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Abstract. The purpose of this paper is threefold: to present a general
abstract, yet practical, notion of equational system; to investigate and
develop a theory of free constructions for such equational systems; and
to illustrate the use of equational systems as needed in modern applica-
tions, specifically to the theory of substitution in the presence of variable
binding and to models of name-passing process calculi.

1 Introduction

The import of equational theories in theoretical computer science is by now
well established. Traditional applications include the initial algebra approach
to the semantics of computational languages and the specification of abstract
data types pioneered by the ADJ group [11], and the abstract description of
powerdomain constructions as free algebras of non-determinism advocated by
Plotkin [13, 16] (see also [1]). While these developments essentially belong to the
realm of universal algebra, more recent applications have had to be based on the
more general categorical algebra. Examples include theories of abstract syntax
with variable binding [6, 8], the algebraic treatment of computational effects [17,
18], and models of name-passing process calculi [5, 21].

In the above and most other applications of equational theories, the existence
and construction of initial and/or free algebras, and consequently of monads,
plays a central role; as so does the study of categories of algebras. These topics
are investigated here in the context of equational systems, a very broad notion of
equational theories. Examples of equational systems include enriched algebraic
theories [14, 20], algebras for a monad, monoids in a monoidal category, etc. (see
Section 3).

The original motivation for the development of the theory of equational
systems arose from the need of a mathematical theory readily applicable to
two further examples of equational systems: (i) Σ-monoids (see Section 6.1),
which are needed for the initial algebra approach to the semantics of languages
with variable binding and capture-avoiding simultaneous substitution [6]; and
(ii) π-algebras (see Section 6.2), which provide algebraic models of the finitary
π-calculus [21]. Indeed, these two examples respectively highlight two inadequa-
cies of enriched algebraic theories in applications: (i) the explicit presentation
of an enriched algebraic theory may be hard to give, as it is the case with
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Σ-monoids; and (ii) models may require a theory based on more than one en-
richment, as it is the case with π-algebras.

Further benefits of equational systems over enriched algebraic theories are
that the theory can be developed for cocomplete, not necessarily locally pre-
sentable, categories (examples of which are the category of topological spaces,
the category of directed-complete posets, and the category of complete semi-
lattices), and that the concept of equational system is straightforwardly dual-
izable: a coequational system on a category is simply an equational system on
the opposite category (thus, for instance, comonoids in a monoidal category are
coalgebras for a coequational system). On the other hand, the price paid for
all this generality is that the important connection between enriched algebraic
theories and enriched Lawvere theories [19] is lost for equational systems.

An equational system S = (C B F ` L = R : D) is defined as a parallel pair
L, R : F -Alg → D-Alg of functors between categories of algebras over a base
category C . In this context, the endofunctor F on C , which generalizes the
notion of algebraic signature, is called a functorial signature; the functors L, R
over C , generalize the notion of equation, and are called functorial terms; the
endofunctor D on C corresponds to the arity of the equation. The category of
S-algebras is the equalizer S-Alg ↪→ F -Alg of L, R. Thus, an S-algebra is an
F -algebra (X, s : FX → X) such that L(X, s) = R(X, s) as D-algebras on X .

We have learnt during the course of this work that variations on the concept of
equational system have already been considered in the literature. For instance,
Fokkinga [7] introduces the more general concept of law between transform-
ers, but only studies initial algebras for the laws that are equational systems;
Ĉırstea [3] introduces the concept of coequation between abstract cosignatures,
which is equivalent to our notion of coequational system, and studies final coal-
gebras for them; Ghani, Lüth, De Marchi, and Power [10] introduce the concept
of functorial coequational presentations, which is equivalent to our notion of
coequational system on a locally presentable base category with an accessible
functorial signature and an accessible arity endofunctor, and study cofree con-
structions for them.

Our theory of equational systems (and its dual), which we present in Sec-
tions 4 and 5, is more general and comprehensive than that of [7] and [3]; and
we relate it to that of [10] in the Concluding Remarks (Section 7).

Free constructions for equational systems are investigated in Section 4. For an
equational system S = (C B F ` L = R : D), the existence of free S-algebras on
objects in C is considered in two stages: (i) the construction of free F -algebras
on objects in C , and (ii) the construction of free S-algebras over F -algebras.
The former captures the construction of freely generated terms with operations
from the functorial signature F ; the latter that of quotienting F -algebras by
the equation L = R and congruence rules. We give two sufficient conditions
for the existence of free S-algebras on F -algebras. The first condition can be
used to deduce the existence of free algebras for enriched algebraic theories, but
it applies more generally. The second condition may be applied to functorial
signatures and arities that are not accessible. The proofs of these results provide
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constructions of free algebras that may lead to explicit descriptions. As a concrete
example of this situation, we observe that for the functorial signature Σλ of the
λ-calculus, the initial Σλ-monoid satisfying β, η equations consists of λ-terms
(up to α-equivalence) quotiented by the β, η equalities (see Section 6.1).

Monads and categories of algebras for equational systems are discussed in
Section 5. In the vein of the above results, we give two sufficient conditions
under which the monadicity and cocompleteness of categories of algebras follow.
As an application, we observe that the category of π-algebras is monadic and
cocomplete (see Section 6.2).

2 Algebraic Equational Theories

To set our work in context, we briefly review the classical concept of algebraic
equational theory and some aspects of the surrounding theory.

An algebraic equational theory consists of a signature defining its operations
and a set of equations describing the axioms that it should obey.

A signature Σ is given by a set of operators O together with a function
|− |: O → N giving an arity to each operator. The set of terms TΣ(V ) on a set
of variables V is built up from the variables and the operators of the signature
Σ by the following grammar

t ∈ TΣ(V ) ::= v | o(t1, . . . , tk)

where v ∈ V , o is an operator of arity k, and ti ∈ TΣ(V ) for all i = 1, . . . , k.
An equation of arity V , written V ` l = r, for a signature Σ is a pair of

terms l, r ∈ TΣ(V ).
An algebraic equational theory T = (Σ, E) is given by a signature Σ together

with a set of equations E.

An algebra for a signature Σ is a pair (X, J−KX) consisting of a carrier set X
together with interpretation functions JoKX : X |o| → X for each operator o in Σ.
By structural induction, such an algebra induces interpretations JtKX : XV → X
of terms t ∈ TΣ(V ) as follows:

JtKX =





XV
πv // X , for t = v ∈ V

XV
〈Jt1KX ,...,JtkKX〉

// Xk
JoKX // X , for t = o(t1, . . . , tk)

An algebra for the theory T = (Σ, E) is an algebra for the signature Σ
that satisfies the constraints given by the equations in E, where a Σ-algebra
(X, J−KX) is said to satisfy the equation V ` l = r whenever JlKX~x = JrKX~x for
all ~x ∈ XV .

An homomorphism of T-algebras from (X, J−KX) to (Y, J−KY ) is a function
h : X → Y between their carrier sets that commutes with the interpretation of
each operator; that is, such that h(JoKX(x1, . . . , xk)) = JoKY

(
h(x1), . . . , h(xk)

)
.

Algebras and homomorphisms form the category T-Alg.

The existence of free algebras for algebraic theories is one of the most significant
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properties that they enjoy. For an algebraic theory T = (Σ, E), the free al-
gebra over a set X has as carrier the set TΣ(X)/∼E

of equivalence classes
of terms on X under the equivalence relation ∼E defined by setting t ∼E t′

iff t is provably equal to t′ by the equations given in E and the congruence
rules. The interpretation of each operator on TΣ(X)/∼E

is given syntactically:
JoK([t1]∼E

, . . . , [tk]∼E
) = [o(t1, . . . , tk)]∼E

. This construction gives rise to a left
adjoint FT to the forgetful functor UT : T-Alg → Set. Moreover, the adjunction
is monadic: T-Alg is equivalent to the category of algebras for the associated
monad on Set.

We recall the notion of algebra for an endofunctor and how it generalizes
that of algebra for a signature.

An algebra for an endofunctor F on a category C is a pair (X, s) of a carrier
object X in C together with a structure algebra map s : FX → X . A homomor-
phism of F -algebras from (X, s) to (Y, t) is a map h : X → Y in C such that
h · s = t · Fh. F -algebras and homomorphisms form the category F -Alg, and
the forgetful functor UF : F -Alg → C maps an F -algebra (X, s) to its carrier
object X .

As it is well-known, every signature can be turned into an endofunctor on Set
preserving its algebras. Indeed, for a signature Σ, one defines the corresponding
endofunctor as FΣ(X) =

∐
o∈Σ X |o|, so that Σ-Alg and FΣ-Alg are isomorphic.

In this view, we will henceforth take endofunctors as a general abstract notion
of signature.

Definition 2.1 (Functorial signature). A functorial signature on a category

is an endofunctor on it.

3 Equational Systems

We motivate and subsequently present an abstract notion of equation for func-
torial signatures, leading to the concept of equational system. Free constructions
for equational systems are considered in the following section.

Let t ∈ TΣ(V ) be a term on a set of variables V for a signature Σ. Recall
from the previous section that for every Σ-algebra (X, J−KX ), the term t gives
an interpretation function JtKX : XV → X . Thus, the term t determines a func-

tion t̃ assigning to a Σ-algebra (X, J−KX ) the D-algebra (X, JtKX), for D the

endofunctor (−)V on Set. Note that the function t̃ does not only preserves car-
rier objects but, furthermore, by the uniformity of the interpretation of terms,
that a Σ-homomorphism (X, J−KX) → (Y, J−KY ) is also a D-homomorphism

(X, JtKX) → (Y, JtKY ). In other words, the function t̃ extends to a functor
Σ-Alg → D-Alg over Set, i.e. a functor preserving carrier objects and ho-
momorphisms. These considerations lead us to define abstract notions of term
and equations as follows.

Definition 3.1 (Functorial terms and equations). A functorial term T of

arity D for a functorial signature F on a category C , consists of an endofunctor

D on C and a functor T : F -Alg → D-Alg over C , that is, a functor such that
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UD · T = UF . A functorial equation is given by a pair of functorial terms of the

same arity.

We are now ready to define equational systems, our abstract notion of equa-
tional theory.

Definition 3.2 (Equational systems). An equational system

S = (C B F ` L = R : D)

is given by a category C and a functorial equation L = R of arity D for a

functorial signature F .

We have restricted attention to equational systems subject to a single equa-
tion. The consideration of multi-equational systems (C B F ` {Li = Ri : Di}i∈I)
subject to a set of equations in what follows is left to the interested reader. We
remark however that our development is typically without loss of generality;
as, whenever C has I-indexed coproducts, a multi-equational system as above
can be expressed as the equational system (C B F ` [Li]i∈I = [Ri]i∈I :

∐
i∈I Di)

with a single equation.
Recall that an equation l = r in an algebraic theory is interpreted as the

constraint that the interpretation functions associated with the terms l and r
coincide. Hence, for an equational system S = (C B F ` L = R : D), it is natu-
ral to say that an F -algebra A satisfies the functorial equation L = R whenever
L(A) = R(A), and consequently define the category of algebras for the equa-
tional system as the full subcategory of F -Alg consisting of the F -algebras that
satisfy the functorial equation L = R. Equivalently, we introduce the following
definition.

Definition 3.3. For an equational system S = (C B F ` L = R : D), the

category S-Alg of S-algebras is the equalizer of L, R : F -Alg → D-Alg (in the

large category of locally small categories over C ).

Examples of equational systems together with their induced categories of
algebras follow.

1. The equational system ST associated to the algebraic theory T = (Σ, E) is
given by (Set B FT ` LT = RT : DT), with FTX =

∐
o∈Σ X |o|, DTX =∐

(V `l=r)∈E XV , and

LT(X, J−KX ) =
(
X,

[
JlKX

]
(l=r)∈E

)
,

RT(X, J−KX) =
(
X,

[
JrKX

]
(l=r)∈E

)
.

It follows that T-Alg is isomorphic to ST-Alg.
2. More generally, consider an enriched algebraic theory T = (C , B, E, σ, τ)

on a locally finitely presentable category C enriched over a suitable cate-
gory V , see [14]. Recall that this is given by functors B, E : |Cfp| → C0

and a pair of morphisms σ, τ : FE → FB between the free finitary mon-
ads FB and FE on C respectively arising from B and E. The equational
system ST associated to such an enriched algebraic theory T is given by
(C0 B (GB)0 ` σ0 = τ 0 : (GE)0), where GB and GE are the free finitary
endofunctors on C respectively arising from B and E, and where σ and τ are
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respectively the functors corresponding to σ and τ by the bijection between
morphisms FE → FB and functors GB-Alg ∼= C FB → C FE ∼= GE-Alg
over C . It follows that (T-Alg)0 is isomorphic to ST-Alg.

3. The definition of Eilenberg-Moore algebras for a monad T = (T, η, µ) on a
category C with binary coproducts can be directly encoded as the equational
system ST = (C B T ` L = R : D) with D(X) = X + T 2X and

L(X, s) = ( X, [ s · ηX , s · µX ] ) ,

R(X, s) = ( X, [ idX , s · Ts ] ) .

It follows that ST-Alg is isomorphic to the category C T of Eilenberg-Moore
algebras for T.

4. The definition of monoid in a monoidal category (C ,⊗, I, α, λ, ρ) with binary
coproducts yields the equational system SMon(C ) = (C B F ` L = R : D)

with F (X) = (X ⊗ X) + I , D(X) =
(
(X ⊗ X) ⊗ X

)
+ (I ⊗ X) + (X ⊗ I),

and

L(X, [m, e]) = ( X,
ˆ

m · (m ⊗ idX) , λX , ρX

˜

) ,

R(X, [m, e]) = ( X,
ˆ

m · (idX ⊗ m) · αX,X,X , m · (e ⊗ idX) , m · (idX ⊗ e)
˜

) .

It follows that SMon(C )-Alg is isomorphic to the category of monoids and
monoid homomorphisms in C .

4 Free Constructions for Equational Systems

We investigate sufficient conditions for the existence of free algebras for equa-
tional systems; that is, for the existence of a left adjoint to the forgetful functor
US : S-Alg → C , for S an equational system. Since, by definition, the forgetful
functor US decomposes as S-Alg �

�

JS
// F -Alg UF

// C , we will concentrate on
obtaining a left adjoint to the embedding JS. Conditions for the existence of a
left adjoint to UF have already been studied in the literature (see e.g. [2]).

Theorem 4.1. Let S = (C B F ` L = R : D) be an equational system. If C is

cocomplete, and F and D preserve colimits of α-chains for some infinite limit

ordinal α, then the embedding S-Alg ↪→ F -Alg has a left adjoint.

Theorem 4.2. Let S = (C B F ` L = R : D) be an equational system. If

C is well-copowered and cocomplete, and F preserves epimorphisms, then the

embedding S-Alg ↪→ F -Alg has a left adjoint.

Corollary 4.1. Let S = (C B F ` L = R : D) be an equational system. If

C is cocomplete, F preserves epimorphisms and colimits of ω-chains, and D
preserves epimorphisms, then the embedding S-Alg ↪→ F -Alg has a left adjoint.

Furthermore the free algebra functor is constructed in ω steps.

These results are proved by performing an iterative, possibly transfinite, con-
struction that associates a free S-algebra to every F -algebra. The cocompleteness
of the base category allows one to perform the construction, whilst the other con-
ditions guarantee that the process will eventually stop. We present the construc-
tion in the simplest case, viz. that of Corollary 4.1. To this end, for an F -algebra
(X, s), let L(X, s) = (X, l : DX → X) and R(X, s) = (X, r : DX → X), and con-
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sider the following diagram

FX
Fe0 //

s

��

s0

  
B

B

B

B

B

B

B

B

FX1

s1

!!C
C

C

C

C

C

C

C

······ FXi
Fei //

si

""E
E

E

E

E

E

E

E

FXi+1

si+1

""F
F

F

F

F

F

F

F

······ FX ′

∃!s′

��
�

�

�

DX
l //

r
// X

e0 // X1
e1 // X2 ······ Xi+1

ei+1
// Xi+2 ······ X ′

(1)

where e0 is a coequalizer of l, r and where (ei+1, si+1) is a pushout of (si, F ei)
for all i ≥ 0. Further, let X ′ be a colimit of the ω-chain 〈ei〉, so that FX ′ is
a colimit of the ω-chain 〈Fei〉, and define the algebra map s′ to be the unique
mediating morphism between them. It follows that (X ′, s′) is a free S-algebra on
the F -algebra (X, s).

The intuition behind the construction is that of first quotienting the carrier
object by the equation L = R, and then by congruence rules as much as needed.
If free algebras are constructed in ω steps, then, roughly speaking, they arise by
quotienting a finite number of times.

Finally, we remark that in the presence of binary coproducts the problem of
finding free algebras reduces to that of finding initial algebras.

Proposition 4.1. Let S = (C B F ` L = R : D) be an equational system on

a category C with binary coproducts. An S-algebra is free over A ∈ C iff it is

an initial SA-algebra for SA = (C B (A + F ) ` L · UA = R · UA : D) where UA

denotes the forgetful functor (A + F )-Alg → F -Alg.

5 Categories of Algebras for Equational Systems

We consider monads and categories of algebras for equational systems, and give
some basic applications of our results.

Theorem 5.1. Let S = (C B F ` L = R : D) be an equational system with C

cocomplete.

1. If F and D preserve colimits of α-chains for some infinite limit ordinal α,

then the forgetful functor US : S-Alg → C is monadic and S-Alg is cocom-

plete.
2. If C is well-copowered, F preserves epimorphisms, and the forgetful func-

tor US : S-Alg → C has a left adjoint, then US is monadic and S-Alg is

cocomplete.

Proposition 5.1. Let S = (C B F ` L = R : D) be an equational system. If the

functors F and D preserve I-indexed colimits for a small category I and US has

a left adjoint, then the induced monad on C also preserves I-indexed colimits.

We revisit the examples of equational systems given in Section 3 in the light
of the above results.

1. For the equational system ST = (Set B FT ` LT = RT : DT) representing an
algebraic theory T, the category ST-Alg is monadic over Set and cocomplete
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by Theorem 5.1(1); as Set is cocomplete and FT and DT preserve colimits
of ω-chains.

2. For the equational system ST = (C0 B (GB)0 ` σ0 = τ 0 : (GE)0) represent-
ing an enriched algebraic theory T = (C , B, E, σ, τ), the category ST-Alg is
monadic over C0 and cocomplete by Theorem 5.1(1); as C0 is locally finitely
presentable and thus cocomplete, and (GB)0 and (GE)0 are finitary and
thus preserve colimits of ω-chains. Furthermore, the monad arising from the
monadicity of ST-Alg is finitary by Proposition 5.1 as so are the functors
(GB)0 and (GE)0.

3. One may apply Theorem 5.1(1) to the equational system ST representing a
monad T = (T, η, µ) on a category C with binary coproducts as follows. If C

is cocomplete and T preserves colimits of ω-chains, then ST-Alg is monadic
over C and cocomplete.
As another example, consider the powerset monad P = (P, {−},∪) on Set.
Since Set is cocomplete and well-copowered, and the powerset functor P
preserves epimorphisms, by Theorem 4.2, the embedding SetP ↪→ P -Alg
has a left adjoint. We also see that the forgetful functor SetP → Set has
a left adjoint from the fact that P is a monad. Therefore, SetP, which
is isomorphic to the category of complete semi-lattices, is cocomplete (by
Theorem 5.1(2)).

4. To the equational system SMon(C ) of monoids in a monoidal category C

with binary coproducts, we can apply Theorem 5.1(1) as follows. If C is
cocomplete and the tensor product ⊗ : C × C → C preserves colimits of
ω-chains, then SMon(C )-Alg is monadic over C and cocomplete.

6 Two Applications

We consider applications of equational systems to the theory of abstract syntax
supporting variable binding and substitution [6], and to algebraic models of the
π-calculus [21].

6.1 Σ-monoids

Following [6], we introduce the concept of Σ-monoid, for a functorial signature
Σ with a pointed strength, and consider it from the point of view of equational
systems. The theory of equational systems is then used to provide an explicit
description of free Σ-monoids. We then show that, for Σλ the functorial signature
of the lambda calculus, the β, η identities are straightforwardly expressible as
functorial equations. The theory of equational systems is further used to relate
the arising algebraic models by adjunctions.

Let Σ be a functorial signature on a monoidal category C = (C ,⊗, I, α, λ, ρ).
A pointed strength for Σ is a natural transformation

stX,(Y,y:I→Y ) : Σ(X) ⊗ Y
.
→ Σ(X ⊗ Y )

between functors C ×(I/C ) → C satisfying coherence conditions similar to those
of strength [15]:
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ρΣA = Σ(ρA) · stA,(I,idI): Σ(A) ⊗ I → ΣA ,

stA,(B⊗C,(b⊗c)·ρI
−1) · αΣA,B,C

= Σ(αA,B,C) · stA⊗B,(C,c) · (stA,(B,b) ⊗ idC): (Σ(A) ⊗ B) ⊗ C → Σ(A ⊗ (B ⊗ C))

for all A ∈ C and (B, b : I → B), (C, c : I → C) ∈ I/C .

For a functorial signature Σ with a pointed strength st on a monoidal cate-
gory C , the category of Σ-monoids Σ-Mon(C ) has objects given by quadruples
(X, s, m, e) where (X, s) is a Σ-algebra and (X, m, e) is a monoid in C satisfying
the following compatibility law

m · (s ⊗ idX ) = s · Σ(m) · stX,(X,e) : Σ(X) ⊗ X → X ;

morphisms are maps of C which are both Σ-algebra and monoid homomor-
phisms.

For C with binary coproducts, the equational system MΣ of Σ-monoids is
defined as (C B FΣ ` LΣ = RΣ : DΣ), with FΣX = Σ(X) + (X ⊗ X) + I ,
DΣX =

(
(X ⊗ X) ⊗ X

)
+ (I ⊗ X) + (X ⊗ I) + (Σ(X) ⊗ X), and

LΣ( X, [s, m, e] )
=(X, [ m · (m ⊗ idX) , λX , ρX , m · (s ⊗ idX) ] )

RΣ( X, [s, m, e] )
=(X, [ m · (idX ⊗ m) · αX,X,X , m · (e ⊗ idX) , m · (idX ⊗ e) , s · Σ(m) · stX,(X,e) ] ) .

The functoriality of LΣ and RΣ follows from the naturality of α, λ, ρ, and st. The
isomorphism of MΣ-Alg and Σ-Mon(C ) follows trivially from their definitions.

Consequently, one can apply the theory of equational systems developed in
this paper to the algebra of Σ-monoids. For instance, by Theorem 4.1, if C is
cocomplete, and the functorial signature Σ and the tensor product ⊗ preserve
colimits of ω-chains, then there exists a free Σ-monoid over every object in
C . While this only shows the existence of free Σ-monoids, when the monoidal
structure is closed, we can go further and give an explicit description of free
Σ-monoids using the fact that in this case the initial Σ-monoid exists if so
does the initial (I + Σ)-algebra µX. I +ΣX , and has carrier object µX. I + ΣX
equipped with an appropriate Σ-monoid structure, see [6]. Indeed, by Proposi-
tion 4.1, a free Σ-monoid over A ∈ C is an initial MA

Σ-algebra for the equational
system MA

Σ = (C B (A + FΣ) ` LΣ · UA = RΣ · UA : DΣ), where UA denotes
the forgetful functor (A+FΣ)-Alg → FΣ-Alg. Furthermore, one can readily es-
tablish the isomorphism MA

Σ-Alg ∼= M(A⊗−)+Σ-Alg, where the pointed strength
st′X,(Y,y) for (A ⊗−) + Σ(−) is given by the composite
`

(A ⊗ X) + Σ(X)
´

⊗ Y

∼=
`

(A ⊗ X) ⊗ Y ) + Σ(X) ⊗ Y
αA,X,Y +stX,(Y,y)

//
`

A ⊗ (X ⊗ Y )
´

+ Σ(X ⊗ Y ) .

Thus, we have the following result.

Proposition 6.1. For C a monoidal closed category with binary coproducts, the

free Σ-monoid on A ∈ C exists if so does the initial
(
I+(A⊗−)+Σ(−)

)
-algebra

µX. I + A ⊗ X + ΣX, and has carrier object µX. I + A ⊗ X + ΣX equipped with

an appropriate Σ-monoid structure.
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As a concrete example, we now consider the λ-calculus. A λ-model [6] is
a Σλ-monoid for the functorial signature ΣλX = XV + X2 with a suitable
pointed strength on the presheaf category SetF, where F is the (essentially
small) category of finite sets and functions, equipped with the substitution
monoidal structure (•, V ). The operations of a Σλ-monoid (X, [abs, app, sub, var] :
XV + X2 + (X • X) + V → X) provide interpretations of λ-abstraction (abs :
XV → X), application (app : X2 → X), capture-avoiding simultaneous substi-
tution (sub : X •X → X), and variables (var : V → X). The initial λ-model has
carrier object µX. V + XV + X2, and provides an abstract notion of syntax for
the λ-calculus. A syntactic description of free Σλ-monoids has been considered
by Hamana in [12].

The β, η identities for a λ-model on X are expressed by the following equa-
tions in the internal language

(β) f : XV , x : X ` app(abs(f), x) = sub
(
f〈x〉

)
: X

(η) x : X ` abs
(
λv : V. app(x, var v)

)
= x : X

where the map −〈=〉 : XV × X → X • X embeds XV × X into X • X . These
internal equations provide functorial equations on λ-models, and yield a further
equational system MΣλ/β,η. From two applications of Corollary 4.1, we obtain
the following adjoint situations:

MΣλ/β,η-Alg
�

�

//⊥ MΣλ
-Alg

oo
�

�

//⊥
(
Σλ(−) + (− • −) + V

)
-Alg

oo

//⊥ SetF
oo

Further, by examining the construction (1) for the free MΣλ/β,η-algebra on
the initial MΣλ

-algebra, one sees that the presheaf of (α-equivalence classes of)
λ-terms is first quotiented by the β, η identities, and then by the congruence
rules for the operations abs, app, and sub as much as needed. Thus, the initial
MΣλ/β,η-algebra is the presheaf of β, η-equivalence classes of λ-terms.

6.2 Pi-calculus Algebras

We briefly discuss π-algebras, an algebraic model of the finitary π-calculus in-
troduced by Stark in [21], as algebras for an equational system. The existence
of free models is deduced from the theory of equational systems.

We need consider the presheaf category SetI, for I the (essentially small)
category of finite sets and injections, with the symmetric monoidal closed struc-
ture (1,⊗, () induced by the symmetric monoidal structure (∅,]) on I by Day’s
construction [4].

A π-algebra is an object A ∈ SetI together with operations choice : A2 → A,
nil : 1 → A, out : N × N × A → A, in : N × AN → A, tau : A → A, and new :
(N ( A) → A satisfying the equations of [21, Sections 3.1–3.3 and 3.5]. These
algebras, and their homomorphisms, form the category PI(SetI).

The equational theory for π-algebras is expressed entirely in the internal lan-
guage of SetI (see also [5]). For example, the equation establishing the inactivity
of a process that inputs on a restricted channel is given by

p : (AN )N ` new
(
ν(λx : N. in(x, p x))

)
= nil : A
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where ν : AN → (N ( A) is the composite

AN
upA

upN

// (N ( A)N(N ideN
// (N ( A)1 ∼= // (N ( A)

for upX and eX respectively the monoidal transposes of

X ⊗ N
idX⊗ !

// X ⊗ 1 ∼= // X and 1 ⊗ X ∼= // X .

All these internal equations yield functorial equations, and induce an equational
system Sπ .

Since every endofunctor of Sπ is finitary, the following result follows from
Theorem 5.1(1).

Proposition 6.2. The category of π-algebras PI(SetI) ∼= Sπ-Alg is cocomplete

and monadic over SetI.

The above discussion also applies more generally, to axiomatic settings as
in [5] and, in particular, to π-algebras over the Schanuel topos, ωCpoI, etc.

7 Concluding Remarks

Our theoretical development also includes the organization of equational systems
over a base category into a category. The consideration of colimits, in particular
coequalizers, of equational systems led us to introduce the more general con-
cept of iterated equational system, for which the whole theory of equational sys-
tems generalizes. As an additional result, we have that the category of iterated
equational systems over a cocomplete base category is itself cocomplete. This,
together with the fact that it embeds the category of accessible monads on the
base category as a full subcategory which is closed under colimits, proves that
the category of accessible monads on a cocomplete category is also cocomplete.
Details will appear elsewhere.

Our theory of equational systems dualizes to one for coequational systems.
Besides this being of interest in its own right, we note that the proof of the
dual of Theorem 4.2, together with the construction of cofree coalgebras for
endofunctors by terminal sequences of Worrell [22], gives a construction of cofree
coalgebras for coequational systems on a locally presentable base category with
an accessible functorial signature that preserves monomorphisms. This result is
a variation of a main result of the theory developed by Ghani, Lüth, De Marchi,
and Power in [10] (see e.g. their Lemmas 5.8 and 5.14); which is there proved by
means of the theory of accessible categories without assuming the preservation
of monomorphisms but assuming an accessible arity endofunctor.

Ghani and Lüth [9] give an abstract presentation of term rewriting via coin-
serters in the context of algebraic theories on the category of preorders. In this
vein, we have developed a theory of free constructions for inequational systems in
a preorder-enriched setting, and we are considering applications to higher-order
rewriting.

Acknowledgements. We are grateful to Sam Staton for discussions.
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3. C. Ĉırstea. An algebra-coalgebra framework for system specification. In Proc. 3rd

International Workshop on Coalgebraic Methods in Computer Science, Elsevier
ENTCS 33, pages 80–110, 2000.

4. B. Day. On closed categories of functors. In Reports of the Midwest Category

Seminar IV, Springer LNM 137, pages 1–38, 1970.
5. M. Fiore, E. Moggi, and D. Sangiorgi. A fully abstract model for the π-calculus.

Information and Computation, 179(1):76–117, 2002.
6. M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proc.

14th IEEE Symp. Logic in Computer Science, pages 193–202. IEEE Press, 1999.
7. M. Fokkinga. Datatype laws without signatures. Mathematical Structures in Com-

puter Science, 6(1):1–32, 1996.
8. M. J. Gabbay and A. Pitts. A new approach to abstract syntax with variable

binding. Formal Aspects of Computing, 13:341–363, 2001.
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