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Abstract. We provide an equational theory fRestricted Broadcast Process Thetwyeason about
ad hoc networks. We exploit an extended algebra calleshputed Network Theoty axiomatize
restricted broadcast. It allows one to define the behaviemadd hoc network with respect to the
underlying topologies. We give a sound and ground-comeiematization forCNT terms with
finite-state behavior, modulo what we call rooted brancltioigpputed network bisimilarity.

1. Introduction

In Mobile Ad hoc Networks (MANETS), nodes communicate directly with eatttfelousing wireless
transceivers (possibly along multihop paths) without the need for a fiXemstructure. The primitive
means of communication in MANETS is local broadcast; only nodes located ranige of a transmitter
receive data. Thus nodes participate in a broadcast according todbdyimg topology of nodes. On
the other hand, nodes move arbitrarily, and the topology of the networkgeksadynamically. Local
broadcast and topology changes are the main modeling challenges in MANET

We introducedRestricted Broadcast Process The@RBPT) in [6], to specify and verify ad hoc net-
works, taking into account mobilityRBPTspecifies a MANET by composing nodes using a restricted
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(local) broadcast operator, and by specifying a protocol deployedn@de using a process algebraic
notation. Topology changes are modeled implicitly in the semantics, and thusaoneedfy a net-
work with respect to different topology changes. An advantageRPTcompared to similar algebras
is that the specification of a MANET does not include any specificationtatitanges of underlying
topologies. The behavior of an ad hoc network is equivalent to its beisawith respect to all possible
topologies. We provided an equational system to reason &RTterms in [7], which is complete for
the recursion-free part ®BPT. Our axiomatization borrows from the process algeh@P [3] auxil-
iary (left merge and communication merge) operators to axiomatize the inteddzefiavior of parallel
composition. These equations need to take into account not only theivatiseal behaviors, but also
the set of topologies for which such behaviors are observed. To thisaadrfirst extendedRBP Twith
new terms, calleComputed Network TheofZNT), because the extended terms contain a specification
of a set of topologies, and their observed behavior is computed withatesggbose topologies. Network
restrictions on the underlying topology are expressed explicitly in the symtexoperational semantics
of CNTis given by constrained labeled transition systems, in which the transitiossibseripted by a
set of network restrictions.

In this paper, to illustrate the applicability of our framework in the verificatioM&NETs, we
extendRBPTwith new operators for verification purposesicapsulatiomndabstraction The encapsu-
lation operator, parameterized by a set of messages, disallows commursicatiaset of messages. The
abstractionor hide operator, hides communications on a set of messages from the exteseatatby
turning them into the unobservable actionWe extend our equational system given in [7] with axioms
for the new operators (encapsulation, abstraction and recursiahwarproof principles to reason about
recursive behaviors with finite-state models. We introduce a behavigualadence relation, so-called
rooted branching computed network bisimilarityhich we prove to be an equivalence relation and a
congruence with respect to &NT operators. Then we provide a sound axiomatizatio@NT modulo
rooted branching computed network bisimilarity, which is ground-complet€RF terms with finite-
state behaviors. We prove thaC&lTterm has finite-state behavior if its syntaveissentially finite-state
The application of our equational system is illustrated with a simple routing piotoc

The reminder of the paper is structured as follows. First it is explainedvi@wnodel MANETS
in Section 2. In Section 3 we briefly explaRBPT, and then introduc€NT, an extension oRBPT, in
Section 4. We present the semantic€0fTin Section 5, and develop our behavioral equivalence relation
on CNTterms in Section 6. In Section 7, we provide a sound axiomatizatioGN¥oF. In Section 8, we
show that our axiomatization is ground-complete for a subs@NT terms with finite-state behaviors.
We give an overview on related work in Section 9, and finally we presentonclusions and future
plans in Section 10. The proofs are presented in the appendix.

2. Concepts for Modeling MANETs

In this section, it is explained how we model mobility, the dynamics of the underigpology, and
local broadcast communication [6, 7].

In wireless communication, nodes are equipped with wireless transceiyengich they send and
receive information. For each (sender) node, a transmission rangasglered, which is an area in
which the strength of emitted signals (of data) from the node is strong ertougd sensed by other
nodes. The transmission range is not the same for different nodes depkihds on the power used to
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emit the signal. A nod® is connected t@ nodeA, if B is located within the transmission rangeAflt

is said thatB is in the vicinity of A. This connectivity relation between nodes, which is not necessarily
symmetric, introduces tpologyconcept. LetLoc denote a finite set of logical addresses, ranged over
by ¢, which models the hardware addresses of nodes. Moredyét, C' denote concrete addresses. A
topology is a functiony : Loc — IP(Loc), wherevy(¢) denotes the set of nodes connected.td his
function models unidirectional connectivity between nodes.

Since nodes in MANETS are mobile, the underlying topology changes.eTdrertwo approaches
in modeling of topology changes; in one approach, mobility is modeled explicitlyarspiecification,
like in [5, 20, 11, 26, 13], while in the other approach, it is modeled in the séosq24, 6]. The latter
approach provides us with a natural way to model and verify MANETsggsine mobility specification
is not a part of MANET protocols. Similarly there are two approaches to nmodellity in the seman-
tics; one models it explicitly by defining a set of mobility rules, while the other modetke mobility
implicitly. In explicit modeling of mobility in the semantics, the underlying topology is modeled as a
part of the semantics state, and mobility is modeled by performing transitions (witin@bservable
action) between states, by the application of mobility rules which manipulate thiaggpmodel. In
implicit modeling, each state is a representative of all possible topologies a n&avorkeet and a net-
work can be at any of these topologies. We have modeled mobility implicitly in therd@sesince this
approach releases us from encoding the underlying topology as affiha specification, which also
allows modular specification of MANETS.

When a node broadcasts, all nodes in its vicinity are potential receiergever, local broadcast is
non-blocking and lossy, which means the sender broadcasts irrespafotiho is going to receive, and a
receiver may lose the message due to signal interference. If two ndtthess @@mmon vicinity broadcast
simultaneously, the emitted signals may interfere at the receiver. MAC-lag&rgols, at each node,
are responsible to prevent such interferences in MANETs. Howauerferences cannot be avoided
completely; for instance IEEE 802.11 exploits a schema to reduce interéeyeout does not offer any
MAC-layer recovery on broadcast frames. We model unreliable loasdrast in our calculus, but
we abstract away from interferences and only consider successkil’e actions. Thus our framework
is only suitable to specify MANET protocols above the MAC-layer. The pssccalculi dealing with
interferences in wireless systems are [22, 21], while the latter is in a timed setting

The modeling approach of the underlying topology and mobility affects thaitefi of the local
broadcast semantics. Generally speaking, when mobility is modeled explicithe isetmantics, the
behavior of a network in a local broadcast communication is defined in tefriine onderlying topology;
the (subset of) nodes that are connected to the sender will take pagt@onfimunication. However, in
our approach, the behavior of the network defines the set of topolagder which such behavior is
possible. Consequently our approach results in a compact labeled trasyiitem, as illustrated in
Figure 1. Since our broadcast is unreliable, a behavior is possible daethof topologies in which
nodes that have participated in the communication should be connected totteg, sehile the other
connections between nodes can be anything. We introduce netwoiktiess to formally specify the
set of topologies involved in a transition. Their computation can be automaség @eich is helpful
for verifying an application using e.g. model checking. Furthermore vpdoéxhem to axiomatize our
algebra.

Let an unknown address be represented byrhe unknown address is used in the semantics of a
receiving node. Furthermore, an unknown address is used foreawinase address is concealed from an
external observer. The set of addresses extended with the unlatlusess is denoted &sc-, which by
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Figure 1. Comparison of the semantics models of local brastdocommunication in explicit (at the left) and
implicit (at the right) modeling of mobility.

abuse of notation is also ranged overtbyVe assume a binary relatien on Loc x Locs, which imposes
connection relations between addresses. The direction of relation exhiaidirection of data flow in a
transmission. A relatiol ~~ A denotes that a node with logical addresshould be in the range of a
node with an unknown address, while~» B denotes that a node with addrd3ss connected to a node
with address4, or A can transmits data tB. The relation~ need not be symmetric and transitive. By
default each node is connected to itsélfi~ ¢. A network restrictions a set of relationg ~ ¢'. The
network restrictionC[B/A] is obtained from the network restrictiari by substitutingB for A in C.
Each network restrictio' represents the set of topologies that satisfy the relations ilm particular,
the empty network restrictiofi} denotes all possible topologies.

3. Restricted Broadcast Process Theory

Network protocols (in particular MANET protocols) rely on data. To sefmthe manipulation of data
from processes, we make use of equational abstract data types fh iDspecified by equational
specifications: one can declare data types (so-catleid and functions working upon these data types,
and describe the meaning of these functions by equational axioms. Folltvermgpproach of [16, 18],
we consider Restricted Broadcast Process Theory with equatioriedctlfata types. The semantics of
the data part (of a specification) is defined the same way as in [18]. utdsbontain theBool domain
with distinct7 and F' constants.

Before going through the formal syntax definitionsRBPT, we define some notations applied in
these definitions. LeY denote a countably infinite set of data variables ranged over, pyandD a
data sort name. Let andw range over closed and open data terms, respectively. We ase (z : D)
to denote finite sequences, ..., w; andz; : Dq,...,x : Dy for somek € IN, |w| and|(x : D)|
for their lengthk, and{w/z} for simultaneous substitutioqsv, /z1}, ..., {wk/zx}. Let Msg denote
a set of message types communicated over a network and ranged ouerHoy each message type,
domain,, : IP(D1 x ... x D) declares the parameters of messagé.et .4 denote a countably infinite
set of process names which are used as recursion variables inive@pscifications. This set can be
split into two disjoint subsetsgl» and.Ay, and is ranged over byl,, and.A,, respectively. Moreover, let
X e A,andZ € A,.

Restricted Broadcast Process ThedRBPT) [6] provides a two-level syntax to define a set of pro-
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cesses deployed at a node, also called protocols, and a set of MAMET®Sed of singleton nodes:

P = 0|aP|P+P| wPP| Aw)
N w= O][PLI N | N | @WON | Va(N) | dn(N)

A protocol can be a deadlock, modeled(byx. P is a process that performs actiorand then behaves
as proces®’. The actionn can be a send action(w)! or a receive actiom (w)? where parameters of
the receive action can be only (free) variables. The proégss P» behaves non-deterministically as
processP; or P,. The guarded commarid] P, P> defines process behavior based on the datateah
sort Bool; if it evaluates to true in the data semantics model, the protocol behavgs asd otherwise

asP,. A process is declared by, ((x : D)) “Yp whereA,, is a protocol name and is the variable
that appears free ifr; for an instantiation4, (w), it is required thatw| = |(x : D)|. An occurrence of
variablez is bound inP, if it is the parameter of a receive action, or the occurrence is in the sifape
receive action that carriesas a parameter. We restrict to process definitions where each oacmioien
A,(Z) in P is in the scope of an action prefix.

Let {0,1} € D, domain,, : IP(D) and domain,, : IP(D) respectively. As a running exam-

ple, X,(z : D) el req(z)!.X,(x) declares a process that broadcasts a message) recursively, and

X, i req(y)?.rep(y)!. X, a process that recursively receives a messag(e.) and replies by sending a
messageep(u). A MANET can be composed of several nodes using the parallel compospierator,
where each node is provided with a unique addréss?) and deploys a protocol, and nhodes communi-
cate via restricted broadcast. For instance, the network pr¢&g%6)] 4 || [X,] s specifies a MANET
composed of two nodes with logical addresdesnd B deploying processex,, (0) and.X,, respectively.
The address of a node can be hidden from an external observerthsimestriction operator. For ex-
ample, in(vA)[X,(0)]a || [X,] 5 the activities of noded are hidden from the external observer, and
only the activities performed d can be observed. The abstraction oper&tgr(N) restricts the com-
munications ofN (with other MANETS) to messages not includedlih C M sg: the transmission of
messages € M are hidden from the external observer. The encapsulation opéngia¥) disallows
communications ofV on messages it/ C M sg, and consequentl§y,;(N) cannot communicate with
other MANETS by receiving these messages.

In the following section the syntax of MANETS is extended with new terms, toilite class of
what we call computed network terms. As the semantidRBPTis subsumed by the one GINT, we
postpone an exposition on the formal semanticRBPTuntil Section 5.

4. Computed Network Theory

As mentioned before, to give the axioms of the equational thB&y T, we use an extension &BPT,
calledComputed Network TheofZNT). This process theory exploits network restrictions, which define
a set of topologies; the behavior of process terms is computed with regsudhametwork restrictions.
CNT extendsRBPTwith new terms called computed networks. A computed network @t
denotes a network whose behavior, with respect to the set of topolafiasdiby the network restriction
C, is performing the action and then behaving @sParallel composition and restriction are defined over
computed networks in the same wayRBPTterms. MoreoverCNT extendsSRBPTwith new operators;



6 F. Ghassemi, W. Fokkink, A. Movaghar/ Equational Reasoning oril&ad Hoc Networks

choice(+), left merge(lL), communication mergg) andrecursionrecA,,.t:

tu=0 | [Ple | Ont | t+t | t]lt | the | tlt | @Ot | Vart) | dut) | A | recAn.t

wheren can bem(u)!{¢} or m(u)?, and C is a network restriction. The choice operatprdefines

a non-deterministic choice betwe@NT terms, and parallel composition defines computed networks
communicating via restricted broadcast. The restriction opefatdrconceals the address of a node
with logical addresg from the external observer as before. The abstraction opeYatg(t) restricts
the communications afto messages not included M and the encapsulation operatby; (¢) disallows
communications of networkon messages i/ as before. In left mergé , the left operand is succeed
to perform the initial action. In the communication merge opergtboth operands are succeed to be
synchronized on their initial actions. The network naedenotes a specific computed network. The
recursion operatarecA,,.t represents a solution of the equatidp = ¢. This solution is unique if4,,

is guarded irt. As far as unguarded recursions are concerned, following th@agpiofCCSandACP,

we consider the solution from the set of solutions that has the least sansitions. In Section 7, we
will explain about the guardedness criterion.

The occurrence of an addresss bound in aCNT term¢ by the restriction operatofy¢)t. Bound
addresses can heconverted, meaning that /)t equals(v¢')t[¢' /¢] if t does not contai’ as a free
address. We define functioif§t) and bl(t¢) to denote sets of free and bound addresses in a computed
network term, respectively. An occurrence of a network najgis bound in aCNTtermt if it occurs
in a subterm of the formecA,,.t'. A computed network term is called closed if its sets of free names
and of free variables are empty. We will uBeQ to range over protocols, t, u, v to range ovelCNT
terms, andV, M to range over terms representing processes, i.e. closdderms. We use= to denote
syntactical equivalence between two terms (protocols@Nd terms) and=,, to denote two terms are
a-convertable to each othew-conversion may include renaming of bound addresses, variables and
names.

By abuse of notation, we us¢t’' /A, } for expressing replacement of a tetfior every free occur-
rence of named,, in t, if necessary renaming bound namesiim order to ensure that no free occurrence
of a name in’ becomes bound it{t'/ A,, }.

5. Operational Semantics ofCNT

A specificationconsists of three parts; data, protocol and network specifications. awelefine the
static semantics of a specification as in [18], which describes the static @emrits under which a
specification is defined correctly. For instance, each object shoulddbardd once, and process names,
variables, and networks cannot be mixed up. A specification is callddformedif it is statically
semantically correct, and its data part has no empty sort and Boolearsfiaexd For any well-formed
specification, the algebraic semantics of its data part must be defined agdatges must constitute a
confluent and terminating term rewriting system.

The behavior of protocols and networks is defined using structurahtipeal semantics. The op-
erational semantics dENT is given at two levels (similar to the syntax), in terms of the operational
semantics of protocols and of computed network processes.

Given some data moddD and a protocol, the operational rules of Table 1 induce a labeled transition
system, in which the transitions are of the fofm™ P’ with o of the form{m(a)? or m(@)!}, for some
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sequence: of closed data terms. They are standard operational rules for basiesgralgebras. The
Pre; and Pres rules indicate execution of receive and send actions. After a proetsagnessage (of
the same type it was ready to receive), values of message paramet@glaced by the corresponding
parametersChoice specifies the choice operator; its symmetric version also holds, but is omitted he
Usually, ad hoc network protocols set timers to perform an action. We smnan-deterministic choice
to model time-outs and alternative behaviors of a protocols against eix¢serds. A guarded process
behaves a#; if the guard condition evaluates to truéf(en), otherwise it behaves d% (Else). Process
invocation is specified in the standard fashiotrin, whereP{%/z} is obtained fromP by replacing all
occurrences of variables by u;.

Table 1. Semantics of protocols

~ m@? Pre; n @l Prey
m(z)?.P —= P{u/z} m(u).P —= P
P{u/z} = P’ P2 P
% : Inv, Ap((z : D)) “ p Lal . Choice
Ap(’LL)—>P/ P1—|—P2—>P1,
———————: Then, DFru=T ———-—: Else, DFu=F
[U]PMPQ_)P{ [U]Pl,P2—>P2,

Generally the behavior of a computed network is defined in terms of a sqiabtgies; a transition,
in which a set of nodes participate in a communication, is possible for all topslogiehich the receiv-
ing nodes are connected to the sending node. Therefore in the opakagamantics it is defined for each
state which transitions are possible for which sets of topologies (out obsdilple topologies). Network
restrictions are used to define the set of underlying topologies for emtsition.

Given some data moddD and a computed network, the operational rules in Table 2 induce a con-
strained labeled transition system of transitidfis—> A”, whereC is a network restriction defining
a set of topologies under which this transition is possible, raigla send/receive action araction.
The operational rules of computed networks are shown in Table 2. Thmetric counterparts of rules
Choice’, Bro, Syncy and Par have been omitted. Létide(C, /) denote{¢; ~ ¢y € C[?/0] | b2 # 7}
and Obj(n) return the message typeoff n # 7, otherwiser. Thedy,(n) is defined such that it returns
n if Obj(n) & M, otherwiser. Moreover, let)[¢' /¢] denoten with all occurrences of replaced by’.

Inter; denotes that a single node can perform the send actions of a protabs abde under any
valid topology, and its network address is appended to this actioter, denotes a single node per-
forming a receive action, under the restriction that the node must be cedrii® some sender (denoted
by 7). Pre’ indicates execution of a prefix actiofGhoice’ defines that a computed network can behave
non-deterministically.Fze indicates that if a transition is possible f6f, then it is also possible for any
more restrictiveC’. Recv allows to group together nodes that are ready to receive the same meBsage
indicates the actual synchronization in local broadcast among a transmitez@eivers. This transition
is valid for all topologies in which the transmitter is connected (not necesdadisectionally) to the
receivers, which is captured ly; U C»[¢/?]. The communication results in a transition labeled with
m(w)!{¢}, so the message(u)! remains visible to be received by other computed networks.

As the communication merge operator defines a successful synchromizatiseen two computed
networks, its behavior is defined Bync, and Sync,, indicating synchronization on a receive action
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(sent by the context) or a communicatiahEze defines that in a term composed by the left merge, the
left computed network is succeed to perform the initial action, and then sudtirey term proceeds as

in parallel composition.Par defines locality for a computed network; an event in a computed network
may result from this same event in a sub-network.

Table 2. Semantics @NTterms

p ™M@ pr p 2% pr
@ : Intery R : Inters
[Pl ——¢ [P']e [Ple — 2wty [P']e
———— : Pre/ M Ze M : Choice , HreeAnt/An } —oN : Rec
Cn.N Lo N Ni+MNo e N ' recAn.t o N
RN ! m(u)? ! !
N 7 CN, : Eze, CCC' M= N Ao = 02 N : Recv
N =or N NIl e, N IS
m(w)!{¢ m(a)?
Ny M NNy Ny . Nt Lo M - Par
Ny | N PO, e NI NNz 0 N || N2
N DL N N PO A i M Do N '
(a7 yncy L 5 ” : LEze
Ny Ny B2 ey NN MUNy =c NT || N2
N m(u)!{¢} o Nll N2 m(uw)? o NQ, Nﬁ)C N,
I, ; - Synce 7 - Rest
N[ N2 ——=cucsiey NT TN WON T pigeic) WON
n / n !
A;M_(:S N : Abs N 70 N — @ Encap, Obj(n) ¢ M V nis asend action
VW) 2287 7 (N I (N) =c O (N7)

Rest makes sure that restrictions over invisible addresses are removed aadbiiess of a sender
with hidden address is concealed from the external observer by rtimgvds address t@. By using
network restrictions, we can easily define the set of topologies over visdues under which such a
transition is possible (by removing restrictions imposed on hidden nodésYyestricts communications
of a computed network to a set of messages not includéd .iin other words, if the message type of
actionn belongs talM, Obj(n) € M, the action is converted to, otherwisen is performed unchanged.
The Encap closes the communications @f; (V) on messages if/: receive actions over message types
m € M are prohibited. Recursion is defined in the standard fashidiedin

We consider the running example introduced in Section 3. The transition begults from appli-
cations ofIntery, Inters and Bro:

(X014 Il [Xals “ 5 apy [X(0)]4 || [rep(0)!-X,] 5

In this transition, noded broadcasts a message(0) and nodeB receives it, so that the parameter
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is substituted by). This transition is possible for topologies in whi¢his connected ta4, i.e. the ac-
companying network restriction {4 ~~ B}. Another possible transition ¢, (0)]4 || [X,]5, resulting
from an application ofintery and Par, is:

X001 Il [Xe)s X220 1%, 0014 1| XD

In this transition, nodel sends buB does not participate in communication. This transition is possible
for all topologies (for instanc®& may be connected td, but it has lost the message), denoted by
If we hide nodeA, then the possible transitions whenbroadcasts (resulting fromter; o, Rest,
Bro or Par) are:
req(0)!{?}

req(0)!{?}
_—

(rA)[Xp(0)]a || [X(]B (28} [Xp(0)]a || [rep(0)!. X,]B
(vA)[X,(0)]a || [X]B 0 [Xp(0)]a || [X]B

Here the observer cannot see who has performed the send action.

6. Branching Computed Network Bisimulation

We define the notion of computed network bisimilarity between nodes in a coesirbeled transi-
tion system, based on the notion of branching bisimilarity [10]. To define quivalence relation, we
introduce the following notations:

e = denotes the reflexive and transitive closure of unobservable actions:

-N=N;
— if N 5o N for some arbitrary network restrictiafi and N’ = N, thenN = N,

) @c denotes that eithe® ¢, or 7 is of the formm,(a)!{?} andmcwﬂ.
Definition 6.1. A binary relationR on computed network terms is a branching computed network sim-
ulation, if N7 RA5 implies wheneve; 5o N1:

e 7 is of the formm(w)? or 7, andN{RNs;

e or there areV; and Ny such thatVy = N <i>>c N3, where N1 RN and N RN,

R is a branching computed network bisimulatiorRifandR ~! are branching computed network simu-
lations. Computed networks; andN5 are branching computed network bisimilar, writtéh ~;, N>,
if N1 RN> for some branching computed network bisimulation relafian

Theorem 6.1. Branching computed network bisimilarity is an equivalence.

The proof of above Theorem is given in Appendix A. Computed netwagkrilarity is not a con-
gruence with respect to the choice, left merge and communication merggtagerFor example the
computed network$}reg(u)?.{}rep(u)!.0 and{}rep(u)!.0 are branching computed network bisimilar,
but their congruence is not preserved when they are added{itlg(«)!.0, since the former can only
sendsrep(u) while the latter can also sendsg(u). To obtain a congruence relation, we need to add a
root condition.
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Definition 6.2. Two computed network&/; and N> arerooted branching computed network bisimilar
written N7 ~,, Na,

e if N1 ¢ N, then there is aiV} such thai\ @c N3, and N7 ~ N2;
e if Ny ¢ N, then there is a] such that\/; @c N, andN7 ~, N3.
Corollary 6.1. Rooted branching computed network bisimilarity is an equivalence.

Theorem 6.2. Rooted branching computed network bisimilarity is a congruendghhiterms.

The corollary is an immediate result of Theorem 6.1 and Definition 6.2. Thef pforheorem 6.2
is given in Appendix B.
We will also exploit strong bisimilarity [25, 18] to reason about protocotpsses:

Definition 6.3. Two protocol processeB; and P, are strong bisimilar, notatioR®; ~ P, iff there is a
strong bisimulation relatio® over protocol processes such that

° (Pl, Pg) € R,

e for each pair( P/, P}) € R:
- Pl % P/ =3Py Py Py and(P/, PY) € R,
- P} % P} =3P/ P| 5 P!'and(P{, Py) € R.

The following proposition, relating strong bisimilarity to rooted branching caeguetwork bisim-
ilarity, is straightforward to prove by application &iter; » (see Appendix C).

Proposition 6.1. Let P, and P, be two protocol processes, such tifat~ P,. Then[Pi]; ~4 [P]e,
where/ is an arbitrary location.

7. Protocol and Computed Network Axiomatizations

Table 3 provides standard axioms for closed protocols [17]. Axi@ms 3 are standard for the choice
operator. AxiomsPr, 5 define the guarded command behavior regarding conditiorit can be proved
easily that the axiomatization given in Table 3 is sound for the term algebnatiopls modulo strong
bisimilarity (cf. [8]), and thus by Proposition 6.1 modutg.,.

Table 3. Axiomatization of protocol terms

O+P=P PT’Q P1—|—P2=P2+P1 P?”l
P1+(P2+Q):(P1+P2)+Q P’I‘2 P+P:P PT’3
[U]P17P2:P1, DFu=T PT‘4 [U]Pl,PQZPQ, DFu=F PT‘5

Ay(@) = P{a/z}, Ay((z: D)< P Pre
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Table 4. Axiomatization oENTterms

P1 = P2 = [[Pl]]g = IIPQ]][ PO [[0]]@ =0
[m(u)!.Ple = {}m(u){}.[P] P [m(w)?.Ple = {? ~ €}m(u)?.[P]e
[m(y)?.Ple = R . Py [Py + Pa]e = [P1]e + [P2]e
Zﬁedomainm [[m(u)7P{u/y}]]g
N+N=N Choq Nl ‘|N2:N1HN2+NQHN1+N1|N2
N1 +N2:N2 +N1 Chooy Cn.Nlu/\/ngn.(Nl HNQ)
N1+(N2 +N3)=(J\/1 -l-Nz)-‘rNg Chos (N1 +N2)LLN3=N1LLN3 + Mol NG
N+0=N Choy OLN =0
0= (vf)0 Dead  Cn.(C'm(u)? N +N)=CnN
CinN + Con. N = Cin.N, (C1 C Cs) Con Cn.(C'T.(N1 + N2) + Na) = Cn. (N1 + N2)
N | Nay =N | My Sy 0|N=0
(./\/‘1+N2)|./\/3=N1‘N3+N2|N3 Sy CT.J\[1|N2=0
Cm(u){?} N + Cl/m@) {3 N = ClE/m(@) {3 N Obs
Cim(u){l}. N1 | Com(@)?.No = C1 U Coll/?m(u)!{€}. (N || N2) Sync,
C’lm(ﬁ )'{K}Nl ‘ an(%)’? N2 =0 (m 7é nvV ﬂl 7’5 ag) Syn<22
Cim(w)?.Ny | Com(u)?.Ne = C1 U Com(u)?.(N7 || N2) Syncs
Cym(uy)? Ny | Con(uz)? No =0 (m#nVu #Us) Sync,
Clm(ﬂl)'J\/l{él} | an(ag)'{fg}./\/'g =0 Sync5
(W) (N1 + Na) = (WON7 + (V0N Resy
wOnN = hide(C,O)n.(vON  (n=m@WINLAC)Vn=T Reso
wl) Cm(u){L} N = hide(C, 0)m(u)!{?}.(vO)N Ress
W) Cm(u)? N = hide(C, O)m(u)?.(vON Resy
O (Cn.N) = Cn.Oy(N), Obj(n) € M Vn isasend Ecp,
Vo (CnN) = Cépr(n).Var(N) Absy Oy (Cm(w)? N)=0,me M Ecpy
VN +N2) =V (N) +Vau(Na)  Absy 0N+ Nao) = 0 (N1) + 0 (N2)  Ecps
Va(0)=0 Abss Iy (0) =0 Ecp,
recAn.t = t{recA,.t/ A} Unfold
s=t{s/A,} = s = recA,.t, A, guarded irt Fold
recAn. (A +t) = recA,.t Ung

recA, . (CT.(C'Tt' + 1)+ s) = recA,.(CT.(t +1t) + ), A, unguarded irt’ WUng,
recAn.(Cnr.(An +t) + 8) = recAn.(Cnr.(t + 8) + 5),mr € {m(u)?, 7} WUng,

Vu(recA,.t) = recA,.V(t), A, is serial int

Hid
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Py
P
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Br

LEz,
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Ty
S3
Sy
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We proceed to present an axiomatization for the process i@y modulo rooted branching com-
puted network bisimilarity. The axioms are given in Table/, says that two equal protocols, when
deployed at the same node, result in equal networks. Axi®ms relate the behavior of a protocol
deployed at a node to a computed network termPJnsummationy _ is used to denote a choice over
a finite set of data elements, in this ca&enain,,; summation over an empty set denotesDead
explains that hiding an address in a deadlock computed network haseub. &ffon expresses that if
the same behavior happens under two different sets of topologiesnanskbis included in the other
set, then from the view point of an external observer, the behaviarscor the superset of topologies.
Obs expresses when a send from a node with a hidden address hasai@effecan be equated to any
send from a node with a visible addre<sho,_4 define idempotency, commutativity, associativity and
unit element for the choice operator. The parallel composition of two commetebrks is defined in
an interleaving semantics, as in the process algata[3], by the axiomBr; in a network composed
of two computed networkd/; and N5, each network may perform a local action (since they are not in
the range of each other or due to noise in the environment they do n@&eslta synchronize), or they
may communicate via local broadcadtFz, 3 define axioms for the left merge: the left operand can
perform an actionfFEz), the choice operator can be distributed over the left mekde:{), and when
the left operand cannot do any action, then the left merge results intodéodkedl Fz3). S, and.S,
define commutativity and distributivity of choice over the communication mergeatperespectively.
Ss defines that when an argument in a communication merge composition is a deddéocthe result
of the composition is a deadlock. When an argument in a communication mergesitorpcan only
performsr, then the result is deadlock as explainedinbecause the action originates from a wireless
communication which occupies the common communication medium, and therefaraat te ignored
as in [3]). Sync,_5 define synchronization between two computed network terms. Generadlkispe
two terms can be synchronized if they send/receive the same message vedmagarameter values.
T, and T, express when a receive andaction can be removed respectiveRes; defines distribution
of restriction over the choice operatoRes, 4 express the effect of the restriction operator: network
restrictions over hidden addresses are removedzels, restriction has no effect on or send actions
from visible addresses, except for removing restrictions over hidddreases. IRess, the address of
a hidden sender is convertedto Abs; explains the effect of the abstraction operator on a computed
network: each action is converted tor by d5;(n) if Obj(n) € M, otherwisen is unchanged.Abss
defines distribution of abstraction over the choice operaliop, and Ecp, explain that an encapsula-
tion operator parameterized by a set of messadgwohibits a computed network to communicate with
other networks by receiving a message= M. Ecp, defines distribution of abstraction over the choice
operator.Abss and Ecp, defines the effect of abstraction and encapsulation operators olodead

We define a guardedness criterion for network names to ensure thawvarkh@ameA,, specified
by A,, = ¢ has a unique solution, denoted by A,,.t. A free occurrence of a network nark, in ¢
is calledguardedif this occurrence is in the scope of an action prefix operator{nmefix) and not in
the scope of an abstraction operator [1]; in other words, there is arsubtg.t’ in ¢ such that; # T,
and.A,, occurs int’. A, is (un)guardedn ¢ if (not) every free occurrence of,, in t is guarded. ACNT
termt is guardedif for every subtermrecA,,.t", A, is guarded in’. This guardedness criterion ensures
that any guarded recursive term has a unique solution. To undenstand’'r does not ensure that a
recursion has one solution, consider the following exampieZ,,.(C'7.Z,,) has solutions like”7.0 and
C1.C"req(u)!.0, while they are not rooted branching computed network bisimilar.

Unfold and Fold express existence and uniqueness of a solution for the equdtioa ¢, which
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correspond to Milner's standard axioms, and Recursive Definition PrincipléRDP) and Recursive
Specification PrincipléRSB in ACP. Unfold states that each recursive operator has a solution (whether
it is guarded or not), whildold states that each guarded recursive operator has at most one sdhation.
[X,(0)]a and[X,] 5, by application ofPrg, Py 2—4 and Unfold, can be converted to

[Xp(0)]a = {}req(0){A}.[Xp(0)]a = [Xp(0)]a = recXn.({}req(0){A}. X5)

[XolB =22im01{7 ~ B}req(i)? {}rep(t) { B}.[Xq] 5 =
[XolB = recXpm. 320 ({7~ Blreq(i)?.{}rep(i){B}.X;n)

It should be noted that protocol names with recursive definitions, whketoged at a node, result
in computed network terms with recursive behaviors. Protocol names withtidas in which protocol
names prefixed by actions, can be easily turned into a guarded recopsoator by application of
axioms Pry_g, P1_5 and Unfold (see above example). However, a recursive term in the scope of an
abstraction would become unguarded, as we will explain below. AxiOmg WUng, and WUng,
make it possible to turn each unguarded recursion into a guarded one.

A complete axiomatization of finite-state behaviors in the context of brancléigilarity has given
in [8]; four axioms for removal of unguardedness were provideghasvn below:

uX(X +FE)=uXE R3
uX(t(tE+ F)+G) = uX(1(E + F) + G), providedX is unguarded il R4
pX(T(X+E)+7(X+F)+G)=pX(1(X+E+F)+G) Rs
uX(1(X+E)+ F)=uX(r(E+F)+F) Rs

where E, F', G are meta-variables that range over open terMisa variable, and: X E' represents a
solution of the equatioX = E. Our axiomsUng, WUng, and WUng, correspond to the axiom3s,

R4 andRg, respectively. Besides axiom¥Ung, removes self-loop receive action, as a receiving node is
equivalent to an empty computed network. Axidty is derivable fromR, and R as shown below:

pX(T(X+E)+7(X + F)+G) =F
pX(r.(r(X+F)+ G+ E)+7(X + F) + G) =
pX(T.(X+F+G+E)+7(X +F)+G) =Fo
pX(r.(r(X+F+G+E)+ F+G)+7.(X+F+G+E)+G) =
pX(T(X+F+G+E)+G)=Fs
pX(r.(F+G+E) +G) =t

pX(t( X+ F+E)+G)

Axiom Hid expresses that the abstraction operator can be moved inside and of@iEsidecorsion
operator, whemd,, is serial int. The free network namel,, is serial in ¢, if it does not occur in the
scope of parallel, communication merge, left merge, restriction, encapsillatid abstraction operators
in t. This side condition is required to preserve the soundness of axionpksred in [1] (This axiom

!personal communication with Rob van Glabbeek learned us that he is afithis, but never wrote it down.
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was also considered in [9], which needs a side condition to be sound irmibext of CCS. It should
be noted that the abstraction operator can make a guarded recursi@rdedy Thus by applying axiom
Hid, we can move the operator inside the recursion operator and apply it$, @fféch may result in
unguarded recursion. Then by moving it out and applyiti§ng, and WUng,, we can convert it to a
guarded one. Finally, by applyingnfold, we can remove the abstraction operator completely.

Theorem 7.1. The axiomatization is sound for the term algelitaCNT')/ ~,, i.e. for all closed com-
puted network termd/; andNs, if N1 = A, thenNy ~, No.

The proof of this theorem is presented in Appendix D. Using the givennaxim Table 4, we
can derive sound axioms ov&BPTterms given in Table 5. AxionPar;_z explain commutativity,
associativity and unit element for parallel composition for the parallelaipeias expected.Ress g
explain that number of repeats and the order of the restriction operat®mnlozeffect on the behavior of
computed network termsies; explains scope extrusion of the restriction operator.

Table 5. Sound axioms ov&BPTterms

Ny || No=Nso || Ny Pary (W)N =N,0< fi(N) Ress
N1 H (N2 || N3) = (Nl || NQ) H N3 Par2 (l/él)(VEQ) Vgg)(ygl) R€86
N1 H 0=0 PCL’I“3 (llé)Nl H N2 = (Vé)( H Nz),é Q/fl(Ng) R687

We apply the axioms in Table 4 to the running example. The following equatioicatedhat the
behavior of[ X,,(0)] 4 || [X,] B, when its communication to receiveq andrep is restricted, is:A can
broadcast a message lBitdoes not participate, of can broadcast a message dhdeceives it for a set
of topologies in whichB is connected toi.

My = [X,(0)]a = {}req(0){A}.rec Xy ({}req(0)!. X5) = {}req(0){A} My
Ma = [Xqls = i1 {7 ~ Blreq(i)?{}rep(i){ B}.
recXm. D o1 ({7~ Blreq(i)?{}rep(i)){ B}.An)
=>i0117 ~ B}req(i)?{}rep(i)l. M

8{req,rep}(Ml || M2) = a{7"eq rep}(Ml U~M2 + MQuMl + M; ‘ ./\/lg

= 8{Teq,7'ep}({}'r6q( )'{A} Ml H‘MQ + Zz 0, 1{? ~ B}T&q( )? {}7’6])( )' MQH‘Ml

+ {3req(0){ A} My [ 32,0 1{7 ~ B}req(i)? {}rep(i)l. Mo)
= {}req(o)!{A}'a{req,rep}(Ml H MQ) + {A ~ B}req( )'{A} a{req rez)}(Ml H {}Tep( )' MQ)

Let C be a hidden node that relays; messages that it receives, i req(z)?.req(z)!. Xnm.
Consider a network consisting of nodds B and C' where the address @ is hidden. For such a
network, we can derive(, ., p1 ([X,(0)]a || [Xq]B) = Otreg,rep} ([Xp(0)]a || [X(] 5 || (CO)[Xm]e), Since
both are a solution of the following recursive term:

recZy.({}req(0){A}.Z, + {A ~» Blreq(0){A}.recZ,,.({}req(0)!{ A}.Z,, + {}rep(0){B}.Z,)).

Thus a node that relays messages has no effect on the behavior efilogln
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ProtocolsX,, X, and X,, can be a part of a simple routing protocol, each specifying the behavior
of a node as the initiator (to find a route to a specific destination), destinatidrmaldle node (which
relays messages from the initiator toward the destination) respectivelyokivglete the definitions of

these protocols as given below. To increase the readability of coderiteady, o m(u)?.Ap, instead

of A,, = m(x)?.[r == u]A,,, Ap,. ProcessX,, keeps the address of the next hop on a route to the

destination by the variableext. When it does not know any path to the destination, it broadeagts
recursively until it finds a route by receivingp () from the next hop with an addressOtherwise when
Xp, knows the address of the next hop, it sends data through the next bup destination. However,
it may receive arerror message from the next hop, which indicates it cannot be used as atmther
destination (due to link breakage or some failure at the node). In this capedbtess will setext to the
unknown address.

Xy, (next : Loc, addr : Loc) g =

[next! =?|data(next)!. X, (next, addr) + error(next)?.X,,(?, addr)
,req!. X p, (addr)
X, (addr : Loc) = rep(x)?.X,, (z, addr) + req!.X,, (addr)

Xomo (neat = Loc, addr : Loc)g def

[next! =?](data(addr)?.qdata(next)!. X, (nect, addr)+
error(next)?.gerror(addr)!. X, (?, addr)+
error(addr)!. X, (7, addr))

,req?.greq!. Xom, (next, addr) + rep(x)?.@rep(addr)!. X, (z, addr)

X g (addr : Loc)g o
req?.orep(addr)!. X, (addr) + data(addr)?. Xq, (addr) + error(addr)!. X4, (addr)

The behavior of a middle nodeX,,,, when it does not know a path to the destination is the same as
before (i.e. relayingeq, and alsorep messages), but when it receivesea message, it will keep this
address to reply teeq messages in the future. When a middle node finds a route to the destination, it
also relaysiata anderror message. In this case, it also non-deterministically sends to model link
breakage between itself and next hop. The process of a destinatienXxigd replies toreq messages
by sendingrep as before, and receivesta. It also sendgrror in occurrence of a failure at the node.

We are going to examine if this simple protocol, when its processes are ddpmoyrodes in a
MANET, i.e. [X,,(?, A)]a || (vC)[Xmo(?,O)e || [X4 (B)]5, then data messages are correctly routed

from the initiator to the destination. The specification of the MANET in which datssiages are routed
from the source addrestto the destination addregsis:

{}r.recZy,.({}data(B){ A}.Z,, + {}data(?){A}.Z,,+
{}data(?){A}.recZ,,.({}data(?){A}.Z,, + {}data(B){?}.Z,,))

which indicates (after finding the route modeled by the initialction) A sends its data t@& directly, or
A sends its data to an unknown location, which will send dafa.té/e can use our axioms to examine if

V {req,rep,error} (Ofrep,rep,error,datay ([Xpe (7, A)]a | (VO) [Xmo (7, C)le || [ X4 (B)]5)) Is @ solution forZy,,.
Let x(sa, nexta, sp, sc, nextc) stand for

a{rep,rep,error,data}([[PSA{nextA/next}]]A H [[PSB]]B || (VC) [[Psc{nextc/next}]]c)
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whereP; is a subprocess dP after the®) indicator in previous specifications. It can be proved that (see
Appendix F):

V{req,rep,er'ror} (X(Oa ?a 0,0, ?)) = V{Teq,'rep,error}(TECZ'{}T'X(O? B7 0,0, ?) + {}TX(Oa Ca 0,0, B)) (l)

wherex(0, B, 0,0, ?) specifies the scenario in whicki,, has a direct route t& at the beginning (since
in future it may use another paths) and consequently sends its data direBtyathile (0, C, 0,0, B)
specifies the scenario in which,, has found a route vi&' to B at the beginning and consequently sends
its data viaC' to B. By application of axioms, it can be proved that the following equations hold:

{}T~V{req,7‘ep,er7‘or}(X(O; B, 0,0, ?)) =
OV {requrep.crmony (recZp { }data(B){ A} Zp + {B ~ A}r.x(0,7,0,0,7)) @

{}T'V{req,rep,ermr} (X(O, C.0,0, B)) =
U7 Vireq,rep,errory (recZo { }data(?){ A}.Zc + {}7.x(0,7,0,0,7)+
{}data(M){A}.recZop.({}data(){A}. Zcg + {}data(B){?}.Zc)+  (3)
{}r.recZ..({}data(?){A}.Z. + {? ~ A}7.x(0,7,0,0,7)+
{}r.recZy{}data(?){A}.Zy)).

By application of axiomd¥Ung,_,, UnFold, Hid and equations 1-3, it can be proved that:

Vm(x(0,7,0,0,7)) = {}7.(
{}data(B){A}.Vr(x(0,7,0,0,7)) + {}data(?){A}.Var(x(0,7,0,0,7))+
{}data(?){A}.recZop.({Ydata(?){A}.Zop + {}data(B){?}.Var(x(0,7,0,0,7)))+
{}r.recZy{}data(?){A}.Zy).

(4)

which is very similar to the specification of a MANET. However, there is a loginéd byZ,; in which

A recursively sends data to some unknown node ('g.but that node does not route dataRo This
scenario happens whetroutes data through a middle node. If the link between the middle node and
B breaks down, then it broadcastsor message. I loses this error message, it never finds out about
the invalidity of its next hop and continues to forward its data to the next hape @ the solutions

is to assign a timer to each route, which becomes invalid when the timer times out.vétoifeve
change the definition aX,,, such that it retransmitsrror even after its next hop is unknown, th&p

is removed from the above equation. We can also prove such a progeatydbng more middle nodes
while their addresses are hidden. The restriction operator helps toyspetidviors for a number of
unknown locations.

8. Completeness of the Axiomatization for Finite-state Behaviors

We prove that the axiomatization in Table 3 and 4 is ground-complet€Ndr terms with finite-state
models, modulo rooted branching computed network bisimilarity. Following theoaphp of [1], to
restrict toCNT terms with finite-state constrained labeled transition systems, we provide @tiyalta
restriction for recursive termeecA,,.t. We consider so-callefinite-state Computed Network Theory
(CNTy), which is obtained by restricting the closed computed networks irCH& syntax: every re-
cursive termrec.A,,.t must beessentially finite-statavhich means that its bound network names do not
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occur in the scope of parallel, communication merge, left merge, restrictioapsulation, and abstrac-
tion operators irt. Recall thatA,, is serial int whenrecA,, .t is essentially finite-state. For instance,
recZn.({}req(0)!{A}.0 || {7 ~» B}req(x)?.Z,) is not essentially finite-state; it produces an infinite-
state transition system, since at each recursive call, a new parallet@psrgenerated.

It is trivial to see that each finite-state process can be described sgantilly finite-state recursive
term. Conversely we can show that ev&INT; term has finitely many states in the transition system
generated by the operational rules. See Appendix E for the proof.

Proposition 8.1. Let A/ be a closedCNT; term such that every subtermacA,,.t is essentially finite-
state. Given a data moddD with finite data domains, the transition system fdrgenerated by the
operational rules has only finitely many states.

Theorem 8.1. Given a data modeD with finite data domains, the axiomatization is ground-complete
for the term algebrd (CNTy)/ ~,, i.e. for all closed finite-state computed network terkisand N>,
N1~ No impliesN; = Ns.

The proof of the above theorem is presented in Appendix G.

9. Related Work

Related calculi to ours are CBS#, CWS, CMAN, CMbkcalculus and SCWN [24, 22, 11, 12, 20,
26, 13]. In all these related approaches, the only equations betwégarke were defined by using
structural congruence. None of these papers provides a completaadidation for their algebra of

MANETSs. We shortly go through these calculi, with a focus on their apgroamodeling topology and

mobility, and on their purpose of verification.

CBS# [24], an extension of CBS, provides a framework for specificatimh security analysis of
communication protocols for MANETSs. In this approach, the mobility is modeled iitglin the
semantics. The operational semantics is parameterized by a set of catyegctiphs, each imposing
a set of connections between nodes in a network. Each transition of aBWIAdNparameterized by a
connectivity graph. In other words, the connectivity graph definedétavior of a network at each
step, while in our approach the behavior of a network defines the sepaibgies under which such a
behavior can occur. Consequently we merge all transitions, and theésponding topologies leading
to the same state, into a transition subscripted by a network restriction. Thappwach results in a
more compact labeled transition system.

CWS [22] (Calculus for Wireless Systems) is a channel-based algebraddeling MAC-layer
protocols, for which interferences are an essential aspect. In thisagpthe physical characteristics of
nodes such as their physical location and transmission ranges areeredsighile locations of nodes
are static. CMN [20] (Calculus of Mobile ad hoc Networks), inspired byEWWmodel MANETSs above
the MAC-layer, concerns modeling the mobility of nodes explicitly in the semantioghis aim, for
each node a physical location is specified and the underlying topologyiveddy a functiond, which
takes two locations and computes their distance. If the distance is smaller treedefimed value, nodes
at those locations are connected. Mobility is modeled by changing the lochtimamode to an arbitrary
location, which may lead to state space explosion if locations are drawn freal eoordinate system.
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CMAN [11] (Calculus of Mobile Ad hoc Networks) provides an approfmtmodeling of MANETS
where for each node, a connectivity set (its neighbors) is specifiedbiliy of a node is modeled
explicitly in semantics by manipulation of the connectivity set of all effectedesphbly adding/removing
this node from/to their connectivity set. In a more recent work [12], CMAN been extended by a static
location binding operator to limit the arbitrary mobility of nodes in the scope of gegaior, so that a
MANET can be verified for a specific mobility scenario.

The w-calculus [26], a conservative extension of thealculus, provides an approach to specify
MANETS in the same vein as CMAN, but models connectivity information, calletgss interface,
at the specification level by a group concept; a group is a maximal cliqgue donrzectivity graph, and
two nodes can communicate if they belong to the same group. Node mobility is edptuough the
dynamic creation of new groups and dynamically changing process icdstfasing appropriate rules
in the semantics. By defining a mobility invariant which constrains node mobilitiescan derive the
model of a MANET and verify it against a mobility scenario. In contrast, gisiar approach, one can
verify the model of a MANET against different mobility scenarios by defjnaimedicates over network
restrictions.

Recently in [13], a simple process calculus with broadcast operator xteisded by realistic mo-
bility models in an orthogonal way, so-called SCWN (a Simple Calculus for Vésahetworks). This
approach, which can be understood as a generalization of CWS, mpaiape to verify properties under
a specific mobility model, in contrast to the arbitrary mobility model. To this aim, theifggion of
a node is equipped with a mobility function which determines the movement trajectérdenode over
time and consequently its neighbors; the semantics incorporates a notiorbaf tijioe passing and is
parameterized by a mobility model which manipulates the mobility function of a nddis.iethod is
based on computations of the transmission range of a sender using ploctians of nodes to derive
the real underlying topology. This approach suffers from state expidsecause of its real-time delay
transitions, which may be resolved by using a discrete time delay (as ptbpgses inventors). In

Table 6. Comparison between related algebras

Node specification  Connectivity Mobility

CBS# [p, $] - implicit
CWS n[ply, derived byd(l,1) -

CMN n[plf, derived byd(l, ") explicit
CMAN [p]7 o explicit
w-calculus p:g g explicit
RBPT Iple - implicit
SCWN p)} derived byarea, (f(t))  explicit

Table 6, we have compared our core algeBRPT, with the related ones in terms of node specification,

how connectivity information is specified or derived, and how mobility is modelberen refers to the

name of the nodée, to the logical addresg,to the physical location; to the transmission range, to

the connectivity set, ang to the connected groups of a node. Finaflydenotes the mobility function,

which defines the location of a node at timendT is a timeout when the mobility function is updated.
A behavioral congruence is based on an external observer tretvebsa system through a limited set
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of observables (called barbs). A MANET consists of nodes that eaghdn (physical or logical network)
location/address and a transmission range. Different observabldsfared based on how the address
of nodes, the transmitted values and the transmission range of nodesnaigeced [14]. However,
it is not obvious to decide what are adequate observables for mobile ealdwoeless broadcasting
calculi [22, 14]. In CBS#, two networks are distinguished in terms of thegiiability to store data terms
in a network location: the pairs of data terms and network locations are teevabtes. In CMN, two
networks are distinguished in terms of transmissions over a channel nanieegmossible receivers on
that channel: message transmission, communication channel and thefranigeemitter are taken into
the account. The behavioral congruence in CMAN is defined in terms alitpof transmissions. Thus
two process with the same number of transmissions deployed at the samekrietation are equivalent
irrespective of the values transmitted: this framework is intended for thetdwteof intruders which
cause some extra transmissions from some locations-dalculus two MANETS are distinguished in
terms of their capability to send or receive data values from a set of grdune behavioral congruence
is defined by a bisimulation relation and does not offer an explicit definitiombetrvables, but since
it is a conservative extension of thecalculus at least contains the observables ofrtfealculus, i.e.
channel names [14]. In SCWN, two MANETS, each under a mobility modeldestinguished in terms
of their capability to send and receive data terms over an area in a time interiRBPT, two networks
are distinguished in terms of their capability to transmit data from a location fet afdopologies.
Our behavioral congruence is defined by a bisimulation relation, but sittea locations of nodes and
connectivities of nodes (i.e. range) are observables. In Table 7s&ceaur notation for send and receive
actions as a unifying notation to show that an equivalence relation holdelnfeanework under the
corresponding behavioral congruence, denoteg dyetween the basic networks consisting of one node.

Table 7. Comparison of behavioral congruence relations

Observables Equivalent MANETSs Distinguished MANETS$
CBS# data, location  {[m(x)?.0,s] =0 lm(x)?.store.0,s] # 0,
Ulp, s] # '[p, s]
CWs - - -
CMN channel, range n[pl, = n[ply -
n[m(x)?.0];, =0
CMAN location [m(u)!.0]7" = [n(u)!.0],  [p]7 # [Pl7
[m(u)?.0]7 =0
w-calculus | channel PigL=pP:go m(x)?.0:9g#0
RBPT range, location [m(x)?.0], =0, Iple # [p]e
()ple = (vO[ple () [ple = [ple

In [14], different observables for process calculi for mobile anceleiss broadcasting systems in the
context of weak barbed congruences are discussed. The oblesreansider location, data and channel
names (which is applicable to channel-based process calculi). It is¢pthae behavioral congruence
based on location observables is included in the one based on data, wimnicides with the one based
on channel and location observables. It should be noted that in cuedwark for properties, when
locations are not needed to be considered, the restriction operatoe cardh. These properties are more
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related to the overall behavior of a MANET. In this case, our behavimratruence is based on range
observables and it coincides with the one in CMN (since broadcast is the@mmunication channel
in RBPT). On the other hand, for properties related to some specific nodes (ieetyfitheir locations)
in a MANET, like finding a route between two nodes, the observability of locaibelpful.

10. Conclusion and Future Work

We introduced Restricted Broadcast Process The®BF(I) to specify and verify MANETS, taking into
account local broadcast communication and mobility. We modeled mobility implicitly nmagécs,
by allowing arbitrary switches between topologies in each state. Our agptoanodel mobility and
formalize behavior of a network with respect to the set of topologies, madsieetwork constraints,
leads to a compact labeled transition. Moreover, by transferring mobilitgequa to the semantics,
our process algebra provides a natural way to model MANETS, bedapslogies are not a part of the
network specification.

To axiomatizeRBPTterms, we extended it with new terms and operators, to obtain Computed Net-
work Theory CNT). The behavior ofZNT terms is computed with respect to a set of topologies, spec-
ified by a network restriction. We gave an operational semantics, and diefimequivalence notion
between computed networks, called rooted branching computed networkldigy. We provided a
sound axiomatization foENT terms modulo rooted branching computed network bisimilarity. Our ax-
iomatization is ground-complete f@NT terms with a finite-state model; we have classified such terms
by imposing restrictions on recursive terms.

We are going to use mCRL2 [15] to write an interpreter based on our axiotiatizéllowing the
approach of [19], which converts the specifications written in our algtehits corresponding constrained
labeled transition system. We can analyze a MANET by model checking usngdilaly-calculus.

We would like to extend our framework with proof techniques to reasontgiyotocols with an infinite

data domain. Following [12], we intend to add an operator which abstraetgfamm the movements we
are not interested in. Finally, want to extend our calculus with stochastmeptsto evaluate MANET
protocols. Since the communication media is not reliable (and so MAC-lay&rqmis), performance
evaluation of protocols above the MAC layer is important to measure their quEtig/main challenge is
how to incorporate the rate of delays from the upper network layer (etpgol) with ones in the lower
layer network (e.g. the MAC-layer).
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A. Branching Computed Network Bisimilarity is an Equivalence

To prove that branching computed network bisimilarity is an equivalenceexpkoit semi-branching

computed network bisimilarity, following [2]. In the next definitiai, @c N denotes eitheN” ¢
N orn e {m(u)?, 7} andN = N".

Definition A.1. A binary relationR on computed network terms is a semi-branching computed network
simulation, ifAV; RA: implies wheneven; ¢ N

e there are\V; and ;' such that\, = N W, A7, whereA; R 5 and N{RN.

R is a semi-branching computed network bisimulatiorRifand R ~! are semi-branching computed
network simulations. Computed network§ and N5 are semi-branching computed network bisimilar if
N1RN>, for some semi-branching computed network bisimulation relaklon

Lemma A.1. Let A7 and N> be computed network terms, afitla semi-branching computed network
bisimulation such that/; RN.

o If N} = N then3A] - Ao = A A NRAG
o If Ao = A thenaAN? - Ay = N A NIRA

Proof:
We only give the proof of the first property. The second propertybsaproved in a similar fashion. The
proof is by induction on the number ef steps from\; to \V:

e Base: Assume that the number of steps equals zero. Rheand N must be equal. Since
N1RN; and AN, = N, the property is satisfied.

e Induction step: Assum@&/; = AN in n steps, for some > 1. Then there is at\{’ such that
N1 = N inn — 1 = steps, and\]’ %¢ N]. By the induction hypothesis, there exists,/slf
such that\s = AN} and NJRNJ. SinceN] S N andR is a semi-branching computed
network bisimulation, there are two cases to consider:

— there is anVj such thatVy’ = N3, N{'RNj, andN|{RNj. SoN; = N such thatV]RNj.

— or there areVy” and NV such that\y = N3 5o N3, where N RN and NJRN. By
definition, V3" 5 N yields Ny = N. Consequentl\s = N3 such that\V{ RN,
|
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Proposition A.1. The relation composition of two semi-branching computed network bisimulations is
again a semi-branching computed network bisimulation.

Proof:
Let R; andR, be semi-branching computed network bisimulations Witk | Vo and Vo RoN3. Let

N 2o M. It must be shown that
HN/,NéliNg N” ./\/’,/\./\/1731 ORQN”/\N/R1 OR2N3

Since N1 R1Ns, there eX|st/\/’, NJ such that\; = N” c N}, MiRANY and N{R1N3. Since
NoRoN3 and Ny = , Lemma A.1 yields that there is axi;’ such that\s = N3 and NVJ RN .
Two cases can be distinguished:

e n € {m(u)?, 7} andNy = Nj. It follows immediately thatVs = N5 — (o c N, MRioRoNg
andN{R; o RoNy .

o Assume/\/” c Nj. SinceNVJRoNj and R, is a semi branching computed network bisimu-
lation, there areV;” and AV such thatVy = N ) 4, NYRoNY and NJRoNj. Since

Nz = NY, we haveNs = N —= (n)) o N3 Furthermore N1 Ry o RoN3" andN{R1 o RoNj.
0

Corollary A.1. Semi-branching computed network bisimilarity is an equivalence relation.

Proposition A.2. Each largest semi-branching computed network bisimulation is a branchimguted
network bisimulation.

Proof:

SupposeR is the largest semi-branching computed network bisimulation for some givestramed
labeled transition systems. L&GRN2, Ny = Nj, MiRN; and N{RN;. We show thalR’ = R U
{(N{,N2)} is a semi-branching computed network bisimulation.

f N’ lc N7, then it follows from(N], N}) € R that there are\V};” and Ny such thaW’
N S N with (VT AT, (VL AZ) € R And N = A vields Vs = A2 2 v,

AV lc N7, then it follows from(N7, N2) € R that there areV]” and N} such that\; =
/\/’” c N with (N7, N3), (N, NY) € R. Since(N1,N)) € R andN; = N/, by
Lemma A.1, there is an’’”’ such that\} = Ng”’ and (A", N2") € R. SinceN]"” —= (n)) 7,

there are\;* and A such that\y” = N5* —= (t CNQ with (M7, N5*), (M), N5) € R. Since
NG = N andNy" = N5*, we haveV; = N5*. By assumption( LN;) € R so by Lemma

A.1 there is anV{™* such that\V] = N{* and (N[*,N5*) € R. SinceN;* c N5, there
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are N7** and Ny such that\;* = N*** o NY with (M7, N5*), (N7, N5) € R. And
N = Nj*yieldsN| = N7 —= (w20 NT.

(N*** NQ)ET\’,OR_ 07?,
NF N5) ERAWNGN)eRTIAWNTNY) ER
= N\ NM)eRoR1oR

By Proposition A.1;R o R~! o R is a semi-branching computed network bisimulation. SiRce
is the largest semi-branching computed network bisimulation and clRaflyR o R~! o R, we

haveR = R o R~! o R. Concluding \{ = N*** c N7 with (N, NR), (N NY) € R.
SoR’ is a semi-branching computed network bisimulation. SiRcds the largest semi-branching com-
puted network bisimulation’ = R

We will now prove thatR is a branching computed network bisimulation. N&tRA>, andN; ¢

N]. We only consider the case wheris of the formm (u)? or ~ denoted by, because for other cases,
the transfer condition of Definition 6.1 and Definition A.1 are the same. So #rer¥ and N} such

that\; = /\/’” ) —5 ¢ Nj with NyRNY and N{RN;. Two cases can be distinguished:

1. NJ = Nj: Since N1RN2, NiRN;, and N{RN3, we proved above that/{RN,. This agrees
with the first case of Definition 6.1.

2. Njl # N3: This agrees with the second case of Definition 6.1.

ConsequentlyR is a branching computed network bisimulation. O

Lemma A.2. LetR be the largest branching computed network bisimulation given for somé&aoresl
labeled transition systems. If there exdét —c, Ny S¢, -+ —c,, , Ni —c,, Ni, wherem > 0,
such that\V; RN2 and N{RN;, thenV <<y, : NRN;.

Proof:

SupposeR is the largest semi-branching computed network bisimulation for the givestraamed la-
beled transition systems. We show tiRft = R J,-,;-,,,{(N;*,N2)} is a semi-branching computed
network bisimulation. To this aim, it suffices to show that each p&jf, \2) € R’, i < m, satisfies the
transfer condition of Definition A.1

o IF N Lo N thenNy Do NY Sy -+ Dot N D6 /\f;', and sincg N, N>) € R, there
is a sequencd/, = N7* = .- = N such that NV}, V7). - -+, (N, N**) e R It follows
from (N, N;*) € R that there existV;*" andN** such that/\/** = N o N with
(-/\[i*’-/\/’i**”)> (./\/’i*,,./\/’i** ) cR. Hence/\/g - N** N** with (N’* N**”) (A/‘Z* 7-/\/;'** )
R’ as required.

o If /\/2 ﬂc N3, then it follows from(N], N3) € R that there existV]” and N}’ such that/\//

N’” c N Wlth (N, N2), (NY, N}) € R. Hence, there is a paik; = N”’ c N{
with (N7} /\/2) (M J\/’) eR.
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ThusR' is a semi-branching computed network bisimulation, and since it is the largesavwe® = R’.
Using Proposition A.2, we conclude the proof. O

Since any branching computed network bisimulation is a semi-branching cainpetigork bisim-
ulation, this yields the following corollary.

Corollary A.2. Two computed network terms are related by a branching computed netwinkilzison
if and only if they are related by a semi-branching computed network bisimulation

Corollary A.3. Branching computed network bisimilarity is an equivalence relation.
Corollary A.4. Rooted branching computed network bisimilarity is an equivalence relation.

Proof:
It is easy to show that rooted branching computed network bisimilarity is refl@nd symmetric. To
conclude the proof, we show that rooted branching computed netwarkilaisty is transitive. Let

Ni 2~ No andNy ~, Ns. SinceN; ~,, N, if N7 —c N, then there is aVj such that\, @c N;
andN] ~;, Nj. SinceN; ~,, N3, there is anV; such tha\Vs @c N3 andNj ~;, N;. Since branching
computed network bisimilarity is an equivalendé, @o N3 with N ~;, Ni. The same argumentation

holds when\/3 @C Nj. Consequently the transfer conditions of Definition 6.2 hold.&hdv,; Ns.
O

B. Rooted Branching Computed Network Bisimilarity is a Congruence

Theorem B.1. Rooted branching computed network bisimilarity is a congruence with respehe
protocol and computed network operators.

Proof:
We need to prove the following cases:

1. [Pi]e ~p [Po]le implies[a.Pi] 2~ [o.Pole

2. [Pi]e 2b [Po]e @and[P{]s =~ [P5]e implies[Py + P{]e ~ [P2 + Pi)le

3. [Pi]e = [Pe]le @and[P]¢ ~p [P4]e implies[[ui = ua] Py, P{le 2 [[u1 = u2] P2, P3le
4. N1 ~,p Ns impliesCn. N7 ~,, Cn.Na

5. N1 =~ Ny andN| ~,, Nj impliesNy + N{ ~.p No + Nj

6. N1~ Ny implies (VN7 =~ (V)N

7. N1~ No andN| ~,, N impliesAq || N =~ Na || N

8. M >~ Ny and N7 ~,, N impliesNi ILN] ~,, NolLN]
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9. M >~ Ny and N7 ~,, N impliesN; | N ~,, Na | N
10. N1 >y NQ impIies@M(/\/'l) >y 8M(./\/2)
11. N7 =~ N implies Vi (N1) =~ Var(N2)

Clearly, if N7 ~,, N> thenN; ~;, N5 witnessed by the following branching computed network
bisimulation relation:

R = [RIN Lo N7 =3NS - Ny e N AN =y NS witnessed byR }
U{RING e N = 3NT - Ny o N AN 2y NS witnessed bR}
U{(N1,N2)}.

We prove cases 1, 2, 6, 9 and 10 since the proofs of case 3 andibdae ® case 2, case 4 is similar
to case 1, cases 7, 8 are similar to case 9, and case 11 is similar to case 10.
Case 1 The first transitions ofa.P;], and [a. 2], are the same, and sing@;], ~,, [Pi], then
[Pi]e =~ [P1]e- Thus the transfer conditions of Definition 6.2 hold.

Case 2 Every transition[ P, + P[], ¢ N owes to[P]; ~>¢ N or [P}]s 2¢ N. Since[Pi]s ~
[P:]e and[Pl¢ ~ [P} there is anV” such thaf P]s "oc A7 or [Pile e A7 and N =~ A
Thus[P, + Py]; B¢ N with N =, N,

Case 6 We prove that ifAV; ~, N, then (V)N =~ (V0)N,. Let N7~ N5 be witnessed by the
branching computed network bisimulation relatiBn We defineR’ = {((v€)N], (vON3)|(N],N3) €
R}. We prove thatR’ is a branching computed network bisimulation relation. Supgogg\/{ Lo
(vf) N7 resulting from the application dtest onN] 5¢ N7'. Since(N{,N3) € R, there are two cases;
in the first casey is a receive or action and N7, Nj) € R, consequently(v0)N7, (vl)N3) € R'. In

second case there akd” and ' such that\] = NJ” @c Ny with (M, M), (N, N) € R. By
application ofRest, (V)N = (V)N with ((v0)N], (v)NJ") € R'. There are two cases to consider:

e (1) = n: Consequentlyv /)N’ i(y (VONT.

e () # n: in this casey is of the formm(w)!{?}, ¥ = n andC’ = hide(C,¢). If (n) = n[¢/?]
then (n)[?/¢] = n andC’ = hide(C[¢/?],¢) hold, otherwise(n)[?/¢] = (n) andC'[¢'/?] =

hide(C[¢' /7], ¢) hold where?’ # ¢. ConsequentlyvO)NZ’ %, (ve)AY.

According to the discussion above, there &f¢ and ) such thatv/)N3 = (V)N ﬂc, (vONY
with (vONT, WONG), (WONT, (VONY) € R'.

Likewise we can prove that; ~,, N5 implies (v{)N7 ~,, (v€)N>. To this aim we examine the
root condition in Definition 6.2. Suppose/)N; -¢/ (v0)N]. With the same argument as above,
(V) Ny ﬂcl (vO)N3. SinceN| ~;, Nj, we proved thatvl)N| ~;, (v€)N35. Concluding(vl)N7 ~
(V) Na.

Case 9 First we prove that if\7 ~, N2, thenN; || N ~, Ns || N. Let N7 ~, N> be witnessed
by the branching computed network bisimulation relati®n We defineR’ = {(N] || N, N] |
NN, N3) € R, N" any computed network terfn We prove thafR’ is a branching computed net-
work bisimulation relation. Suppos¥; || V" - N*. There are several cases to consider:
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e Suppose, is a send actiom:(u)! performed by an addregs First let it be performed by, and
N participated in the communication. That.lg] Mcl N and N Mc N’ give rise to
the transition\V] || N —{E}mluow?] N || N As (N, N]) € R andN] Mcl i
there areNVy and NJ” such thatV, = N/ m(a)!{Z/}Cl[gl/g NJ, where(¢ =? Vv ¢ = ¢') and
(TN, (NI NY) € R HenceNd || N = AN || N M o) N2 || A7 with
(NN NG H N, N TN NS N’) eR.
Now suppose that the send action was performeMyandN{ participated in the commu-
nication. That is, ] —u>c1 N and N/ U WY

N iﬁ[@/?]uc N || N, Since(N],N}) € R and/\/’ Mcl !, two cases can be con-

o N’ give rise to the transitionV] ||
sidered: elthe( ", N3}) € R, or there areVy” and N such that\, = N2’ %CI N} with
(N, NG, (NT NG € R. Inthe first case byar and Eze, N3 || N mcluc e/ Na | NV,

and(N | N',NJ || N7) € R. Inthe second casdf, | N = N} || N J)CHUC[EP NI |
N and(N || N NG [N, (N | NSNS TN e R

The cases wher& or \; does not participate in the communication are straightforward.

e The case wherg is a receive actiom(u)? or at action is also straightforward; it originates from
N1, N, or both in the former case and in the latter case it originates fvgrar .

Likewise we can prove that; ~,;, Ay impliesN || N1 =~ N || Na.

Now let A7 ~,, Na. To proveN:|N ~,, N3N, we examine the root condition from Definition 6.2.

Suppose\V; |V m@He,

o+ N*. There are two cases to consider:

e This send action was performed Mj at node?, and\V participated in the communication. That
is, Ny 2O A7 and v 22 A7, so thatVi WV 2P e M| AL Since
N1~ Na, there is anV} such that\s &Cl er)q Ny with (€ =7V £ = ') andN{ ~, N3.

14
ThenNQ ’N Aclucw/

/21 N5 || N7, SinceN| ~; N3, we proved thatv] || N7 ~, N || V7.

e The send action was perform@d at node/, andV; participated in the communication. That is,
N AT and o {‘}C /\f so that\y |V 22 Lo NG| AL Sinced; ~y,

Na, there is anVj such thaiV, —>cl N3 with N ~, M. ThenNy |V M&UC[(/? N |
N'. SinceNy ~, N3, we haveN] || N7 ~, N7 || M.

Finally, the case wher#&/; |V
by both\; andV.

m(u)?
——(C*

N* can be easily dealt with. This receive action was performed

Concluding N1 |\ ~,;, N> N. Likewise it can be argued thAf| A} ~,, N|Na.

Case 10 We prove that iftN] ~, Ao, thendy (N7) =~ dar(N2). Let N7 ~;, Ns be witnessed by the

branching computed network bisimulation relati®@nWe defineR’ = {(9ps(N7), Onr (NI |(NT, N3) €
R}. We prove thaR’ is a branching computed network bisimulation relation. Suppos@ihgh/?) ¢
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drnr(N7) results from the application afncap on N7 5o N7 such thatObj(n) sz/ M ornis a
send action. SincéN|,N}) € R, there areN}’ and N} such that\] = NJ' o NJ Wlth
(N, NG, (N NT) € R. Consequently, by application dfncap, Oy (Nj) = 8M(N2’”) RuA
O (N3) with (Onr (N7), Onr (NVT")), (Om (NT'), O (NT')) € R

Likewise we can prove that/; ~,, N> implies 9y (N7) =~ Op(N2). To this aim we exam-
ine the root condition in Definition 6.2. Suppo8g (A1) ¢ 9 (N7). With the same argument as
above,dy; (N2) —>c In(N3). SinceN| ~, Nj, we proved thaby, (N]) ~, 9 (N3). Concluding
Ot (N1) 22 Onr (N2). 0

C. Strong versus Rooted Branching Computed Network Bisimilarity

Proposition C.1. Let P, and P, be two protocol processes, such tiat~ P,. Then[P1]; ~4 [P]e,
where/ is an arbitrary location.

Proof:

Let P, ~ P, witnessed by the strong bisimulation relatiBnWe defineR’ = {([P;]¢, [Ps]e)|(Py, Psy) €

R}. We prove thaf?’ is a branching computed network bisimulation relation. Supp&sk ¢ [P/'].

results from the application ofnter; or Inters. In the former casey is of the formm(u)!{¢},
— {}andP| ™ pr, Since(Pl,P2) € R, then there is @} such that?, ™. P/ and

(P{’,Pé’) € R. ConsequentI)[PQ]]g Lo [PY]e and([P/]e, [PY]e) € R'. In the latter casey is of the

formm(w)? andC = {? ~» ¢}, andP] —= @ P/ With the same argumentatiof?]; —¢ [PY]e with

(IP{1es [P4]¢) € R'. ThusR' is a branching computed network bisimulation. Hefige~ P, implies
[Pi]e ~ [P2]e, and sincel P ], and[P], are matched in each transition step, we can conclude that

[Pi]e = [P2]e. 0

D. Soundness of theCNT Axiomatization

We define branching computed network bisimilation up=to(in the same way as [8]). On the one hand
it is less restrictive than the notion of a branching computed network bisimulafiarthe other hand,
if two computed network are related by a branching computed network bisimulatido~;, they are
branching computed network bisimilar (see Proposition D.1). Consequeistiydtion can be exploited
to alleviate soundness proofs of axioms.

Definition D.1. A branching computed network bisimilation uptg is a relatioriR such that it\; R N>
andN; = N Lo N7 with Ay ~, N and(7 is not a receive or actionV N 5, N') then there exist

NY N NG NG NG, N such thaiVy = A3 e A with

NI oy N ANG =y N AN RNG
N]{’ Zb Nf” /\N2// :b N—2*// /\ NTHRN’;N'

Similarly the converse must hold Ny = Nj ¢ N3
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Proposition D.1. If R is a branching computed network bisimulation upfpand\;RN>, thenN; ~;
No.

Proof:

It suffices to prove that the relation, R ~,= {(N7,N5)|IN1,No : Nf =~ NiRN2 ~, N5tis
a branching computed network bisimulation. So suppb$eN;, N2 and A are as indicated, and
N Lo N, Then eithen is a receive or action and\V;” ~;, N which completes the proof, or
there are\V] and N7 with N7 ~, N ~, N1 and N7 ~;, N} (4, N7 if i is a receive or action). By

Definition D.1, there ardV;, N’ such that\y = N @c NY with (M), N3), N N ) € o R .
Since N ~;, N, by application of Lemma A.1 and Definition 6.1, there af¢ and A" such that

Ni = NN with A~ NG and A ~, N3 ConsequentlyNs = A3 e A with
N NG, (NF NS €~ R ~. The same argumentation holds whei - N5’ O

To prove Theorem 7.1, it suffices to prove soundness of each axiatnlomoted branching com-
puted network bisimilarity separately. For axiafn, every initial transition of”;n.\ is obviously also
an initial transition ofCyn.N + Con.N. Vice versa, ifC1n.N + Con. N can perform an initial transition
becaus&’>n.N can, then by application of thBre and Eze rules in Table 217N can perform this
initial transition too. Similarly, it is not hard to argue the soundnesB,0§, R, Dead, Obs, Choice|_4,
Br, LEzi_3, S1_4, Sync,_s, Res1_4, Abs1_3, andEcp,_,, by showing that the terms on both sides of
each axiom satisfy the transfer conditions of Definition 6.2. Soundnessiarin P, is the direct result
of Proposition 6.1.

We focus on the soundness &f and 7>. We only explain the soundned%, as the soundness of
T, can be argued in a similar fashion. The only transition the tetmgC’7.(N7 + N2) + A>) and
Cn. (M + N3) in Ty can do is—c, and the resulting term8’r.(N1 + N2) + Ny and N + N, are
branching computed network bisimilar, withessed by the relalaronstructed as follows:

R ={(C'T.(N1 + Na) + Na, N1 + Na), (N, N)|IN € CNT}.

The pair(C'7.(N1 + N2) + Na, N1 + N>) satisfies the transfer conditions in Definition 6.1. Because
every initial transition tha€’r.(N7 +MN2) + N> can perform owing taVs, A7 +A; can perform too. And
after the initial - -transition,(NV; + N2, N7 + N2) € R holds. And every initial transitiolV; + A
can perform(’7.(N1 + N2) + N> can mimic, by first doing its - -transition.

Soundness of the axiorfinfold follows directly from the ruleRec, sincerecA,.t ¢ N <
t{recA,.t/t} - N. Soundness of axiomiold is a consequence of the following proposition, taken
from [8]:

Proposition D.2. If s ~, t{s/ A} thens ~,;, recA,.t, providedA,, is guarded irt.

Proof:

Foru,v € CNT we write u(v) for u{v/A,}. Assumes,t,v € CNT such that4, is guarded in
t, s >~ t(s) andv =~ t(v). We will prove that{(u(t(s))),u(t(v)))|lu € CNT} is a branching
computed network bisimulation up tg,. SinceA,, is guarded it and hence in(t), the first transition
with subscriptC' and labeln wheren # 7 generated byu(¢(s)) does not originate froms (which

can be easily shown by induction on the inference treel;(#¢s)) = u/(s) —¢ «”(s). Then also
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u(t(v)) = u"(v) Lo " (v) with o =, o/ anduw”” =, «”. It should be noted that since the free
network names of andv may be different, their substitution ir(¢) may result in different renamings of
bound names in(¢). Due to congruence of rooted branching computed network bisimilarity atcth
implies~;, we getu’(¢(s)) ~ u'(s), u”(t(s)) = u”(s), v (t(v)) >~ "' (v), andu" (t(v)) ~=p " (v).
The requirement starting with(¢(v)) follows by symmetry, so the relation is a branching computed
network bisimulation up ta<,, and by proposition D.1y(¢(s)) ~ u(t(v)). Work it out considering
u'(t(s)) = u(t(s)), we can prove that(t(s)) ~4 u(t(v)), SO sinceu is an arbitrary term, we have in
particulart(s) ~,; t(v) and hences ~,; t(s) ~ t(v) ~p v. Finally, takev = recA,.t; note that
recAp.t >~ t(recAp.t). O

Soundness of axiont/ng follows by application ofRec: recA,.(A, +t) —¢ t'{L/ A} <
recAn.t -¢ t'{R/ Ay}, and proving that'{L/A,} ~;, t'{R/A,}, whereL and R are the left- and
right-hand sides of/ng,. It is straightforward to show tha® = {(t{L/A,},t{R/A,})|t € CNT}
is a branching computed network bisimulation relation. In the same approaahgreess of axioms
WUng, and WUng, holds since the following relations are branching computed network bisimulations

R ={((Cmt" + t){L/ An}, (' + ){ R/ An}), ({L/ An}, (t + T){R/An}) }U
{(H{L/An}, H{R/An})|t € CNT s}
R" = {((An + O{L/An}, (t + ){L/An})} UL(H{ L/ An}, t{R/ An})[t € CNT s}

whereL and R are the left- and right-hand sides of corresponding axioms. To pRdvs a branching
computed network bisimulation, it suffices to show ttt&§L/ A, }, (t +t'){ R/A,}) satisfies the trans-
fer conditions in Definition 6.1. We havg’ + t){R/A,} —¢ t"{R/A,}, owing tot{R/A,} ¢
t"{ R/ A} by application ofChoice’. SinceA,, is unguarded it’, it is easy to show that

t{L/ A} = A{L/ A} Do (C'rt +){L/An}

and consequentf{L/A,} = (C'7.t' + t){L/ A} Lo t"{L/ Ay}, with (C'7.t' + t){L/ A}, (t' +
t){R/A,}) € R and(t"{L/A,},t"{R/A,}) € R'. Conversely every transition performed®yL /A, }
can be performed bt + ¢'){ R/A,}, while their resulted terms are included®. R” is proved in the
same way by application dfec.

To prove soundness of axiofid, we show that the following relation is a branching computed
network bisimulation up taz:

R" = {(Va(s{recAn.t/An}), Var(s{recA, .V (t)/An}))
|s,t € CNT and onlyA, is free ins}

To this aim we show thakR"” satisfies the following transfer condition: W, (s{recA,.t/A,}) —c u
then, for someu’ and v”, Vs (s{recA,.V(t)/An}) ¢ o, v’ ~, o and (u,u/) € R, and
symmetrically for transitions o y;(s{recA,.Vr(t)/An}).

Being a branching computed network bisimulation up=iofor R” implies

Vu(t{recAnt/An}) = Vi (H{ AV (t)/ An})
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which impliesV y; (recAp.t) ~p recA,. Vi (t), becausd’ y;(recA,.t) ¢ wif and only if
Vs (t{recAn.t/An}) 2 u, and similarlyrec A,V (t) - wifand only if Vs (H{ A, . Vs (t) ) An}) 2o
u.

We prove thatR””’ satisfies the above transfer condition, by induction on the height of theeimdfe
tree by whichC transitions ofV y; (s{recA,.t/A,}) are inferred.

The base cases of the induction are the following ones:

e if s=0o0rs=[0], then the condition above trivially holds.

o if s = HPH@/, thenVM(s{recAn.t/An}) = VM([[P]]KI) = VM(S{TGC.AnvM(t)/.An}) which
trivially holds.

o if s=Cn.¢,thenV  (Cn.s'{recA,.t/ A, }) 6M(17)c V(' {recAn.t/An}).

AISO V1 (C.' {recAn Y ar (8 /A Y) 25 0 00 (s {recAn.V as(£)/ A }), and the targets are
related byR".

We now consider the inductive steps. We have the following cases, badbd structure of:

o if s = A,, thenVy(s{recA,.t/A.}) = Vu(recAy.t) and Vi (s{recA,.V(t)/An}) =
Vo (recAn. V(). SinceV s (recAy.t) 5M—(77)>(; u, it must be thatrecA,.t —>¢ v with u =

Vi (v). Furthermore, it must be thafrecA,.t/A,} ¢ v by a shorter inference. As a conse-
quence we deriva v (t{recAn.t/ A, }) 2 0w
By induction we deriveV y; (t{recA,.V(t)/An}) — 5M(n)c u” with v~ v and(u,u') € R".

As a consequencec.A,.V o (t) 2o o andV s (reeAn.Var(t)) 2% 0 o (u). Sinceu”

has abstraction as the outermost operator (because it is derived bgitidrafrom a term that has
abstraction as the outermost operator), we also havéthdt.”) = u”.

o if s =5 + 5", thenV(s{recA,.t/An}) = Vi (s'{recA,.t/ A} + s"{recA,.t/A,}) and
Vo (s{recA, .V (t)JAn}) = Var(s'{recAn,. V()] An} + s"{recA,.Var(t) ] An}).

SinceV(s'{recA, .t/ A} + s"{recA, .t/ A,}) MC u, it must be that'{recA,.t/A,} +
s"{recAn.t/An} ~>c v with u = V;(v). Now we have two cases:

— if &' {recAnt/An} 2o v, thenV (s {recAy.t/ An}) Mc u, and by induction
Vo (s'{recA,.Va(t)/ An}) MC u” with v ~, v and(u,u') € R".
Therefore it must be that {rec.A,. Vi (t)/An} ¢ " with u” = Vj(v”). As a conse-
quenceV y; (s{recA,.Vr(t)/An}) 2o u’.

— if s"{recAn.t/A,} ¢ v, then the result is derived in a similar way.
o if s = recAp,.t', with A, # A, , thenV(s{recA,.t/A,}) = Vr(recAp . t'{recA, .t/ An})

andV s (s{recA, .V (t)/An}) = Var(recAp, ' {rec A, .V (t)/ A, }). Forthe casel,,, = A,
Vu(s{recA, .t/ An}) = Var(s{recA,.Var(t)/An} = Vr(s), which was proved previously.
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Since Vs (s{recAn.t/ An}) MO u, it must be thatrecA,,.t'{recA,.t/A,}) ¢ v with
u = Vr(v). Hencet' {recApm .t' | Am Y recAnt/ Ay} —c v. As a consequence

Vo (t'{recAm.t' | Am}{rec Ay .t/ An}) MO u

By inductionV y; (t'{recAy,.t' | A }{recAn NV pr(t) ) An}) M@ o’ with v ~, v and(u, u’) €
R". Thereforet'{rec Apm.t' | A }HrecAn. V() ) A} ¢ v” with u” = Vi (v”). As a conse-
quencerec Ay, t'{recA,. YV (t)/ A} ¢ v, and finallyV s (s{recA,. Var(t)/An}) 2o .

elf s=s | s"ors=sls"ors=s|s"ors=0y(s)ors= Vy(s)then the condition
trivially holds becauset,, cannot occur inside’ or s”.

A symmetric inductive proof is performed when we start frémtransitions ofV 5/ (s{recA,,.V s (t) / An})
in the conditions above.

E. CNT; Generates Finite-State Behaviors

Proposition E.1. Let V' be a closedCNT; term such that every subtermcA,, .t is essentially finite-
state. Given a data moddD with finite data domains, the transition system férgenerated by the
operational rules has only finitely many states.

Proof:

We extend the proof strategy used in [8]. First we introdQoéred Computed Network Thec(@N'l?),
where each occurrence of an operator (except static operatordepyment, parallel, left merge,
communication merge, restriction, abstraction, and encapsulation opgeatdref a name in a process
term has a color (black or red). We color a term using functiaa$\') and black(N'), which color

all occurrences of operators (excluding static ones) and nam&&ried and black respectively. For
instanceyed(Cn.0+N') = red(Cn.)red(0)red(+)red(N'). Furthermore, if in a subterm. P, P; + P,

[ur = ug) Py, Py, Cn. N, N1 + N or rec A, .t the leading operator is colored black, the entire term
must be black. Renaming of bound network names does not change tloeirSgrond we introduce an
auxiliary transition relatior- on CNT; such that eacH: generated by th€NT, operational semantics
can be matched by a sequence-efrelations. Therefore it suffices to prove that the set of closed terms
reachable by a colored version of any clos€de CNT; under the transition relatior- is finite.
The intuition behind coloring terms is to distinguish between two types of termbabkcunder the
transitions relation—; we color a term black to express that its red version has been visitetbefo

Consider the transition relationC CNT ¢ x {., (0),+,[], rec} x CNT';, whereu is a sequence of
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data terms inD, defined by:

[m(@)!.Pl, = [Ple;

[r(@)2-Pl; @ 1P{a/}]s, wherea € domaing,
[P+ Pg]]g = [P1]e and[P; + Pg]]g = [P]e

[[ul Py, Pole B [Py, if D Fw=T;

[[ulPr, Poe 2 [Po]s, D F u = F;
[Ap(@)]e = [P{u/z}],, whereA,((z : D))
CnN = N;

N+ Ny 5 N andN + Ny 5 N

NI No 2 N | Ny and Ny || Np 2 A [ NG i NG 2 A and A, 2 A7 respectively
Ni | No 2 N || No andAy | Na 2 NG || NG if Ny 2 A and N, 2 A3 respectively
NNy S NT | Ny if ANy S N

WON 2 (WON', andV 3 (N) 2 Var (N, anddy (V) 2 dy(N), if NS N7
recAn.t =5 t{recAn.t/ A };

P;

whered € {.,(a),+,[], rec}. We useN" —* N to denote that\” is reachable fror\" under the—
relation.

The above relation can be defined for colored terms with minor changesr@a should be defined
for any coloring of each operator, while colors of terms are preseunee@r all transitions except the
sixth and thirteenth where the black version of a protocol name and nextiesm is substituted for a
protocol and (free) network name:

[black(A,(@))]e == [black(P{i/z})]e;

[red(Ap(@))]e = [red(P{u/}){black(Ap(@))/red (Ap(@))}e;
black(recAy).t = t{black(recAn.t)/black(An)};
red(recAy).t =5 t{black(recA,.t)/black(A,) Y black(recAn.t)/red(Ayn)}.

If N Lo N for N, N/ €CNTy, and\ is a colored version o/, then there must ¥/, - - - , N, €
CNT$ with n € IN, such thatV;_, 2 N; whereA ¢ {.,(@),+,rec,[ ]} foralli =1,---,n, and

Ny = Npi1 or Ny, @), i1, @andN,, 41 is the colored version of/”. Since the data domains are finite
in ID, there are finitely many transitions labeled by data teims

FixanM € CNT;. Lete( denote the set of closed terms that are reachable fvonhikewise, let
e\, denote the set of colored terms that are reachable-tigom red(M). For anyN € ¢, a colored
version appears iffy ., and it suffices to prove that, , is finite.

It should be noted that if a teri is partly red andv" —* A, then the red part o¥/” is smaller than
or equal to the red part of/. Also for a red (sub)tern\v"and AN — A, the red part of\’ is smaller
than the red part ol. Thus for a partly red term’\V and A" — N, if the red part ofN” is smaller than
N, then this transition owes to a transition of a red subtertWjrwhile if the red part of\V’ is equal to
N, then this transition owes to a transition of a black subteri’in
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Furthermore for any tern\V' € &/, if A/ contains a subtermecA,.t with recA,, red, then no
black subterm of contains a free occurrencg,. Since\ is essentially finite-state, no black subterm
contains parallel, communication merge, left merge, restriction, abstraatidergapsulation operators.

These properties are trivially true foed (M), trivially preserved undef> whereA = {.,(@),+, 1},

and preserved undef> by renaming of bound network names. It follows that eAthe e’ is of the
form A(A1(N) @ @ Ai(NG) @+ - © Ap(Ny)) where® € {]|,], L}, A == () +Var+0um)* isa
sequence of restriction, abstraction and encapsulation operatomieragbitrary! € Loc, M C Msg,

and for all1 < i < n, eachV; contains na> operators (since recursion subterms are essentially finite-
state). Moreover if\' —* N’, then the black subterms @f that are inherited byV’—unlike the red
ones—are unchangedM'. Thus if a term\ € €/, , which is of the formA (A (V1) © - - © Ay (N;) ©
< © Ap(Ny)) where); is partly red N —* N7, andN’ is of the formA (A (N]) || -+ || 2N ||

|| Ap(N;)) and N} is completely black, thep has the form of A, (u)], or recA,,.t and has been
generated by a derivation

ALTNT) [ Al Ap@)]e) -+ | An (V) =
AL N - AaP{a/THe) || - - 1] An(NG)

or
ADLNT) |- [ DilrecAn.t) [+ || Da(N)) =
ABINT) -+ 1 Ait{recAnt/ An}) || -+ || An(N7))

such that for allb < j < nwith i # j, NJ —* Nj and[P{u/Z}], —* N or t{recA,.t/A,} —~
N, since the black version afl,(u) or recA,.t can only occur in the scope of prefix, choice and
recursion operators and no new parallel, communication merge, left meggection, abstraction, and
encapsulation operators are generated. Hence the/€rm ', , also occurs as a termy (A (N7) ||
o ATA@T) | | AN o AN (| -+ || DilrecAnt) [| -+ | An(NE)) in€ly
where[ A, (u)], or rec Ay, .t is completely red. It follows that for each tethi € ¢/, which is of the form
AAIT(MN) O -0 Li(N;) ©--- © Ap(Ny)) where there is @ < j < n thatN; is completely black,
there is anaximum red term\V* € ¢/, , which is of the formA (A1 (M) ©- - O A;(N;) O« - O AR (Ny))
where for all0 < ¢ < n, N; are partly/completely red while the length of its red part is maximal. Since
each maximum red term is achieved from a maximum red term by a derivatiomgduhnich the length
of red part is reduced, then the number of maximum red terms is finite. It folloats v, is finite. O

F. Proof of the Case Study

We briefly explain how the equations in Section 7 can be proved by the apmtiicd CNT axioms. To
this aim we use the following derived axioms:

Cn.(recAy.Clrt +t) " T2 o (rec A, 1), A, is guarded it WUngs,

recA,.Ct.(A, +t) + C'1.(A, +1) + s W recAn.CT.(A, +t+1)+5,CCC" WUng,

By application ofPy_5, Bro, LExe;_3, S1—4, andSync,_s, itis straightforward to show that0, ?,0,0,?) =
x(1,7,0,0,7), and we can derive the following equations.
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x(1,7,1,0,7) =
{}req!{A}.x(1,7,1,0,7)+
{}req!{A}.x(1,7,1,3,7)+
{}rep(B){B}.x(1,7,0,0, ")+
{B ~ A}rep(B){B}.x(0,B,0,0,7)+
{B ~ A}rep(B)!{A}.x(0,B,0,4,7)+
{}rep(B)I{A}.x(1,7,0,4,7)

(0, B,0,0,7) =
{}data(B)!{A}.x(0, B,0,0,7)+
{A ~ B}data(B)!{A}.x(0,B,0,0,7)+
{}error(B){B}.x(0, B,0,0,7)+
{B ~~ A}error(B)!{B}.x(0,7,0,0,7)

x(0,7,0,0,7) =
{}req!{A}.x(1,7,0,0,7)+
{}reg'{A}.x(1,7,0,3,7)+
{A ~ B}req'{A}.x(1,7,1,0,7)+
{A ~ B}reg{A}.x(1,7,1,3,7)+
{}error(B)!{A}.x(0,7,0,0,7)

x(1,2,0,3,7) =

{}req!{A}.x(1,7,0,3,7)+

{A ~ B}reg{A}.x(1,7,1,3,7)+

{}reg"{A}.x(1,7,0,0,7)+

{}reg!{A}.x(1,7,1,0,7)+

{}Yerror(B)!{A}.x(1,7,0,3,7)
For eachy with a parameter setting, we can derive an equation as above. Sincealbaglare guarded,
by Fold we can derivex(f) is a solution forZy, wheref is the sequence of parameter values. Recall
that Z = Z07770707?, Zp = ZO,B,O,O,?y andZqg = ZO,C,O,O,B- Thus byCOTL and Fold, x(0,B,0,0,7) is a
solution for the following recursive equation:

x(0,B,0,0,7) =
recZp.{}data(B){A}.Zg + {}error(B){B}.Zp + {B ~ A}error(B)!{B}.x(0,7,0,0,7).

Then byHid and Abs;_s:

v{req,rep,ermr}(X(O7 B, 0,0, ?)> =
V (req.reprervory (recZp {}data(B){A}.Z + {}7.Zp + {B ~ A}7.x(0,2,0,0,7)) 272
v{req,rep,error}(X(07 B, 0,0, ?)) =
V {req,rep,error} (recZp {}7.({} data(B)'{A}.Zp + {B ~ A}7.x(0,7,0,0,7))+
(Vdata(B){A}.Z5 + {A ~ B}r.x(0,7,0,0,7)).

Then by derived axioni¥ Ung; the following equation holds:

Cn'v{req,rep,error} (X(Oa Ba 07 07 ?)) =
CV freq,rep,errory (recZp { }data(B){A}.Zp +{B ~ A}7.x(0,7,0,0,7)).

Similarly the equation for (0, C, 0,0, B) can be derived, as explained in Section 7. By repeating the
argumentation above, the following equations can be derived:

VM(X(O> 7,0,0, 7)) =

recZ {317 + {31.Var(x(1,7,0,3,7) + {37.Var(x(1,7,1,0,2)) + {}7.Var(x(1,7,1,3,7))
{7.Vu(x(1,2,0,3,7) =

{}r.recZy2030{A ~ B}r.Va(x(1,7,1,3,7) + {}7.Z + {}7.Vam(x(1,7,1,0,7))
7.V (x(1,7,1,3,7)) =

{}rrecZr 21,3237V (x(1,7,1,0,7)) + {}7. VM (x(1,7,0,3,7)) + {B ~ A}.V(x(0, B,0,3,7?))
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where M = {req, rep, error}. By application of UnFold and equation{}r.V(x(0,B,0,0,7)) =
{}7.Var(x(0, B,0,3,7)) (which is straightforward to prove), the following equation holds:

Vu(x(0,7,0,0,7)) = recZ{}7.Z2 + {}7.Vm(x(1,7,1,0,7)) + {}7.Vu (x(B,0,0,0,7)).
By the equation of } 7.V /(x(1,7,1,0,7)), and UnFold:
ZVM(X(O, 7,0,0, ?)) = recZ.{}T.Z + {}T.VM(X(C, 0,0,0, B)) + {}T.V}\{(X(B, 0,0,0, 7)) (5)

where the unguarded can be removed by Ung,. Finally, by the equation oV ,;(x(B,0,0,0,7)),
UnFold, T, andFold:

Var(x(0,7,0,0,7) = recZ.{}7.Vp(x(C,0,0,0, B)) + {}7.Var(x(B,0,0,0,7)).

By substituting the recursions fdnr.V(x(B,0,0,0,7)) and {}7.V (x(C,0,0,0, B)) in equation 5,
UnFold, Hid, and WUng, o'

Var(x(0,7,0,0,7)) =
recZ{}1.(Z + {}data(B){A}. Vi (x(B,0,0,0,7))) + {}7.Z+
{}7.(Z + {}data(?){A}.V i (x(C,0,0,0, B))+
data(?){ A}V (recZep.({}data(?){A}.Zep + {}data(B)!{?}.x(C,0,0,0, B)))+
{}data(?)'{A}.Vm(x(C,0,0,2,B))+
{37.V(recZg{}data(?){A}.Zg))

where{}7.V(x(C,0,0,2, B)) = {}r.recZ..({}data(?){ A} Ze+{? ~ A}r.Z+{}7.recZq.{} data(?){A}.Zy).
By the derived axiomi¥Ung, and WUngs:

VJVI(X(07?70ﬂ07?)) =
V(recZ {}3r.(
{}data(B)!{A}.x(B,0,0,0,7)+
{}data(?)!{A}.x(C,0,0,0, B)+
{}data(M){A}.recZop.({}data(?){A}.Zcp + {}data(B)!{?}.x(C,0,0,0, B))+
{}data("){A}.x(C,0,0,2, B)+
{}r.recZy{}data(?){A}.Zy)).
By equations 1, 2 and 377.V(x(0,7,0,0,7)) = Cn.Vu(x(B,0,0,0,7?)), Cn.Va(x(0,7,0,0,7)) =

Cn.V(x(C,0,0,0,B)), and Cn.V(x(C,0,0,0,B)) = Cn.Va(x(C,0,0,2,B)) hold. Thus byHid,
UnFold, the equalities above and recursion, equation 4 in Section 7 has beesdderi

G. Ground-Completeness of theCNT Axiomatization

We are going to prove Theorem 8.1, that the axiomatizatio@NT is ground-complete for closed,
finite-state terms modulo rooted branching computed network bisimilarity. To thisagrperform the
following steps:

1. firstwe show that eadBNT; term can be turned intoreormal formconsisting of onlyo, C'n.t/, '+
t" andrecA,.t', which is guarded;
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2. next we defingecursive network specificatiomnd prove that each guarded recursive network
specification has a unique solution;

3. finally we show that our axiomatization is ground-complete for normal fpbysshowing that
equivalent normal forms are solutions for the same guarded recuesiv@rk specification.

Completeness of our axiomatization for &INT; terms results from stepsand3. In the following
sections we go through the above-mentioned steps.

G.1. Normal Forms

Definition G.1. Normal formsare terms made up of only, Cn.t’, ' + t”, andrecA,.t', where A,, is
guarded int’.

Lemma G.1. Any normal form¢ can be turned by the axiomatization in Table 4 into a so-cdiksatl
normal form>_{Cn.t*[t L t*}.

Proof:

We prove this by induction on the maximal length of the inference tree by wiightransitions oft
are inferred. The base cases of the inductiar,0 or t = Cn.t’ are trivial. The inductive cases are the
following ones:

e if t =t +t”, thent can be turned into the desired form by just summing the terms obtained by
applying the inductive argument tbandt”.

e if t = recA,.t', thent can be turned into the desired form by directly considering the term obtained
by applying the inductive argument t&{recA,,.t'/ A, }; by Unfold, t = t'{recA,.t'/A,}, and
by the operational rul&ec its transitions are those achievedijrecA,,.t'/ A, }.
0

Lemma G.2. Let t,¢' be normal forms. Thett’ = ¢ || ' ortlL#' ort | ¢’ or (v€)t or V() or Ops(t)
can be turned by the axiomatization in Table 4 into a head normal Yofe'.t*|t” ¢ t*}.

Proof:
straightforward. O

Proposition G.1. Given the data modeD with finite data domains, each closed terwf CNT; whose
bound protocol names have finite-state model and whose network namesatzur in the scope of one
of the operator, IL, |, (v¢), Vs or 9y for somel € Loc andM C Msg, can be turned into a normal
form.

Proof:
We prove this by structural induction over the syntax of tetnfpossibly open). The base cases of
induction fort = 0 ort = A,, are trivial because they are in normal form already.

The inductive cases of the induction are the following ones:

e if t = [0], then by application of; we havet = 0, which is in normal form.
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o if t = [a.P]port =[P + P"],ort = [[u; = ug]P’, P"]s, thent can be turned into a normal

form by application of axiom$’r, 5, Py 25 and induction ovefP’], and[P"],.
if t = Cn.t' ort =¢ +¢”, thent can be turned into normal form by induction oveandt”.

ift=¢|t"ort=4¢Ilt"ort=1¢t1]t"ort = (vl)t' ort = Oy (') for somel € Loc and
M € Msg, then following the approach of [1], we can tutninto normal form as follows. By
induction overt’ andt”, we first obtaint’”” by replacingt’ andt¢” insidet by their corresponding
normal forms. Since has a finite-state transition system by Proposition &/lhas a finite-state
transition system. Let;, - - - , ¢, be the states of the transition system’6fwith ¢/ = ¢,,. It can
be easily seen that, due to Lemma G.2, there exist{C}}jgmi (denoting network restrictions),
{T]Ji'}jgmi (denoting actions){kj}jgmi (denoting natural numbers) such that we can defive
ngmi Cj’ﬁn;i.tk;_. Hence we can characterize the behaviaf’bby means of a recursive operators

recAn, t4,, suchthat” = t, is the answer of such recursion. So we can tfrio a normal
form ¢"” as follows. For eachfrom 1 to n, we do the following: ifi is such tha#l; < m; - k; =1,

by application ofFold we havet; = recAn, (3 ;< 4 2i C;ﬁn;.tk;; + 3 j<mikizi Cint-An,). It
should be noted that axioifbld is applicable, sinc€ andt” have been turned in to normal forms
and contain guarded recursions only, hence (since the operat@sl@mu cannot turn visible
actions intor) every cycle in the derived transition system contains at least a visiblaagtien
replace each subtertp, 4, - - - , ¢, with its equivalent recursion. When we have replated, in

t, =t"”, we are done.

if t = recA,,.t', then following the approach of [8], we show by induction on the deptresfing
of recursions in’ that there exists a guarded tetfhsuch that:

— A, is guarded int”;
— no free unguarded occurrence of any network nam# lies within a recursion in”; and
— UnFold, Ung, WUng, 5 &= recAp.t' = recAy.t".

Assume that this property holds for everyhose recursion depth is less than that'offhen for
each recursiomecA,,.s in ¢’ that lies within no recursion if, there must be a guarded tern
such that4,, is guarded ins’, no free unguarded occurrence of any network nam¢lies within
a recursion irs’, and UnFold, Ung, WUng, 5 = recAp.s = recAp.s'.

Lett” be the term resulting from simultaneously replacing every such top tewdl,,.s in t’ by
s'{recAn.s' | A }. Sincet’ is essentially finite-state, cleart{/ is guarded and no free unguarded
occurrence of any network name 4f{ lies within a recursion, parallel , left merge, restriction,
abstraction, and encapsulation operatot’in Now we remove unguarded occurrences4pfin
recAn.t", knowing that they do not lie within recursions, by applicatioribfg, WUng, .

if t = [A,(u)]e, then by assigning a fresh network name, represented, py, to each.A, ()],
and application of axiomsy o5 and Unfold, it can be turned into a recursive tetns rec. Ay (.t
wheret’ may contain terms of the forifp4, (u’)],. We repeat this process for each ffeg,(7')].,
i.e. not in the scope afec. A5, until no such a term remains th During this process we should
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substitute each bourft4,(u')],, i.e. occurred in the scope ofc.A, ;) by its corresponding net-
work name. This process terminates since the number of protocol namegeisafid the data
model contains finite data domains, so the number of protocol name instafiogeis

if £ = V(¢') thent is turned into a normal form as follows. First by application of induction over
t/, it can be turned into a normal forefi. It should be noted th&t’ cannot include free network
names and has a finite-state transition system.

First we show by structural induction that for any normal foffn V,,(¢”) can be turned into
Vu ("), wheret” obtained fromt” by syntactically replacing each occurrence of actioby
dxr(n). The base cases of induction fidr= 0 ort” = A,, are trivial. The inductive cases of the
induction are the following ones:

— if ¢ = Cn.t], then by application ofibsy, t"”" = YV (t") = Cépr(n).Var(t]), which by
induction can be turned inte C'd5/(n).V s (t]"), such that int}” each occurrence of action
n is replaced by, (n). Finally Vs (t") is Var (Corr(n).t]).

— if ¢ = t] + ¢4, then by application ofibsa, Vs (") can be turned int® 5, (¢]) + Vs (t5),
which by induction can be turned inf@,,(¢]") + Va(t5') such that int/” and ¢’ each
occurrence of action is replaced by (n). Finally we obtainV ;(t") asV s (t]" + t3').

— if t" = recA,.t/, then by application of axiorflid, V;(¢") can be turned inteec.A,,.V 5/ (t7),
which by induction can be turned intec.A,,.V /(t]") such that irt}” each occurrence of ac-
tion 7 is replaced by, (n). Finally we obtainV,,(¢") by application ofHid again as
Vo (recAn.t)).

Notice that, due to the usage of axidifid in the last item, the equational transformation procedure
from V;(¢") to Vs (") arising from the above induction works @iV T.

Then we useUng and WUnyg; 2 to get rid of generated unguarded recursion ititoto get a
guardedt””. Finally we consideiV,(t"") and we apply the same technique as for, e.g.[[the
operator to turn it into normal form (exploiting the fact thdt is guarded, finite-state and does
not include free network names). In particular now we can do that Bedie application of the
abstraction operator has no effect on labels of transitions, hencenivicgenerate cycles made up
of only 7 actions when the semantics is considered.

O

G.2. Recursive Network Specification

Definition G.2. [8] A recursive network specificatioh’ = E(S) is a set of equation& = {A,, =
ta,| A, € S}, wheret 4, is a term over th&€€NT; signature and names froMiwhereS C Ay. N €
CNT; provably satisfies the recursive network specificatibm A,,, € S if there are termsVy,, for
An € Swith N = Ny, , such that for eachl,, € S, N, = ta, {Na, /A, }aes.

In the above definition 4, {t' 4 / A}, } 4 cs denotes the result of simultaneously repladifg for each
Al € S. We call a recursive network specification guarded if all occurrendeall its network names
in the right-hand sides of all its definitions are guarded or it can be rewtidtsuch a network recursive
specification using the axioms of the theory and the equations of the sp@mifica
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Definition G.3. Let E = E(S) be arecursive network specification. The relationC S x S is defined
asA, — Al if Al occurs unguarded in the right-hand side equation defigipg Now E is called
guarded if— is well-founded.

Proposition G.2. If E = E(5) is a finite guarded recursive network specification abg < S, then
there is a closed term I@NT, which provably satisfie® in A,,,. Moreover, if there are two such terms
N7 andANs, thenFold - N7 = Ns.

Proof:

We can consider eadh’n prefix as a new action (or, if their composition will not make a network
name guarded), so each). N term can be considered as a prefix tern€i@S Consequently the proof
of the above proposition follows from Proposition G.1; because normaig@re likeCCSterms, and
the above Proposition ov€¥CSterms has been proved in [23]. O

G.3. Completeness of th€NT;-Axiomatization

Theorem G.1. Let V; and N be two normal terms i€NT; such that\; ~,;, A>. Then given a data
model ID with finite data domains, there is a finite recursive network specificdtion F(.S) provably
satisfied in the same variahlg,, € S by both; and .

Proof:

Take a fresh set of network namés= {A,, , . |[N] € ey, N3 € en,, N = N3} (which is finite by
1772

Proposition 8.1). Le#4,,, = A, ,, . Letn, range over the set of receive actions andNow for each

An, .\ €5, E contains the equation
1772

gy = SO An g INL o0 N NG o NYLNT 4, N )+
Z{CTITA”N{’Né‘A”N{Né # Ang,s N To0 NTNY = Nod+

nr
SO Ay g Mgy # A N3 2o NY LN 2 NY)

n
NN

The recursive network specificatidh = F/(.S) is guarded, using thad — A iff A

NN NN NN
has a summand‘T.AnN{,Né,. It is easy to show that any infinh‘,érwwé — A"N{wg — -+ implies
an infinite path of performing N] % NY Zcn --- which cannot exist sinc8/; and.\; are closed

normal forms. It must be shown th&f;, provably satisfie® in A,,,. The same statement faf; follows
by symmetry.
ForAan,Né e€_s, Iet/\/]\}l,Nz, be the term

SAONYING oo NG e NYL N = N )+
SH{CmN Ay # Anos N Fo0 NTNY 2 N3}

n
NiNg

and define the ternMj\/, A7 @S
17v2

{ Ny + CtrNi Aug sy # Aug NG - N T NY N 4 N

M otherwise
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It follows from Lemma G.1 thatV] = N7 + thf{Nz’ and hence;‘n.(/\/j(/lu\[2 + C'r.N]) =2 Cn. N7,

Thus

It suffices to prove that fod,, i € S
1772

Mg = SAOTM g WG o NTNG oo N AT = NG+
SO Mgy py | An gy g # Angs MY 0 NN 2 N+
SO Mgy Mnyy vy 7 Angs N3 50 N3N 2 N3}

By equation 6, this is equivalent to
* * T
Migng = Ngwg + D _ACH N Any, o # Ang: Ny 20 NN =4, N3 @)

There are three cases to examine:

o If Ay, ./ 7# Any @Nd3NG-N; oo NN~ N, this follows from the definition o, .
1772 17Y2

o If A\ # Angr @NAANY - N7 o NY NT ~, NY, equation 7 reduces ] = N3y \» and
1772 17Y2

by Lemma G.1 if suffices to establish that Af] e N thenn is of the formm(u)? or 7 and
N > N orING - N , NY AN~ N3, This follows from the fact thatV] ~, A3, and
it Mo Dor NJ7 = N3 such thatVvy ~;, N ~, N3, then by Lemma A.2V! ~, N”, violating
the assumption.

o If A
V', thenaNy - N @c NI AN =, N3, which follows immediately fromV] ~,, N3.

H [13 ,r]
VI Ay, then equation 7 reducesAd = NX/{N; and we should show that “i¥] —¢

O

Corollary G.1. Let A; and N> be two normal forms IrCNT; such that, given a data domaif? with
finite data domains\i ~,, Ns. ThenN; = Ns.

Theorem 8.1 follows from Proposition G.1 and the above Corollary. Seppes~,, N>. Using
Proposition G.1, there are two normal forth§ and A (which are guarded) such thaf, = A7 and
Ny = NJ. Soundness of the axiomatization yiel§s ~,, N and N2 ~,, Nj. Transitivity of rooted
branching computed network bisimilarity yield§ ~,, A, and by application of Corollary G.1\{ =
N3 and consequentli; = Ns.



