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Abstract: 

This paper studies the fine structure of the Straubing hierarchy of star-free languages. Sequences of equations 

are defined and are shown to be sufficiently strong to characterize completely the monoid varieties of a natural 

subhierarchy of level one. In a few cases, it is also shown that those sequences of equations are equivalent to 

finite ones. Extensions to a natural sublevel of level two are discussed. 

 

Article: 

1. Introduction 

This paper deals with the problem of the decidability of the different levels of the Straubing hierarchy of star-

free languages. The problem is a central one in the theory of regular languages. Its study is justified by its 

recognized connections with logic and the theory of complexity. More specifically, this paper is concerned with 

the problem of finding equations for Straubing's varieties of monoids. 

 

1.1. Literature review 

Let A be a given finite alphabet. The regular languages over A are those subsets of A*, the free monoid 

generated by A, constructed from the finite languages over A by the boolean operations, the concatenation 

product and the star. The star-free languages are those regular languages which can be obtained from the finite 

languages by the boolean operations and the concatenation product only. According to Schützenberger [14], L 

  A* is star-free if and only if its syntactic monoid M(L) is finite and aperiodic or M(L) contains no nontrivial 

subgroups). General references on the star-free languages are McNaughton and Papert [12], Eilenberg [8], or 

Pin [13]. 

 

Natural classifications of the star-free languages are obtained based on the alternating use of the boolean 

operations and the concatenation product. Let A
+
 = A* — {1}, where 1 denotes the empty word. Let A

+
B0 be the 

class of finite or cofinite subsets of A
+
 , and let A

+
Bk+1 denote the class of subsets of A

+
 which are boolean 

combinations of languages of the form L1…Ln ( n ≥ 1) with L1, . ,Ln   A
+
Bk. Only nonempty words over A are 

considered to define this hierarchy; in particular, the complement operation is applied with respect to A
+
. The 

language classes A
+
B0, A

+
B1, ... form the so-called dot-depth hierarchy introduced by Cohen and Brzozowski in 

[7]. The union of the classes A
+
B0, A

+
B1, ... is the class of star-free languages. 

 

Our attention is directed toward a closely related and more fundamental hierarchy, this one in A*, introduced by 

Straubing in [16]: A*V0 consists of the empty set A*, and A*Vk+1 denotes the class of languages over A which 

are boolean combinations of languages of the form L0a1L1a2…anLn (n ≥ 0) with L0,…,Ln   A*Vk and a1,…,an   

A. Let A*V =        *Vk. L   A* is star-free if and only if L   A*Vk for some k ≥ 0. The dot-depth of L is the 

smallest such k. 
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For k ≥ 1, let us define subhierarchies of A*V as follows: for all m ≥ 1, let A*Vk,m denote the class of boolean 

combinations of languages of the form L0a1L1a2…anLn (0 ≤ n ≤ m) with L0,…,Ln   A*Vk-1 and a1,…,an   A. We 

have A*Vk =      *Vk,m. Easily, A*Vk,m   A*Vk+1,m , and A*Vk,m   A*Vk,m+1. Similarly, subhierarchies of A+Bk 

can be defined. In A
+
B1 several hierarchies and classes of languages have been studied; the most prominent 

examples are the β-hierarchy [6], also called depth-one finite cofinite hierarchy, and the class of locally testable 

languages. 

 

The Straubing hierarchy gives examples of *-varieties of languages. One can show that V, Vk and Vk,m are *-

varieties of languages. According to Eilenberg, there exist varieties of monoids V, Vk and Vk,m corresponding to 

V, Vk and Vk,m, respectively. V is the variety of aperiodic monoids. We have that for L   A* , L   A*V if and 

only if M(L)   V, for each k ≥ 0, L   A*Vk if and only if M(L)   Vk, and for k ≥1, m ≥ 1, L   A*Vk,m if and only 

if M(L)   Vk,m. 

 

An outstanding open problem is whether one can decide if a star-free language has dot-depth k, i.e., can we 

effectively characterize the varieties Vk? The variety V0 consists of the trivial monoid alone, V1 of all finite  -

trivial monoids [15]. Straubing [17] conjectured an effective characterization, based on the syntactic monoid of 

the language, for V2. His characterization, formulated in terms of the novel use of categories in semigroup 

theory is shown to be necessary in general, and sufficient for an alphabet of two letters. 

 

In the framework of semigroup theory, Brzozowski and Knast [5] showed that the dot-depth hierarchy is 

infinite. Thomas [19] gave a new proof of this result, which shows also that the Straubing hierarchy is infinite, 

based on the following version of the Ehrenfeucht-Fraissé game. 

 

First, one regards a word w   A* of length  w| as a word model w = ({1,… ,w},  w
, (  

 )a Є A) where the 

universe {1,…,|w|} represents the set of positions of letters in w,  w
 denotes the  -relation in w, and   

  are 

unary relations over {1, ... |w|} containing the positions with letter a, for each a   A. For a sequence    = 

(m1,…,mk ) of positive integers, where k ≥ 0, the game    (u, v) is played between two players I and II on the 

word models u and v. A play of the game consists of k moves. In the ith move, player I chooses, in u or in v, a 

sequence of mi, positions; then player II chooses, in the remaining word, also a sequence of mi positions. After k 

moves, by concatenating the position sequences chosen from u and v, two sequences of positions p1… pn from u 

and q1…qn from v have been formed where n = m1 + … + mk. Player II has won the play if the two subwords in 

u and v given by the position sequences p1…pn, and q1…qn coincide. If there is a winning strategy for player II 

in the game    (u, v) to win each play we write u     v. The two players play the game    (u, v) on a pair of 

words u and v. Player I tries to demonstrate a difference between them while player II tries to keep the words 

looking the same.     naturally defines a congruence on A*. Thomas [18, 19] infers that for k ≥ l, M    Vk if and 

only if for every morphism  : A* → M there exists    = (m1,…,mk) such that     refines  , or, more precisely, 

for k ≥ 1, m ≥ 1, M   Vk,m if and only if for every morphism   : A* → M there exists    = (m, m2, ... ,mk) such 

that     refines  . Applications of the characterizations of Vk and Vk,m in terms of the    ’s appear in [1,2,3,4]. 

 

Eilenberg showed that every variety of monoids is ultimately defined by a sequence of equations. For example, 

the variety V of aperiodic monoids is ultimately defined by the equatons x
n
 = x

n+1 
(n > 0). The variety V1 is 

ultimately defined by the equations (xy)
m
 = (yx)

m
 and x

m
 = x

m+1 
(m > 0). This gives a decision procedure for V1, 

i.e., M   V1 if and only if for all x, y   M, (xy)
m
 = (yx)

m
 and x

m
 = x

m+1 
with m the cardinality of M. One can show 

that every variety of monoids generated by a single monoid is defined by a (finite or infinite) sequence of 

equations. V1,m being generated by A*/~(m), can we find explicitly a sequence of equations that define V1,m? If 

so, can we find explicitly a finite sequence of equations that define V1,m? An attempt to answer these open 

problems was made in [2]. There, finite sequences of equations were defined which are satisfied in the V1,m's 

(but not necessarily complete for the V1,m's). It was shown that those sequences of equations are complete for 

V1,1, V1,2 and V1,3. More precisely, V1,1 is defined by x = x
2
 and xy = yx, V1,2 by  xyzx = xyxzx and (xy)

2
 = (yx)

2
, 

and V1,3 by xzyxvxwy = xzxyxvxwy, ywxvxyzx = ywxvxyxzx and (xy)
3
 = (yx)

3
 (suggested to me by J.-E. Pin to be 

equivalent to xyxzx = xyx
2
zx, xyzx

2
uz = xyxzx

2
uz, zux

2
zyx = zux

2
zxyx and (xy)

3
 = (yx)

3
). 



This paper studies the fine structure of the Straubing hierarchy. The results are concerned in particular with 

sequences of equations for the corresponding varieties of monoids. The question of finding complete sequences 

of equations which characterize Straubing's varieties is solved for the V1,m's. It is also shown that the sequences 

of equations which characterize V1,1, V1,2 and V1,3 are equivalent to finite ones. Generalizations to V2,1 are 

discussed. (Knast [9,10] provide an equation system for level one of Brzozowski's dot-depth hierarchy.) The 

proofs rely on some combinatorial properties of the congruences ~(m) and ~(1,m) stated in Section 2. 

 

In the following, notation and basic concepts are introduced. 

 

1.2. Preliminaries 

For more information on the matters discussed in this subsection, see the books by Eilenberg [8], Lallement 

[11] or Pin [13]. 

 

Let A be a finite set. |A| denote the cardinality of A or the number of elements in A. A*, the free monoid 

generated by A, is the set of all sequences of length ≥ 0 of elements of A with concatenation being the operation 

(such sequences are called words). The unique string of length 0, denoted by 1 and called the empty word, acts 

as the identity. A language over A is a subset of A*. |w| denotes the length of the word w, and wα denotes the set 

of letters in w. A word u is a prefix of w if there exists a word v such that uv = w. A word u is a suffix of w if 

there exists a word v such that vu = w. A word u is a factor (or segment) of a word v if there exists words x and y 

such that v = xuy. A word u = a1…an (where a1,… ,an are letters) is a subword of v if there exist words v0,…,vn 

such that v = v0a1v1a2…anvn . 

 

An equivalence ~ on A* is a congruence if x ~ y implies uxv ~ uyv for all u, v, x, y   A*. A congruence ~ is 

aperiodic if there exists n ≥ 0 such that x
n
 ~ x

n+1
, for all x. The ~-class of x is [x]~ = {y | x ~ y}. The set of all     

~-classes is denoted by A*/~ and the index of ~ is defined as the cardinality of A*/~. This set becomes a monoid 

by considering the operation [x]~[y]~ = [xy]~; [1]~ acts as the identity. There exists a surjective morphism ~: A* 

→ A*/~, defined by x ~= [x]~. Conversely, any morphism  : A* → M induces a congruence on A* defined by 

x y if and only if x  = y . Note that we use the same symbol to denote the congruence and the related 

morphism. If   is surjective, there exists an isomorphism between A*/  and M. Any monoid can then be 

represented as a quotient of A* by a congruence. 

 

If L   A* is a union of , ~-classes, we say that L is a ~-language. For any language L over A, the syntactic 

congruence of L is defined by x ~L  y if and only if for all u, v   A* , uxv   L if and only if uyv   L. ~L is the 

congruence of minimal index with the property that L is a ~-language, i.e., for any congruence ~ on A* , L is a 

~,-language if and only if ~ ~L. The quotient monoid A*/~L is denoted by M(L) and is called the syntactic 

monoid of L. If M is a monoid and there exists a morphism  : A* → M such that L = S -1
 for some S   M, we 

say that M recognizes L. A language is said to be recognizable if it is recognized by a finite monoid. Kleene's 

theorem asserts that the regular languages in A* are exactly those recognized by finite monoids. It is well 

known that M(L) is the monoid M of minimal cardinality with the property that M recognizes L; in fact, M(L)   

M  if and only if M recognizes L . Also L is regular if and only if M(L) is finite. 

 

W is a variety of monoids, or M-variety, if 

 it is a class of finite monoids closed under division, i.e., if M   W and M′  M (or M′ is a 

morphic image of a submonoid of M), then M′   W, and 

 it is closed under finite direct product, i.e., if M, M'   W, then M   M'   W. 

 

For any class C of finite monoids, we denote by    M the last M-variety containing C. Clearly, M 

     M if and only if there exists a finite sequence M1, …, Mn of monoids of C such that M   M1 

 …  Mn. We call    M the M-variety generated by C. 

 

 



W is a *-variety of languages if 

 for every finite alphabet A, A*  denotes a class of recognizable languages over A closed 

under boolean operations, 

 if L   A*   and a   A, then a 
-1

L = {w   A* | aw   L} and La 
-1

 = {w   A* | wa   L} are in 

A*  , and 

 if L   A*   and   : B* → A* is a morphism, then L -1
 =  {w   B* | w    L} is in B*  . 

 

Eilenberg has shown that there exists a one-to-one correspondence between M-varieties and *-varieties. To a 

given *-variety of languages   corresponds the M-variety W which consists of the syntactic monoids of the 

languages in A*   for some A, and to a given M-variety W corresponds the *-variety of languages   where 

A*   is the class of subsets L of A* for which there is M   W such that M(L)   M . The notion of variety 

captures the conditions under which a family of languages can be characterized by monoids and vice versa. 

 

≥Let u, v   A*. A monoid M satisfies the equation u = v if and only if u  = v  for all morphisms  : A* → M. 

One can show that the class of monoids M satisfying the equation u = v is an M-variety, denoted by W(u, v). Let 

(un, vn) n>0 be a sequence of pairs of words of A*. Consider the following M-varieties: W' =      (un, vn) and 

W" =  m>0      (un, vn). We say that W' ( W" ) is defined (ultimately defined) by the equations = v. ( n > 0): 

this corresponds to the fact that a monoid M is in W'' ( W" ) if and only if M satisfies the equations un = v. for 

all n > 0 (for all n sufficiently large). The equational approach to varieties is discussed in Eilenberg [8]. 

Eilenberg showed that every M-variety is ultimately defined by a sequence of equations and that every M-

variety generated by a single monoid is defined by a sequence of equations. 

 

2. Some combinatorial properties  

2.1. Of the ~(m)'s 

Simon's effective characterization of V1 [15] depends on some combinatorial properties of the congruences ~(m) 

stated in this subsection. A monoid M in V1 satisfies (xy)
m
 = (yx)

m
 and x

m
 = x

m+1 
for some m since M   A*/~(m) 

for some m and (xy)
m
 ~(m)(yx)

m
 and x

m
 ~(m)x

m+1
. It turns out that these two equations form a complete sequence 

of equations for V1. 

 

Lemma 2.1. Let m ≥ 1. Let u, v   A* . If u ~(m) v, then there exists w   A* such that u is a subword of w, v is a 

subword of w and u ~(m) w ~(m) v.  

 

Lemma 2.2. Let m ≥ 1. Let u, v   A*. Then u ~(m) uv (u ~(m) vu ) if and only if there exist u1,…, um   A* such 

that u = um ...u1 (u = u1 ...um) and vα   u1α   …   umα. 

 • 

Lemma 2.3. Let m ≥ 1. Let a   A and u, v   A* . Then uv ~(m) uav if and only if there exist nonnegative integers 

n, n' , n + n′ ≥ m such that u ~(n) ua and v ~(n′) av. 

 

2.2. Of the ~(1,m)'s 

This subsection states some combinatorial properties of the congruences ~(1,m). In this and the next sections, if w 

= al ... an is a word and 1 ≤ p ≤ q ≤ n, w[p, q] , w(p, q), w(p, q] and w[p, q) will denote, respectively, the 

segments ap… aq, ap+1… aq-1 , ap+1… aq and ap… aq-1. 

 

In the following, we talk about positions spelling the first and the last occurrences of every subword of length ≤ 

m of a word w. Consider the following example: let A = {a, b, c} and 

w =         b    a          c  bb  ba  cbbabcca 

 

The overlined positions of w are the positions which spell the first occurrences of every subword of length ≤ 3 

in w. 

 



To find the positions which spell the first occurrences of every subword of length ≤ m of a word w (or the (m) 

first position in w), proceed as follows: 

 

 let w1denote the smallest prefix of w such that w1α = wα (call the last position of w1 , p1 ); 

 

 let w2 denote the smallest prefix of w(p1,|w|] such that w2α = (w(p1, |w|])α (call the last position of w2 , 

p2); 

 . 

 . 

 . 

 and let wm denote the smallest prefix of w(pm-1, |w|] such that wmα = (w(pm-1,|w|])α (call the last position 

of wm, pm). 

 

p1,…,pm are among the positions we are looking for. Then, repeat the process to find the positions which spell 

the first occurrences of every subword of length ≤ m of w[1, p1) and of length ≤ (m - i +1) of w(pi-1, pi) for 2 ≤ i 

≤ m. 

 

A similar statement is valid to find the positions spelling the last occurrences of every subword of length ≤ m of 

w (or the (m) last positions in w). 

 

The (m) first and the (m) last positions in w are called the (m) positions in w. 

 

The following Lemmas are from [4]. 

 

Lemma 2.4. Let m ≥ 1. Let u, v   A
+
 and let p1,... ,ps in u (p1 < …< ps)(q1,... ,qs′ in v (q1 < … < qs′)) be the (m) 

positions in u (v). u ~(1,m) v  if and only if 

 

 s = s' , 

 

   
 pi if and only if   

 qi, a   A for 1 ≤ i ≤ s , and 

 

 u(pi, pi+1) ~(1) v(qi, qi+1) for 1 ≤ i ≤ s - 1.  

 

Lemma 2.5. Let m ≥ 1. Let u, v   A
+
 be such that u ~(1,m) v . Then there exists w   A

+
 satisfying: 

 

   
 pi if and only if   

  if and only if   
   

   , a   A for 1 ≤ i ≤ s, 

 

  ui ~(1) wi ~(1) vi , for 1≤ i ≤ s - 1, and 

 

  ui, vi are subwords of wi for 1 ≤ i ≤ s -1, 

 

where p1,...,ps (p1 < … < ps),   
 , … ,   

  (  
  < … <   

 ),   
  , …,   

   (  
   <… <   

  ) denote the (m) positions in u, 

v and w, respectively, ui = u(pi, pi+1), vi = v(  
 ,   

 
+1), and wi =(  

   ,   
  

+1) for 1 ≤ I ≤ s - 1.  

 

Lemma 2.4 and Lemma 2.5 imply that for m ≥ 1, and u, v   A*, if u ~(1,m) v, then there exists w   A* such that u 

is a subword of w , v is a subword of w and u ~(1,m) w ~(1,m) v. 

 

We end this section with a few observations useful in the proof of Theorem 4.3. First, x
2m+1 

~(1,m) x
2m +2 

and     

2m +1 is the smallest positive integer n with the property that x
n
 ~(1,m) x

n+1
. Second, consider a nonempty word w 

over an alphabet of two letters. Let m ≥ 1 and let p1,… ,ps. (p2 < … < ps) be the (m) positions in w. Let 1 ≤ i ≤ s 

- 1. If it is not the case that pi is the last among the (m) first positions in w and pi+1 the first among the (m) last 

positions in w, then |(w(pi,pi+1))α| < 2. 



3. Equations and the Vim, 's 

In this section, we define sequences of equations and show that they are complete for the V1m 's. Also, in a few 

cases, we show that those sequences of equations are equivalent to finite ones. 

 

3.1. Complete sequences of equations for the V1,m 's 

We now define some terminology that will be used in Definition 3.1 and Definition 4.1. 

 

By an i -subset we mean a subset with i elements. 

 

Let m ≥ 1. A segment of type r1(m) in the element of {x1} is x1; a segment of type r2(m) in the elements of {x1, x2} 

is (x2)
e
x1 or (x1)

e
x2 for some e, 1 ≤ e ≤ m; a segment of type ri+1(m) in the elements of Si+1 = {x1,… ,xi, xi+1} is the 

nonempty concatenation of at most m segments of type ri(m) in the elements of an i-subset of Si+1 , say Si, 

followed by the concatenation (maybe empty) of at most m segments of type ri-1(m) in the elements of an i - 1-

subset of Si , say Si-1,..., followed by the concatenation (maybe empty) of at most m segments of type r1(m) in 

the element of a 1-subset of S2 , say S1 , followed by the element in Si+1 - Si. Similarly, a segment of type l1(m) in 

the element of {x1} is x1; a segment of type l2(m) in the elements of {x1, x2} is x1(x2)
e
 or x2(x1)

e
 for some e, 1≤ e ≤ 

m; a segment of type li+1(m) in the elements of Si+1 = {x1,...,xi, xi+1} is the nonempty concatenation of at most m 

segments of type li(m) in the elements of an i-subset of Si+1 , say Si, preceded by the concatenation (maybe 

empty) of at most m segments of type li-1(m) in the elements of an i - 1-subset of Si , say Si-1,..., preceded by the 

concatenation (maybe empty) of at most m segments of type l1(m) in the element of a 1-subset of S2 say S1 , 

preceded by the element in Si+1 — Si. 

 

Definition 3.1.Let m ≥ 1 and let r be a nonnegative integer.     
  is afinite sequence consisting of equations of 

the form 

ur … u0v0 … vr = ur … u0xv0… vr 

 

where u0 = x
n0

 , v0 = x
n'0

 , where for 1 ≤ i ≤ r, ui is the concatenation of ni segments of type li+1(m) in the 

elements of {x, y1, yi} is the concatenation of   
  segments of type ri+1(m) in the elements of {x, z1,...,zi} , and 

where ni,   
  ≥ 0, 0 ≤ i ≤ r, and m = n0 + … + nr +   

  + … +   
 . 

 

Note that     
  consists of the equation x

m
 = x

m+1
. We have     

        
        

       
  … 

 

Theorem 3.3 gives a characterization of V1,m in terms of the     
 's 

 

Lemma 3.2. Let |A| = r +1, r ≥ 0. Let M be a monoid generated by A. Then M belongs to V1,m if and only if M 

satisfies the equations in     
 . 

 

Proof. We have to prove that M   V1,m if and only if M satisfies the equations in     
 , or M   V1,m if and 

only if for every morphism   : A* → M, 

 

(1) ur … u0v0 … vr  = ur … u0xv0 … vr  

 

for every equation ur … u0v0 … vr = ur …  u0xv0 … vr in     
 . Suppose M   V1,m and let   : A* → M be a 

morphism. Then ~(m)     . Now, let 

 

ur … u0v0 … vr = ur … u0xv0 … vr 

 

be an equation in     
  where the u's and the v's are as in Definition 3.1 and let n = n0 +…+ nr and n' =   

 + …+ 

  
 . By Lemma 2.2, ur … u0 ~(n) ur … u0x and v0 … vr ~(n’) xv0 … vr. Since n + n' = m, Lemma 2.3 implies that 

 



ur … u0v0 … vr ~(m) ur … u0xv0 … vr 

 

and hence Equation (1) holds. 

 

Conversely, let  : A* → M be a surjective morphism satisfying all the instances of Equation (1). We want to 

show that ~(m)    . Let f ~(m) g . Lemma 2.1 permits us to consider only the case where f is a subword of g. We  

observe also that if f is a subword of h and h is a subword of g, we have also f ~(m)  h . Hence, we have only to 

consider the case where f = uv and g = uav. So we have uv ~(m) uav. Lemma 2.3 implies the existence of n and n' 

such that n + n' ≥ m, u ~(n) ua and v ~(n’) av. Lemma 2.2 implies the existence of w1 , … , wn   A*,   
 , … ,    

    

A* such that u = wn … w1 , v =   
 …    

 , {a}   w1α  …   wnα and {a}     
 α   …      

 α. We can choose 

w1 to be the smallest suffix of u to contain a, w2 the smallest suffix of u — w1 to contain w1α,… ,   
  the smallest 

prefix of v to contain a,   
  the smallest prefix of v —   

  to contain   
 α, …. Hence u = wwn … w1 , v =   

  … 

   
 w′ where w, w'   A*. There exist nonnegative integers n0, ... , nr such that the n0 first segments among w1, 

…, wn are of type l1(m0) in the element of {a}, the n1 next segments are of type l2(m1) in the elements of {a, b1}, 

…, and the last nr segments are of type lr+1(mr) in the elements of {a, ,b1, … , br} . Here, m0, … , mr are positive 

integers, a, b1, … ,br are in A. Similarly, there exist nonnegative integers   
 , … ,   

  such that the   
  first 

segments among ,   
 , … ,    

  are of type r1(  
 ) in the element of {a}, the   

  next segments are of type r2(  
 ) 

in the elements of {a, c1}, … , and the last   
  segments are of type rr+1(  

 ) in the elements of {a, c1, …  ,cr}. 

Here,   
 , … ,   

  are positive integers and c1,… ,cr are in A. It is possible that some of m0, … , mr,   
 , … , 

  
  be greater than m. If this is the case for some mi , say, 0 ≤ i ≤ r , and wk (1 ≤ k ≤ n) is of type li+1(mi) in the 

elements of an i + 1-subset of A, one can write wk  as newwk  where newwk is of type li+1(m) in the elements of 

that subset of A. This can be done using instances of Equation (1). For example, let r = 2 and A = {a, b, c} Let 

 

u =            
 

    
  

                                       
  

       
  

  
  

, and v =         
  

 

           
  

 

     
  

 

 

uv ~(5) uav since u ~(4) ua and v ~(2) av. Here, m = 5, n = 4 and n' = 2. There is n0 = 1 segment in u of type l1(m0) 

= l1(1) in the element of {a}, i.e. w1; there is n1 = 1 segment in u of type l2(m1) = l2(3) in the elements of {a, b} , 

i.e. w2 ; and there are n2 = 2 segments in u of type l3(m2) = l3(7) in the elements of {a, b, c} , i.e. w3 and w4. 

Also, there is   
  = 0 segments in v of type r1(  

 ) = r1(1) in the element of {a} ; there is   
  = 1 segment in v of 

type r2(  
 ) = r2(4) in the elements of {a, c}, i.e.   

  ; and there is   
  = 1 segment in v of type r3(  

 ) = r3(2) in 

the elements of {a, b, c} ; i.e.   
  . We have that m2 > 5 and w3 is of type l3(m2) in the elements of {a, b, c} . By 

hypothesis,  : A* → M is a surjective morphism satisfying all the instances of Equation (1). In particular, since 

v1 = xv1 where v1 is the concatenation of 5 segments of type r2(5) in the elements of {x, z1} belongs to     
 , v1  

= xv1 . Hence, one can write w3  as neww3  where neww3 is of type l3(5) in the elements of {a, b, c}. 

 

w3  = ba(ca)(ca)(aac)(ca)(ca)cccccacca   

      = bc(ac)(aaac)(ca)(ca)(ccccca)cca   

      = ba(ca)(aac)(ca)(ca)(ccccca)cca   

      = bc(aaac)(ca)(ca)(ccccca)(cca)  

       = baaaccacacccccacca  

       = neww3  

 

(the segments inside (   ) are of type r2(5) in the elements of {a, c} ). Similarly, if we have some   
  greater than 

m. Hence wn … w1  
 …   

   = wn … w1a  
 …    

   and uv  = uav  follows. 

 

 Theorem 3.3. V1,m is defined by  r ≥ 0     
  . 

 

Proof. By Lemma 3.2. 

  

3.2. Are the complete sequences of equations of the preceding sub-section equivalent to finite ones? 



Is V1,m defined by a finite sequence of equations, or is  r ≥ 0     
  equivalent to a finite sequence of equations? 

The answer is positive for V1,1, V1,2 and V1,3 as the next three Theorems show. 

 

Theorem 3.4.  r ≥ 0     
   is equivalent to     

 . 

 

Proof. x = x
2
 is an instance of xy1 = xy1x . For r > 0, 1 ≤ i ≤ r, equations of the form ui = uix where ui ~(1) xy1 … yi 

are easily seen to be deduced from xy1 = xy1x, and the equations of the form vi = xvi where vi ~(1) xz1 … zi are  

seen to be deduced from z1x = xz1x. The equations xy1 = xylx and z1x = xz1x both belong to      
 . 

 

Theorem 3.5. r ≥ 0     
   is equivalent to      

 .  

 

Proof. x
2
 = x

3
 is a special instance of xy1z1x = xy1xz1x. For r > 0, 1 ≤ k ≤ r, let uk ~(1) xy1…yk and vk ~(1) xz1… zk. 

For 1 ≤ i, j ≤ r, instances of uix = uix
2
, xvj = x

2
vj , and uivj = uixvj are easily seen to be deduced from xy1z1x = 

xy1xz1x. For 1 ≤ i ≤ j ≤ r, equations of the form ujui = ujuix and vivj = xvivj can be deduced from xy1z1x = xy1zz1x, 

(xy1)
2
 = (xy1)

2
x and (z1x)

2
 = x(z1x)

2
 which belong to     

 . For instance, ujui = ujxuixui (using xy1z1x = xy1xz1x 

several times since (xuix)α   uiα and (xuix)α   ujα) =ujxuixuix (using (xy1)
2
 = (xy1)

2
x) = ujuix (since ujui = 

ujxuixui). 

 

Theorem 3.6.Ur≥0     
  is equivalent to     

 . 

 

Proof. The following sequence of equations 

 

 xy1xz1x = xy1x
2
z1x 

 xy1z1x
2
z2z1 = xy1xz1x

2
z2z1 

 y1y2x
2
y1z1x = y1y2x

2
y1xz1x 

 (xy1)
3
 = (xy1)

3
x 

 (z1x)
3
 = x(z1x)

3
 

 

belongs to     
 . For r > 0, 1 ≤ l ≤ r, let ul ~(1) xy1…yl and vl ~(1) xz1… zl 

 

x
3 

= x
4
 is an instance of xy1xz1x = xy1x

2
z1x. For 1 ≤ i, j ≤ r, equations of the form uix

2
 = uix

3
, x

2
vj = x

3
vj , and uixvj 

= uix
2
vj are easily seen to be deduced from xy1xz1x = xy1x

2
z1x. 

 

For 1 ≤ k ≤ r and 1 ≤ i ≤ j ≤ r, we show how to deduce instances of ujuivk = ujuixvk from the five equations stated 

at the beginning of the proof (instances of ujuix = ujuix
2
, xvivj = x

2
vivj, and ukvivj = ukxvivj are deduced similarly). 

ujuivk = ujuixvk can be written as w'xww"xw"' = w'xwxw"xw'" where w   {y1,…,yi}*, w′ ~(1) xy1… yj , w′′   {z1,…  

, zk}* , w′′′   {x, z1, …, zk}* and can be deduced as follows: if w = 1, then w'xw"x = w′x
2
w′′x using xy1xz1x = 

xy1x
2
z1x since x is in w'; if w   1, then w = w1… wn and w′xwxw′′x = w′xw1… wnxw′′x 

=w′x2w1… wnxw′′x (using xy1xz1x = xy1x
2
z1x since x is in w′) 

= w′x
2
w1xw2… wnxw′′x (using y1y2x

2
y1z1x = y1y2x

2
y1xz1x since w1 is in w′) 

= w′x
2
w1x

2
w2… wnxw′′x (using xy1xz1x = xy1x

2
z1z) 

= w′x
2
w1x

2
w2xw3… wnxw′′x (using y1y2x

2
y1z1x = y1y2x

2
y1xz1x since w2 is in w′) 

= w′x
2
w1x

2
w2x

2
w3… wnxw′′x (using xy1xz1x = xy1x

2
z1x) 

  
= w′x

2
w1x

2
w2x

2
w3x

2
 … x

2
wnxw′′x 

= w′x
2
w1x

2
w2x

2
w3x

2
 … x

2
wnw′′x (using y1y2x

2
y1z1x = y1y2x

2
y1xz1x since wn is in w′) 

= w'x
2
w1x

2
w2x

2
w3x

2
 … xwnw′′x  (using xy1xz1z = xy1x

2
x1x) 

= w′x
2
w1x

2
w2x

2
w3x

2
 … x

2
wn-1wnw′′x (using y1y2x

2
y1z1x = y1y2x

2
y1xz1x since wn-1 is in w′) 

= w′x
2
w1x

2
w2x

2
w3x

2
 … xwn-1wnw′′x (using xy1xz1x = xy1x

2
z1x 

  



= w′x
2
w1… wnw′′x 

= w'xw1… wnw′′x (using xy1xz1x = xy1x
2
z1x since x is in w′) 

= w'xww′′x. 

 

Now, for 1 ≤ i ≤  j ≤ k ≤ r, we show how ukujui = ukujuix can be deduced (the proof is similar for the equations 

vivjvk = xvivjvk). Similarly as above, we can show that ukujui = ukujzui can be deduced where z is any variable 

among x, y1,…, yi. Hence, ukujui = ukujuixui follows. So we get, ukujui = ukujuixui = ukujuixuixui = ukujuixuixuixui = 

ukujuixuixuix (using (xy1)
3
 = (xy1)

3
x) = ukujuixuix = ukujuix. 

 

For m ≥ 4, does there exist r' for which  r≥0    
  is equivalent to     

  ? A positive answer to this question would 

provide complete finite sequences of equations for all the V1,m’s. 

 

4. Equations and V2,1 

In this section, we give an equational characterization of the monoids in V2,1 generated by two letters. 

 

Definition 4.1. Let m ≥ 1. C(1,m) is a finite sequence consisting of equations of the form uxyv = uyxv where u , v 

are the concatenation of m segments of type r2(2m + 1) or l2(2m + 1) in the elements of {x, y}. 

 

      
  is a finite sequence consisting of equations of the form 

u′uxvv′ = u′ux
2
vv′ 

where u = x
n
 , v = x

n'
 , where u' (v') is the concatenation of m — n (m — n' ) segments of type r2(2m + 1) or 

l2(2m + 1) in the elements of {x, y} , and where 0 ≤ n, n' ≤ m. 

 

Note that the equations in C(1,m) are of the form w1xyw2 = w1yxw2 and the ones in       
  of the form w3xw4 = 

w3x
2
w4. Recall from Subsection 1.1 that xy = yx and x = x

2
 are the defining equations for V1,1. The following 

Lemma is from [4]. 

 

Lemma 4.2. Every monoid in V2,1 satisfies C(1,m)        
 for all sufficiently large m.  

 

Lemma 4.3. Let M be a monoid generated by A, an alphabet of two elements. Then M belongs to V2,1 if and only 

if M ultimately satisfies the equations  m≥1C(1,m)        
 . 

 

Proof. We have to prove that M   V2,1 if and only if M satisfies the equations in C(1,m)        
  for all m 

sufficiently large. By Lemma 4.2, monoids in V2,1 satisfy C(1,m)        
 for all sufficiently large m. 

 

Conversely, let   : A* → M be a surjective morphism satisfying w  = w'  for every equation w = w' in 

 n≥mC(1,n)        
  for some m ≥ 1. Let us show that M   V2,1. It is sufficient to prove that for all f and g in A*, 

f ~(1,m) g implies f  = g . For f = g =1, it is certainly true. So assume f, g   1 and f ~(1,m) g. We want to show 

that f  = g . Let p1,… , ps (p1 < … < ps) (q1, …, qs (q1 < … < qs)) be the (m) positions in f (g). Lemma 2.5 

allows us to consider only the case where 

 

   
 
 i  if and only if   

 
 i , a   A for 1 ≤ i ≤ s , 

 

 fi ~(1) gi, and 

 

 fi is a subword of gi for 1 ≤ i ≤ s - 1, 

 

where fi = f (pi, pi+1) , gi = g(qi, gi+1) for 1 ≤ i ≤  s - 1. Here 

f = a1f1a2f2 … as -1fs – 1as, 

g = a1g1a2g2 … as – 1gs – 1as, 



where    
 

pi and    
 

qi for some ai   A, 1 ≤ i ≤ s. The above permits us to consider only the case where f = 

a1f1a2f2 … fi-1aifiai+1fi+1 … as-1fs-1as, g = a1f1a2f2 … fi-1aigiai+1fi+1 … as-1fs-1as, where fi is a subword of gi and 

fi ~(1) gi for some i between 1 and s —1. We observe also that if fi is a subword of hi and hi a subword of gi, we 

have also fi ~(1) hi . Hence we have only to consider the case where f = alf1a2f2 … fi-1aiuvai+1fi+1 … as-1fs-1as, g = 

a1f1a2f2… fi-1aiuavai+1fi+1 … as-1fs-1as for some i between 1 and s — 1, some a in u or in v. Since |A| = 2, we have 

the following cases. 

 

Case 1: If pi is the last position among the (m) first positions in f and pi+1 the first position among the (m) last 

positions in g , then using a particular case of       
  i.e x

2m+1 
=  x

2m+2
 enables us to assume that f and g do not 

contain more than 2
m+1 

consecutive occurrences of a letter. Hence, we are able to write f  and g  as f  = 

um…u1uvv1 … vm , g  = um … u1uavv1 … vm  where the u's and the v's are segments of type r2(2m + 1) or 

l2(2m + 1) in the elements of {a, b} where a, b   A. Then using C(1,m) and       
  enables us to write g  as um … 

u1uvv1 … vm  = f  since a is in u or in v. 

 

Case 2: Otherwise, uv contains only a's, and a is in u or in v. Assume a is in u, so uv =   
 au0v for some   

 , u0   

a*. The proof when a is in v is similar. Using x
2m+1 

= x
2m+2 

enables us as in Case 1 to assume that f and g do not 

contain more than 2m + 1 consecutive occurrences of a letter. From the choice of the pi 's, a1f1a2f2 … fi-1ai  
  

~(m) a1f1a2f2 … fi-1ai   
 a and u0vai+1fi+1 … as-1fs-1as ~(m) au0vai+1fi+1… as-1fs-1as. Lemma 2.2 hence implies the 

existence of u1, … , um   A*, v1 ...vm   A* such that 

 

a1f1a2f2 … fi-1ai  
  = um … u1, 

u0vai+1fi+1 … as-1fs-1as = v1 … vm, 

 

{a}   ulα   …   umα and {a}   v1α   …   vmα. Moreover, it is easy to see that if we assume that there exist k 

and l between 0 and m such that um-k = … = u1 = a = v1 = …  = vm-l, and such that the other u's and v's are of type 

r2(2m+1) or l2(2m+1) in the elements of {a, b}, then um ... u1 is a suffix of alf1a2f2 … fi-1ai  
   and v1 … vm is a 

prefix of u0vai+1fi+1 … as-1fs-1as.       
  gives 

 

um … um-k+1a
2m+1-k-l

vm-l+1 … vm  = 

um … um-k+1a
2m+2-k-l

vm-l+1 … vm . 

 

The result f  = g  follows.  
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