
Stanford Verification Group

Report No. 15

Computer Science Department
Report No. STAN-CS-80-785

EQUATIONS AND REWRITE RULES
A Survey

bY

Gerard Huet and Derek C. Oppen

Research sponsored by

National Science Foundation

Air Force Office of Scientific Research

COMPUTER SCIENCE DEPARTMENT
Stanford University

January 1980

Stanford Verification Group
Report No. 15

‘January 1980

Computer Science Department
Report No. STAN-CS-80-786

EQUATIONS AND REWRITE RULES
A Survey

Gerard Huet and Derek C. Oppen

ABSTRACT

Equations occur frequently in mathematics, logic and computer science. in this
paper, we survey the main results concerning equations, and the methods avilable for

reasoning about them and computing with them. The survey is self-contained and
unified, using traditional abstract algebra.

Reasoning about equations may involve deciding if an equation follows from a given
set of equations (axioms), or if an equation is true in a given theory. When used in
this manner, equations state properties that hold between objects. Equations may
also be used as definitions; this use is well known in computer science: programs

written in applicative languages, abstract interpreter definitions, and algebraic data
type definitions are clearly of this nature. When these equations are regarded as
oriented “rewrite rules”, we may actually use them to compute.

In addition to covering these topics, we discuss the problem of “solving*’ equations

(the “unification” problem), the problem of proving termination of sets of rewrite rules,

and the decidability and complexity of word problems and of combinations of
equat i onal theories. We restrict ourselves to first-order equations, and do not treat
equations which define non-terminating computations or recent work on rewrite rules
applied to equational congruence classes.

This research was supported by the National Science Foundation under Contracts NSF

MCS7S-02835 an d N SF MCS79-04012, , and Air Force Ofice of Scientific Research under

Contract AFOSR-S752. The views and conclusions contained in this document are those of the

authors and should not be interpreted as necessarily representing the oflcial policies, either

expressed or implied, of Stanford University, or any agency of the U. S. Government.

GGard Huet

IR.IA and SRI International

Derek C. Oppen

Stanford University

Table of Contents

1. Introduction

2. Sorted Algebras

3. Equations and Varieties

4. Proof Theory

5. Initial Algebras and the Word Problem

6. Unification

7. Term Rewriting Systema

8. Termination

9. Compiling Canonical Forms

10. Decidability and Complexity of Word Problems

11. Separable Equational Theories

12. A Meta-Unification Algorithm

13. Extensions and Combinations of Equational Theorim

14. Further Re&lx

15. Acknowledgments

16. Appendix

17. References

Addressee: Computer Science Laboratory, SRI International, 333 &vcnewood Ave., Menlo Park,
Ca. 94025. Computer Systems Laboratory, Computer Science Department, Stanford University,
Stanford, Ca. 94305. An earl.& version of this paper waB presented at the Conference on
Formal Language Theory, Santa Barbara, December 1979, and will appear in “Formal Languages:
Pcrepcctivce and Open Problems”, cd. Ron Book, Academic Press, 1980. Preparation of this
paper was supported in part by the National Science Foundation under grants MCS78-02835
and MCS79-04012, and in part by the Air Force Office of Scientific Rcecarch under contract
AFOSR-8752.

1

1. Introduction

Equations - formulas of the form A4 = N - occur frequently in mathe-
matics, logic and computer science. In this paper, we survey in a uniform fashion

the main results concerning equations, and the methods available for reasoning

about them and computing with them.

Reasoning about equations may involve deciding if an equation “follows” or
is a consequence of a given set of equations (axioms), or if an equation is “true”

in a given theory.

Consider the following set of axioms for group theory:

x+0=x

x+-x=0

(~+Y)+~=x+(Y+z)*

We might wish to know if another equation 0 + x = x is a consequence of these

axioms, that is, is true in all groups. This is an example of “reasoning” about

equations. As is well known, this equation can be shown to follow from the axioms

solely by equational reasoning, that is, substituting arbitrary terms for variables

and replacing “equals by equals”.

When used in this manner, equations state properties that hold between ob-

jects.

Equations may also be used as defKtions. For instance, a set of equations

may define a particular group (we then speak of the group presented by the equa-

tions). The use of equations as definitions is well known in computer science since

programs written in applicative languages, abstract interpreter definitions, and

algebraic data type definitions are clearly of this nature. When these equations

are regarded as oriented “rewrite rules”, we may actually use them to compute.
For instance, the following equations define the function Append:

Append(Ndl,x) = x

Append (C~s(x, y>, 2) = coras(X, APT-d (Y I Z>> l

We can use this definition to compute, say, Apped(Cm(A, Con@, Null)),

Coras(C, Null)) into Cons(A, Ctms(B, Cons(C, Null))).

Computing with equations and reasoning about equations are closely related.

For instance, one method for reasoning about equations consists in “compiling”

them into rewrite rules and using them to reduce expressions to canonical form.

We shall show later how this method applies to the group axioms above, and how

2

0+x= z can be proved by reducing both sides of the equality to the canonical

form 2.

However, reasoning about equations considered as definitions requires more

than just equational reasoning. For instance, it is well known that Append is

associative, but proving the theorem requires some kind of induction.

It is useful to start with a clear understanding of the various semantics one

can associate with equations and with rewrite rules. We shall therefore first give

various semantic definitions, and then consider their associated proof theories (if
any). We shall develop these notions in the framework of traditional abstract

algebra.

The survey attempts to be fairly comprehensive. However, for lack of space,

we restrict ourselves to first-order equations. Further, we do not treat equations

which define non-terminating computations; for them a more sophisticated model

theory is required (continuous domains or algebras). Nor do we treat recent work

on rewrite rules applied to equational congruence classes (we give an outline of

this research in section 14).

2. Sorted Algebras

We assume we are given a set Y of sorts, which are names for the various

domains under consideration. We deal here only with simply sorted theories, in

which these domains are disjoint.

Example: Y O = {integer, boolean}.

We now define a language E3 of types, obtained by composing sorts. We

restrict ourselves to first-order theories, and assume that a type is just a finite

sequence of sorts: e = Yf. We write t = sl X e X -- X s, + s instead of

t = (Sl, s2? . . ., s,, s). A type denotes the type of operators (that is, mappings) with

n arguments of sorts sl, s2 , . . ., s, and which return a value of sort s. When n = 0,

we write t = s; in this case, t denotes a constant of sort s.

A signature over Y consists of a set C of operators, together with a typing

function CC + 8. For ease of notation, we assume that 7 is given, and we use C

to denote the signature.

If C is a signature over Y, we say that sort s in Y is strict in C if and only if

there exists an F in C such that T(F) = s or T(F) = sl X a X l l l X sn -+ s and s;

is strict in C for each i. We say that the signature C is sensible if and only if, for

every F in C such that ~(8’) = sl X S-J X l l l X s, + s, if s is strict then so are all

the si. We assume from now on that all signatures are sensible; this restriction is

technical and will be motivated later. (Note that every signature can be extended

to a sensible one by adding constant symbols.)

3

Example: Given Y” above, consider the signature Co = {O,S, +, TRUE,
FALSE, #}, with

doI = integer

T(S) = integer w integer

++I = integer X integer + integer

T(TRUE) = 7(FALSE) = boolean

TH) = integer X integer --+ boolean.

Note that every sort in Y” is strict in Co.

A C-algebra or algebra is a pair (A, 4) such that A is an Y-indexed family of

sets and’ 9 is a C-indexed family of functions (the fundamental operations of the

algebra), with:

9~ E cd, if 7(F) = s, and
4F e -da X -4, X l l l X A,, + -d, if r (F) = sl X IPJ X l l l X s,, --+ 8.

-k, is called the carrier or universe of sort s in the algebra. We shall usually

denote an algebra by its family of carriers if no ambiguity arises. For instance, we

talk about the algebra A above, and use F to denote the corresponding operator
9~. Note that A8 # 8 for any strict sort s.

Example: A0 is a CO-algebra, with ‘Afntegcr = JJ, ALleon = {true, false},

0 is the integer 0, S is the successor function, TRUE = true, FALSE = fabe,

(m, n) is true if m # n and false otherwise.

We now define special types of algebras, whose carriers will consist of finite

ordered trees, labelled with operators from C. These (free) C-algebras will be

helpful in defining terms.

With every operator F in C we associate a tree consisting of one node labelled

F. We now define recursively the family of sets of trees g(C),, for s E Y. If

T(C) = s, then the tree with one node labelled C and no successors is an element

of g(C),. If 7(F) = sl X .q X l l l X s, -+ s and Mi E 9(C& for all 1 < a < sl,m -
then the tree with one node labelled F and n successors Ml,. . ., A&, is an element

of “J’(C),. By abuse of notation, we will denote these terms by strings in the usual

manner, as in, for example, C or F(M’, . . ., M,,).

The corresponding algebra Y(C) is called the initial algebra. We call T(C),

the set of ground terms of sort s. For instance, 0 + S(0) is a ground term of sort
integer, over Co above. Ground terms are called words in algebra and abstract

syntax trees in computer science. Logicians use them implicitly by considering

concrete syntax (strings) defined by a non-ambiguous grammar.

Note that 5(C), # 0 if and only if s is strict.

4

Let us now consider an Y-indexed family of sets fr. Elements of K are called

variables of sort s. We assume that the variables of distinct sorts are distinct and

that no variable is a member of C. We denote by C U V the signature composed of

C plus every V8 considered as a set of constants of sort s. The corresponding algebra

T(C U fr) (when restricted to a C-algebra) is called the fre e C-algebra generated
by fr, and its carrier g(C U y), is the set of terms of sort s. This terminology is

consistent with standard algebra books such as Cohn (65) where, in the case of

only one sort, q(C U Or) would be denoted WC(Y). Compare also with T&r) in

Goguen (79) and M(C, V) in Nivat (75).

A completely formal development of term structures would require a careful

definition of tree domains, and terms as mappings from these domains to c U y

respecting the types. We shall not do this here, but rather will informally use

occurrences - sequences of integers denoting an access path in a term, & la Dewey

decimal notation. For M in 6J’(C U V), we denote by O(M) the set of such occur-

rences of M, and, for u in O(M), we use M/u to denote the subterm of M at

occurrence u. For example, with M = 0 + S(O), we have O(M) = {A, 1,2,2. l},

and M/2 = S(0). We use V(M) to denote the set of variables occurring in M;

that is, x F V(M) fi and only if x E V and there exists a u in O(M) such that

wu = zc. Finally we define M[u + N] as the term M, in which we have replaced

the subterm at occurrence u by N. (Occurrences were proposed by Gorn(67) and

were subsequently used by Brainerd (68), Rosen (69) and Huet(77).)

We assume in the following that mappings between C-algebras are sort-

preserving, and write h:A --+ 93 for a Y-indexed family of mappings h,:& + 918.

Finally, if LA and 93 are two algebras, we say that h:A --$a is a E-morphism
(or just morphism) if and only if, for all F in C, with T(F) = sl X q~ X . l l X s, ---) s,

we have h,(☺L(al, . l l 9 a,>) = GB(~&), . . l 9 hd,(an>>.

Theorem. (The universal property for the free C-algebras) Let J be any C-

algebra. Any A-assigment v:V --+ A can be extended in a unique way to a C-
morphism from T(C U V) to A.

We use v to denote both the assignment and its extension.

ExampIes:

1. The trivial algebra is Sort, where Sort, = {s} and F(sl, . . ., sn> = s when

T(F) = Sl x s2 ⌧ l l l ⌧ sn ---) s. The assignment r defined by T(X) = s if and only

if x E V8 extends in a unique way from tJ’(C U V) to Sort. For instance, over Co

above, with n E 9/;.,,,tcger, we have 7(S(O) + ‘t2) = integer.

2. C-endomorphisms from T’(CUr) to itself are called substitutions. We shall

generally be interested in the effect of such a substitution u on a finite number of

terms, and therefore assume that a(x) = x except on a finite set of variables 3(u)

5

which we call the domain of u by abuse of notation. Such substitutions can then

be represented by the finite set of pairs {(z,u(c)) 1 =c E a(a)}. We say that u is

gmnd if and only if ‘r(u(x)) = 8 for any x in 3(u).
One more definition is needed for the next section.

If A is an algebra, a sort-preserving relation - on elements of A is called a

C-congruence over A if and only if:

(VF E C) (Vq,bl, l . -,a&, E A)

al--b1 & . . . &an-b,, =s F(al, . . ., an)-F(bl, . . ., b,,).

3. Equations and Varieties

A E-equation or equation is a pair M = N where M and N are members
of GJ’(C U Y),, that is, are formed from variables ranging over the elements of the

universe and from symbols denoting the fundamental operations of the algebra.

In equations, variables are (implicitly) universally quantified.
Let A be an algebra and M = N be an equation. We say that M = N is

valid in A or that A is a model of M = N, and we write A k M = N, if and only
if for every A-assignment &V(M) U Y(N) -P A we have v(M) = Y(N); that is, M

and N denote the same element of the carrier A, no matter how the variables of

M and N are interpreted as elements of A. A is a model of a set of equations if

every A-assignment validates every equation in the set.

Exam&s:

J”l=x+Y=Y+x

A0 p 0 = S(x)

Sort + M = N for every M and N of the same sort.

It is apparent that the relation =A on q(C U Y)g, defined by M.-J N if and

only if A k M = N, is a C-congruence, provided C is a sensible signature (or

else provided that every carrier in the algebra is non-empty).

Now a set of C-equations may be thought of as defining a family of algebras,

or some unique (up to an isomorphism) algebra. The variety or equational class

A(C, %) or simply A@) is the class of all models of 8. That is, A E A(S) if and

only if A k E for every E in C.

Note that J%(B) is never empty, since Sort is always in it.

Example: Let 8’ = {x+0 = X? x + S(Y) = S(x + y)}. Define the Co-

algebra A1 by: Aintegcr = .&,I~ U -N;ed, A1boolean = {true,false}, 0 = Ob/uey S =

sw%l, U sU-%-d, + = @, with WW @ mbr~ = %IW @ mr ed = (n + m)bluer

nrcd @ miue = nred @ mred = (n + rn],d, TRUE = true, FALSE = f&e, a n d

#(m, n) is false if m and n unpainted are the same and true otherwise. Then

A0 and A1 are both models of go. However A0 and A1 are not isomorphic, and

=c+y= y + x is not valid in A?

The validity problem in a class e of algebras is: given an equation E over

GJ’(C U r>,, decide whether or not A k E for every algebra A in C. If so, we write

CkE. WhenC={A}andE is a ground equation, then the validity problem is

called the word problem for A.

For instance, we shall consider the validity problem in the variety defined

by 8: .Ab(CS) k E. There is an obvious relationship between this notion and the

traditional notion of validity in first-order equational logic. The only difference is

that A@) may contain more than the usual first-order models of 8, since we do
not require the carriers of our algebras to be non-empty. 9(C), coincides with the

Herbrand universe of C of sort s whenever it is non-empty.

As in first-order logic, where semantic notions have an equivalent syntactic

characterization through the completeness theorem, we have a proof theory cor-

responding to validity in a variety.

From now on, we use g instead of 9(cU V) and Cj instead of 9(C) when there
is no ambiguity.

4. Proof Theory

The equality =g generated by a set 8 of equations is the finest C-congruence
over T containing all pairs (u(M),u(N)) for M = N in G and u an arbitrary

substitution. In equational logic, =e is called an equational theory, and % a base

or a set of axioms for the theory.

The following is the well-known completeness theorem of Birkhoff (35):

Theorem. J%(%) k M = N if and only if M =g N.

This theorem tells us that an equation M = N is true in the variety defined

by 8 if and only if it can be obtained from the equations in 8 by substitutions

and by replacing equals by equals. That is, two terms are equivalent if and only
if they can be shown equivalent in a finite number of proof steps. Whenever 8 is

a recursive set of axioms, this gives us a semi-decision procedure for the validity

problem in the variety. (The theorem assumes that Pr, is a denumerable set, for

every s in Y. However, in certain varieties, it is enough to consider finite sets of

variables.)

Now we need the notions of satisfiability and consistency.

We say that M = N is satisfiable in A if and only if there is an A-assignment

d(M) u V(N) ---) A such that u(M) = u(N). Equation M = N is satisfiable (in

the variety of 6) if and only if there is some algebra .d E A(B) such that M = N

is satisfiable in A.

Thus far, the satisfiability problem is vacuous: Sort validates any equation.

However, one may be interested in knowing whether there exist non-trivial algebras

validating some equations. In order to do this, we assume we have the distinguished

sort boolean, and distinguished constants TRUE and FALSE of sort boolean. We

call such signatures signatures with booleans. For example, Co is a signature with

booleans.

Let C be a signature with booleans. The set of equations g is consistent if

and only if TRUE #g FALSE. That is, if and only if 8 admits at least one model

whose carrier of sort boolean is the genuine truth-values set {true, false}.

This condition refines in a nice way the usual notion in non-sorted equational

logic, which defines 6 inconsistent if and only if x =g y (recall that all vari-

ables are implicitly universally quantified). As before, inconsistency is recursively

enumerable if C5 is recursive.

Examples: Go is consistent, because TRUE = FALSE is not valid in A0

(nor in A’ for that matter).

The equation x + S(S(y)) = S(x + (y + S(0))) is valid in A@‘). Here is a

P-f: x+s(s(Y)) =w+w(Y+w =s~~+s(Y+w)) =t30 s(~+(Y+w))).
Similarly, &(e”) + 0 + S(0) = S(0). More generally &(S”) k 0 + M = M for

every M of the form S(S(. . .S(O). . .)). But &(S”) & 0-j-x = x since this equation

is not valid in A’. In the same way, the commutativity of + is not valid in A@‘),

even though every ground instance of it is. We would like somehow to be able to

restrict the notion of validity to the “standard model” A’. We consider this in
the next section.

5. Initial Algebras and the Word Problem

The initial algebra J(C, 8) or simply J(8) generated by a set of equations C4

is defined as the quotient of Cj by the congruence =e restricted to ground terms.

We leave it to the reader to check that this is indeed a C-algebra. (It is an initial

object in the category whose objects are the C-models of $ and the morphisms

the&morphisms; that is, there is a unique C-morphism from J(8) to any algebra

of A(S). See Goguen-Thatcher-Wagner (76) for details.)

Theorem. J(8) k M = N if and only if for every ground substitution a3 --+ Cj,

we have a(M) =g u(N).

In other words, the validity problem over J(8) is the same as the validity
problem in the G-variety of all its ground instances, and this captures the intuitive

8

notion of standard model mentioned above. However, there is unfortunately no

simple proof theory associated with this semantic notion, unlike the case for A(S)

above. The situation is analogous to that in first-order Peano arithmetic on the

one hand and the standard model X on the other.

Note that when M and N are ground terms, that is, for the word problem in

the initial algebra, equational reasoning is complete. In other cases, J(g) b M =

N may be solved using induction schemas, for example on the structure of CJ,

but in general no induction schema will be strong enough to solve the validity

problem in the initial algebra. The next section will give conditions under which
this problem reduces to a problem of inconsistency.

Rtb37KWks: The set of equations valid in J(g) is called Induce(Th(g)) in
Burstall-Goguen (77). 9 is J(0) and T is J(C U V, s> restricted as a C-algebra.

Example: J(g’)inbger is X. However, J(g”) is not 4.’ since its boolean carrier
is more complicated - for instance, 0 # 0 #go FALSE., We can prove J&5’) k 0+

x = x by induction on the structure of Cjfnteger, which corresponds here to standard

integer induction. Similarly, J(S”) k x + y = y + x may be proved by a double

induction argument.

Let us now briefly indicate the connection between our definitions and the

word problem over finitely presented algebras.

We assume given a signature C and a variety defined by a set of equations 65.
A presentation over this variety consists of a set C of constants (the generators)

and a set % of ground equations (the defining relations) over q(C U e).

The algebra presented by (C, 3) is defined as J(C U e, 6 U 3). It is a (C U C)-

algebra, and therefore also a C-algebra. The word problem for this presentation

is as above - given a (ground) equation E over GJ’(C U C?), to determine whether

or not J(C U C, C U %) k E. The presentation is said to be finite if C and GJB are,

recursive if C and GJb are recursively enumerable.

The uniform word problem for the variety defined by axioms 8 is, given

a finite presentation (C, %) and an equation E over T(C U C), whether or not

J(CuC,W%) FE.

0. Unification

The equational systems we are describing in this survey manipulate the term
structure cJ’(C U V) or, more generally, GJ’(c U V, 8), defined as J(C U V, g) restricted

to a C-algebra.
The unification problem is the satisfiability problem in this algebra. More

precisely, let M and N be two terms in GJ’(C U V). We say that M and N are

&unifiable if and only if there exists a substitution 03 ---) V(C U V) such that

9

u(M) =g u(N). We write %Lg(M, N) for the set of such substitutions, which we

call &unifiers.

For instance, when 8 consists of Peano’s axioms, the unification problem is

precisely Hilbert’s tenth problem, and so is undecidable (Matiyasevich 70). But if

we keep only addition, the unification problem over integers without multiplication

is decidable since it can be expressed as a formula of Presburger arithmetic, a
decidable theory (Presburger 29). It has been announced by Szab6 (79) that the

following set has an undecidable unification problem:

x x (Y + 4 =xxy+xxz

(x+y)xz=xxz+yxz

=c + (Y + 4 = (5 + Y) + i-z*

We are generally interested in finding not only whether two terms are unifiable,

but also the set of all their unifiers. Of course we are not interested in the unifiers

that can be obtained from others by composition - we are only interested in a

basis from which we can generate all the solutions to a unification problem. This

can best be explained by an ordering on substitutions, which is itself the exten-

sion of the instantiation ordering on terms. This is the purpose of the following

definitions.

The instantiation or suhumption preorder -4~ is defined over T(C U r) by:

M “(g N if and only %:v + 5l(c U V) N z-8 u(M).

We now want to extend -4g to substitutions. First let us recall that 69(u) =

{x E fr 1 u(x) # 2). w e a so u8e the notation J(u) to denote UoE”S(Oj fl’(u(x)), that1
is, the set of variables introduced by u. Let V be any finite subset of r. We define

a preorder -& (V) on substitutions by:

u 5s u’(V) if and only if (Elp)(Vx E V) u’(x) =g p(u(x)).

Now let M and N be two terms of the same sort, and V = T”(M) U Y(N). Let W
be any finite set of variables containing V, that is, V C W c v. We say that a

set of substitutions S is a complete set of G-unifiers of M and N away from W if

and. only if

1. (Vu E S) 9(u) C V and J(u) n W = 0

2. S C Q(M, N)

3. (vu E Us(M, N)) (3~ E s) p 56 0 (v).

The first condition is technical, the second concerns soundness, and the third

completeness. It can easily be shown that complete sets of unifiers always exist

(take all B-unifiers of M and N verifying 1).

10

The set S is said to be m%‘nhaZ if and only if it satisfies the additional

condition

4. (vu,l7’ES)u#u’3c7~~u’(V).

Minimal complete sets of unifiers do not always exist. When they do, they

are unique, up to the equivalence generated by 5~ (V).

Our definitions are consistent with the ones in Huet (76). Plotkin’s definition

of a complete set of unifiers, in Plotkin (72), is similar to our definition of a minimal

CSU, modulo minor technical details. The necessity of considering a set W comes

from the fact that terms M and N may come from a larger context, containing

variables not in V, and we do not want to mix these with the “new” variables
introduced by a unifier.

Examples:

1. When 8 = 0, it is well known that there exists a most general (that is,

minimum) unifier. Algorithms to compute this unifier have been proposed by

Herbrand in 1930 in his thesis, Robinson (65), Baxter(73), Huet(76), Martelli and
Montanari (79). All these algorithms are non-linear; a linear algorithm is given in

Paterson and Wegman (79). The current state of the art on implementations is

discussed in Martelli and Montanari(79). The equivalence _I associated with -& is

variable renaming, and the corresponding ordering on 3”(cUv)/ = completed with

a maximum element defines a complete lattice. Unification corresponds to finding

the least upper bound in this lattice. These issues are discussed in Plotkin(70),

Reynolds(70) and Huet(76). Unification is one of the basic algorithms used in

computational logic, and plays a central role in the inference rules of resolution

(Robinson 65) and paramodulation (Robinson and Wos 69). We shall use it in the

superposition algorithm in the next section.

2. Let G consist solely of the associativity axiom for some function symbol

x: ~={(xxy)xz= x X (y X z)}. In this case there always exist minimal

complete sets of unifiers, although the sets may be infinite. For instance with

M = x X A and N = A X x, with A some constant, S = {{x + A X (A X (-0. X

(A ⌧ A)* l *NH u {{
x + A}} is a minimal complete set of unifiers of M and N away

from any W. An algorithm for generating such complete sets of unifiers is given

in Plotkin (72). The unification problem reduces to the string equation problem,

recently shown decidable by Makanin (79).

3. When 8 consists of the commutativity and associativity axioms for some

funct ion symbol X: e = {(x X y) X z = x X (y X z),x X y = y X x} and

C = {X}, then the unification problem corresponds to solving equations in free

abelian semigroups. There always exists a finite minimal complete set of unifiers.

Stickel(75) gives an algorithm to generate this set. His algorithm is correct over

11

a more general problem: 8 may consist of commutative and associative laws for

several function symbols, and C may contain other function symbols. But it
remains an open problem to prove the termination of his algorithm when some of

these other function symbols are of arity greater than 0.

4. Various other theories have been studied: commutativity (Siekmann 78);

idempotence (Raulefs and Siekmann 78); wmmutativity, associativity and/or

identity and/or idempotence (Stickel 76; Livesey and Siekmann 77). We shall

see in section 12 a general method to generate a complete set of unifiers in a

wide class of theories, which will include group theory. An abelian group theory

unification algorithm is given by Lankford(79a). However, his algorithm does

not always terminate when extra function symbols are allowed (Stickel, private
communication).

Unification has been studied for higher-order languages. An w-order unification

algorithm is given in Huet(75,76) and third-order unification is shown undecidable
by Huet(73). Monadic second-order unification is decidable, as it is equivalent

to associative unification, but it has recently been shown by Goldfarb(79) that

polyadic second order unification is undecidable.

One-way unification (when unification is permitted in only one of the terms)
is called matching. We say u is an g-match of M and N if and only if a(M) =g N.

A complete set of 6-matches of M and N away from W is defined as for unification,

except that in 1 we replace S(u) C V by a(u) C Y(M) - v(N). Such a set always

exists when fr(M) r‘l Y(N) = 8.

7. Term Rewriting System8

We are now ready to develop one of the main paradigms of computing with

equations - using them as rewrite rules over terms. This paradigm is the basis
for, on one hand, decision procedures based on canonical forms and, on the other

hand, the construction of abstract interpreters for directed equations considered

as a programming language.

A term rewriting system (over C) is a set of directed equations % = {hi --)
pi 1 i E I} such that, for all h --) p in %, Y(p) C ‘Y(h).

The reduction relation +s associated with % is the finest relation over ?I

containing c$> and closed by substitution and replacement. That is,

M js N = u(M) -+% u(N)

MjaN - P[u+-M]-+sP[w--N].

(1)
(2)

12

Equivalently, +s is the finest relation containing all pairs u(x),u(p> such that

h --+ p E 91 and closed under replacement (2).
Example: With GJB = {A ---) mY?+) ---) G(x, x)} we have F(A,A) +s

F(B,A) -+9b G&A)-
From now on, we shall use -+ for +s. We use the standard notation w-t

for the transitive closure of -+, ---)* for its transitive-reflexive closure, and t+ for

its symmetric closure. Note that f-)* is the same as the % equality =s, when
91 is considered a set of equations. Conversely, any set of equations % can be

transformed into a term rewriting system 91 over an extended signature C’ in
such a way that t)* is a conservative extension of =g. (Then, for all M, N in

cJ’(C u qa, M =g N if and only if M +-)* N.) The construction is as follows: for

every M = N in 8, choose nondeterministically one of the following:

1. if V(M) C V(N), put N + M in %

2. if Y(N) C T(M), put M ---+ N in 31

3. with {xl:. ., xn} = ‘V(M) n V(N), introduce in C’ a new operator H of

the appropriate type, and put in ‘S the two rules M ---) P and N 3 .P with P =

H(Xl, l l ‘ I xn). (Note that this th’ dlr possibility may force certain sorts to be strict

in C’ when they were not in C; it may then be necessary to add extra constants

to C’ for it to be sensible. Also certain C-algebras which were models may not be

extendible as Zalgebras because the corresponding carriers are empty.)

The fundamental difference between equations and term rewriting rules is that

equations denote equality (which is symmetric) whereas term rewriting systems

treat equations directionally, as one-way replacements. Further, the only substitu-

tions required for term rewriting rules are the ones found by pattern matching. The

completeness of using rewrite rules to make deductions equationally is expressed
by the following Church-Rosser property:

CJb is Church-Rosser if and only if, for all M and N, M =s N if and only if

there exists a P such that M ---)* P and N -+* P.

An equivalent characterization is “confluence”. 5% is confluent if and only if
for all M, N, and P, P -+* M and P -+* N implies there is some Q such that

M ---)* Q and N -? Q.

We say that M is irreducible or in normal form (relative to GJ$) if and only if

there is no N such that M --3 N; that is, no subterm of M is an instance of some

lefthand side of a rule in 91. We say that N is a %-normal form of M if and only

if M ---)* N and N is a normal form relative to 91.

When 91 is Church-Rosser the normal form of a term is unique, when it exists.

A sufficient condition for the existence of such a canonical form is the termination

of all rewritings:

13

31 is noetherian or finitely terminating if and only if for no M is there an

infinite chain of reductions issuing from M: M = Ml ---) M2 -+

Let Ml be any normal form obtained from M by an arbitrary sequence of

reductions.

When % is a finite set of rules which is confluent and naetherian, the equational

theory =s is decidable, since now M =s N if and only if Ml = Nl. Actually,
confluent and nmtherian rewrite rules provide a rather general method for solving

the validity problem in decidable varieties.

The property of confluence is undecidable for arbitrary term rewriting sys-

tems, since a confluence test could be used to decide the equivalence, for instance,

of recursive program schemas. The decidability of confluence for ground term

rewriting systems is open. We shall now show that confluence is decidable for

ncetherian systems.

The first step in the construction is showing that, for ncetherian systems,

confluence is equivalent to “local wnfiuence”. % is locally confluent if and only

if for all M, N, and P, P -+ M and P ---) N implies there is some Q such that

M +* Q and N --$’ Q.

Newman Theorem. Let % be a naztherian term rewriting system. % is confluent

if and only if it is locally confluent.

This theorem was first proved by Newman (42); a simple proof appears in

Huet (77). V arious equivalent or related “diamond lemmas” have been proposed,

for instance by Hindley (69); Knuth and Bendix (70); Nivat (70); Aho, Sethi and

Ullman (72); and Lankford (75).

The second step consists in showing that local confluence of (finite) term

rewriting systems is decidable. We show this now.

Superpktion Algorithm.

Let h + p and X’ ---) p’ be two rules in %. We assume we have renamed

variables appropriately, so that h and h’ share no variables. Assume u is a non-

variable occurrence in X such that X/u and A’ are unifiable, with minimal unifier

u (we assume of course that X/u and h’ are of the same sort). We then say that

the pair (a@[u t P’l), U(P)) of terms is critical in 33.

Example: Consider F(x, G(x, H(y))) -+ K(x, y) and G(A, z) - L(z). We can

superpose the first rule at occurrence 2 with the second one using the minimal

unifier {x t A,z t H(y)}, obtaining the critical pair (F(A, L(H(y))), K(A, y)).

If GJb is finite, there are only finitely many such critical pairs. They can be

effectively wmputed using the standard unification algorithm.

14

Knutl+Bendix Theorem. % is locally confluent if and only if PJ = Ql for every

critical pair (P, Q) of GJb.

The original idea for this theorem is due to Knuth and Bendix (70), who

combined it with Newman’s theorem (see also Lankford (75)). The version of the
theorem given above appears in Huet (77) and does not require termination.

Combining the Knuth-Bendix theorem and Newman’s theorem gives us a

decision procedure for the confluence of ncetherian term rewriting systems with a

finite number of rules. When such a system CJB satisfies the critical pair condition,

it defines a canonical form for the corresponding equational theory =s. We then

say that CJb is a complete or canonical term rewriting system.

There exist other sufficient criteria for the confluence of term rewriting systems

thirt do not assume that every sequence of reductions terminates. Most of them

rely on a sufficient condition for confluence: “strong confluence”. 41B is strongly

confluent if and only if for all M, N, and P, P + M and P ---) N implies there is

some Q such that M ee Q and N ._r’ Q, where +e denotes the reflexive closure

of -+.

Let us call term M linear if and only if every variable in M occurs only once.

When % is such that, for every h -+ p in %, X and p are linear, then % is strongly
confluent if for every critical pair (P, Q) of %, there exists an R such that P +’ R

and Q +e R (Huet 77). However the condition of linearity of p is not very natural.

A more useful result requires only linearity of left hand sides of rules. Let us
denote by St) the parallel reduction by rules of % at disjoint occurrences.

Theorem. (Huet 77) If, for every X ---) p’ X is linear, and for every critical pair
(P, Q) we have P St) Q, then the relation #+ is strongly confluent; and therefore

% is confluent.

This theorem extends the main theorem in (Rosen 73) which applies only to

ground systems. It shows in particular that left-linear term rewriting systems with

no critical pairs are confluent. Such recursive definitions are therefore determinate.

They extend both the usual recursive schemes and the primitive recursive-like

definitions.

8. Termination

In order to simplify the discussions and notation, we assume fmm now on that

we are dealing with only one sort. We assume that C is finite, and that 8 # 0.

The main problem with the Knuth-Bendix confluence test is the proof of

termination. Recall that Gs, is ncetherian if and only if there is no term M such

that there exists an infinite sequence M = Ml + M2 + l ‘0. Proving % ncetherian

15

is crucial, since without it local confluence does not tell us anything. For instance,

the system % = {A -+ B, A -+ C,B + A, B --+ D} is locally wnfluent, even though

A has two distinct normal forms C and D.

It is undecidable whether an arbitrary term rewriting system is ncetherian. See

Huet and Lankford (78) hw ere it is shown however that this problem is decidable
for gmund systems.

We first remark that % is naztherian if and only if there is no ground term

M having an infinite sequence of reductions (recall that we are assuming Q is

nonempty). That is, 91 is ncetherian if and only if the relation +& defines a well-

founded partial ordering on 9. This suggests the following general method for

pmving CJB netherian.

Let + be any partial ordering relation (that is, transitive and irreflexive) on
9 such that:

(1) + is well-founded; that is, there is no infinite sequence of ground terms

Ml + M2 + l .-.

(2)M+N=+M+N

Then (obviously) GJb is ncetherian. Conversely, if % is ncetherian, then the

relation ---)+ satisfies (1) and (2).

Various refinements of this general scheme have been proposed. Let us present

a few.

A. Well-founded Mapping Method

Let 5 be any set given with a well-founded partial ordering +s. The method

consists in exhibiting a mapping cp:Q ---+ 9, and defining the relation + by:

M + N if and only if p(M) +a p(N).

Pmperty (1) is obviously satisfied. The method then consists in showing (2).

Conversely, if % is noetherian, consider Q for 9, ++ for +J, and the identity for

cp. Also, if ---) is finitely branching (this is the case for instance whenever % is
finite), we may always show 9’ nmtherian by the method above, with 9 being the

set of natural numbers X with their usual ordering >, by defining p(M) to be

the length of the longest sequence of reductions issuing from M (hint: use Kij,ig’s

lemma).

However, the real crux of the matter comes with proving (2), and this is

not very convenient, since it quantifies over all possible reductions M --$ N. An

important refinement consists in remarking that (2) is implied by (3) and (4) below:

(3) M + N - F(P,M, $) + F(P, N, 9) for every operator F in C and

sequences of ground terms p and q.

0 4v + 44 for every ground substitution u and rule X -+ p in 3.

16

Condition (3) means that the relation + is wmpatible with the C-algebra
structure. This suggests refining the mapping method above into the following.

B. Increakqg Interpretatiion Method

We take 9 to be a C-algebra, and yr to be the unique C-homomorphism from

6 to 9. Condition (3) is implied by the corresponding property in algebra 9; that

is, every operator of C corresponds in c9 to a mapping strictly increasing in every
argument:

Given such an increasing interpretation of C, all we have to show is (4), or

its stronger analogue in 9; that is:

(6) (Vb-+pE%)~+h+gp.

Actually, (4) and (6) suggest rather different methods of proof: (4) suggests
using structural induction in Q’, whereas we must resort to noztherian induction in

9 to prove the stmnger (6).
The increasing interpretation method has been proposed by Manna and Ness

(70), and by Lankford (75) in the special case of polynomial interpretations over
the integers.

Example: The ten group reductions shown in the Appendix can be shown

to terminate using the following increasing interpretation over the set of integers

greater than 1:

x+y= -(1+2xY)

I(x) = x2

0 2.C

However, the proof of (6) is not straightforward, since it involves showing for

instance (Vx, y E JC) x > 1 and y > 1 implies x2(1 +2~)~ > y2(1 +2x2). Actually

sentences of the form of (6) are undecidable in general, for polynomial integer

interpretations. This precludes practical use of this method, even assuming the

human user guesses the right interpretation.

Of course, polynomial interpretations do not suffice in general, since they

give a polynomial upper bound on the complexity of the computations by %,

interpreted as a program computing over integers, whereas arbitrary recursive
functions can be defined by term rewriting systems. This argument extends to

primitive recursive complexity measures, as remarked by M. Stickel.

The increasing interpretation is completely general, however, since if %I is

ncetherian then Q itself as a C-algebra defines an increasing interpretation, taking

17

-P+ for >-s. But here we cannot restrict ourselves to total orderings, since for

instance A and B must be unrelated in any increasing interpretation which shows

the termination of % = {F(A) ---) F(B),G(B) --+ G(A)}. Therefore, even ordinal

numbers are not general enough here!

Next let us show how condition (1) can be refined. We define in g the

homeomorphic embedding relation (7 by induction as follows:-

F(Mt, - “I M&IN if and only if there exists in N a subterm F(Nl,. . ., N,,)

and a permutation x of (1,2,. . ., n) such that M&N,, for every i, 1 (i (n.

Krurmkal’r Theorem. For every infinite sequence Ml, M2, . . . of ground terms in
CJ, there exist i and J’, with i < j, such that MiQMj.

See Kruskal(60) and Nash-Williams(63) for the proof of more general theorems

(which do not require C to be finite). The theorem suggests replacing (1) by the

(stronger) condition:

(7) M(IN implies l(M t- N).

Finally, Dershowitz (79a,b) shows that (7) follows from (3) and:

(8) WV4 9) *M*

All this justifies the following method.

C. Simplification Ordering Method

Let + be any partial ordering on Q satisfying (3) and (8). (We then say that

+ is a simplification ordering.) Then %I is netherian if (4) is satisfied.

The method was first proposed by Dershowitz (79a, 79b). An important ap

plication is the following.

First recall that a partial ordering + on a set Y may be extended to a partial

ordering > on the set of multisets of 19, that is, of mappings Y --) ,Ec, as follows:

S > S’ if and only if s # S’ & (Vx E Y) [S’(x) > S(x) - (3y t- 5) S(y) > S’(y)].
Furthermore, the set of finite multisets of Y is well founded by > if and only

if Y is well-founded by)- (see Dershowitz and Manna (79)). The multiset ordering
generalizes the lexicographic ordering, obtained when + is a total ordering.

Next we define the permutation equivalence - on CJ by: M-N if and only

if M = F(Ml,. . ., M,), N = F(Nl,. . ., N,,), for some F in C, and there exists a

permutation x of 1,2,. . ., n such that M;-NTi, 1 (i (rz~.

We denote the permutation class X% of M = F(Ml,. . ., Mn) by F{ XT&, . . .,

?&,}. Let >C be any partial ordering on the operators of C. We define the recur-

sive path ordering + on g/- recursively as follows: m = F{ ?&I , . . ., Qn } +

M‘ =G{?$,..., ?$,} if and only if:

18

(a) eitherF=Gand {ml ,..., ?@m}>{??l ,..., m,}

(b) orF+cGand (Vi<p)u + Ni

or $) or (otherwise) (3j 5:) ui t m, where n + M‘ if and only if ?!$ + &/
Z Iv .

The recursive path ordering generalizes the orderings defined in Plaisted (78),

Itturiaga (67), and Dershowitz and Manna (79). Now defining M t- N as m t-

IV, we get:

Theorem. + is a simplification ordering.

For a proof, see Dershowitz (79b) for a slightly more general formulation

permitting infinite signatures that may contain varyadic operations.

This theorem gives a fairly general method for proving termination of 3:

D. Recursive Path Ordering Method

Guess some partial ordering +C and show (4) using the corresponding simplifi-

cation ordering.

Of course, this method does not give us yet a completely mechanical way

of checking (4) because of the quantification on every ground substitution. What

we need here is to be able to define recursively an ordering)- on ground terms

that “lifts” to an order + over general terms, in the sense that M +- N implies

a(M) + a(N), for every ground substitution u.

We are able to do this to a limited extent. First, the clause (c) in the definition

above does not depend on the Mk’s, for Ic # j, and we may therefore permit non-

ground terms in these positions. Secondly, properties (3) and (8), which hold here
because of the theorem above, quantify over all P’s and Q’s and we may again

permit non-ground terms there, extending the recursive path ordering to non-

ground terms. Actually, (3) is directly implied by the algorithm above, and (8)

can be incorporated easily in the algorithm as follows. We construct the recursive

path ordering + on possibly non-ground terms, that is on Cif/-. (We extend -

to include z-z for every variable 2.) We keep the three clauses (a), (b), and (c)

above and we add one more clause:

(d) ?@ >- x if and only if M eV and x E V(M).

It should be obvious to the reader that M + N with the new definition im-

plies that u(M) + u(N) for every ground substitution u with the old one (for (d),

use a simple induction on M, and (8)). We call the new ordering the generalized

recursive path ordering. All that precedes justifies the following:

19

E. Generalbed Recursive Path Ordering Method

Let +C be some partial ordering on C, + the generalized path ordering

defined above. If for all h + p in %I we have X + p, then % is noetherian.

Example: (Disjunctive normal form)

Let Cs, =

L

1(1(x>> + X?
1(x v y) + l(X) A l(Y),

1(x A Y) - l(X) v l(Y),

x A (y v r) -+ (x A Y) V (5 A z),

(y v .z) A x --+ (y A x) V (z A 5).

We take 1 +C A +C V. We leave it to the reader to show that for every X + p in

31 we have X + p, establishing the termination of %. Note that what we have done

here is to automate completely, inside the generalized recursive path algorithm,

the proof exhibited by Dershowitz (79b).

Other definitions of recursive orderings on general terms that lift simplification

orderings (like the surface ordering) are given in Plaisted(78b).

We conclude our discussion on simplification orderings by remarking that it

has a semantic analogue, refining the increasing interpretation method, as follows.

F. Homeomorphic Interpretation Method

The method consists in choosing a C-algebra !3 given with a partial order-

ing +pg verifying the increasing condition (5) and the extra condition, for every

operator F in C:

(9) (Vx E WV 2, ;;‘E 3) F(;,x, 3 +sx.

Now 31 is naetherian if (6) is satisfied. The justification of the method should be

clear: taking y3 to be the unique C-homomorphism from 9 to (3, and ordering 9

by M + N if and only if p(M) t-9 p(N), we get (2) by (5) and (6). But now (1) is

a consequence of just (7), which follows from (6) and (9). That is, we do not need
here t-9 to define a well-founded ordering on 3.

This method may well provide a new practical approach to proofs of ter-

mination of term rewriting systems, taking algebras for which condition (6) is

decidable. For instance, Dershowitz(79a) proposes to use this method, taking for

Gs, the reals with polynomial operators. He remarks that conditions (5), (9) and (6)

are indeed decidable in this setting, using Tarski’s decision method (Tarski 51).

Furthermore, the existence of such polynomials of a bounded degree that decide

the termination of Gs, is decidable. The practicality of this method depends of

20

course on the availability of implementations of such decision procedures (Cohen
69, Collins 75). The use of interpretations over the reals was first proposed by

Lankford (75).

We conclude this section by a generalization of simplification orderings to

pre-orderings, that is, transitive and reflexive relations. Let >- be a pre-ordering

on 8 satisfying the simplification conditions:

(3’) WEN * F(of, 0>2-F(m4 1;7>

(8’) W,M, 8) 2r M-0

We then say that >- is a simplification pre-ordering. Defining M)- N by M t- N-
and not N)- M, we get:

G. Simplification pus-ordering method

Let >- be a simplification pre-ordering. If (4) is satisfied, then 31 is netherian.

The correctness of this method is shown in Dershowitz (79b) where it is stated

that it may be used to prove the correctness of the recursive ordering described

in Knuth and Bendix (70).

9. Compiling Canonical Forms

The Knuth-Bendix theorem of section 7 gives us conditions under which an

equational theory admits a canonical form, as follows.

Let 8 be the (finite) set of equations given as basis (axioms) for the theory.

If there exists a canonical term rewriting system 418 such that we have (denoting

by S(M) the unique normal form of M obtained by applying to it an arbitrary

number of reductions from %):

(1) (VM = N e c) a(M) = a(N), and

(2) (VA -+ P E q x =6 p,

then S(M) is a canonical form of M for the theory =e, in the sense that

(VM, N E GJ’(C u V)) M =e N if and only if a(M) = S(N).

Note that this gives us a decision procedure for the validity problem in A&(S), and

therefore, as a corollary, a decision procedure for the word problem in J(e).

We saw in section 7 how to check local confluence with critical pairs, and in
section 8 how to check 9~ noetherian. Let us now give an algorithm that attempts

to generate tJb satisfying (1) and (2) for a given g.

Completion Algorithm.

21

Bi is a set of equations, 5&i a term rewriting system, a F X. Initially let

80 = 8, %o = 8 and a = 0.

1. If Bi = 0, stop with answer % = %i. Otherwise, select M = N in &,

and let MJ. and NJ be normal forms for M and N respectively, using the current

system ai. If Ml = Nl then let &+I = C$ - {M = N}, ?%i+l = %i, increment

i by 1 and go to 1. Otherwise go to 2.

2. Choose non-deterministically one of the following:

(a) if ‘T(MJ) C Y(NJ) then let A = NJ, p = Ml.

(b) if v(N1) C V(Ml) then let X = Ml, p = NJ.

If neither (a) nor (b) applies, stop with failure.

Otherwise, let S’i = {h’ + p’ E ?%i 1 X’ or p’ contains an instance of X as

subterm}. Then let %“i = GJbi - %‘i U {A + p} and go to 3.

3. If %“i is not netherian, stop with failure. Otherwise, let %i+l = %“i,

a n d Bi3-1 = (Si - {M = N}) U {A’ = p’ 1 A’ ---) p’ E 31’i) U {P = & 1 (P, Q) is

a critical pair of %i+l}. Increment i by 1 and go to 1.

The completion algorithm is due to Knuth and Bendix (70). Its correctness

follows fmm the following facts: (i) At every iteration 4, =srUgr equals =e. (ii)

Every GJBi is ncetherian, and every h + p in %i is such that p is a normal form

for GJbi and X is a normal form for %i - {A + p}. (iii) If the algorithm stops with
success, % is locally confluent, and therefore (1) and (2) above are satisfied.

Note that the algorithm is non-deterministic because of the various choices.

It may stop with success, stop with failure, or loop forever. But we were careful

in its formulation, in that the only possibility of non-termination is by the global

looping of the outer iteration, and this can be prevented by setting a bound on i.

Various optimizations of the algorithm are possible. For instance, we need to

recompute only the critical pairs of %i+l which could not be obtained as critical

pairs of %i. We omit the proof for lack of space.

There are various cases of failure. When neither (a) nor (b) applies at step 2,

this suggests starting the process over again with an augmented signature C’ and

an augmented set of equations 8’ as follows. Let {xl,. . .,x,} = fr(Ml) (7 V(Nl).

Augment C with operator H of type ~(51) X l l l X I + T(M), and augment

S with the equation H(xl, . . ., x,J = Ml, for instance. As indicated above, some

extra constants may be needed for the new signature to be sensible, in the multi-

sorted case. But in any case, the new equational theory is a conservative extension

of the old one; that is, for any terms P and Q over C, P =g’ Q if and only if
P =e Q. Intuitively, the new equations are just definitions of the new symbols.

These definitions are acceptable, since Ml =g NJ implies that in any C-model of

8 the value of Ml does not depend on the assignments to variables other than the

22

xi’s’ When running the completion algorithm with 6’ the situation will be different,

since the new equation will give rise to a new reduction Ml + H(Q, . . ., x,,) and

when M = N is selected case (a) will apply. The new system may indeed converge,

as shown in some examples in Knuth and Bendix (70). This modification can be

taken into account in the algorithm, by replacing the “stop with failure” at step

2 by the following:

Let gi+l 3 (Si - {M = N}) U {Ml = H(x~, l l l p Xyg), NJ = H(z~, . - ., Xn)},

G$,-r+l = %i’ increment d by 1 and go to 1.

The other case of failure comes from step 3, if we recognize % as non-ncetherian.

This may actually come from three different causes:

1. We choose the wrong orientation of some rule at step 2; that is, some other

choices may lead to a successfully terminating computation.

2. The noztherian test used at step 3 is not general enough; that is, %“i is

indeed terminating but our test does not show it. Some more powerful test may

be needed for successful completion.

3. Every choice at step 2 leads to a non-noetherian %“i. This “unrecoverable”

failure occurs for instance whenever a symmetric axiom such as commutativity is

encountered. This is obviously the main pitfall of the whole method: it does not

apply to theories with such permutative axioms. (However, see Section 14.)

The appendix contains a complete run of an implementation (by Jean-Marie
Hullot) of the completion algorithm for the group axioms. The Knuth-Bendix

ordering is used there for checking termination.

10. Decidability and Complexity of Word Problemse

Word problems have been extensively studied in logic; some sources of results
on decidability and undecidability are Tarski (68), McNulty (76) and Evans (78).

For example, when g is a standard set of axioms for group theory: Group =

{x+0 = X? x + k---x) = 0, (x+y)+z = x+(y+z)}, then certain word problems

(and therefore the uniform word problem) are unsolvable. The word problem in

the free group with w generators, that is, J(C U V”, Group), is solvable. Dehn’s

algorithm (Dehn 11, Greenlinger 60) gives an algorithm for the word problem in

a family of presentations of groups.

The computational complexity of several decidable word problems has been

studied. The uniform word problem for abelian semigroups is solvable (see Malcev

(58) and Emilichev (58)); Cardoza, Lipton and Meyer (76) show that the pmblem

is complete in exponential space under log-space transformability. See also Lipton

and Zalcstein (75), and Meyer and Stockmeyer (73) for other results.

23

An extensively studied case is the uniform word problem for the case 6 = 8,

that is, in the variety of all C-algebras. The problem is thus determining whether

some gmund equation follows from a given set of ground equations by substitutivity

of equality, and so is also the decision problem for the quantifier-free theory of

equality with uninterpreted function symbols. An example is determining whether

f(a) = a is a consequence of {fv(f(u))) = a, f(f(/(f(f(a))))) = CL}. Ackermann (54)

showed that the problem was decidable, but did not give a practical algorithm.

The problem reduces to the problem of constructing the “congruence closure”

of a relation on a graph. Let G = (V,E) be a directed graph with labelled vertices,

possibly with multiple edges. For a vertex V, let X(V) denote its label and 6(v) its

outdegree, that is, the number of edges leaving V. The edges leaving a vertex are

ordered. For 1 (i (S(V), let v[;] denote the ith successor of V, that is, the vertex

to which the dth edge of v points. A vertex u is a predecessor of v if v = u[;] for

some a. Since multiple edges are allowed, possibly u[;] = w[j] for i # j. Let rz be

the number of vertices of G and m the number of edges of G. We assume that

7-3 = O(m).

Let - be a relation on V. Two vertices u and ‘u are congruent under - if

u4 = A(v), s(u) = s(v), and, for all i such that 1 (i (S(u), u[;]-~[i]. The

relation - is closed under congruences if, for all vertices u and v such that u

and v are congruent under -, u-v. The congruence closure of - is the finest

equivalence relation that is closed under congruences and contains -.

The relation between the uniform word problem and congruence closure is
given by the following theorem (see Shostak 78, or Nelson and Oppen 77):

Theorem. Let 6 be the set of defining equations of the algebra. Suppose that

we wish to determine if M = N follows from 6. Let G be a directed graph

corresponding to the set of terms appearing in 6 and M = N, and let 0(P) be

the vertex of G corresponding to the term P. Let - be the congruence closure

of w(u>, w>) I u = V E 6) . T h e n M = N follows from 6 if and only if

O(M)--B(N).

Kozen (77) hs ows that the problem is in P (polynomial time), Nelson and

Oppen (79) show that it admits a O(n2) solution, and Downey, Sethi and Tarjan

(79) show that it admits a O(nlog2 n> solution. (The algorithms require linear

space, and the times given apply whether the algorithms are online or offline.) It

is still open whether the problem is solvable in linear time.

Canonical term rewriting systems may be used to solve word pmblems over

algebras, in cases where the completion algorithm of section 7 terminates given

the equations formed from the axioms of the variety, plus the presentation of the
algebra.

I 24

Furthermore, the completion algorithm may be used to solve uniform word

problems, if its termination can be established for all the presentations involved.
This is the case, for instance, for the variety of all C-algebras, using a simple lexi-

cographic ordering to show termination (Lankford, private communication). Here,
the problems of superposing the lefthand sides and reducing terms both reduce to

finding common subexpressions in the set of equations. The latter problem is the

essential problem of congruence closure, and so can be implemented in worst-case

time O(nlog2 n) and space O(n).

Greendlinger (60) gives conditions on the presentation of a group under which

the algorithm of Dehn (11) so ves1 the word problem. Biicken (79) shows that one

can construct effectively, fmm the ten group reductions given in the Appendix and

from the presentation 9 of a group, a netherian term rewriting system %; then,

under the same conditions as Greendlinger, one may decide the word problem as

follows. Any relator (i.e. word equal to the identity in the group) reduces to the

identity, using reductions from “Jb in any order; conversely, no other word reduces

to the identity. We could say that “Jb is confluent on the relators. However, non-

relators may possess several normal forms.

11. Separable Equational Theories

In this section, we assume C is a signature with booleans. Further, we assume

that C contains an operator +, with T(#) = s X s --) boolean. We then say that

6 is s-separable if and only if

1. x#x =FALSEE$forxEx

2.forallM,NinCj,,M#e:N=,M#N=gTRUE.

Note that these conditions imply that, for all ground terms M and N of

sort s, if M =e N then M # N =g FALSE, and otherwise M#N =g TRUE; and

therefore that the word problem for sort s is decidable. For consistent s-separable

theories, the validity problem for terms of sort s in the initial algebra is equivalent

to a consistency problem, as follows.

Theorem. Let 6 be a consistent s-separable set of equations, and M, N be two

terms of type s. Then J(6) k M = N if and only if 6 U {M = N} is consistent.

Proof:

= obvious since, if 6 is consistent, J(6) p TRUE = FALSE.

+= Assume 6’ = 6 U {M = N} is consistent, and let u be any ground sub-

stitution. We have u(M) #u(N) =gs FALSE by condition 1 of s-separability.

Further, if a(M) #g u(N), then a(M) #u(N) =g TRUE by condition 2, and

25

hence u(M) #u(N) =gf TRUE. This contradicts the consistency of 6’. Therefore,

u(M) =e u(N), and thus J(C) k M = N. 1

More generally, let 6’ be any set of equations {Mi = Ni I a E I}, and let 6

be consistent and T(M&separable for every a. Then J(6) p Mi = Ni for every i
in I if and only if 6 U 6’ is consistent.

This theorem is inspired by Guttag and Horning (78) and Musser (80), and

generalizes Goguen(79) (where a data type specification amounts to a theory s-

separable for every sort s .
-2

It gives us a semi-decision procedure for the truth of

sentences of the form 3x M # N in J(6). This is not very surprising, since for

instance in arithmetic this corresponds to checking finitely refutable statements. It

allowsus to limit induction to a once and for all proof of s-separability, and allows
us to obtain proofs by pure equational reasoning that normally require induction.

However, its practical importance seems to be limited, since consistency is not even
recursively enumerable. It may be most useful for decidable theories, for which

consistency is decidable too. We shall see below how it can be used in conjunction
with the Knuth-Bendix extension algorithm.

ExampZe: Let 6l = 6Ou {x#x = FALSE, S(x) #S(y) = x # y, 0 #S(x) =

TRUE, S(x) # 0 = TRUE). It is easy to check, by induction on q(C’), that 6l is

integer-separable and consistent. Actually S(6’) = Jo. We will describe later how

to show that + is associative and commutative in 1(6’), using the theorem above.

The theorem above is reminiscent of the traditional observation in first-order

logic that a complete theory is maximally consistent. However, s-separable does not

imply complete in the traditional sense. For instance, note that d(Sl) k 0+x = x.

However &(S’) F 0 + x = x, since, for instance, A1 E &x0(6’>.

When the completion algorithm terminates, it may be used to decide the con-

sistency of a theory, and may therefore be used for solving the validity problem in

the initial algebra of certain separable equational theories. It must be emphasized

however that this new use of the completion algorithm is different in spirit from

the its use in generating a canonical form for an equational theory. Generating a

canonical term rewriting system is similar to compilation: you run the algorithm

only once for the theory in which you are interested, even if it is very costly. The

future proofs will consist uniquely in reductions to normal forms, and are thus

fairly efficient (at least intuitively). On the other hand, each proof in d(6) will

require using the completion algorithm and its associated costs (such as pmofs

of termination) even if 6 itself is already completed. However, disproofs may

be obtained even when the completion algorithm does not terminate: as soon

as TRUE = FALSE is generated as a critical pair, we know that the theory is

inconsistent.

26

We give examples of such proofs in the Appendix. In a simple theory of list

structures we show the associativity of the Append function, defined recursively.
Then we introduce the recursive definition of the Reverse function, and show that

it verifies ReveTse(Reverse(x)) = x. Finally, we introduce an iterative (that is,

recursive only in a terminal position) version of Reverse, called Rewater, and show

the equivalence of the two programs. Note that none of these proofs actually uses

the inequality axioms, since no superposition with them is ever possible.

12. A Meta-unification Algorithm

In this section, we show how we can do unification in theories that admit
a canonical term rewriting system. More precisely, let % be a (finite) canonical

term rewriting system obtained by running the completion algorithm on the set
of equations 6. We describe here a meta-unification algorithm which, given any

such GJB and a finite set of variables W, generates a complete set of 6-unifiers away

from W. This algorithm is due to Fay (79a), with improvements by Lankford. It

combines in an elegant way ordinary unification and “narrowing”, the process of

effecting the minimum substitution to a normal form term so that the substituted

term is not in normal form (Slagle 74).

More precisely, let M be in %-normal form, and V be a finite set of variables
containing Y(M). L te u be some non-variable occurrence in M such that the

subterm M/u at u is unifiable with some lefthand side of a rule in GJb using ordinary

unification. In symbols, M/u e r, and %g(M/u, X) # 8 with X -P p E “Jb. Assume

h -+ p has been renamed away from V; that is, Y(h) n V = 0. Let u be the

minimum unifier of M/u and X, restricted to v(M). That is, u is the minimum

substitution such that a(Ml)u is an instance of X. We say that u is a narrowing

substitution of M away from V, and we write NS(M, V) for the (finite) set of such

substitutions.

We are now ready to describe a (non-deterministic) 6-unification algorithm.

“s is assumed to be a canonical term rewriting system for 6, and we write 3(M)

for the %-normal form of term M.

Ckmifkation algorithm.

The input consists of two terms M and N of the same type, and a finite set

of variables W, with fr(M) U Y(N) C W. Mi and Ni are terms of the same sort,

Wi is a set of variables, 6i is a substi%ion. Variables u and S denote respectively
a substitution and a finite set of substitutions.

1. Initially let M = 3(M), NO = 3(N), W. = W, & = 0, i = 0.

27

2. IfMi= Ni then stop with answer 0i. Otherwise let S = NS(Mi, Wi) U

NS(Ni’ Wi), to which we add the minimum unifier of Mi and Ni if it exists. Select
U in S. Let di+l = ao0i. If for some x in W, &+1(x) is not a normal form, stop with

failure. Otherwise, let Mi+l = %(u(MJ), Ni+l = %(u(Ni)), Wi+l = Wi lJ I(U),

increment i by 1 and go to 2.

This algorithm can be viewed as non-deterministic, or equivalently as an al-

gorithm enumerating a finitely-branching tree. This tree may be infinite, but if

M and N are B-unifiable, then there will be some successfully terminating execu-

tion sequence, that is, there will be a success node at a finite level in the tree.

Actually, a stronger result holds, as follows. Let V = Y(M) U v(N), and let

%g(M, N, W) be the (possibly infinite) set of all answers 0i’ restricted to V; that

is, %(M, N, W) = {{(X9 k(X)) 1 X E V} I th e algorithm stops with answer &}a

Theorem. %g(M, N, W) is a complete set of 6-unifiers of M and N away from

W.

For a proof, see Hullot(80) which expands Fay (79b).

Various optimizations of the algorithm are possible. In general, however, the

algorithm will not enumerate a minimal set of unifiers, even when such a set ex-

ists. This is the case for associativity, for instance, for which Plotkin’s algorithm

(Plotkin 7 2) p fis re erred. It is an interesting open problem to refine of the algorithm

above in such a way that it indeed generates a minimal set whenever possible. (The
“obvious” solution, consisting of throwing away solutions subsumed by others, is

not satisfactory, since the result may not be complete for theories which do not
admit minimal complete sets of unifiers.)

This algorithm gave the first known solution to unification in group theory,

using for Gs, the canonical set shown in the appendix.

13. Exteruioxu and Combinations of Equational Theories

In previous sections we have discussed formalisms for describing and manipulat-

ing equational systems for different sorts of objects, and in particular have dis-
cussed methods for handling decision problems for particular equational theories.

However, it is clear that in practice we want to “combine” equational theories,

and in this section we discuss research presently being done on combinations of

such theories. (See also Burstall and Goguen (79).)

It is also clear that in practice we wish to reason about formulas rather than

just equations. We therefore wish to extend the language of equational calculi, in

particular, to include boolean connectives and conditional expressions of the form
if . . . then . . . else.

Consider the following axiomatization of the theory of arrays:

28

~elect(mtore(u, i, e), j) = if i = j then e ebe eelect(u, j)

store(u, i, oelect(u, i)) = a

store(tire(u, i, e), j, fl =

ifi = j then dme(u, i,f) else hre(store(a, j, f), &, e).

(The equality symbol appearing in the literal i = j is equality in the theory of the

array indices.) An obvious use of this axiomatization is to prove formulas such as

i # j) select(store(u, i, e), j) = eelect(u, j).

Consider the following (weak) axiomatization G$, for the the reals under ad-

dition (“weak” because the axioms have other models, such as the integers under
addition):

x+0=x

x+(-x)=0

(x+Y)+z=x+(Y+z)

x+y=y+x

x$X
s(yvy<xvx=y

x < y 3 1(y < 2)

=r;<yAy<z-, =r:<z

xey3 x+=cy+a

0 < 1.

Using these two theories, we may wish to prove the theorem select(store(u, 0, e),

1) =-select@, 1); this is an example of a theorem in the “combination” of the two

individual theories.

Some results are known on the decidability and complexity of combinations

of theories such as these (Nelson and Oppen(79a,79b), Oppen(79a, 79b)). As we

shall see, equations between variables play a crucial role.

We assume that we have several quantifier-free theories formalized in classical

first-order logic with equality, extended to include the three-argument conditional

if-then-else. The symbols =, A, V, 1, 3, V, 3 and if-then-else are common to all

theories; we call them the logical symbols. Each theory is characterized in the

usual way by its set of non-logical symbols and non-logical axioms.

Let us give some examples. Define the quantifier-free theory J of arrays to

have rs;tore and select as non-logical symbols and the axioms given above. Define
the quantifier-free theory % of reals under addition to 0, 1, +, < as non-logical

symbols and axioms as given above. Define the theory J., of list structure to

have car, cdr, cons and atom as non-logical symbols and to have the following

axiomatization:

29

1 atom(x) ‘7 wn+ar(x), edr(x)) = x

1 atom(wns(x, y)).

Finally, define the theory 6 whose non-logical symbols are all uninterpreted

function symbols. 6 has no axioms, so it is just the quantifier-free theory of

equality.
A theory is stably infinite if, for all quantifier-free formulas F, if F has a

model in the theory, then it has an infinite model. Note that any theory that has

no finite models is stably infinite; therefore %J is stably infinite. It is not difficult

to prove that 6, k and J are stably infinite.

Let “J”1,9&. . ., $k be k theories with no common non-logical symbols. Their

combination, denoted Ui($i)’ is the theory whose set of non-logical symbols is the

union of the sets of non-logical symbols of the gi’ and whose set of axioms is the
union of the sets of axioms of the Tie We do not consider combining theories which

share non-logical symbols. The following theorem is proved by Nelson and Oppen

(79b).

Theorem. Let $1,9& . . ., ($k be k decidable and stably-infinite quantifier-free theories

with no common non-logical symbols. Then Ui(gi) is decidable.

The proof is constructive; a decision procedure for the union is described for
determining the satisfiability of conjunctions of literals. The decision procedure

“combines” the decision procedures for the individual theories as follows.

Suppose we have just two theories Y and T and wish to determine if a quantifier-

free conjunction F of literals in their combined language is satisfiable. We as-

sume that F ss Fy AFT, where Fy is a conjunction of literals in the language
of Y and & is a conjunction of literals in the language of 9’. (Any formula can

be put in this form by introducing new variables; for instance, corresponding to

the above formula eelect(store(a, 0, e), 1) = select(u, 1) is the equivalent formula

select(store(a, x, e), y) = select(u, y) A x = 0 A y = 1 in the required form.) The

following algorithm determines whether F is satisfiable. The algorithm uses the

variables F; and FT which contain conjunctions of literals.

Equality Propagation Procedure.

1. pnsatisfiable?] If either Flp or FT is unsatisfiable, then F is unsatisfiable.

2. [Propagate equalities.] If either Fy or FT entails some equality between

variables not entailed by the other, then add the equality as a new conjunct to

the one that does not entail it. Go to step 1.

3. [Case split necessary?] If either Fv or FT entails a disjunction ul = prl V

. . . v tbk = vk of equalities between variables, without entailing any of the equalities

30

alone, then apply the procedure recursively to the k formulas Fv A Fg /\ ~1 =

21, - l �9 FywTAuk =
wk. If any of these formulas are satisfiable, then F is satisfiable.

Otherwise F is unsatisfiable.

4. If we reach this step, F is satisfiable.

The following theorems on the complexity of combinations of theories appear
in Oppen(79b).

Theorem. Let “5;, 9& . . ., GJ’k be as before. If the satisfiability problems for each of
the gi is in NP, then the satisfiability problem for Ui(EVi) is in NY and hence NP-

complete. Otherwise the complexity of the satisfiability problem is dominated by

the maximum of the complexities of the satisfiability problems for the Tie

Corollary. The satisfiability problem for c$, U 8 UA U k, that is, the quantifier-free

theory of reals, arrays, list structure and uninterpreted function symbols under

+, (, store, select, cons, car and cdr is NP-complete.

However, under certain conditions, a result on deterministic time is possible.

A formula is non-convex if it entails a disjunction of equalities between variables

without entailing any of the equalities alone; otherwise it is convex. Define a

theory to be convex if every conjunction of literals in the language of the theory

is convex; otherwise if is non-convex.
Some of the theories considered above are convex, others non-convex. The

theories of equality with uninterpreted function symbols and of list structure under

car, cdr and cons are convex (Nelson and Oppen 79a). The theory of rationals

under + and (is convex: the solution set of a conjunction of linear inequalities

is a convex set; the solution set of a disjunction of equalities is a finite union of

hyperplanes; and a convex set cannot be contained in a finite union of hyperplanes

unless it is contained in one of them. The theories of integers under addition and

of integers under successor are non-convex. For instance, the formula 1 < z <w -
2Ay=1Az = 2 entails the disjunction x = y V x = 2: without entailing either

equality alone. The theory of arrays is non-convex. For instance, the formula

x = select(store(a, i, e), j) A y = select@, j) entails i = j V x = y. The theory of

the reals under multiplication is not convex; for example, xy = 0 A z = 0 entails

the disjunction x = z V y = n. The theory of sets is also non-convex; for example,

consider {a, b, c} n {c, 8, ej # 8.

Define the DA/F satisfiability proMem to be the problem of determining if a

quantifier-free formula in disjunctive normal form is satisfiable.

Theorem. Let Yl, 52, . . ., $k be decidable, convex, quantifier-free theories with

no common non-logical symbols and with deterministic polynomial time DNF

satisfiability problems. Then Ui(Ti) 1 ha so as a deterministic polynomial time DNF
satisfiability problem.

31

Thus, for instance, the theory CbuG has a polynomial time decision procedure

for formulas in disjunctive normal form. This follows from Khachian (78) and

Nelson and Oppen (79a).

The critical notion in these results on combinations of sorted-theories is that of

equality between variables. In the equality-sharing decision procedure given above

for combining decision procedures, the only information propagated between deci-

sion procedures is either an equality between variables or a disjunction of equalities

between variables. And the complexity results show that the complexity of the

combination is critically related to the “convexity” of the theories -- whether or

not conjunctions of literals can entail disjunctions of equalities.

These results can therefore be looked at as reducing the decision problem for

non-equational theories to simpler decision problems of equational theories.

14. Further Results

For lack of space, a number of recent results are not described here. Let us

indicate briefly a few promising directions.

The Knuth-Bendix characterization of confluence for ncetherian term-rewriting

systems may be extended to congruence classes of terms under certain conditions.

This has been done for commutativity (Lankford and Ballantyne 77a), for com-

mutativity and associativity (Lankford and Ballantyne 77c, Peterson and Stickel

77), and in the general case for certain left-linear term rewriting systems (Huet 77).
The completion algorithm can be extended to these cases, generating canonical

systems for abelian groups, abelian rings, distributive lattices. Degano and Sirovich

(79) use a complete set of such rewrite rules to show the decidability of equivalence

for a new class of primitive recursive functions. Ballantyne and Lankford (79)

show that this extension of the completion algorithm solves the uniform word
problem for finitely presented commutative semigroups - it is conjectured that

these methods extend to abelian groups and rings.

When term rewriting systems are not ncztherian, the problem arises of how

to compute the normal forms of terms which have one. This problem of order of

evaluation has well-known solutions for ordinary recursive definitions (Vuillemin

74, Downey and Sethi 76, Raoult and Vuillemin 78, Berry and LCvy 79), but
is harder for more general term rewritings. Huet and Lkvy (79) give a strong

sequentiality criterion permitting efficient implementations of correct interpreters

for term rewriting systems whose lefthand sides are linear, and which have no

critical pairs. See also Hoffmann and O’Donnell (79) for related results.

32

15. Aclmowledgmenta

We thank Ron Book, Bob Boyer, Nachum Dershowitz, Joe Goguen, Jean-

Marie Hullot and Jean-Jacques L&y for their many helpful comments. We espe-

cially thank Dallas Lankford for his lively and helpful correspondence.

16. Appendix

This appendix is an image of a computer session run on the Stanford Artificial

Intelligence Laboratory KL-10. The program, developed by Jean-Marie Hullot

at IRIA, is written in VLISP (developed at UniversitE de Vincennes by Patrick

Greussay and JCrome Chailloux). The times given are for the program run inter-

pretively.
We first give an example of the Knuth-Bendix completion algorithm compil-

ing a canonical term rewriting system from the standard set of three axioms for

groups. User input is preceded by a question mark. Comments are surrounded by

square brackets.

? (kbini)

MODE f auto

LIST OF OPERATORS ? (0 + I)

WEIGHT OF 0 f 1

WEIGHT OF + f 0

WEIGHT OF I ? 0

MINIMUM WEIGHT OF A PURE WORD ‘! 1

LIST OF INFIX OPERATORS ? (+)

= READY

= ; time = 6 ms ;

[Now all the weights are set up, so that the termination will be proved automati-

cally, using the original Knuth-Bendix method.]

f (kb group)

Rl : 0+X ->X GIVEN

R2 : 1(X)+X ----a0 GIVEN

R3 : (X+Y)+z ---s+X+(Y+z) GIVEN

R4 : I(X)+(X+Y) +Y FROM R3 AND R2

R5 : 1(0)+X ->X FROM R4 AND Rl

R6 : I(I(X))+O ->X FROM R4 A ND R2

33

.

R7 : I(I(O))+X ,---+X FROM R5 AND R4

R8 : I(0) ->o FROM R7 AND R2

R5 DELETED

REWRITE RULES : R8 Rl FOR LEFT PART

R7 DELETED
REWRITE RULES : R8 R8 Rl FOR LEFT PART

R9 : I(I(I(X)))+X -0 FROM R6 AND Ri

RlO : I (I (X)) + Y - > X + Y FROM R4 AND R.4

RB REPLACED BY :

x+0=x

REWRITE RULES : RlO FOR LEFT PART
R9 DELETED

REWRITE RULES : RlO R2 FOR LEFT PART

Rll : X+0 ,->X FROM R6

-
---___.--

R12 : 1(1(X)) ->X FROM Rll AND R10

RIO DELETED

REWRITE RULES : R12 FOR LEFT PART

R13 : X+1(X) ->O FROM R12 AND R2

R14 : X+(I(X)+Y) +Y FROM R12 AND R.4

R15 : X+(Y+I(X+Y)) -0 FROM R13 AND Re3

R16 : x+I(Y+x) -+1(Y) FROM R15 AND R4

R15 DELETED

REWRITE RULES : R16 R13 FOR LEFT PART

R17 : I(X+Y) -,I(Y)+I(i) -- FROM R16 ANTI R4

R16 DELETED

REWRITE RULES : R17 R14 FOR LEFT PART

COMPLETE SET: CGROUP

Rl : 0+X -->X

R2 : 1(X)+X -->0

R3 : (X+Y)+Z +X+(Y+Z)
R4 : I(X)+(X+Y) -->Y

R 8 : I (0) - > o

Rll : X+0 -->X

34

.

R12 : 1(1(X)) --+X
R13 : X+1(X) ,----+O

R14 : X+(I(X)+Y) ---SY

R17 : I(X+Y) +I(Y)+I(X)

9-Dee-79 21:19:43

= E N D

= ; time = 4790 ms ;

[The file PROOFS contains a simple axiomatization of list structures, simple recur-

sive definitions of list manipulation programs, and lemmas proving their correct-

ness. LISP is the axiomatization of list structures; note that it is list-separable.]

f (library proofs)

= PROOFS
= ; time = 41 ms ;

f (kbini)

MODE f free

LIST OF INFIX OPERATORS ? (#)

= R.EADY

= ; time = 2 ms ;

‘P (kb lisp)

X+X = FALSE GIVEN

COMMAND f y

Rl : X#X ->FALSE

CONS(X,Y)#NULL = TRUE GIVEN

COMMAND f y

R2 : CONS(X,Y)#NULL --+TRUE

NULL#CONS(X,Y) = TRUE GIVEN

COMMAND ? y

R3 : NULL#CONS(X,Y) +TRUE

CONS(X,Y)#CONS(Z,U) = IF(X#Z,TRUE,Y#U) GIVEN

COMMAND f y

R4 : CONS(X,Y)#CONS(Z,U) ,->IF(X#Z,TRUE,Y#U)

IF(TRUE,X,Y) = X GIVEN

COMIbfAND ? y

R5 : IF(TRUE,X,Y) .+X

IF(FALSE,X,Y) = Y GIVEN

35

COMMAND ? y

R6 : IF(FALSE,X,Y) ->Y

APPEND(NULL,X) = X

COMMAND f y

R7 : APPEND(NULL,X) ->X

GIVEN

APPEND(CONS(X,Y),Z) = CONS(X,APPEND(Y,Z))

COMMAND f y

R8 : APPEND(CONS(X,Y),Z) ->CONS(X,APPEND(Y,Z))

GIVEN

COMPLETE SET: CLISP

Rl : X$X ->FALSE

R2 : CONS(X,Y)#NULL --+TRUE

R3 : NULL#CONS(X,Y) ->TRUE

R4 : CONS(X,Y)#CONS(Z,U) ->IF(X#Z,TRUE,Y#U)

R5 : IF(TRUE,X,Y) ---+>X

R6 : IF(FALSE,X,Y) .->Y

R7 : APPEND(NULL,X) ->X

R8 : APPEND(CONS(X,Y),Z) ->CONS(X,APPEND(Y,Z))

9-Dee-79 22: 13:34

= E N D

= ; time = 905 ms ;

pet’s prove that APPEND is associative. PROOF1 contains the corresponding

lemma.]

f (provelemma proof 1)

APPEND(APPEND(X,Y),Z) = APPEND(X,APPEND(Y,Z))

COMMAND T y

R9 : APPEND(APPEND(X,Y),Z) .->APPEND(X,APPEND(Y,Z))

GIVEN

COMPLETE SET: CPROOFl

Rl ; X*X -->FALSE

R2 : CONS(X,Y)#NULL ->TRUE

R3 : N-ULL#CONS(X,Y) ->TRUE

R4 : CONS(X,Y)#CONS(Z,U) ,->IF(X#Z,TRUE,Y#U)

R5 : IF(TRUE,X,Y) .4X

R6 : IF(FALSE,X,Y) ->Y

R7 : APPEND(NULL,X) ->X

R8 : APPEND(CONS(X,Y),Z) ->CONS(X,APPEND(Y,Z))

36

.

R9 : APPEND(APPEND(X,Y),Z) ->APPEND(X,APPEND(Y,Z))

9-Dee-79 22: l&O9

--END
= ; time = 640 ms ;

[The resulting set is consistent, proving the lemma. Next we enrich our lisp theory

with the recursive definition of the function REV, that reverses a list. We then

prove that R.EV(REV(x))=x for every list x.1

f (kb clisp pmof2)

Rl : X#X ->FALSE

R2 : CONS(X,Y)#NULL -TRUE
R3 : NULL#CONS(X,Y) ,->TRUE

R4 : CONS(X,Y)#CONS(Z,U) ->IF(X#Z,TRUE,Y#U)

R5 : IF(TRUE,X,Y) .---+X

R6 : IF(FALSE,X,Y) -->Y

R7 : APPEND(NULL,X) -->X

R8 : APPEND(CONS(X,Y),Z) T->CONS(X,APPEND(Y ,Z))

REV(NULL) = NULL GIVEN

COMMAND f y
R9 : REV(NULL) ~---+N-ULL

FtEV(CONS(X,Y)) = APPEND(REV(Y),CONS(X,NULL))

COhdMAND ? y
RlO : R.EV(CONS(X,Y)) .->APPEND(REV(Y),CONS(X,NULL))

GIVEN

REV(REV(X)) = x GIVEN

COMMAND ? y

Rll : FtEV(FtEV(X)) .->X

REV(APPEND(FtEV(X),CONS(Y,NULL))) = CONS(Y,X)
FROM Rll AND RlO

COMMAND f y
R12 : REV(APPEND(REV(X),CONS(Y,NULL))) .->CONS(Y,X)

REV(APPEND(X,CONS(Y,NULL))) = CONS(Y,REV(X))
FROM R12 AND Rll

COMMAND ? y
R13 : REV(APPEND(X,CONS(Y,NULL))) -->CONS(Y,FtEV(X))
R12 DELETED

REWRITE RULES : R13 Rll FOR LEFT PART

37

COMPLETE SET: CPROOF2

Rl : X#X .----?>FALSE

R2 : CONS(X,Y)#NULL ->TRUE

R3 : NULL#CONS(X,Y) ->TRUE

R4 : CONS(X,Y)#CONS(Z,U) ->IF(X#Z,TRUE,Y#U)

R5 : IF(TRUE,X,Y) ->X

RB :IF(FALSE,X,Y)+Y

R7:APPEND(NULL,X)-3X

R8 : APPEND(CONS(X,Y),Z) ->CONS(X,APPEND(Y,Z))

R9 : REV(NULL) ->NULL

RlO : REV(CONS(X,Y)) -->APPEND(REV(Y),CONS(X,NULL))

Rll : FtEV(REV(X)) ->X
R13 : REV(APPEND(X,CONS(Y,NULL))) .->CONS(Y,REV(X))

9Dec.79 22~21~57

= E N D

= ; time = 2272 ms ;

[Complete and consistent! That is, FlEV(REV(x))=x in LISP. Notice that the
termination test has been left to the user, because the Knuth-Bendix ordering

could not be used on rule RlO. The orientation of each rule was given by the user
after a COMM.AND? (“y” means keep left to right.) This recursive REVERSE is

not very efficient. Let’s write an iterative version, called REWITER, and prove

the equivalence of the two programs: REV(x)=R.EVITER(x,NULL). We need the
associativity of APPEND, and the lemma REVITER(x,y)=APPEND(REV(x),y).

Note: this crucial lemma is not assumed; it is proved as well.]
P (kb cproofl proof3)

Rl : X#X ->FALSE

R2 : CONS(X,Y)#NULL ->TRUE

R3 : NULL#CONS(X,Y) -+TRUE

R4 : CONS(X,Y)#CONS(Z,U) ->IF(X#Z,TRUE,Y#U)

R5 : IF(TRUE,X,Y) ->X

R6 :IF(FALSE,X,Y)->Y

R7:APPEND(NULL,X)->X

R8 : APPEND(CONS(X,Y),Z)->CONS(X,APPEND(Y,Z))

R9 : APPEND(APPEND(X,Y),Z) ->APPEND(X,APPEND(Y,Z))

REV(NULL) = NULL GIVEN

COMMAND f y
RlO : REV(NULL) .-,N-ULL

38

REV(CONS(X,Y)) = APPEND(FtEV(Y),CONS(X,NULL))
COMMAND ? y

Rll : REV (CONS(X,Y)) .-,APPEND(REV(Y),CONS(X,NULL))

GIVEN

REVITER(NULL,X) = X GIVEN

COMMAND ? y

R12 : REVITER(NULL,X) ->X

REVITER(CONS(X,Y),Z) = REVITER(Y,CONS(X,Z)) GIVEN

COMMAND f y

R13 : REVITER(CONS(X,Y),Z) ,-+>REVITER(Y,CONS(X,Z))

APPEND(REV(X),Y) = REVITER(X,Y)

COMMAND ? y

R14 : APPEND(REV(X),Y) +REVITER(X,Y)

Rll REPLACED BY :

REV (CONS(X,Y)) = REVITER(Y,CONS(X,NULL))

REWRITE RULES : R14 FOR RIGHT PART

GIVEN

REV(CONS(X,Y)) = REVITER(Y,CONS(X,NULL)) FROM Rll

COMMAND f y

R15 : REV(CONS(X,Y)) -->REVITER(Y,CONS(X,NULL))

REV(X) = REVITER(X,NULL) GIVEN

COMMAND ? y

Rl6 : REV (X) -,REVITER(X,NULL)

RlO DELETED

REWRITE RULES : R16 R12 FOR LEFT PART

R14 REPLACED BY :

APPEND(REVITER(X,NULL),Y) = REVITER(X,Y)

REWRITE RULES : R16 FOR LEFT PART

Rl5 DELETED

REWRITE RULES : R16 R13 FOR LEFT PART

APPEND(REVITER(X,NULL),Y) = REVITER(X,Y) FROM R14

COMMAND ? y

R17 : APPEND(REVITER(X,NULL),Y) ->REVITER(X,Y)

APPEND(REVITER(X,Y),Z) = REVITER(X,APPEND(Y,Z))
FROM R17 AND R9

COMMAND f y

R18 : APPEND(REVITER(X,Y),Z) ->REVITER(X,APPEND(Y,Z))

39

R17 DELETED

REWRITE RULES : R18 R7 FOR LEFT PART

COMPLETE SET: CPROOF3

Rl : X#X -->FALSE

R2 : CONS(X,Y)#NULL -TRUE

R3 : NULL#CONS(X,Y) ->TRUE

R4 : CONS(X,Y)#CONS(Z,U) -->IF(X#Z,TRUE,Y#U)

R5 : IF(TRUE,X,Y) ->X

R6 : IF(FALSE,X,Y) ->Y

R7 : APPEND(NULL,X) ->X

R8 : APPEND(CONS(X,Y),Z) ->CONS(X,APPEND(Y,Z))

R9 : APPEND(APPEND(X,Y),Z) ->APPEND(X,APPEND(Y,Z))

R12 : REVITER(NULL,X) ->X

R13 : REVITER(CONS(X,Y),Z) ->REVITER(Y,CONS(X,Z))

R16 : REV(X) --+REVITER(X,NULL)

R18 : APPEND(REVITER(X,Y),Z) ->REVITER(X,APPEND(Y,Z))

9-Dee-79 22:36:34

= E N D

= ; time = 3358 ms ;

17. References

1. Ackermann W ., Solvable Cases of the Decision Problem. North-Holland,
Amsterdam, 1954.

2. Aho A., Sethi R. and Ullman J., Code Optimization and Finite Church-Rosser
Systems. in Proceedings of Courant Computer Science Symposium 5, Ed.

Rustin R., Prentice Hall (1972).

3. Ashcroft E.A. and Wadge W.W., Lucid - A Formal System for Writing and

Proving Programs. SIAM Journal on Computing 5,3 (1976).

4. Aubin R., Mechanizing Structural Induction. Ph.D. thesis, U. of Edinburgh,

Edinburgh 1976.

5. Backus J., Programming Language Semantics and Closed Applicative Lang-

uages. ACM Symposium on Principles of Programming (1973), 71-86.

8. Backus J., Can Programming be Liberated from the von Neumann Style!’ A

Functional Style and Its Algebra of Programs. CACM 21,8 (1978), 613-641.

40

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Ballantyne A.M. and Lankford D.S., New Decision Algorithms for Finitely

Presented Commutative Semigroups. Report MTP-4, Department of Mathe-
matics, Louisiana Tech. U., May 1979.

Baxter L. D., Au Efficient Unification Algorithm. Technical Report CS-73-
23, Dept. of Applied Analysis and Computer Science, U. of Waterloo, 1973.

Bergman G.M., The Diamond Lemma for Ring Theory. Advances in Math.
29 (1978), 178-218.

Berry G. and Lfvy J.J., Minimal and Optimal Computations of Recursive

Programs. JACM 26,1 (1979).

Berry G. and L&y J.J., Letter to the Editor. Sigact News 11,l (1979).

Birkhoff G., On the Structure of Abstract Algebras. Proc. Cambridge Phil.

sot. 31 (1935), 433-454.

Birkhoff G. and Lipson J.D., Heterogeneous Algebras. Journal of Combinatorial

Theory 8 (1970), 115-133.

Boone W., The Word problem. Ann. of Math. 2,70 (1959), 207-265.

Boyer R. and Moore J, Proving Theorems About LISP Functions. JACM 22

(1975), 129-144.

Hoyer R. and Moore J, A Lemma Driven Automatic Theorem Prover for

Recursive Function Theory. 5th International Joint Conference on Artificial

Intelligence (1977), 511-519.

Boyer R. and Moore J, A Computational Logic. Academic Press, 1979.

Brainerd W.S., Tree Generating Regular Systems. Information and Control

14 (1969), 217-231.

Brand D., Darringer J. and Joyner J., Completeness of ConditionalReductions.

Symposium on Automatic Deduction, 1979.

Brown T., A Structured Design Method for Specialized Proof Procedures.

Ph.D. Thesis, California Inst. of Tech., Pasadena, California, 1975.

Biicken H., Reduction Systems and Small Cancellation Theory. Proc. Fourth

Workshop on Automated Deduction, (1979), 53-59.

Burstall R.M., Proving properties ofPrograms by Structural Induction. Comp

uter J. 12 (1969), 41-48.

BurstallR.M., Design Considerations for a FunctionalProgrammingLanguage.

Infotech State of the Art Conference, Copenhagen, 1977.

Burstall R.M. and Darlington J., A Transformation System for Developing

Recursive Programs. JACM 24 (1977), 44-67.

41

.

25. Burstall R.M. and Goguen J.A., Putting Theories Together to Make Specifica-

tions. 5th International Joint Conference on Artificial Intelligence (1977),
1045-1058.

28. Cadiou J.M., Recursive Definitions of Partial Functions and Their Computa-
tions. PhD Thesis, Computer Science Department, Stanford U., 1972.

27. Cardoza E., Lipton R., and Meyer A., Exponential Space Complete Problems

for Petri Nets and Commutative Semigroups. Proceedings of the Eighth ACM

Symposium on Theory of Computing, May 1976, 50-54.

28. Cargill T.A., Deterministic Operational Semantics for Lucid. Report CS-76-

19, U. of Waterloo (1976).

29. Church A., The Calculi of Lambda-Conversion. Princeton U. Press, Princeton

N. J. (1941).

30. Church A. and Rosser J.B., Some Properties of Conversion. Transactions of

AMS 39 (1936), 472-482.

31. Cohen P. J., Decision Procedures for Real and p-a&c Fields. Comm. Pure

and Appl. Math. 22 (1969), 131-151.

32. Cohn P.M., Universal Algebra. Harper and Row, New York, 1965.

33. Collins G., Quantifier Elimination for Real CZosed Fields by CyZindricaZ
Algebraic Decomposition. Proc. 2nd GI Conference on Automata and Formal

Languages, Kaiserslauten, 1975. Lecture No&es in Computer Science, Springer-

Verlag, to appear.

34. Colmerauer A., Les grammaires de mr%amorphose. Rapport interne, U. de

Marseille-Luminy, 1975.

35. Courcelle B., Infinite Trees in Normal Form and Recursive Equations Having

a Unique Solution. Rapport 7906, U. de Bordeaux 1, UER de Math&matiques

et Informatique, Ft%rier 1979. To appear Math. Systems Theory.

36. Curry H.B. and Feys R., Combinatory Logic Vol. Z. North-Holland, Amster-

dam, 1958.

37. Davis M., Hilbert’s Tenth Problem is Unsolvable. Amer. Math. Monthly 80,3

(1973), 233-269.

38. Degano P. and Sirovich F., On Solving the Equivalence Problem for a Sub-

class of Primitive Recursive Functions. Note Scientifiche S-79-18, Istituto di

Scienze dell’Informazione, Pisa, Giugno 1979.

39. Dehn M., Uber unendliche diskontinuierliche Gruppen. Math. Ann. 71 (1911),

116-144.

42

40. Dershowitz N., A Note on Simplification Orderings. Information Processing

Letters 9,5 (1979), 212-215.

41. Dershowitz N., Orderings for Term-rewriting Systems. Proc. 20th Symposium

on Foundations of Computer Science (1979), 123-131. To appear Theoretical

Computer Science.

42. Dershowitz N. and Manna Z., Proving Termination with Multiset Orderings.

CACM 22 (1979), 465-476.

43. Downey P.J. and Sethi R., Correct Computation Rules for Recursive Lang-

uages. SIAM J. on Computing 5,3 (1976), 378-401.

44, Downey P. and Sethi R., Assignment Commands with Array References.
JACM (1978), volume 25, no. 4.

45. Downey P., Sethi R. and Tarjan R. E., Variations on the Common Subexpres-

sion Problem. To appear JACM, 1980.

46. Ehrig H. and Rosen B.K., Commutativity of Independent Transformations
on Complex Objects. IBM Research Report RC 6251, 1976.

47. Ehrig H. and Rosen B.K., The Mathematics of Record Handling. Fourth

International Colloquium on Automata, Languages and Programming, Turku,

1977.

48. Emelichev V. A., Commutative Semigroups with One Defining Relation.

Shuya Gosudarstvennyi Pedagogicheskii Institut Uchenye Zapiski, vol. 6,

1958, 227-242.

49. Evans T., The Word Problem for Abstract Algebras. J. London Math. Sot.

26 (1951), 6471.

50. Evans T., Embeddability and the Word Problem. J. London Math. sot. 28

(1953), 76-80.

51. Evans T., On MuZtipZicative Systems Defined by Generators and Relations

1., Normal Form Theorems. Proc. Cambridge Phil. Sot. 47 (1951), 637-649.

52. Evans T., Some Solvable Word Problems. Proc. Conf. on Decision Problems

in Algebra, Oxford, 1976. To appear, North-Holland, Amsterdam.

53. Evans T., Word Problems. Bulletin of the AMS 84,5 (1978), 789-802.

54. Evans T., Mandelberg K. and Neff M.F., Embedding Algebras with Solvable

Word Problems in Simple Algebras. Some Boone-Higman Type Theorems.

Proc. Logic Colloq., U. of Bristol, 1973. North-Holland, Amsterdam, 1975,

259-277.

43

55. Fay M., First-order Unification in an Equational Theory. Master Thesis, U.

of California at Santa Cruz. Tech. Report 78-5-002, May 1978.

56. Fay M., First-order Unification in an EquationaZ Theory. 4th Workshop on

Automated Deduction, Austin, Texas, Feb. 1979, 161-167.

57. Goguen J.A., Proving InductiveHypotheses Without Induction a&Evaluating

Expressions with Non-terminating Rules. Unpublished manuscript, Oct. 1979.

58. Goguen J.A. and Tardo J.J., An introduction to OB..& a Language for Writing

and Testing Formal Algebraic Specifications. Specifications of Reliable Sofware
Conference, Boston, 1979.

59. Goguen J., Thatcher J., Wagner E. and Wright J., Abstract Data Types

as Initial Algebras and Correctness of Data Representations. Conference on

Computer Graphics, Pattern Recognition and Data Structure, May 1975, 89-

93.

80. Goguen J.A., Thatcher J.W., Wagner E.G. and Wright J.B., Initial Algebras

Semantics and Continuous Algebras. JACM 24 (1977), 68-95.

61. Goguen J.A., Thatcher J.W. and Wagner E.G., An Initial AZgebra Approach to

the Specification, Correctness, and Implementation of Abstract Data Types.
“Current Trends in Programming Methodology”, Vo14, Ed. Yeh R., Prentice-

Hall (1978), 80-149.

82. Goldfarb W., The Undecidability of the Second-order Unification Problem.

Unpublished manuscript, July 1979.

83. Gorn S., Handling the Growth by Definition of Mechanical I,anguages. Proc.

Spring Joint Computer Conf. (1967), 213-224.

84. Gorn S., Explicit Definitions andLfnguisticDominoes. “Systems and Cornputter

Science”, Eds Hart J. and Takasu S., U. of Toronto Press (1967), 77-115.

65. Gorn S., On the Conclusive Validation of Symbol Manipulation Processes

(How Do You Know It has To Work!‘). J. of the Franklin Institute, 296,6

(1973), 499-518.

86. ‘Greendlinger M., Dehn’s Algorithm for the Word Problem. Communications
on Pure and Applied Mathematics, 13 (1960), 67-83.

67. Griesmer J.H. and Jenks R.D., SCRATCHPAD/I. An Interactive Facility
for Symbolic Mathematics. Proceedings 2nd Symposium on Symbolic and

Algebraic Manipulation, Ed. Petrick S., Los Angeles, March 1971.

68. Guard J.R., Oglesby F.C., Bennett J.H. and Settle L.G., Semi-automated

Mathematics. JACM 16 (1969), 49-62.

44

69. Guttag J., The Specifkatjon and Application to Programming of Abstract

Data Types. Ph. D. thesis, U. of Toronto, 1975.

70. Guttag J.V., Abstract Data Types and the DeveZopment of Data Structures.

CACM 20 (1977), 397-404.

71. Guttag J.V., Notes on Type Abstraction. To appear, IEEE Transactions on

Software Engineering.

72. Guttag J.V. and Horning J.J., The AZgebraic Specification of Abstract Data

Types. Acta Informatica 10 (1978), 27-52.

73. Guttag J.V., Horowitz E. and Musser D., The Design of Data Type Specifka-

tions. “Current Trends in Programming Methodology”, Vo14, Data Structur-

ing, Ed. Yeh R., Prentice Hall, 1978.

74. Guttag J.V., Horowitz E. and Musser D.R., Abstract Data Types and Software

Validation. CACM 21 (1978), 1048-1064.

75. Hall P., Some Word Problems. J. London Math. Sot. 33 (1958), 482-496.

76. Henderson P. and Morris J.H. Jr., A Lazy Evaluator. Third ACM Conference

on Principles of Programming Languages (1976), 95-103.

77. Hermann G., Die Frage der endlich vielen Schritte in der Theorie der PoZynom-

78.

79.

80.

ideale, Math. Ann., Vol 95, 1926, 736738.

Hindley R., An Abstract Form of the Church-Rosser Theorem 1. J. of Symbolic

Logic 34,4 (1969), 545-560.

Hindley R., An Abstract Form of the Church-Rosser Theorem a: Applications.

J. of Symbolic Logic 39,1 (1974), 1-21.

Koffmann M. and O’Donnell M., Interpreter Generation Using Tree Pattern

Matching. 6th ACM Conference on Principles of Programming Languages

(1979).

81. Huet G., The Undecidability of Unification in Third Order Logic. Information

and Control 22 (1973), 257-267.

82. Huet G., A Unification Algorithm for Typed Lambda Calculus. Theoretical

Computer Science, 1,l (1975), 27-57.

83. Huet G., R&solution d’Cquations dans des Zangages d’ordre 1,2,. . .,w. Thkse
Q’Etat, Universit& de Paris VII, 1976.

84. Huet G., Confluent Reductions: Abstract properties and Applications to Term

Rewriting Systems. 18th IEEE Symposium on Foundations of Computer

Science (1977), 30-45.

45

85. Huet G., An Algorithm to Generate the Basis of Solutions to Homogenous

Linear Diophantine Equations. Information Processing Letters 7,3 (1978),

144-147.

86. Huef G. and Lang B., Proving and Applying Program TransformationsExpress-
ed ‘With 2nd Order Patterns. Acta Informatica 11 (1978), 31-55.

87. Huet G. and Lankford D.S., On the Uniform Halting Problem for Term

Rewriting Systems. Rapport Laboria 283, IHIA, Mars 1978.

88. Huet G. and LCvy J.J., Call by Need Computations in Non-AmbiguousLinear

Term Rewriting Systems. Rapport Laboria 359, IFtIA, Aout 1979.

89. Hullot J.M., Associative-Commutativt Pattern Matching. Fifth International

Joint Conference on Artificial Intelligence, Tokyo, -1979.

90. Hullof J.M., Canonical Forms and Unification. Unpublished manuscript, 1980.

91. Iturriaga R., Contributions to Mechanical Mathematics. Ph. D. thesis, Car-

negie-Mellon University, 1967.

92. Jeanrond H.J., A Unique Termination Theorem for a Theory with GeneraZised
Commutative Axioms. Unpublished manuscript, July 1979.

93. Kahn G. and Plotkin G., Domaines concrets. Rapport Laboria 336, IRIA,

DCcembre 1978.

94. Kamin S., Some Definitions for AZgebraic Data Type Specifications. SIGPLAN
Notices, Vol. 14, No. 3, March 1979.

95. Khachian, L., PoZynomiaZ Algorithm for Linear Programmjng Computing
Center, Academy Sciences USSR, Moscow, 4 October 1978.

96. Kleene S.C., Introduction to Metamathematics. North-Holland, 1952.

97. Klop J.W., A Counter Example to the Church-Rosser Property for Lambda-

Calculus With Surjective Pairing. Preprint 102, Dept. of Mathematics, U. of

Utrecht, 1978.

98. Knuth D. and Bendix P., Simple Word Problems I’n Universal Algebras. “Comp
utational Problems in Abstract Algebra”. Ed. Leech J., Pergamon Press, 1970,

‘263-297.

99. Knuth D.E., Morris J. and Pratt V., Fast Pattern Matching in Strings. SIAM

Journal on Computing, 6,2 (1977), 323-350.

100. Kiinig J., Einlejtung in die AZZgemeine Theorie der AZgebraischen Groszen, B.

G. Teubner, Leipzig, 1903.

101. Kowalski R.A., Predicate Logic as Programming Language. Proc. IFIP 74,

North Holland (1974), 569-574.

46

102. Kozen D., Complexity ofFinitelyPresented Algebras. Ninth ACM Symposium

on Theory of Computing, May 1977, 164177.

103. Kozen D., Finitely Presented Algebras and the Polynomial Time Hierarchy.

Report 77-303, Dept. of Computer Science, Cornell U., March 1977.

104. Kruskal J. B., WelEquasi-ordering, the Tree Theorem and Vaasonyi’s Conjec-
ture. Trans. Amer. Math. Sot. 95 (1960), 210-225.

105. Lankford D.S., Canonical Algebraic Simplification. Report ATP-25, Depart-

ments of Mathematics and Computer Sciences, University of Texas at Austin,

May 1975.

106. Lankford D.S., Canonical Inference. Report ATP-32, Departments of Mathe-

matics and Computer Sciences, University of Texas at Austin, Dec. 1975.

107. Lankford D.S., A Finite Termination Algorithm. Internal memo, Southwestern

U., Georgetown, Texas, March 1976.

108. Lankford D.S., On Deciding Word Problems by Rewrite Rules Simplifiers.

Unpublished Manuscript, Sept. 77.

109. Lankford D.S., A Unification Algorithm for Abelian Group Theory. Report

MTP-1, Math. Dept., Louisiana Tech. U., Jan. 1979.

110. Lankford D.S., 2Mechanical Theorem Proving z’n Field Theory. Report MTP-

2, Math. Dept., Louisiana Tech U., Jan. 1.979.

111. Lankford D.S., On Proving Term Rewriting Systems are ncetherian. Report

MTP-3, Math. Dept., Louisiana Tech U., May 1979.

112. Lankford D.S. Some New Approaches to the Theory and Applications of

113.

114.

115.

Conditional Term Rewriting Systems. Report MTP-6, Math. Dept., Lousiana

Tech. U., Aug. 1979.

Lankford D.S. and Ballantyne A.M., Decision Procedures for SimpleEquationaI

Theories With CommutativeAxioms: Complete Sets of CommutativeReduct-
ions. Report ATP-35, Departments of Mathematics and Computer Sciences,

U. of Texas at Austin, March 1977.

Lankford D.S. and Ballantyne A.M., Decision Procedures for SimpleEquational

Theories WithPermutativeAxioms: CompleteSetsofPermutativeReductions.

Report ATP-37, Departments of Mathematics and Computer Sciences, U. of

Texas at Austin, April 1977.

Lankford D.S. and Ballantyne A.M., Decision Procedures for SimpleEquational

Theories With Commutative-Associative Axioms: CompIetc Sets of Commu-

tative-Associative Reductions. Report ATP-39, Departments of Mathematics

and Computer Sciences, U. of Texas at Austin, Aug. 1977.

.

116. Lankford D.S. and Ballantyne A.M., The Refutation Completeness of Blocked
Permutative Narrowing and Resolution. Fourth Conference on Automated

Deduction, Austin, Feb. 1979, 53-59.

117. Lankford D.S. and Musser D., On Semi-Deciding First Order Validity and

Invalidity. Unpublished Manuscript, March 1978.

118. Lescanne P., Etude algGbrique et relationnelle des types abstraits et de leur

representation. Th&se d’Etat, U. de Nancy, Sept. 1979.

119. LCvy J.J., R6ductions correctes et optimales dans le lambda-calcul. ThCse

d’Etat, U. de Paris VII, Jan. 1978.

120. Lipton R. and Snyder L., On the Halting of Tree Replacement Systems.

Conference on Theoretical Computer Science, U. of Waterloo, Aug. 1977, 43-
46.

121. Lipton R. J. and Zalcstein Y., Word Problems Solvable in Logspace. Technical
Report no. 48, Department of Computer Science, SUNY at StonyBrook, 1975.

122. Livesey M. and Siekmann J., Unification of Sets. Internal Report 3/76, Institut

fur Informatik I, U. Karlsruhe, 1977.

123. Majster M., Limits of the Algebraic Specification of Abstract Data Types.

SIGPLAN Notices, vol. 12, Oct. 1977.

124. Makanin G.S., The Problem of Solvability of Equations in a Free Semigroup.

Akad. Nauk. SSSR, TOM 233,2 (1977).

125. Malcev A. I., On Homomorphisms of Finite Groups. Ivano Gosudarstvenni
Pedagogicheski Institut Uchenye Zapiski, vol. 18, 1958, pp. 49-60.

126. Manna Z. and Ness S., On the Termination of Markov Algorithms. Third

Hawaii International Conference on System Sciences, Jan. 1970, 789-792.

127. Martelli A. and MontanariU., AnEfficient Unification Algorithm. Unpublished
manuscript, 1979.

128. Matiyasevich Y., DiophantineRepresentation ofRecursivelyEnumerable Pred-

icates. Proceedings of the Second Scandinavian Logic Symposium, North-

Holland, 1970.

129. McCarthy J., Recursive Fuctions of SymbolicExpressions and Their Computa-

tions by Machine, Part I. CACM 3,4 (1960), 184-195.

130. McCarthy J., A Basis For a Mathematical Theory of Computation. Computer

Programming and Formal Systems, Eds. Brafford P. and Hirschberg, North-

Holland (1963), 33-70.

131. McNulty G., The Decision Problem for Equational Bases of Algebras. Annals

of Mathematical Logic, 11 (1976), 193-259.

132. Meyer A. R. and Stockmeyer L., Word Problems Requiring Exponential Time.

Fifth ACM Symposium on Theory of Computing, April 1973, 1-9.

133. Moses J., Algebraic Simplitication, a Guide For the Perplexed. The Macsyma
Papers, 1970, 32-54.

134. Musser D. L., A Data Type Verification System Based on Rewrite Rules. 6th
Texas Conf. on Computing Systems, Austin, Nov. 1978.

135. Musser D. L., Convergent Sets of Rewrite Rules for Abstract Data Types.
Unpublished Manuscript, Information Sciences Institute, Jan. 1979.

136. Musser D. L., On Proving Inductive Properties of Abstract Data Types.

Seventh ACM Symposium on Principles of Programming Languages, Jan.

1980.

137. Musser D. L., Abstract Data Type Specification in the AFFIRM system. To

appear, IEEE Transactions on Software Engineering.

138. Nash-Williams C. St. J. A., On Well-quasi-ordering Finite Trees. Proc.

Cambridge Phil. Sot. 59 (1963), 833-835.

139. Nelson C. G. and Oppen D. C., Fast Decision AlgorithmsBased on Congruence

Closure. Stanford CS Report No. STAN-CS-77-646, 1977. To appear JACM.

140. Nelson C. G. and Oppen D. C., Simplification by Cooperating Decision

Procedures. ACM Transactions on Programming Languages and Systems 1,2

(1979), 245-257.

141. Nevins A., A Human Oriented Logic For Automatic Theorem Proving. JACM

21,4 (1974), 606-621.

142. Newman M.H.A., On Theories With a Combinatorial Definition of “Equiva-

lence”. Annals of Math. 43,2 (1942), 223-243.

143. Nivat M., Congruences parfaites et quasi-parfaites. SCminaire Dubreuil, 7,

1971-72. (Preliminary Version in Proc. Second Annual ACM Symposium on

Theory of Computing, 1970, 221-225.)

144. Nivat M., On the Interpretation of Recursive Polyadic Program Schemes.

Symposia Mathematics Vol. XV, Istituto Nazionale di Alta Matematica, Italy,

1975, 225-281.

145. O’Donnell M., Computing in Systems Described by Equations. Lecture Notes
in Computer Science 58, Springer Verlag, 1977.

49

140. Oppen D. C., Reasoning About Recursively Defined Data Structures. Fifth

ACM Symposium on Principles of Programming Languages, January 1978.

To appear JACM.

147. Oppen D. C., Convexity, CompIexity, and Combinations of Theories. Fourth

Symposium on Automated Deduction, Austin, 1979. To appear Theoretical

Computer Science.

148. Paterson M.S. and Wegman M.N., Linear Unification. J. of Computer and

Systems Sciences 16 (1978), 158-167.

149. Peterson G.E. and Stickel M.E., Complete Sets of Reductions for Equational

Theories With Complete Unification Algorithms. Tech. Report, Dept. of

Computer Science, U. of Arizona, Tucson, Sept. 1977.

150. Plaisted D., Well-Founded Orderings for Proving Termination of Systems of

Rewrite Rules. Dept. of Computer Science Report 78-932, U. of Illinois at

Urbana- Champaign, July 1978.

151. Plaisted D., A Recursively Defined Ordering for Proving Termination of Term

Rewriting Systems. Dept. of Computer Science Report 78-943, U. of Illinois
at Urbana-Champaign, Sept. 1978.

152. Plotkin G., Lattice-Theoretic Properties of Subsumption. Memo MIP-R-77,

U. of Edinburgh, 1970.

153. Plotkin G., Building-in Equational Theories. Machine Intelligence 7 (1972),
73-90.

154. Post E., Recursive Unsolvability of a Problem of Thue. J. Symbolic Logic
12(1947), l-11.

155. Presburger M., Uber die Vollstandigkeit eines gewissen Systems der Arithmetik

ganzer Zahlen, in welchem die Addition als einzjge Operation hervortritt.

Comptes-Rendus du ler CongrCs des MathCmaticiens des Pays Slaves, 1929.

156. Raoult J.C. and Vuillemin J., Operational and Semantic Equivalence Between

Recursive Programs. 10th ACM Symposium on Theory of Computing, San

Diego, 1978.

157. RaulefsP. and Siekmann J., Unification of1dempotent Functions. Unpublished

manuscript, 1978.

158. Reynolds J., Transformational Systems and the Algebraic Structure of Atomic

Formulas. Machine Intelligence 5 (1970), 135-152.

159. Robinson G. A. and Wos L. T., Paramodulation and Theorem Proving in

First-order Theories with Equality. Machine Intelligence 4, American Elsevier,

1969, 135-150.

50

160. Robinson J.A., A MachineiOriented Logic Based on the Resolution Principle.

JACM 12 (1965), 32-41.

161. Rosen B.K., Subtree Replacement Systems. PhD Thesis, Harvard U., 1971.

162. Rosen B.K., Tree-Manipulation Systems and Church-Rosser Theorems. JACM

20 (1973), 160-187.

163. Scott D., Outline of a Mathematical Theory of Computation. Monograph

PRG-2, Oxford U. Press, 1970.

164. Seidenberg A., A NewDecision Method ForElementary Algebraand Geometry.

Ann. of Math., Ser. 2, 60 (1954), 365-374.

165. Sethi R., Testing for the Church-Rosser Property. JACM 21 (1974), 671-679.

Erratum JACM 22 (1975), 424.

166.

167.

.

168.

169

170

171.

Shostak R., An Algorithm for Reasoning about Equality. CACM, 583-585,

July 1978.

Siekmann J., Unification of Commutative Terms. Unpublished manuscript,

1978.

Siekmann J., Unification and Matching Problems. Ph. D. thesis, Memo CSM-

478, University of Essex, 1978.

Slagle JR., Automated Theorem-Proving for Theories with Simplifiers, Com-

mutativity and Associativity. JACM 21 (1974), 622-642.

Staples J., Church-Rosser Theorems for Replacement Systems. Algebra and

Logic, ed. Crossley J., Lecture Notes in Math., Springer Verlag 1975, 291-

307.

Staples J., A Class of Replacement Systems with Simple Optimality Theory.

To appear, Bull. of the Australian Math. Sot.

172. Staples J., Computation on Graph-like Expressions. Report 2/ 77, Math.

and Computer Science dept., Queensland Institute of Technology, Brisbane,

Australia, 1977.

173. Stickel M.E., A Compfete Unification Algorithm for Associative-Commutative

Functions. 4th International Joint Conference on Artificial Intelligence, Tbilisi,
1975.

174. Stickel M.E., Unification Algorithms for Artificial intelligence Languages. Ph.

D. thesis, Carnegie-Mellon University, 1976.

175. SzabB P., The Undecidability of the l&-Unification Problem. Unpublished

manuscript, 1979.

51

176. Tarski A., A Decision Method for Elementary Algebra and Geometry. U. of

California Press, Berkeley, 1951.

177. Tarski A., EquationalLogic. Contributions toMathematicalLogic, ed. Schiitte

et al, North-Holland, 1968.

178. Thatcher J., Wagner E. and Wright J., Data Type Specifications: Parameter-

ization and the Power of Specification Techniques. Tenth ACM Symposium
on Theory of Computing, May 1978.

179. Van Emden M.H. and Kowalski R.A., The Semantics of Predicate Logic as a

Programming Language. JACM 23,4 (1976), 733-742.

180. Vuillemin J., Correct and Optimal Implementation of Recursion in a Simple

Programming Language. J. of Computer and System Sciences 9,3 (1974),332-

354.

181. Wadsworth C.P., Semantics and Pragmatics of the X-calculus. PhD Thesis,

Oxford U., 1971.

182. Wand M., First Order Identities as a Defining Language. Indiana U. Tech.

Report 29, 1976.

183. Wand M., Final Algebra Semantics and Data Type Extensions. JCSS, vol.

19, no. 1, Aug. 1979.

184. Winker S., Dynamic Demodulation. Internal memo, Dept. of Computer

Science, Northern IIlinois U., 1975.

185. Zilles S., Data Algebra: A Specification Technique for Data Structures. Ph.

D. thesis, MIT, 1978.

* :
t

52

