea of rewriting is to impose directionality in the use of equalities.

So a rewrite rule is an ordered pair of terms l, r ∈ T (F ,X ), denoted l⇒ r, where

it is often required that l is not a variable and all variables of r are also variables

of r. The terms l and r are respectively called the left-hand side and the right-hand

side of the rule. A rewrite system is a (finite or infinite) set of rewrite rules.

A rule is applied by replacing an instance of the left-hand side by the same

instance of its right-hand side, but never the converse, contrary to equalities. Given

a rewrite system R, a term t in T (F ,X ) rewrites to a term t′ if there exists a

rewrite rule l ⇒ r of R, a position ω in t and a substitution σ such that t|ω =
σ(l) and t′ = t[σ(r)]ω. This is denoted t−→ω,l⇒r,σ t

′ or simply t → t′ when

there is no need to make precise which rewrite rule is used nor where. A subterm

t|ω where the rewriting step is applied is called redex. A term that has no redex

is said to be irreducible for R or to be in R-normal form. The induced rewrite

relation on terms is the reflexive transitive closure of −→. From a logical point

of view, the deduction rules are similar to equational logic (cf. deduction rules

in Figure 1) without the Symmetry rule and with the rewrite relation instead of
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equality. Surveys on term rewriting include [76, 45, 8, 99, 127, 9, 132, 123, 22].

3.2 Termination

The normalizing property of a rewrite system (i.e. every term has a normal form)

is not enough if infinite computations of normal forms must be avoided. Indeed, a

term may have a normal form and nevertheless an infinite rewriting derivation. So

a stronger property is often needed, namely the termination property. In general,

it is undecidable whether a rewrite system is terminating. The idea of the undecid-

ability proof is the following: given any Turing machineM, there exists a rewrite

system RM such that RM terminates for all terms iffM halts for all input tapes.

Since it is undecidable if a Turing machine halts uniformly, it is also undecidable

if rewrite systems terminate [43]. This shows that first-order term rewriting has the

expressive power of any Turing machine that can even be encoded using a single

rewrite rule left linear rewrite rule as shown by Dauchet [38].

A first approach, developped from the late 70th and landmarked by the works

of Dershowitz, is to relate termination with orderings [41] and rewrite derivations

to decreasing chains in a well-founded ordered structure. A reduction ordering is

a well-founded ordering on terms closed under congruence and substitution. Then

termination of rewriting can be proved by just comparing left and right-hand sides

of rules: a rewrite system R over the set of terms is terminating iff there exists

a reduction ordering > such that each rule l ⇒ r ∈ R satisfies l > r. To take

advantage of known ordered structures, terms may be interpreted, for instance by

polynomials [129].

Another approach, emerging in the early 80’s, is the notion of simplification

ordering. In addition to be reduction orderings, simplification orderings enjoy the

so-called subterm property: any term is greater than any of its subterms. If the set

F of operator symbols is finite, a rewrite system R is terminating if R is simply

terminating [41]. Simplification orderings can be built from a well-founded order-

ing on the function symbols F called a precedence. Examples are the multiset path

ordering [83], also called recursive path ordering, the lexicographic path order-

ing or the recursive decomposition ordering [106]. Simple termination is reviewed

in [116].

During the 80’s and 90’s, many orderings and termination proof techniques

have been developed: Knuth-Bendix orderings, forward closures, semantic inter-

pretations, transformation ordering, dummy elimination, semantic labelling. Com-

prehensive surveys on termination are [44, 137, 138, 130].

Then, since 2000, the interest in termination was renewed with the dependency

pairs approach introduced by Aart and Giesl in [5], an automated method where

left-hand sides are compared with special subterms of the right-hand sides to cap-

ture forward closure. A lot of efforts have been devoted to make the method faster,

more powerful and able to handle termination of functional programs. Several sys-

tems for automated termination proofs have been developed, such as CiME [37],

TTT [68], AProVE [57], TORPA [139], and integrated in software development
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tools that analyze the termination of programs in programming languages like Java,

C, Haskell, and Prolog.

Considering termination of programming languages also led to study termina-

tion of rewriting under evaluation strategies. The dependency pairs approach has

been adapted to such cases and termination of rewriting under strategies is also

addressed in [58].

To complete this brief historical panorama, modular termination techniques

have to be mentioned. In complex proofs of termination, different orderings are

combined. Usual combinations are multiset extension or lexicographic combina-

tion. Another simple idea would be to simply combine two terminating rewrite

systems by taking their union. But in general, as shown by Toyama [134], the

union of two terminating rewrite systems is not terminating, even if the function

symbols are disjoint. Many results about the modularity of the termination prop-

erty have been studied in particular by Gramlich and can be found for instance

in [67].

3.3 Confluence and Completion

By definition a function is expected to always return the same value when the func-

tion is applied to the same arguments. When this function is computed with rewrite

rules, the property required for the rewrite system is therefore the uniqueness of the

normal form for any term. This is crucial when computing normal forms must be

independent of the strategy of rule application. Uniqueness of the normal form

is implied by adding to termination another property called confluence. A rewrite

system is confluent when two rewrite sequences beginning from the same term can

always be extended to end with the same term. Although undecidable in general,

confluence is decidable for terminating finite rewrite systems.

Confluence (which may be defined as an abstract property of relations, not

specifically of rewriting relations) is equivalent to the Church-Rosser property that

gives the relation between equational proofs and rewrite proofs: given a Church-

Rosser rewrite system R, every equational theorem t =R t′ has a rewrite proof

t ↓R t′, meaning that t and t′ both rewrite to a same term t′′, thus have the same

normal form if any. Assuming termination, confluence is equivalent to local conflu-

ence [119], itself equivalent to the convergence of critical pairs [100, 72]. Critical

pairs characterize minimal conflicts that can happen when two rewrite rules ap-

ply to a same term and overlap each other. Then the term can be rewritten in two

different ways that may or may not have a common normal form.

A completion procedure is aimed at building a Church-Rosser and terminating

rewrite system from a set of equalities. Completion orients equalities into rewrite

rules, computes critical pairs, and keeps terms in normal form for the current set

of rewrite rules. In [13, 11], completion is described through inference rules with

a fair strategy, which transform a set of equalities E and a set of rewrite rules R.

Completion is initialized with a given set of equalities in E and an empty set

of rules R. It also requires a well-founded ordering on terms, used to determine
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in which direction an equality must be oriented. A completion process has three

possible outcomes: either it terminates, or fails on an unorientable equality, or

diverges, that is, generates infinitely many new rules.

When the completion ends up with an empty set of equalities in E and a rewrite

system in R that by construction is then locally confluent and terminating, the va-

lidity of an equational theorem (t = t′) w.r.t. the initial set of equalities is decidable

by reducing both terms to their normal forms and by checking the syntactic equality

of the results, i.e. t ↓R t′.
The completion procedure fails when a non-orientable critical pair is generated.

In this case, nothing can be said on the set of rewrite rules generated so far, except

that they are equational consequences of the initial set of equalities in E. Practi-

cal implementations of a completion procedure often postpone the non-orientable

equality, with the hope that a further generated rule will simplify it.

If the completion does not terminate and generates an infinite set of rewrite

rules, it can be used as a semi-decision procedure for proving the validity of a

theorem: the theorem (t = t′) is valid iff there exists a step i and thus a set of

rewrite rules Ri such that t ↓Ri
t′.

In 1986, following Bachmair, Dershowitz and Hsiang works [13], completion

has been explained as a proof simplification process, where each inference rule de-

creases the complexity of some equational proofs. The minimal (i.e. less complex)

proofs in this setting are the rewrite proofs, i.e. those of the form t ↓R t′. Interest-

ingly, the completion concept is indeed independent of rewriting as shown much

later by Dershowitz and Kirchner [46].

3.4 Various extensions of Rewriting

Various extensions of the rewriting relation on terms exist. The two first notions,

ordered rewriting and class rewriting, emerged from the problem of permutative

axioms like commutativity that can be applied indefinitely at the same position.

The first proposed solutions initiated by Lankford and Ballantyne [103] fol-

lowed by the seminal papers of Huet [72] and of Peterson and Stickel [125]

amounted to define a rewrite relation on equivalence classes of terms and to simu-

late it by another rewrite relation on terms that transforms a representative element

of the equivalence class. In some cases, the problematic non-orientable axioms

can be built in the matching process which becomes equational matching. This

requires the elaboration of a new abstract concept, namely the notion of rewriting

modulo a set of equalities in which the matching takes into account non-oriented

equalities. Adequate notions of confluence and coherence modulo a set of equali-

ties [72, 79] have been defined for this kind of rewriting relation. A class rewrite

system is defined by a set R of rewrite rules and a set A of equality axioms. It

is Church-Rosser modulo A if any equational theorem deduced from R ∪ A has a

rewrite proof using rewriting in equivalence classes modulo A, defined as the com-

pound relation =A ◦ →R ◦ =A. The class rewrite system is terminating modulo A
if =A ◦ →R ◦ =A terminates. This general setting introduced in full generality by
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Jouannaud and Kirchner [81] allows to define equational completion procedures

generalizing the standard case [125, 81, 12], but they must be carefully set-up to

minimize sources of inefficiency. Typical examples handled by such a method are

theories with associativity and commutativity axioms [125, 91, 77]. More recently

in deduction modulo has pioneered by Dowek, Hardin and Kirchner [50], not only

terms but also propositions are identified modulo a congruence and this idea gave

rise to a new generation of higher-order proof assistants.

Another approach of the same problem is taken in the notion of ordered rewrit-

ing which appeared in [14]. There, only orientable instances of axioms can be used

in the rewrite relation.

Conditional rewriting started from a quite different motivation issued from ab-

stract data types and algebras with partial functions and exceptions, and this alge-

braic point of view was the base of earlier approaches [85, 141, 19]. In conditional

rewriting, the rule application requires the satisfiability of its condition. However to

be able to associate with a conditional rewrite system a decidable and terminating

reduction relation, it is necessary to provide a reduction ordering to compare terms

involved in the left and right-hand sides and in the condition of a conditional rewrite

rule [84, 86, 48]. Then conditional rewriting has been shown to provide a compu-

tational paradigm combining logic and functional programming [53, 49, 66]. Only

later the connection between conditional equalities and equational Horn clauses

has been exploited [140, 15, 16].

Rewriting with constraints emerged in the 90’s [96, 92, 98] as a unified way

to cover the previous concepts by looking at ordering and equations as symbolic

constraints on terms. Even further, it provides a framework to incorporate disequa-

tions, built-in data types and sort constraints [33].

As will be shown later on, all these rewrite relations can be studied as abstract

reduction systems. Note also that Church-Rosser properties have been adapted and

generalized for these different rewrite relations.

4 Rewriting and/for equality in theorem proving

Reasoning about equality has been one of the most challenging problems in auto-

mated deduction. In the past fifty years, a number of methods have been proposed.

In this section, we focus on the contribution of the term rewriting techniques to

first-order theorem proving.

The term rewriting approach to theorem proving is unique in several aspects.

First, for equational theories enjoying a Church-Rosser property, rewriting pro-

vides a (semi-)decision procedure. As such, a rewrite proof procedure can be em-

bedded in more general provers and combined with other proof methods. But even

without this property, a simplification process with valid rewrite rules can help to

reduce the search space of the provers. Second, the analogy of the completion pro-

cess with saturation methods in theorem proving and with Prolog theorem provers

has given rise to efficient proof by consistency or by refutation procedures. Third,
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it is one of the few methods which can be applied to a variety of problem domains.

In addition to the validity problem of equational logic, it has also been applied to

inductive theorem proving, first-order theorem proving, unification theory, geome-

try theorem proving.

4.1 Rewriting in theorem proving

From the operational point of view, term rewriting provides a forward chaining

method in automated deduction. In other words, its main inference mechanism de-

duces new lemmas from known theorems, rather than reduces the intended problem

into sub-problems and tries to solve them separately. Forward chaining methods

are usually not efficient due to the large number of theorems produced which makes

the search space unmanageable. As a tradeoff, forward chaining methods usually

do not require backtracking, which is necessary in most backchaining methods.

In fact, term rewriting is one of the very few successful forward chaining meth-

ods. The problem of space explosion is handled in term rewriting through two

techniques: a notion of critical pairs, which tries to find only “useful” lemmas,

and more importantly, a notion of simplification. Basically, simplification replaces

current terms or formulas by others which are logically equivalent but “smaller”

according to some well-founded ordering. Since the ordering is well-founded, sim-

plification cannot go on indefinitely.

It has been demonstrated through various implementations and experiments

that simplification is indeed an effective way of controlling the search space. In

addition to finding complete sets of rewrite rules, other notable problems have

been solved using term rewriting including the one-axiom group theory [105], the

commutativity problem of rings [131], Boolean algebra problems [69, 54], SAM’s

lemma in lattice theory [140], Moufang identities of alternative rings [2]. In [70],

a survey of the use of term rewriting in automated theorem proving for various

systems available in the 1990’s is given. Rewriting techniques also contribute to

one of the main successes of automated theorem proving, namely the fully auto-

mated solution, obtained by McCune and his system Otter in 1996, of the Robbins

problem that had challenged mathematicians for over sixty years [113].

In a different community, interactive proof systems such as PVS [124], Is-

abelle [122], or Coq [39] have also extensively used rewriting techniques through

tactics to handle the automated part of reductions.

4.2 Completion as a saturation process

The completion procedure must be supplied with a well-founded ordering used to

determine in which direction an equality must be oriented. Even when such an or-

dering is provided, the procedure may fail to find a confluent and terminating set of

rules though one exists [47]. An ordered (or unfailing) completion procedure does

not stop with a non-orientable equality and may terminate with a non-empty set of

equalities. This amounts to work with the notion of ordered rewriting previously
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defined and to adapt the Church-Rosser property [14]. Ordered completion pro-

vides also a semi-decision procedure for equational problems and so can be used

as a refutationally complete equational theorem prover. As such, it is possible to

prove existentially quantified theorems by negating them and deriving a contradic-

tion by ordered completion [71]. This idea has been further explored later on, in

the context of automated theorem provers for first-order clause logic with equality,

where the paramodulation inference rule was used to deal with equality. Bachmair

and Ganzinger present in [16] the superposition calculus that generalizes the pre-

vious idea to first-order logic and provides a refinement of paramodulation. In the

same vein, Nieuwenhuis and Rubio address in [121] equational theorem proving

with constrained formulas and explain the connection with paramodulation based

theorem proving.

4.3 Rewriting and equality for inductive reasoning

Some proofs of properties on classical data structures, such as integers, require

induction. An inductive theorem is an equality that is true in the initial model of the

axioms. Three main approaches have been developed for mechanizing inductive

proofs, two of them using rewriting techniques.

4.3.1 Explicit induction.

The first one, explicit induction, is used in proof assistants, for instance Nqthm-

ACL2 [89], Coq [21], Isabelle [122] or Inka [7]. Explicit induction uses structural

induction on data types and induction rules as for example Peano induction. These

forms of induction are in fact subsumed by the single general schema of Noetherian

induction, called noetherian induction principle. It is based on a well-founded

relation < on a set τ , so that there is no infinite decreasing sequence of elements

in τ . The Noetherian induction principle states that if, for any element x ∈ τ , a

proposition P holds for x whenever it holds for all elements x such that x < x,

then P holds for all x ∈ τ . Mechanizing proof by induction [29] is hard due

to the intrinsic difficulty of finding the most convenient inductive rule to show

a given conjecture. Indeed there may be a huge variety of possible noetherian

relations and choosing an appropriate induction rule introduces a first branching

point in the search space. Furthermore, such proofs involve in general two tasks:

generalizing the induction formula and introducing an intermediate lemma. This is

why user interaction and expertise is needed to develop an inductive reasoning in

proof assistants.

4.3.2 Induction by consistency.

The second approach is based on the notion of consistency: a set of first-order

axioms A, assumed here to be a set of equational clauses, is consistent if it has a

non-trivial model. Induction by consistency (or inductionless induction), roughly
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works as follows: given a consistent set of axioms A and a set of conjectures E ,

we add E to A and run a deduction engine until one gets a saturated and consistent

set of clauses (i.e. on which no more deduction rule applies). Historically, this

deduction engine was given by the Knuth-Bendix completion procedure [100] in

the pioneer works of Musser [118], Goguen [59], Lankford [102], Huet and Hul-

lot [73]. So it worked when A and E were both sets of equalities. The principle of

a proof by consistency is to assume the validity of the intended inductive theorem

and show that there no contradiction or inconsistency is generated with the axioms.

The definition of a contradiction has also evolved in various ways: in 1980, in work

of Musser [118] and independently Goguen [59], an inconsistency is the equality

between boolean terms (true = false). This approach assumes an axiomatization

of booleans and an equality predicate eqs for each sort of data s. This also requires

that any expression eqs(t, t
′) reduces either to true or to false. In 1982, Huet

and Hullot showed how the notion of constructors (function symbols with which

data are built) allows dropping the requirements about the equality predicate [73],

provided there is no relation between constructors. An inconsistency is then just

an equality between two different terms built only with constructors. When there

exists a confluent and terminating rewrite system for A, the method can take ad-

vantage of the existence of free constructors, characterized as a subset C of F such

that T (C) is exactly the set of normal forms of T (F). In this case, every non-

constructor operator must be completely defined [101, 42, 133, 104], which means

that any ground term containing this operator is reducible. The latter property is

decidable for a confluent and terminating rewrite system. In 1986, Jouannaud and

Kounalis introduced the concept of ground reducibility [82] of a term, meaning that

any instantiation of its variables by ground terms is reducible. Their approach al-

lows handling relations between constructors. Ground reducibility is decidable for

finite rewrite systems [87, 126] and is EXPTIME-complete in the general case [35].

The completion procedure attempts to complete the initial system A ∪ E by

iteratively adding new equalities computed with the critical pairs mechanism. One

main problem is that such a completion often generates infinitely many critical

pairs. Fribourg [55] first observed that only overlaps of axioms on conjectures

are necessary: it is the so-called “linear strategy”. Moreover, whenever A can be

turned into a ground convergent and sufficiently complete rewrite system, overlap-

ing can be performed at specific positions. A further improvement is to use ordered

completion to avoid failure due to a non-orientable inductive theorem like commu-

tativity. The method, called in this case unfailing proof by consistency [10, 11] is

refutationally complete: it refutes any equality which is not an inductive theorem.

For that, it detects any provably inconsistent equality, i.e. any equality (s = t)
which satisfies either s > t (in the reduction ordering >) and s is not inductively

reducible, or (s = t) is not inductively reducible (i.e. neither s nor t is inductively

reducible). Inference rules for proof by consistency are given in [10] and work with

a confluent and terminating rewrite system R that describes the equational theory,

a set C of conjectures to be proved and a set L of inductive lemmas. (Inductive

lemmas are equational theorems (s = t) such that σ(s) =R σ(t) for any ground
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substitution σ). The procedure adds in C new conjectures to be proved and ob-

tained by computation of critical pairs obtained by superposition of rules in R into

conjectures in C. Once a conjecture has been proved valid, it can be deleted from

C, then added to L. It is also possible to introduce in L inductive lemmas given

by the user or produced by another system. Conjectures are simplified using either

rules of R, lemmas of L or other smaller conjectures of C. Finally, a refutation is

produced when a provably inconsistent conjecture is detected.

Comon and Nieuwenhuis [36] gave a more general view of the deduction sys-

tem, without restricting the conjectures to be equalities. The interested reader may

refer to [34, section 1.3] for all relevant references on this approach.

4.3.3 Implicit induction by rewriting.

The third approach, implicit induction (or induction by rewriting), is used in auto-

mated theorem provers like Spike [26] or RRL [88]. The main idea of implicit

induction is as follows: given a terminating rewrite system, the corresponding

rewrite relation is noetherian and can be used for induction. Reddy [128] pro-

vided a method to prove equalities in this way. Proving an inductive conjecture

amounts to proving some specific instances. Each one is simplified by either a rule

or a smaller instance of the conjecture until an identity is obtained. The pragmatic

advantage of his method is that it does not need to explicitly check that the induc-

tive hypothesis is applied to smaller terms. In [128], the relationship between this

new method and the inductionless induction procedures is clarified. Bouhoula and

Rusinowitch [27] designed a proof technique which works in conditional rewrite

systems and applies to non-Horn clauses as well: it is the so-called test set induc-

tion. It works by computing an appropriate implicit induction scheme called a test

set and then applies a refutation principle using proof by consistency techniques.

Their method is refutationaly complete and can refute false conjectures even in the

cases where the functions are not completely defined. It has been implemented

in the prover Spike. The implicit induction techniques have been also used for

induction modulo associativity and commutativity in [20] and [4].

In [40, 95], a bridge between explicit and implicit induction is provided by

a proof search mechanism for inductive proofs, relying on the deduction modulo

approach [50]. A semi-decision procedure, which is refutationaly correct and com-

plete, comes along with a constructive proof of soundness which associates a proof

in deduction modulo to every successful proof of the procedure. This feature opens

the door to the procedure’s integration as a tactic in proof assistants that require

some proof witness like Coq.

5 Universal power of Rewriting

Since the 80s, many aspects of rewriting have been studied in automated deduction,

programming languages, equational theory decidability, program or proof trans-
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formation, but also in various domains such as chemical or biological computing,

plant growth modelling, security policies, etc. Faced to this variety of applications,

the question arises to understand rewriting in a more abstract way, especially as a

logical framework able to encode different logics and semantics. Discovering the

universal power of rewriting, in particular through its matching and transformation

power, led first to the emergence of Rewriting Logic and Rewriting Calculus.

On the other hand, with the development of rewrite frameworks and languages,

more and more reasoning systems have been modeled, for proof search, program

transformation, constraint solving, SAT solving. It then appeared that deterministic

rule-based computations or deductions are often not sufficient to capture complex

computations or proof developments. A formal mechanism is needed, for instance,

to sequentialize the search for different solutions, to check context conditions, to

request user input to instantiate variables, to process subgoals in a particular order,

etc. This is the place where the notion of strategy comes in and this led to the

design and study of strategy languages and semantics.

More recent approaches consider that rules describe local transformations and

strategies describe the control of rule application. Most often, it is useful to dis-

tinguish between rules for computations, where a unique normal form is required

and where the strategy is fixed, and rules for deductions, in which case no con-

fluence nor termination is required but an application strategy is necessary. Due

to the strong correlation of rules and strategy in many applications, claiming the

universal character of rewriting also requires the formalisation of its control.

5.1 Matching and transformation power

A first step is to note that in all its applications, rewriting definitions have the same

basic ingredients. Rewriting transforms syntactic structures that may be words,

terms, propositions, dags, graphs, geometric objects like segments, and in general

any kind of structured objects. Transformations are expressed with patterns or

rules. Rules are buit on the same syntax but with an additional set of variables,

say X , and with a binder⇒, relating the left-hand side and the right-hand side of

the rule, and optionally with a condition or constraint that restricts the set of values

allowed for the variables. Performing the transformation of a syntactic structure t is

applying the rule labelled ℓ on t, which is basically done in three steps: (1) match

to select a redex of t at position ω denoted t|ω (possibly modulo some axioms,

constraints,...); (2) instantiate the rule variables by the result(s) of the matching

substitution σ; (3) replace the redex by the instantiated right-hand side. Formally:

t rewrites to t′ using the rule ℓ : l ⇒ r if t|ω = σ(l) and t′ = t[σ(r)]ω. This is

denoted, as in Section 3.1, t−→ω,ℓ,σ t
′ or simply t→ t′.

In this process, there are many possible choices: the rule itself, the position(s)

in the structure, the matching substitution(s). For instance, one may choose to ap-

ply a rule concurrently at all disjoint positions where it matches, or using matching

modulo an equational theory like associativity-commutativity, or also according to

some probability. These choices are most often implicit in systems or languages
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based on rewriting, such as OBJ, ML, Haskell, Maude,... where they are built in the

interpreters or compilers. They can be instead considered as part of the control of

the rewriting process and explicitely addressed in a strategy definition or language.

5.2 Rewriting logic

The Rewriting Logic is due to Meseguer [114, 110]: Rewriting logic (RL) is a nat-

ural model of computation and an expressive semantic framework for concurrency,

parallelism, communication, and interaction. It can be used for specifying a wide

range of systems and languages in various application fields. It also has good

properties as a metalogical framework for representing logics. In recent years,

several languages based on RL (ASF+SDF, CafeOBJ, ELAN, Maude) have been

designed and implemented. 1

In Rewriting Logic, the syntax is based on a set of terms T (F) built with an

alphabet F of function symbols with arities, a theory is given by a setR of labeled

rewrite rules denoted ℓ(x1, . . . , xn) : l⇒ r, where the label ℓ(x1, . . . , xn) records

the set of variables occurring in the rewrite rule. Formulas are sequents of the form

π : 〈t〉E → 〈t
′〉E , where π is a proof term recording the proof of the sequent:

R ⊢ π : 〈t〉E → 〈t
′〉E if π : 〈t〉E → 〈t

′〉E can be obtained by finite application

of equational deduction rules [114] given in Fig. 2. In this context, a proof term π
encodes a sequence of rewriting steps called a derivation.

Reflexivity For any t ∈ T (F):

t : 〈t〉E → 〈t〉E

Transitivity
π1 : 〈t1〉E → 〈t2〉E π2 : 〈t2〉E → 〈t3〉E

π1;π2 : 〈t1〉E → 〈t3〉E

Congruence For any f ∈ F with arity(f) = n:

π1 : 〈t1〉E → 〈t
′
1〉E . . . πn : 〈tn〉E → 〈t

′
n〉E

f(π1, . . . , πn) : 〈f(t1, . . . , tn)〉E → 〈f(t
′
1
, . . . , t′n)〉E

Replacement For any ℓ(x1, . . . , xn) : l⇒ r ∈ R,

π1 : 〈t1〉E → 〈t
′
1〉E . . . πn : 〈tn〉E → 〈t

′
n〉E

ℓ(π1, . . . , πn) : 〈l(t1, . . . , tn)〉E → 〈r(t
′
1
, . . . , t′n)〉E

Figure 2: Deduction rules for Rewriting Logic

The ELAN language, designed in the early 90’s, introduced the concept of

strategy by giving explicit constructs for expressing control on the rule applica-

1http://wrla2012.lcc.uma.es/
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tion [24]. Beyond labeled rules and concatenation, other constructs for determin-

istic or non-deterministic choice, failure, iteration, were also defined in ELAN. A

strategy is there defined as a set of proof terms in rewriting logic and can be seen

as a higher-order function : if the strategy ζ is a set of proof terms π, applying ζ to

the term t means finding all terms t′ such that π : 〈t〉E → 〈t
′〉E with π ∈ ζ. Since

rewriting logic is reflective, strategy semantics can be defined inside the rewriting

logic by rewrite rules at the meta-level. This is the approach followed by Maude

in [32, 112].

5.3 Rewriting Calculus

The rewriting calculus, also called ρ-calculus, has been introduced in 1998 by

Cirstea and Kirchner [30]: The rho-calculus has been introduced as a general

means to uniformly integrate rewriting and λ-calculus. This calculus makes ex-

plicit and first-class all of its components: matching (possibly modulo given theo-

ries), abstraction, application and substitutions.

The rho-calculus is designed and used for logical and semantical purposes. It

could be used with powerful type systems and for expressing the semantics of rule

based as well as object oriented paradigms. It allows one to naturally express ex-

ceptions and imperative features as well as expressing elaborated rewriting strate-

gies. 2

Some features of the rewriting calculus are worth emphasizing here: first-order

terms and λ-terms are ρ-terms (λx.t is (x ⇒ t)); a rule is a ρ-term as well as

a strategy, so rules and strategies are abstractions of the same nature and “first-

class concepts”; application generalizes β−reduction; composition of strategies is

like function composition; recursion is expressed as in λ calculus with a recursion

operator µ.

5.4 Abstract reduction systems

Another view of rewriting is to consider it as an abstract relation on structural

objects. An Abstract Reduction System (ARS) [135, 90, 28] is a labelled oriented

graph (O,S) with a set of labelsL. The nodes inO are called objects. The oriented

labelled edges in S are called steps: a
φ
−→ b or (a, φ, b), with source a, target b and

label φ. Derivations are composition of steps.

The concept of Abstract Reduction System (ARS for short) has been introduced

to take into account abstract properties of relations induced by rewrite systems. But

thanks to the flexibility due to the definition of objects and steps, ARS are quite

convenient to give a rewrite semantics to state transformation systems.

Another interest is to give a semantics to strategies in this context. Reduction

strategies in term rewriting study which expressions should be selected for evalua-

tion and which rules should be applied. These choices usually increase efficiency

2http://rho.loria.fr/index.html
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of evaluation but may affect fundamental properties of computations such as con-

fluence or (non-)termination.

Regarding rewriting as a relation and considering abstract rewrite systems leads

to consider derivation tree exploration: derivations are computations and strategies

describe selected computations.

5.5 Strategies

In the classical setting of first-order term rewriting, strategies have been used to

determine at each step of a derivation which is the next redex. Thus they have

often been defined as functions on the set of terms like in [132]. Let us illustrate

this point of view by a few examples of strategies that have been primarily provided

to describe the operational semantics of functional programming languages and the

related notions of call by value, call by name, call by need. Leftmost-innermost

(resp. outermost) reduction chooses the rewriting position according to suffix (resp.

prefix) ordering on the set of positions in the term. Lazy reduction, as performed

in Haskell for instance, or described in [52], combines innermost and outermost

strategies, in order to avoid redundant rewrite steps. For that, operators of the

signature have labels specifying which arguments are lazy or eager. Positions in

terms are then annotated as lazy or eager, and the strategy consists in reducing

the eager subterms only when their reduction allows a reduction step higher in the

term [120]. Lazy reduction can also be performed with other mechanisms, such as

local strategies or context-sensitive rewriting. Local strategies on operators, used

for instance in the OBJ-like languages [61, 1], introduce a function to specify which

and in which order the arguments of each function symbol have to be reduced. In

context-sensitive rewriting [108, 109], rewriting is allowed only at some specified

positions in the terms. Already in 1979, later published in [74, 75], Huet and Lévy

defined the notions of needed and strongly needed redexes for orthogonal rewrite

systems. The main idea here is to find the optimal way, when it exists, to reach

the normal form a term. A redex is needed when there is no way to avoid reducing

it to reach the normal form. Reducing only needed redexes is clearly the optimal

reduction strategy, as soon as needed redexes can be decided, which is not the case

in general.

Coming back to abstract reduction systems, abstract strategies are defined

in [90] and in [28] as follows: for a given ARSA, an abstract strategy ζ is a subset

of the set of all derivations (finite or not) of A. Playing with these definitions, [28]

explored adequate definitions of termination, normal form and confluence under

strategy.

This very general definition of abstract strategies is called extensional in [28]

in the sense that a strategy is defined explicitly as a set of derivations of an abstract

reduction system. The concept is useful to understand and unify reduction systems

and deduction systems as explored in [90].

But abstract strategies do not capture another point of view, also frequently

adopted in rewriting: a strategy is a partial function that associates to a reduction-
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in-progress, the possible next steps in the reduction sequence. In this case, the

strategy as a function depends only on the object and the derivation so far. This no-

tion of strategy coincides with the definition of strategy in sequential path-building

games, with applications to planning, verification and synthesis of concurrent sys-

tems. This remark leads to the following intensional definition given in [28]. The

essence of the idea is that strategies are considered as a way of constraining and

guiding the steps of a reduction. So at any step in a derivation, it should be possible

to say whether a contemplated next step obeys the strategy ζ. In order to take into

account the past derivation steps to decide the next possible ones, the history of a

derivation can be memorized to be available at each step.

5.6 Strategy languages

In the 1990s, generalizing OBJ’s concept of local strategies, the idea has emerged

to better formalize the control on rewriting which was performed implicitly in in-

terpreters or compilers of rule-based programming languages. Then instead of

describing a strategy by a property of its derivations, the idea is to provide a

strategy language to specify which derivations we are interested in. Various ap-

proaches have followed, yielding different strategy languages such as Elan [97, 25],

APS [107], Stratego [136], Tom [18, 17] or more recently Maude [111] and

Porgy [3]. All these languages share the concern to provide abstract ways to ex-

press control of rule applications. In these flexible and expressive strategy lan-

guages, high-level strategies are defined by combining low-level primitives. The

semantics of the Tom strategy language as well as others are naturally described in

the rewriting calculus [30, 31].

6 Conclusion

We have retraced in this overview the main evolutions of rewriting techniques in

relation with equational deduction mainly during a 40 years period going roughly

from 1970 to 2010. Useful complements can be found in RTA proceedings and

on the rewriting web page (rewriting.loria.fr/systems.html). Strongly involved in

automated deduction before 2000, rewriting is now understood as an abstract pro-

cess of computation, well-adapted to model dynamic processes. Departing from

equational logic, this evolution is opening new fields of application.
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