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Abstract:

This paper studies the fine structure of the Straubing hierarchy of star-free languages. Sequences of equations
are defined and are shown to be sufficiently strong to characterize completely the monoid varieties of a natural
subhierarchy of level one. In a few cases, it is also shown that those sequences of equations are equivalent to
finite ones. Extensions to a natural sublevel of level two are discussed.

Article:

1. Introduction

This paper deals with the problem of the decidability of the different levels of the Straubing hierarchy of star-
free languages. The problem is a central one in the theory of regular languages. Its study is justified by its
recognized connections with logic and the theory of complexity. More specifically, this paper is concerned with
the problem of finding equations for Straubing's varieties of monoids.

1.1. Literature review

Let A be a given finite alphabet. The regular languages over A are those subsets of A*, the free monoid
generated by A, constructed from the finite languages over A by the boolean operations, the concatenation
product and the star. The star-free languages are those regular languages which can be obtained from the finite
languages by the boolean operations and the concatenation product only. According to Schitzenberger [14], L
C A* js star-free if and only if its syntactic monoid M(L) is finite and aperiodic or M(L) contains no nontrivial
subgroups). General references on the star-free languages are McNaughton and Papert [12], Eilenberg [8], or
Pin [13].

Natural classifications of the star-free languages are obtained based on the alternating use of the boolean
operations and the concatenation product. Let A" = A* — {1}, where 1 denotes the empty word. Let A'Bg be the
class of finite or cofinite subsets of A™, and let A*By.; denote the class of subsets of A* which are boolean
combinations of languages of the form L;...L, (n> 1) with Ly, . ,L, € A"Bx. Only nonempty words over A are
considered to define this hierarchy; in particular, the complement operation is applied with respect to A*. The
language classes A"Bg, A'By, ... form the so-called dot-depth hierarchy introduced by Cohen and Brzozowski in
[7]. The union of the classes A"'Bo, A'B;, ... is the class of star-free languages.

Our attention is directed toward a closely related and more fundamental hierarchy, this one in A*, introduced by
Straubing in [16]: A*V, consists of the empty set A*, and A*V.1 denotes the class of languages over A which
are boolean combinations of languages of the form Loa;L;a;...a,L, (n >0) with Lo,...,L, € A*Vand ay,...,a, €
A. Let A*V = Uy s o A*Vi. L € A* is star-free if and only if L € A*V, for some k > 0. The dot-depth of L is the
smallest such k.
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For k> 1, let us define subhierarchies of A*V as follows: for all m > 1, let A*V, , denote the class of boolean
combinations of languages of the form Loa;L;a;...a,Ln (0 <n <m) with Lo,...,L, € A*V\and ay,...,an € A. We
have A*Vy = U;s1 A*Viem. Easily, A*Vim © A*Vii1m, and A*Vy m © A*Vy m+1. Similarly, subhierarchies of A+By
can be defined. In A*B; several hierarchies and classes of languages have been studied; the most prominent
examples are the g-hierarchy [6], also called depth-one finite cofinite hierarchy, and the class of locally testable
languages.

The Straubing hierarchy gives examples of *-varieties of languages. One can show that V, Vi and Vi, are *-
varieties of languages. According to Eilenberg, there exist varieties of monoids V, Vi and Vi, corresponding to
V, Vi and Vi m, respectively. V is the variety of aperiodic monoids. We have that for L € A* , L € A*V if and
only if M(L) € V, for each k>0, L € A*V, if and only if M(L) € Vi, and for k>1, m>1, L € A*V, if and only
if M(L) € Vim.

An outstanding open problem is whether one can decide if a star-free language has dot-depth k, i.e., can we
effectively characterize the varieties Vi? The variety V, consists of the trivial monoid alone, V1 of all finite J-
trivial monoids [15]. Straubing [17] conjectured an effective characterization, based on the syntactic monoid of
the language, for V,. His characterization, formulated in terms of the novel use of categories in semigroup
theory is shown to be necessary in general, and sufficient for an alphabet of two letters.

In the framework of semigroup theory, Brzozowski and Knast [5] showed that the dot-depth hierarchy is
infinite. Thomas [19] gave a new proof of this result, which shows also that the Straubing hierarchy is infinite,
based on the following version of the Ehrenfeucht-Fraissé game.

First, one regards a word w € A* of length |w| as a word model w = ({1,... ,w}, <", (Q¥)a € o) Where the
universe {1,...,|w|} represents the set of positions of letters in w, <" denotes the <-relation in w, and Q% are
unary relations over {1, ... |w[} containing the positions with letter a, for each a € A. For a sequence m =
(my,...,mg) of positive integers, where k > 0, the game G (u, v) is played between two players I and Il on the
word models u and v. A play of the game consists of k moves. In the ith move, player | chooses, inu orinv, a
sequence of m;, positions; then player 11 chooses, in the remaining word, also a sequence of m; positions. After k
moves, by concatenating the position sequences chosen from u and v, two sequences of positions p;... p, fromu
and Q;...qn from v have been formed where n = m; + ... + my. Player Il has won the play if the two subwords in
u and v given by the position sequences pi...pn, and g;...q, coincide. If there is a winning strategy for player Il
in the game G5 (u, v) to win each play we write u ~; v. The two players play the game G (u, v) on a pair of
words u and v. Player | tries to demonstrate a difference between them while player 1l tries to keep the words
looking the same. ~, naturally defines a congruence on A*. Thomas [18, 19] infers that fork>1, M € Vif and
only if for every morphism : A* — M there exists m = (my,...,m,) such that ~5 refines ¢, or, more precisely,
fork>1,m=>1, M € Vinif and only if for every morphism ¢ : A* — M there exists m = (m my, ... ,my) such
that ~ refines ¢. Applications of the characterizations of Vi and Vi in terms of the ~’s appear in [1,2,3,4].

Eilenberg showed that every variety of monoids is ultimately defined by a sequence of equations. For example,
the variety V of aperiodic monoids is ultimately defined by the equatons x" = X" (n > 0). The variety V; is
ultimately defined by the equations (xy)™ = (yx)™ and x™ = x™?* (m > 0). This gives a decision procedure for V1,
i.e., M € V;ifandonly if forall x, y € M, (xy)™ = (yx)™ and x™ = x™* with m the cardinality of M. One can show
that every variety of monoids generated by a single monoid is defined by a (finite or infinite) sequence of
equations. V1, being generated by A*/~m), can we find explicitly a sequence of equations that define Vi n? If
so, can we find explicitly a finite sequence of equations that define V1 »,? An attempt to answer these open
problems was made in [2]. There, finite sequences of equations were defined which are satisfied in the V1 i's
(but not necessarily complete for the V1 's). It was shown that those sequences of equations are complete for
V11, V12 and V1 3. More precisely, V1 1 is defined by x = x% and xy = yx, Vi, by xyzx = xyxzx and (xy)® = (yx)?,
and V1 3 by xzyxvxwy = xzxyxvxwy, YWXVXYZX = yWxvxyxzx and (xy) = (yx)é (suggested to me by J.-E. Pin to be
equivalent to xyxzx = xyx?zx, Xyzx2uz = Xyxzx2uz, zux’zyx = zux?zxyx and (xy)® = (yx)®).



This paper studies the fine structure of the Straubing hierarchy. The results are concerned in particular with
sequences of equations for the corresponding varieties of monoids. The question of finding complete sequences
of equations which characterize Straubing's varieties is solved for the V1 's. It is also shown that the sequences
of equations which characterize V11, V1, and V1 3 are equivalent to finite ones. Generalizations to V,; are
discussed. (Knast [9,10] provide an equation system for level one of Brzozowski's dot-depth hierarchy.) The
proofs rely on some combinatorial properties of the congruences ~m and ~(1,m) Stated in Section 2.

In the following, notation and basic concepts are introduced.

1.2. Preliminaries
For more information on the matters discussed in this subsection, see the books by Eilenberg [8], Lallement
[11] or Pin [13].

Let A be a finite set. |A| denote the cardinality of A or the number of elements in A. A*, the free monoid
generated by A, is the set of all sequences of length > 0 of elements of A with concatenation being the operation
(such sequences are called words). The unique string of length 0, denoted by 1 and called the empty word, acts
as the identity. A language over A is a subset of A*. |w| denotes the length of the word w, and wa. denotes the set
of letters in w. A word u is a prefix of w if there exists a word v such that uv =w. A word u is a suffix of w if
there exists a word v such that vu = w. A word u is a factor (or segment) of a word v if there exists words x and y
such that v = xuy. A word u = a;...a, (where ay,... ,a, are letters) is a subword of v if there exist words vy,...,vq
such that v = vpaiviaz. ..anVn .

An equivalence ~ on A* is a congruence if x ~ y implies uxv ~ uyv for all u, v, x, y € A*. A congruence ~ is
aperiodic if there exists n > 0 such that x" ~ x"**, for all x. The ~-class of x is [x]- = {y | x ~ y}. The set of all
~-classes is denoted by A*/~ and the index of ~ is defined as the cardinality of A*/~. This set becomes a monoid
by considering the operation [x]-[y]- = [xy]-; [1]- acts as the identity. There exists a surjective morphism ~: A*
— A*/~, defined by x ~= [x]-. Conversely, any morphism : A* — M induces a congruence on A* defined by
xey if and only if X = y¢. Note that we use the same symbol to denote the congruence and the related
morphism. If ¢ is surjective, there exists an isomorphism between A*/¢ and M. Any monoid can then be
represented as a quotient of A* by a congruence.

If L € A*isaunion of , ~-classes, we say that L is a ~-language. For any language L over A, the syntactic
congruence of L is defined by x ~_ y if and only if for all u, v € A* , uxv € L if and only if uyv € L. ~_is the
congruence of minimal index with the property that L is a ~-language, i.e., for any congruence ~on A* , L isa
~,-language if and only if ~S~. The quotient monoid A*/~_is denoted by M(L) and is called the syntactic
monoid of L. If M is a monoid and there exists a morphism : A* — M such that L = S¢™ for some S ¢ M, we
say that M recognizes L. A language is said to be recognizable if it is recognized by a finite monoid. Kleene's
theorem asserts that the regular languages in A* are exactly those recognized by finite monoids. It is well
known that M(L) is the monoid M of minimal cardinality with the property that M recognizes L; in fact, M(L) <
M if and only if M recognizes L . Also L is regular if and only if M(L) is finite.

W is a variety of monoids, or M-variety, if

« itisa class of finite monoids closed under division, i.e., if M € Wand M'< M (or M’ is a
morphic image of a submonoid of M), then M’ € W, and

« itis closed under finite direct product, i.e., if M, M' € W, then M X M' € W.

For any class C of finite monoids, we denote by (C)w the last M-variety containing C. Clearly, M
€ (C)wm if and only if there exists a finite sequence My, ..., M, of monoids of C such that M < M;
X...X Mp. We call (C)v the M-variety generated by C.



W is a *-variety of languages if

« for every finite alphabet A, A*W denotes a class of recognizable languages over A closed
under boolean operations,

« ifLeEA*Wanda€A thena™L={weA*|awe L}and La™ ={w € A*|wa € L} are in
A* W, and

« ifLeA*W and ¢ : B* — A* is a morphism, then Lo = {w € B* | wg € L} is in B* W.

Eilenberg has shown that there exists a one-to-one correspondence between M-varieties and *-varieties. To a
given *-variety of languages W corresponds the M-variety W which consists of the syntactic monoids of the
languages in A* W for some A, and to a given M-variety W corresponds the *-variety of languages W where
A* W is the class of subsets L of A* for which there is M € W such that M(L) < M . The notion of variety
captures the conditions under which a family of languages can be characterized by monoids and vice versa.

>Letu, ve A*. A monoid M satisfies the equation u = v if and only if ug = v for all morphisms : A* — M.
One can show that the class of monoids M satisfying the equation u = v is an M-variety, denoted by W(u, v). Let
(un, Vn) n>0 be a sequence of pairs of words of A*. Consider the following M-varieties: W' = U, W (uy, v,) and
W" = Umso Unso W(Un, Vn). We say that W' (W™ ) is defined (ultimately defined) by the equations = v. (n > 0):
this corresponds to the fact that a monoid M is in W" (W" ) if and only if M satisfies the equations un = v. for
all n > 0 (for all n sufficiently large). The equational approach to varieties is discussed in Eilenberg [8].
Eilenberg showed that every M-variety is ultimately defined by a sequence of equations and that every M-
variety generated by a single monoid is defined by a sequence of equations.

2. Some combinatorial properties

2.1. Of the "‘(m)'S

Simon's effective characterization of V; [15] depends on some combinatorial properties of the congruences ~(m)
stated in this subsection. A monoid M in V; satisfies (xy)™ = (yx)™ and x™ = x™** for some m since M < A*/~y
for some m and (xy)™ ~em(yX)™ and x™ ~mx™**. It turns out that these two equations form a complete sequence
of equations for V;.

Lemma 2.1. Letm >1. Letu, v € A* . If u ~) v, then there exists w € A* such that u is a subword of w, vis a
subword of w and u ~@myW ~(m) V.

Lemma2.2. Letm > 1. Letu, v € A*. Then u ~gm) uv (U ~mvu ) if and only if there exist uy, ..., un € A* such
that u = Uy ...u; (U=U; ...Uy) @nd Va S Uz € ... € Upa.

Lemma2.3.Letm>1. Leta€ Aandu,v € A*. Then uv ~ uav if and only if there exist nonnegative integers
n,n', n+n’>msuch that u ~u uaand v~ av.

2.2. Of the ~(1,m)ls

This subsection states some combinatorial properties of the congruences ~(1,my. In this and the next sections, if w
=a ..a,isawordand 1 <p <q <n,w[p, q] , w(p, ), w(p, q] and w[p, q) will denote, respectively, the
segments ap... ag, Ap+1... ag-1 , Ap+1... dg and ap... Ag-1.

In the following, we talk about positions spelling the first and the last occurrences of every subword of length <
m of a word w. Consider the following example: let A ={a, b, c} and
w = abbbbaaabcbccchbbabacchbabeca

The overlined positions of w are the positions which spell the first occurrences of every subword of length <3
inw.



To find the positions which spell the first occurrences of every subword of length <m of a word w (or the (m)
first position in w), proceed as follows:

. let widenote the smallest prefix of w such that wya = wa (call the last position of wy , p;1 );

. let w, denote the smallest prefix of w(py,|w|] such that woa = (w(py, [w[])a (call the last position of w; ,
P2);

. and let wy, denote the smallest prefix of w(pm-1, [w/|] such that wno = (W(pm-1,/w[])a (call the last position
of Wn, Pm)-

P1....,Pm are among the positions we are looking for. Then, repeat the process to find the positions which spell
the first occurrences of every subword of length <m of w[1, p;) and of length < (m - i +1) of w(p;.1, p;) for 2 <i
<m.

A similar statement is valid to find the positions spelling the last occurrences of every subword of length <m of
w (or the (m) last positions in w).

The (m) first and the (m) last positions in w are called the (m) positions in w.
The following Lemmas are from [4].

Lemma2.4. Letm>1. Letu,v € A" and let py,... ,ps in U (p1 < ...< ps)(Q1,... ,Gs' iV (01 < ... < Qs)) be the (M)
positions in u (v). u ~qm Vv if and only if

0 s=g",
. Q4piifand only if Q4qgi,a€ Afor 1 <i<s,and
i u(pi, pis1) ~1) v(qi, qi+1) for 1 <i<s-1.

Lemma 2.5. Letm >1. Let u, v € A" be such that u ~um v . Then there exists w € A" satisfying:

- QapifandonlyifQ; ifandonlyif Qzp;’ . a€Aforl<is<s,
. Ui ~2) Wi ~) Vi, for 1<i<s-1, and
¢ u;, v; are subwords of w; for 1 <i <s -1,

where py,...ps (P1 < ... <Ps), P1s s Ps (P1 < ... <P, 01, ... ¢ (p1 <... < py') denote the (m) positions in u,
v and w, respectively, ui = u(pi, Pi+1), Vi = V(p;, p;+1), and w; =(p;" , p;'+1) for L <1 <s- 1.

Lemma 2.4 and Lemma 2.5 imply that for m > 1, and u, v € A*, if u ~q.m) v, then there exists w € A* such that u
is a subword of w , v is a subword of w and u ~,m) W ~,m) V.

We end this section with a few observations useful in the proof of Theorem 4.3. First, x*™*! ~(; ;) X" *and

2m +1 is the smallest positive integer n with the property that X" ~ m) x""*. Second, consider a nonempty word w
over an alphabet of two letters. Let m > 1 and let p,... ,ps. (P2 < ... <ps) be the (m) positionsinw. Let 1 <i<s
- 1. If it is not the case that p; is the last among the (m) first positions in w and pj.; the first among the (m) last
positions in w, then |(W(pi,pi+1))a| < 2.



3. Equations and the Vim, 's
In this section, we define sequences of equations and show that they are complete for the Vi, 's. Also, in a few
cases, we show that those sequences of equations are equivalent to finite ones.

3.1. Complete sequences of equations for the Vi 's
We now define some terminology that will be used in Definition 3.1 and Definition 4.1.

By an i -subset we mean a subset with i elements.

Let m > 1. A segment of type ri(m) in the element of {x1} is x;; a segment of type r,(m) in the elements of {xi, X}
is (X2)°xy or (x1)°x. for some e, 1 < e < m; a segment of type ri+1(m) in the elements of Si+1 = {Xy,... ,Xi, Xi+1} is the
nonempty concatenation of at most m segments of type ri(m) in the elements of an i-subset of Si.1, say S;,
followed by the concatenation (maybe empty) of at most m segments of type ri.;(m) in the elements of an i - 1-
subset of S;, say S;.1,..., followed by the concatenation (maybe empty) of at most m segments of type ri(m) in
the element of a 1-subset of S, , say S; , followed by the element in Si; - S;. Similarly, a segment of type 13(m) in
the element of {x1} is x1; a segment of type l,(m) in the elements of {X1, X2} is X1(X2)° or X2(x1)° for some e, 1<e <
m; a segment of type li+1(m) in the elements of S;j+1 = {Xu,...,Xi, Xj+1} IS the nonempty concatenation of at most m
segments of type li(m) in the elements of an i-subset of Si.1, say S;, preceded by the concatenation (maybe
empty) of at most m segments of type l;.1(m) in the elements of an i - 1-subset of S;, say S;.1,..., preceded by the
concatenation (maybe empty) of at most m segments of type l;(m) in the element of a 1-subset of S, say S ,
preceded by the element in Sj.;—S;.

Definition 3.1.Let m > 1 and let r be a nonnegative integer. Cp,,,, is afinite sequence consisting of equations of
the form
Ur ves UOVO e Vr = Ur ves UOXVO... Vr

where up = X", vo = X", where for 1 <i <r, u; is the concatenation of n; segments of type li+1(m) in the
elements of {x, yi, yi} is the concatenation of n; segments of type ri.1(m) in the elements of {x, z1,...,z} , and
whereni, n; >0,0<i<r,andm=ng+...+n+n, +...+n,.

Note that C, consists of the equation X" = x™". We have C(),;y S Clmy S Clny € Ciny .-

Theorem 3.3 gives a characterization of Vi in terms of the Cp;,,y's

Lemma 3.2. Let |A| =r +1, r >0. Let M be a monoid generated by A. Then M belongs to V1 if and only if M
satisfies the equations in Cpy,,,.

Proof.  We have to prove that M € V1, if and only if M satisfies the equations in C(rm), orMeVynifand
only if for every morphism ¢ : A* - M,

(1) Ur ... uoVo ... Ve = Uy ... UgXVy ... Vi@

for every equation Uy ... UgVo ... Vr = Ur... UgXVo ... Vr IN C(yyy. Suppose M € Vi and let ¢ : A* — M be a
morphism. Then ~m) € ¢ . Now, let

Ur... UOVO Vr: Ur UOXVO Lo Vr

be an equation in C(Tm) where the u's and the v's are as in Definition 3.1 and letn=ng +...+ nrand n' =n,+ ...+
n,. By Lemma 2.2, Ur ... Up~@) Ur ... UpX @nd Vo ... Ve ~@y XVo ... V. Since n + n' = m, Lemma 2.3 implies that



Ur ... UgVo ... V¢ ~(m)Ur ... UpXVp ... V¢
and hence Equation (1) holds.

Conversely, let : A* — M be a surjective morphism satisfying all the instances of Equation (1). We want to
show that ~m) € ¢. Let f ~m)g . Lemma 2.1 permits us to consider only the case where f is a subword of g. We
observe also that if f is a subword of h and h is a subword of g, we have also f ~¢) h . Hence, we have only to
consider the case where f = uv and g = uav. So we have uv ~@) uav. Lemma 2.3 implies the existence of n and n'
suchthatn+n'>m, u~muaand Vv ~y,av. Lemma 2.2 implies the existence of wy , ..., Wy € A*, wy, ..., wy, €
A*suchthatu=wy ... wy,v=wy... wy,, {a} Swia C... S Wha and {a} € wja S ... € wy,0. We can choose
w; to be the smallest suffix of u to contain a, w, the smallest suffix of u — wj; to contain wia,... , wy the smallest
prefix of v to contain a, w; the smallest prefix of v— wj to contain wja, .... Hence u =wwy ... Wy , V=wjy ...
wy, W' where w, w' € A*. There exist nonnegative integers no, ..., n, such that the no first segments among wi,
..., Wy are of type l;(mp) in the element of {a}, the n; next segments are of type l,(m;) in the elements of {a, b},
..., and the last n, segments are of type I.+1(my) in the elements of {a, ,bs, ..., b/} . Here, mq, ..., myare positive
integers, a, by, ... by are in A. Similarly, there exist nonnegative integers n,, ..., n,. such that the n,, first
segments among , wy, ... , wy, are of type ri(my) in the element of {a}, the n; next segments are of type rp(m})
in the elements of {a, c1}, ..., and the last n,. segments are of type r..;(m,.) in the elements of {a, cy, ... ,C/}.
Here, my, ... , m,. are positive integers and cy,... ,c; are in A. It is possible that some of mg, ..., m,, mg, ...,

m,. be greater than m. If this is the case for some m;, say, 0 <i <r, and wy (1 <k <n) is of type li-1(m;) in the
elements of an i + 1-subset of A, one can write wyp as newwygp where newwy is of type li+1(m) in the elements of
that subset of A. This can be done using instances of Equation (1). For example, let r =2 and A = {a, b, c} Let

!
w Wy 1% w2 w, wi wy wr

—_——— —_—— - A —_——
u=ababab abc bacacaaaccacacccccacca abbb a, and v = tcccd cheeba becec

uv ~() uav since u ~@ ua and v~ av. Here, m=5,n =4 and n' = 2. There is no = 1 segment in u of type l1(mo)
=11(1) in the element of {a}, i.e. wy; there is ny = 1 segment in u of type lo(my) = I2(3) in the elements of {a, b},
i.e. W, ; and there are n, = 2 segments in u of type I3(my) = I3(7) in the elements of {a, b, c} , i.e. w3 and w,.
Also, there is n; = 0 segments in v of type ri(mg) = ri(1) in the element of {a} ; there is n; = 1 segment in v of
type ra(my) = ry(4) in the elements of {a, c}, i.e. wy ; and there is n;, = 1 segment in v of type rz(m3) =r3(2) in
the elements of {a, b, c} ; i.e. w; . We have that m, > 5 and ws is of type I3(my) in the elements of {a, b, c} . By
hypothesis, : A* — M is a surjective morphism satisfying all the instances of Equation (1). In particular, since
vi = xvi Where v; is the concatenation of 5 segments of type r,(5) in the elements of {x, z1} belongs to C(ZS), Vi

= Xvi1¢. Hence, one can write wzg as newwsg where newws is of type I3(5) in the elements of {a, b, c}.

W3¢ = ba(ca)(ca)(aac)(ca)(ca)cccccaccap
= bc(ac)(aaac)(ca)(ca)(ccccca)ccag
= ba(ca)(aac)(ca)(ca)(ccccca)ccap
= bc(aaac)(ca)(ca)(ccccca)(cca)g
= baaaccacacccccaccag
= Newws@

(the segments inside ( ) are of type rp(5) in the elements of {a, c} ). Similarly, if we have some m; greater than
m. Hence wy, ... wlwy...wy, @ =wn ... Wiawy ... wy,¢@ and uve = uave follows.

Theorem 3.3. V1 nis defined by Ur >y Cpyyy -
Proof. By Lemma 3.2.

3.2. Are the complete sequences of equations of the preceding sub-section equivalent to finite ones?



Is V1 defined by a finite sequence of equations, or is Uy > C(y,,) equivalent to a finite sequence of equations?
The answer is positive for V11, V1, and Vi 3 as the next three Theorems show.

Theorem 3.4. U >, Cyy is equivalent to ).

Proof. x = x? is an instance of xy; = xy.x . For r > 0, 1 <i <r, equations of the form u; = ujx where u; ~@)XY1 ... Yi
are easily seen to be deduced from xy; = Xxy:x, and the equations of the form v; = xv; where v; ~) Xz; ... z; are
seen to be deduced from z3x = xz;x. The equations xy; = Xy)x and z;x = xz;x both belong to C(ll).

Theorem 3.5.Uy ¢ C(yy is equivalentto Cg,.

Proof. x* =x%is a special instance of xylzlx = xyllex Forr>0,1<k<r, let ug ~@ Xy1...ykand vi ~qy Xz1..
For1<i, j<r, instances of uix = u; X, xvj = x?v;j , and u;v; = uixv; are easily seen to be deduced from xylzlx =
Xy1xziX. For 1 <i<j <r, equations of the form u;u; = ujuix and viv; = Xviv; can be deduced from Xxy;z:X = Xy1zz1X,
(xy2)® = (xy2)*x and (21x)” = X(21x)” which belong to C(yy. For instance, uju; = UjXuiXu; (USing Xy1zaX = Xy1XziX
several times since (XuiX)a € Uja and (XuiX)a € Ujor) =UjXuiXuix (using (xy2)® = (xy1)X) = ujuix (since ujuj =
UjXU;iXU;).

Theorem 3.6.Ur C(3y is equivalent to C(23).

Proof. The following sequence of equations

XY1XZ1X = Xy1X°Z1X

XY121X 2271 = Xy1X21X22221
Y1Y2X V121X = ylyzx y1X21X
(XY1) = (Xy1)“X

(zlx) = x(zlx)

belongs to Cé). Forr>0, 1 <I<r, let u~uXys...yand vi~q) Xz1... Z

x* = x* is an instance of xy1xz:x = xyx°zix. For 1<i, j<r, equatlons of the form up® = upx®, x%v; = x%; , and u;xv;
= uix?vj are easily seen to be deduced from xy;xzix = xy1x°z1X.

Forl<k<rand1<i<j<r, weshow how to deduce instances of Ujuivi = ujuixvy from the five equations stated
at the beginning of the proof (instances of ujuix = U;uix®, Xvivj = X°Viv;, and Ui = uxviv; are deduced similarly).
UjUiVk = UjuiXvi can be written as wxww"xw'™" = w'xwxw"xw"' where w € {y1,....yi}*, W' ~qy Xy1... ¥j , W’ € {z1,...
Ly, W e {X, 71, ..., z}* and can be deduced as follows: if w =1, then w'xw"x = WXAW'X using XyixziX =
xylxzzlx since X isin w'; if w # 1, then w = wy... W, and WXWXW''X = W'XW1... WpXW"'X

=wx2wl ... winxw"X (USing Xy1XziX = Xy1X°Z1X since X is in w')

= WXAWIXW2. .. WeXWX (USING Y1Y2X2Y121X = Y1yoX2y1XzZaX Since wy is in w')

= WXPWLXWa. .. WaXW'X (USING XY1XZ1X = Xy1X°Z12)

= WXAWIXW2XWs. .. WaXWX (USING Y1Y2X2Y1Z1X = Y1yoX2y1Xz1X since Ws is in w')

= WXPWL XWX W3, ... WpXW'X (USING XY1XZ1X = XY1X°Z1X)

= WXPWXPWXAW3X? . .. XPWpXW''X

= WXWDAW XWX .. xPWaW "X (USING Y1y2X2Y1Z1X = Y1YoX2y1Xz1X since Wy, is in W)

= WXPWXCWoXPW3XP ... xwaW'X (USING XY1XZ1Z = Xy1X*X1X)

= w’xzwlxzngzngz e XPWn W WX (USING Y1Y2XPY1Z1X = Y1YoX2Y1XZ1X SINCe Wi.q iS in W)

= W’X2W1X WX W3X” ... XWnaWaW''X (USING XY1XZ1X = xylxzzlx



= WXPW... WaW''X
= W'XW1... WaW"X (USING Xy1XZ1X = Xy1X°z1X since X is in w’)
= W'Xww"X.

Now, for 1 <i< j <k <r, we show how uyu;u; = uku;uix can be deduced (the proof is similar for the equations
ViVjVi = XVivjvk). Similarly as above, we can show that uiu;u; = ukujzu; can be deduced where z is any variable
among X, Y1, ..., yi. Hence, uxU;u; = uku;juixu; follows. So we get, UxUjui = UiUjUiXU; = UgUjUiXUiXUi = UiUjUiXUiXUiXU; =
UkUjUiXuiXuix (using (xy2)® = (xy1)’x) = UkUjUiXUiX = UkUjUiX.

For m > 4, does there exist r' for which Ur=oC(,,,, is equivalent to Clmy? A positive answer to this question would
provide complete finite sequences of equations for all the V1 ,’s.

4. Equations and V3
In this section, we give an equational characterization of the monoids in V,; generated by two letters.

Definition 4.1. Let m > 1. C(1 m) is a finite sequence consisting of equations of the form uxyv = uyxv where u , v
are the concatenation of m segments of type r(2m + 1) or I,(2m + 1) in the elements of {x, y}.

C('1,m) is a finite sequence consisting of equations of the form

| UUXW' = u'uxiw’
where u=x",v=x", where u' (v') is the concatenation of m — n (m —n') segments of type r,(2m + 1) or
I,(2m + 1) in the elements of {x, y} , and where 0 <n, n'<m.

Note that the equations in C(; m) are of the form wixyw, = wiyxw, and the ones in C; ,,,y  of the form waxw, =

wax?w,. Recall from Subsection 1.1 that xy = yx and x = x? are the defining equations for V1 1. The following
Lemma is from [4].

Lemma 4.2. Every monoid in V4 satisfies C1m UC(; ,,yfor all sufficiently large m.

Lemma 4.3. Let M be a monoid generated by A, an alphabet of two elements. Then M belongs to V- if and only
if M ultimately satisfies the equations Umx1Cim) U Cy -

Proof. We have to prove that M € V; if and only if M satisfies the equations in C(1m U C(’Lm) forall m
sufficiently large. By Lemma 4.2, monoids in V1 satisfy C(ym) U C(’Lm)for all sufficiently large m.

Conversely, let ¢ : A* — M be a surjective morphism satisfying we = w'e for every equation w =w" in
Un=mCany U C(1 .,y for some m > 1. Let us show that M € V2. It is sufficient to prove that for all f and g in A*,
f~am g implies fo = g¢. For f =g =1, it is certainly true. So assume f, g # 1 and f ~q m) g. We want to show
that fo = ge. Let py,..., Ps (P1 < ... <ps) (Qu ..., ¢s (01 < ... < g¢s)) be the (m) positions in f (g). Lemma 2.5
allows us to consider only the case where

. Qlpi ifand only if Q9q;,ae Afor1<i<s,
. fi ~ Gi and
. fiisa subword of g; for 1 <i<s-1,

where fi = f (pi, pi+1) , gi = 9(Q;i, gi+1) for 1L <i < s- 1. Here
f= alflazfz ... dg -1f5, 1ds,
g=aidiaxg2 ... as_10s—18s,



where Q/.pi and QZq; for some a; € A, 1 <i <. The above permits us to consider only the case where f =
arfiaof; ... fiaafiaiafic ... asifsids, g = artfiaof ... fiiaigidiafiv ... asafs1as, where fi is a subword of g; and

fi ~@) gi for some i between 1 and s —1. We observe also that if f; is a subword of h;and h; a subword of g;, we
have also f; ~) hi . Hence we have only to consider the case where f = aifia,f; ... fiiaiuvainfiv ... asafsias, g =
arfiaofy. .. fiaauavaifiv ... as1fs18s for some i between 1 and s— 1, some a in u or in v. Since |A| = 2, we have
the following cases.

Case 1: If pj is the last position among the (m) first positions in f and pi. the first position among the (m) last
positions in g , then using a particular case of C(; ,,,y i.e X*™*= x*™*2 enables us to assume that f and g do not
contain more than 2™ consecutive occurrences of a letter. Hence, we are able to write fo and go as fo =
UM...UgUWV1 ... V@, g9 = Up ... UsUaws ... Vne Where the u's and the v's are segments of type r,(2m + 1) or
[2(2m + 1) in the elements of {a, b} where a, b € A. Then using C(;mand C(Il,m) enables us to write g as up, ...
UiUW1 ... Ve =T sinceaisinuorinv.

Case 2: Otherwise, uv contains only a's, and a is in u or in v. Assume a is in u, So uv = ugyauov for some wy, Up €
a*. The proof when a is in v is similar. Using x*™* = x*™?enables us as in Case 1 to assume that f and g do not
contain more than 2m + 1 consecutive occurrences of a letter. From the choice of the p; 's, a;fiaxf; ... fiiaiug
~m) aif1daf2 ... fi1ai uga and upvaisfiv ... asifs18s ~m) auovaisifisi. .. asafsads. Lemma 2.2 hence implies the
existence of Uy, ..., Uy € A*, V1 ...V € A* such that

alflazfz fi.laiu(’) = Uy ... Ug,
UoVaisifi+1 ... Asafs18s = V1 ... Vi,

{a} S uac...Cupaand {a} S via € ... C vha. Moreover, it is easy to see that if we assume that there exist k
and | between 0 and m such that U« = ... =Up =a=Vvy = ... =Vp., and such that the other u's and v's are of type
r,(2m+1) or l,(2m+1) in the elements of {a, b}, then uy, ... uy is a suffix of afiaxf, ... fisaud and vy ... vpisa
prefix of Ugvaiifisi ... asafsias. C(Il,m) gives

U -+ Under1@™ W es o Vg =

Un - Uns122™ 2 N - Vingo.

The result fgo = g follows.
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