EQUATIONS IN FREE INVERSE MONOIDS.

Timothy Deis
Department of Mathematics, University of Wisconsin, Platteville, WI 53818,USA. deist@uwplatt.edu
John Meakin
Department of Mathematics and Statistics, University of Nebraska, Lincoln, NE 68588, USA . jmeakin@math.unl.edu
G. Sénizergues
Department of Computer Science, Bordeaux 1 university,351, cours de la Libération F-33405 Talence Cedex, France. ges@labri.fr
Received (Day Month Year)
Revised (Day Month Year)
Communicated by [editor]

Abstract

It is known that the problem of determining consistency of a finite system of equations in a free group or a free monoid is decidable, but the corresponding problem for systems of equations in a free inverse monoid of rank at least two is undecidable. Any solution to a system of equations in a free inverse monoid induces a solution to the corresponding system of equations in the associated free group in an obvious way, but solutions to systems of equations in free groups do not necessarily lift to solutions in free inverse monoids. In this paper we show that the problem of determining whether a solution to a finite system of equations in a free group can be extended to a solution of the corresponding system in the associated free inverse monoid is decidable. We are able to use this to solve the consistency problem for certain classes of single variable equations in free inverse monoids.

Keywords: Free inverse monoid; Equations; Consistency problem; Extendibility problem.

1. Introduction

An inverse monoid is a monoid M with the property that for each $a \in M$ there exists a unique element $a^{-1} \in M$ such that $a=a a^{-1} a$ and $a^{-1}=a^{-1} a a^{-1}$. Equivalently, M is a von-Neumann regular monoid whose idempotents commute. The idempotents of such a monoid form a (lower) semilattice with respect to multiplication as the meet operation, and we denote the semilattice of idempotents of an inverse monoid M by $E(M)$. Inverse monoids arise naturally as monoids of partial symmetries (partial one-one structure-preserving maps) throughout mathematics. We refer the reader to the books by Petrich [21], Lawson [12], and Patterson [20]
for much information about the structure of inverse monoids and their connections with other branches of mathematics.

Inverse monoids form a variety of algebras (in the sense of universal algebra) with respect to the operations of multiplication, inversion, and choosing the identity. As such, free inverse monoids exist. We denote the free inverse monoid on a set A by $F I M(A)$. The free monoid on A will be denoted by A^{*} and the free group on A will be denoted by $F G(A)$. It is convenient to denote the alphabet $A \cup A^{-1}$ by \tilde{A} and the free monoid on this alphabet by \tilde{A}^{*}. The monoid $F I M(A)$ and the group $F G(A)$ are quotient of \tilde{A}^{*}. We denote by $={ }_{I}\left(\right.$ resp. $\left.={ }_{G}\right)$ the kernel of the projection $\tilde{A}^{*} \rightarrow F I M(A)$ (resp. $\tilde{A}^{*} \rightarrow F G(A)$. It is easy to see that $F G(A)$ is the maximal group homomorphic image of $F I M(A)$. The structure of $F I M(A)$ is determined by considering finite subtrees of the Cayley tree of the free group (with respect to the usual presentation of $F G(A)$).

Denote the Cayley tree of $F G(A)$ by $\Gamma(A)$. The vertices of $\Gamma(A)$ may be identified with reduced words (elements of $F G(A)$), and there is an edge in $\Gamma(A)$ labeled by an element $a \in \tilde{A}$ from g to $g a$ for each $g \in F G(A)$. Note that if a labels an edge from g to $g a$, then a^{-1} labels an edge from $g a$ to a. For each word $w \in \tilde{A}^{*}$, let $M T(w)$ be the Munn tree of w. Here $M T(w)$ is the finite subtree of $\Gamma(A)$ obtained when the word w is read as a path in $\Gamma(A)$ starting at 1 and ending at the reduced form $r(w)$ of w. A theorem of Munn [19] (see also [26,21,12]) states that two words u and v in \tilde{A}^{*} are equal in $F I M(A)$ if and only if $M T(u)=M T(v)$ and $r(u)=r(v)$. This provides a solution to the word problem for $\operatorname{FIM}(A)$. If Γ is any finite subtree of $\Gamma(A)$ containing the vertex 1 and if g is any vertex of Γ, then there is at least one word $u \in \tilde{A}^{*}$ (in fact infinitely many words, as soon as Γ has at least two vertices) such that $(M T(u), r(u))=(\Gamma, g)$. The monoid $F I M(A)$ may be identified with the set $\left\{(M T(w), r(w)): w \in \tilde{A}^{*}\right\}$ with multiplication

$$
\begin{equation*}
(M T(u), r(u)) \times(M T(v), r(v))=((M T(u) \cup r(u) M T(v), r(u v)) \tag{1}
\end{equation*}
$$

The idempotents of $F I M(A)$ are represented by Dyck words in \tilde{A}^{*}, i.e. words whose reduced form is 1 . Two such Dyck words represent the same idempotent in $F I M(A)$ if and only if they have the same Munn tree. There is a natural partial order on any inverse monoid M defined by $a \leq b$ if and only if $a=e b$ for some idempotent $e \in E(M)$. The congruence on M induced by this relation is denoted by σ_{M} (or just σ if M is understood) and is the minimum group congruence on M (i.e. M / σ_{M} is the maximum group homomorphic image of M). For $F I M(A)$, each σ-class contains a maximum element (the reduced form of a word in the σ-class) and of course $F I M(A) / \sigma \cong F G(A)$.
Let X be an alphabet that is disjoint from A. We will view letters of \tilde{X} as variables and elements of \tilde{A}^{*} as constants. The sets A and X will be assumed to be finite and non-empty throughout this paper. An equation in $F G(A)$ or in $F I M(A)$ with coefficients in $F G(A)$ (or in $F I M(A)$) is a pair (u, v), where $u, v \in(\tilde{A} \cup \tilde{X})^{*}$. Usually we will denote such an equation by $u=v$. Similarly an equation in \tilde{A}^{*} is a pair
(u, v) with $u, v \in(\tilde{A} \cup \tilde{X})^{*}$, and again we will denote this by $u=v$. If needed to distinguish where equations are being viewed, we will denote an equation $u=v$ in \tilde{A}^{*}, $[\operatorname{resp} . F G(A), F I M(A)]$ by $u=_{M} v\left[\right.$ resp. $\left.u=_{G} v, u={ }_{I} v\right]$.

Any map $\phi: X \rightarrow \tilde{A}^{*}$ extends to a homomorphism (again denoted by ϕ) from $(\tilde{A} \cup \tilde{X})^{*}$ in such a way that ϕ fixes the letters of A and $\phi\left(y^{-1}\right)=(\phi(y))^{-1}$ for every $y \in A \cup X$. We say that ϕ is a solution to the equation $u={ }_{G} v$ in $F G(A)$ [resp. $u=_{I} v$ in $\operatorname{FIM}(A)$ or $u=_{M} v$ in $\left.\tilde{A}^{*}\right]$ if $\phi(u)=\phi(v)$ in the appropriate setting. A solution to a set of equations $u_{i}=v_{i}$ for $i=1, \ldots n$ is a map ϕ that is a solution to each equation in the set. If a set of equations has at least one solution it is called consistent: otherwise it is called inconsistent. It is easy to give examples of equations that are inconsistent in any of the three possible settings where we are considering such equations, and it is easy to give examples of equations that are consistent in $F G(A)$ but not in $F I M(A)$ or in \tilde{A}^{*}. For example, if $A=\{a, b\}$, then the equation $a x=x b$ is inconsistent in all three settings, while the equation $a x=b$ is consistent in $F G(A)$ but inconsistent in \tilde{A}^{*} and in $F I M(A)$. On the other hand it is obvious that any set of equations that is consistent in $F I M(A)$ must be consistent in $F G(A)$: if ψ is any solution to a set of equations in $\operatorname{FIM}(A)$, then ψ is also a solution to the same set of equations, viewed as equations in $F G(A)$.

The consistency problem for systems of equations in $A^{*}[\operatorname{resp} . F G(A), F I M(A)]$ is the problem of determining whether there is an algorithm that, on input a finite set $\left\{u_{i}=v_{i}: i=1 \ldots n\right\}$ of equations in $A^{*}[$ resp. $F G(A), F I M(A)]$, produces an output of "Yes" if the system is consistent and "No" if it is inconsistent. Theorems of Makanin $[16,17]$ imply that the consistency problems for systems of equations in A^{*} and in $F G(A)$ are decidable. Much work has been done on solutions to systems of equations in free monoids and free groups: we refer the reader to $[14,10,22,24,5,11,9]$ for just some of the extensive literature on this subject. On the other hand, a theorem of Rozenblat [25] shows that while the consistency problem for systems of equations in $\operatorname{FIM}(A)$ is decidable if $|A|=1$, this problem is undecidable if $|A|>1$. The consistency problem for equations of some restricted type (for example, single variable equations, or quadratic equations) is open as far as we are aware. Some work on special cases of this problem has been done by Deis [6]. For example, Deis [6] has shown that while the consistency problem for single multilinear equations in $F I M(A)$ is decidable, the consistency problem for finite systems of multilinear equations is undecidable. We will show later in this paper that the consistency problem for single-variable equations of a particular type is decidable.

Now consider an equation $u=_{I} v$ in $F I M(A)$, let ψ be a solution to this in $\operatorname{FIM}(A)$, and let ϕ be a solution to the corresponding equation in $F G(A)$, where $\phi(x)$ is a reduced word for each $x \in X$. We say that ψ is an extension of ϕ (or that ϕ extends to ψ) if for each $x \in X$ there is some Dyck word e_{x} such that $\psi(x)={ }_{I} e_{x} \phi(x)$. If ψ is a solution to an equation $u=v$ in $\operatorname{FIM}(A)$ and if $\phi(x)={ }_{M} r(\psi(x))$ for each $x \in X$, then of course ϕ is a solution to $u=v$ in $F G(A)$ and ψ is an extension of ϕ.

A given solution ϕ to an equation $u=v$ in $F G(A)$ may admit finitely many extended solutions (up to $=_{I}$), infinitely many extended solutions (up to $=_{I}$), or no extended solutions, to the same equation in $\operatorname{FIM}(A)$. For example, the equation $b b^{-1} x=a a^{-1} b b^{-1}$ has trivial solution in $F G(a, b)$, and this has exactly two extensions $\psi_{1}(x)=a a^{-1} b b^{-1}$ and $\psi_{2}(x)=a a^{-1}$ in $\operatorname{FIM}(a, b)$. The equation $b b^{-1} x=a a^{-1} x$ has trivial solution in $F G(a, b)$ that extends to infinitely many solutions $\psi_{e}(x)=e$ for any idempotent $e \leq a a^{-1} b b^{-1}$ in the natural order on $F I M(a, b)$. The equation $a^{-1} a x=a a^{-1}$ has trivial solution in $F G(a, b)$ but no solution in $\operatorname{FIM}(a, b)$. These facts are easy to check via the multiplication of Munn trees in the free inverse monoid, as described in equation (1).

A natural question arises here: when does a solution to an equation $u=v$ in $F G(A)$ extend to a solution to the same equation in $F I M(A)$? We refer to the corresponding algorithmic problem as the extendibility problem for equations in $F I M(A)$. More precisely, the extendibility problem for equations in $F I M(A)$ asks whether there is an algorithm that, on input a finite set $\left\{u_{i}=v_{i}: i=1, \ldots n\right\}$ of equations in $F I M(A)$ that is consistent in $F G(A)$ and a solution ϕ to this system in $F G(A)$, produces the output "Yes" if ϕ can be extended to a solution to the system of equations in $F I M(A)$ and "No" if ϕ cannot be extended to a solution to this system in $F I M(A)$. Some special cases of the extendibility problem were considered by Deis [6]. The main result of this paper shows that the extendibility problem is decidable (theorem 7 in section 2).

In section 3, we show how the main result may be applied to study the consistency problem for systems consisting of one single-variable equation in $F I M(A)$.
In section 4, we mainly discuss some relations with other works.

2. The Extendibility Problem

In order to study the extendibility problem, we first reformulate it somewhat in terms of Munn trees. Let $u=v$ be an equation in $F I M(A)$ and $\phi: X \rightarrow \tilde{A}^{*}$ a solution to this equation in $F G(A)$. Thus $\phi(u)=\phi(v)$ in $F G(A)$ (but not necessarily in $\operatorname{FIM}(A)$ of course). The edges of $M T(u)$ [and $M T(v)$] are labeled over the alphabet $\tilde{A} \cup \tilde{X}$. For each variable x that occurs in the word u, there is at least one edge in $M T(u)$ labeled by x. The Munn tree $M T(\phi(u))$ has edges labeled over the alphabet $A \cup A^{-1}$. It is obtained from $M T(u)$ by replacing each (directed) edge e labeled by a variable $x \in X$ by the tree $M T(\phi(x))$: in this replacement, the initial root (i.e. 1) of this copy of $M T(\phi(x))$ is identified with the initial vertex of the edge e and the terminal root of $M T(\phi(x))$ is identified with the terminal vertex of e. This process is well defined since if u^{\prime} is another word with $M T\left(u^{\prime}\right)=M T(u)$ and $r\left(u^{\prime}\right)=r(u)$ then $u^{\prime}=u$ in $F I M(A \cup X)$, so $\phi\left(u^{\prime}\right)=\phi(u)$ in $F I M(A)$, and so $M T\left(\phi\left(u^{\prime}\right)\right)=M T(\phi(u))$. The relationship between $M T(v)$ and $M T(\phi(v))$ is described in a similar fashion.
The extension of ϕ to a homomorphism (again denoted by ϕ) from $(\tilde{A} \cup \tilde{X})^{*}$ to
\tilde{A}^{*} naturally induces a homomorphism $\bar{\phi}$ from $F G(A \cup X)$ to $F G(A)$. Thus each vertex of $M T(u)$ [resp. $M T(v)$] that is the initial vertex of an edge of $M T(u)$ [resp. $M T(v)$] labeled by a letter $x \in X$ has a unique image in $M T(\phi(u))$ [resp. $M T(\phi(v))$] under this homomorphism. We refer to the vertices obtained this way as images of initial vertices of edges of $M T(u)$ [resp. $M T(v)$] labeled by the letter $x \in X$ as designated x-vertices of $M T(\phi(u))$ [resp. $M T(\phi(v))]$. For example, if $w=a b x_{1} b^{-1} b b x_{2}^{-1} a$ and $\phi\left(x_{1}\right)=b^{-1}$ and $\phi\left(x_{2}\right)=a$, then $M T(\phi(w))$ has two designated vertices: namely $a b$ is a designated x_{1}-vertex and $a b a^{-1}$ is a designated x_{2}-vertex. Similarly, if $w^{\prime}=a b x_{1} b^{-1} b b x_{2} a$ and we take the same map ϕ as above, then $a b$ is both a designated x_{1}-vertex and a designated x_{2}-vertex.

Now suppose that $\psi(x)=e_{x} \phi(x)$ for all $x \in X$, where each e_{x} is a Dyck word. Since the terminal root of $M T\left(e_{x}\right)$ is the same as its initial root (1), it follows that the designated x-vertices of $M T(\phi(w))$ and of $M T(\psi(w))$ coincide, for each word w and each $x \in X$. Furthermore, $M T(\psi(w))$ is obtained from $M T(\phi(w))$ by adjoining to $M T(\phi(w))$ a copy of $M T\left(e_{x}\right)$ rooted at each designated x-vertex of $M T(\phi(w))$. Recall that this map ψ defines an extension of ϕ if ψ is a solution to $u=v$ in $\operatorname{FIM}(A)$, i.e. if $M T(\psi(u))=M T(\psi(v))$.

Now let $\left\{u_{i}=v_{i}: i=1, \ldots, n\right\}$ be a system of equations in $\operatorname{FIM}(A)$, and let ϕ be a solution to this system in $F G(A)$. For each variable $x \in X$ denote the set of designated x-vertices of $M T\left(\phi\left(u_{i}\right)\right)$ [resp. $\left.M T\left(\phi\left(v_{i}\right)\right)\right]$ by $\alpha_{i, x}\left[\right.$ resp. $\left.\alpha_{i, x}^{\prime}\right]$ and denote the set of vertices of $M T\left(\phi\left(u_{i}\right)\right)$ [resp. $\left.M T\left(\phi\left(v_{i}\right)\right)\right]$ by β_{i} [resp. $\left.\beta_{i}^{\prime}\right]$. It is convenient to denote multiplication in $F G(A)$ by • and to denote the union $S \cup T$ of two subsets of $F G(A)$ or $\left(A \cup A^{-1}\right)^{*}$ by $S+T$. Finally, let us denote the set of vertices of the Munn tree $M T\left(e_{x}\right)$ of some (unknown) Dyck word e_{x} by T_{x} (for each $x \in X$).

The requirement that ϕ should be extendible to some solution $\psi(x)=e_{x} \phi(x)$ to the system in $F I M(A)$ translates as follows. Consider the system of equations over $\mathcal{P}_{f}(F G(A)):$

$$
\begin{equation*}
\sum_{x} \alpha_{i, x} \cdot T_{x}+\beta_{i}=\mathcal{P}_{f}(F G(A)) \sum_{x} \alpha_{i, x}^{\prime} \cdot T_{x}+\beta_{i}^{\prime}: i=1, \ldots, n . \tag{2}
\end{equation*}
$$

Here the $\alpha_{i, x}, \alpha_{i, x}^{\prime}, \beta_{i}, \beta_{i}^{\prime}$ are finite subsets of $F G(A)$ and the T_{x} are unknowns. A solution of (2) is any vector $\left\{T_{x}: x \in X\right\}$ of finite subsets of $F G(A)$, that satisfies this system of equations. We would like to decide whether the system of equations (2) has at least one solution such that each T_{x} is prefix closed. (A subset T of $F G(A)$ is prefix closed if the corresponding set of reduced words is prefix closed). We will show that this problem is decidable by appealing to Rabin's tree theorem [23]. From the discussion above, this will show that the extendibility problem is decidable.

We assume some familiarity with basic definitions and ideas of (first order) logic. See, for example, Barwise [3]. In monadic second order logic, quantifiers refer to sets (i.e. unary or monadic predicates) as well as to individual members of a structure.

The syntax and semantics of terms and well formed formulae are defined inductively in the usual way. Atomic formulae include those of the form $t \in Y$ where t is a term and Y is a set variable. A sentence of the form $\forall Y \nu(Y)$ where Y is a set variable, in particular, is true in a structure M iff $\nu(Y)$ is (inductively) true in M for all subsets Y of the universe of M. We denote by $\operatorname{MSOL}(M)$ the set of well-formed formula. If a formula $\theta \in M S O L(M)$ is true in the structure M we write $M \models \theta$ and we define $T h_{2}(M)=\{\theta \in M S O L(M): M \models \theta\}$. The (second order monadic) theory of M is decidable if there is an algorithm that tests whether a given sentence $\theta \in M S O L(M)$ belongs to $T h_{2}(M)$ or not.

Let A be a set, which is finite or countable, and consider the structure $T_{A}=$ $\left(A^{*},\left\{r_{a}: a \in A\right\}, \leq\right)$. Here $r_{a}: A^{*} \rightarrow A^{*}$ is right multiplication by $a, x r_{a}=$ $x a, \forall x \in A^{*}$ and \leq is the prefix order $x \leq y$ iff $\exists u \in A^{*}(x u=y)$. The theory $T h_{2}\left(T_{A}\right)$ is called the theory of A-successor functions. For $|A|=2$ this is often denoted by $S 2 S$, and sentences in $\operatorname{MSOL}\left(T_{\tilde{A}}\right)$ can be reformulated as sentences in $\operatorname{MSOL}\left(T_{\{a, b\}}\right)$. Rabin's tree theorem stated below is one of the most powerful decidability results known in model theory: the decidability of many other results can be reduced to $T h_{2}\left(T_{A}\right)$ (see, for example, [3]).

Theorem 1. (Rabin [23]) For every countable set $A, T h_{2}\left(T_{A}\right)$ is decidable.
The main theorem of this paper is the following.
Theorem 2. There is an algorithm that will decide, on input a system of equations of the form (2), whether this system of equations has at least one solution $\left\{T_{x}: x \in\right.$ $X\}$ such that each T_{x} is a finite prefix-closed subset of $F G(A)$.

In order to use Rabin's theorem to prove this, we need to show that the existence of a solution of the desired type to (2) is expressible in $\operatorname{MSOL}\left(T_{\tilde{A}}\right)$.
Step 1: View each element of each set $\alpha_{i, x}, \alpha_{i, x}^{\prime}, \beta_{i}, \beta_{i}^{\prime}$ and T_{x} as a reduced word in \tilde{A}^{*}. In order to translate the equations (2) over subsets of $\mathrm{FG}(\mathrm{A})$ into similar equations, but over subsets of \tilde{A}^{*}, we decompose the coefficients $\alpha_{i, x}, \alpha_{i, x}^{\prime}$ and as well, the sets T_{x} into a finite number of components.

Let us consider the set

$$
S=\left\{(a, u) \in(\tilde{A} \cup\{\epsilon\}) \times \tilde{A}^{*} \mid \exists v \in \tilde{A}^{*}, v \cdot u \in \sum_{x \in X, 1 \leq i \leq n} \alpha_{i, x}+\alpha_{i, x}^{\prime} \text { and } a=v^{(1)}\right\}
$$

where $v^{(1)}$ denotes the last letter of v, if $|v| \geq 1$, and the empty word, ϵ, otherwise. Let us denote the elements of S by $\left\{\left(a_{j}, u_{j}\right) \mid 1 \leq j \leq k\right\}$. For every $j \in[1, k]$ we write:

$$
\begin{array}{ll}
T_{j, x}=\left\{u \in \tilde{A}^{*} \mid u_{j}^{-1} \cdot u \in T_{x} \text { and first-letter }(u) \neq a_{j}^{-1}\right\} & \left(\text { if } a_{j} \in \tilde{A}\right) \\
T_{j, x}= & \left(\text { if } a_{j}=\epsilon\right) \tag{4}
\end{array}
$$

Accordingly, for every $1 \leq i \leq n, 1 \leq j \leq k, x \in X$, we define the sets

$$
\alpha_{i, j, x}=\left\{v \in A^{*} \mid v \cdot u_{j} \in \alpha_{i, x} \text { and } v^{(1)}=a_{j}\right\}
$$

and $\alpha_{i, j, x}^{\prime}$ is defined similarly.
The equations (2) reduce to the system of equations and inequations:

$$
\begin{align*}
& \sum_{x \in X} \sum_{j=1}^{k} \alpha_{i, j, x} \cdot T_{j, x}+\beta_{i}\left.={ }_{\mathcal{P}_{f}(\tilde{A} *}\right) \tag{5}\\
& \sum_{x \in X} \sum_{j=1}^{k} \alpha_{i, j, x}^{\prime} \cdot T_{j, x}+\beta_{i}^{\prime}, i=1, \ldots, n \\
& u_{j}^{-1} \cdot T_{j, x} \subseteq R E D\left(\tilde{A}^{*}\right) \tag{6}\\
& T_{j, x} \subseteq R E D\left(\tilde{A}^{*}\right)-a_{j}^{-1} \tilde{A}^{*}
\end{align*}
$$

(where $R E D\left(\tilde{A}^{*}\right)$ denotes the set of all reduced words over \tilde{A}^{*}). Note that the effect of our chosen decompositions of the sets $\alpha_{i, x}, \alpha_{i, x}^{\prime}, T_{x}$, is that all products in the system (5) are reduced as written - so (5) may be viewed as a system of equations over $\mathcal{P}_{f}\left(\tilde{A}^{*}\right)$, where $\alpha_{i, j, x}, \alpha_{i, j, x}^{\prime}, \beta_{i}$ and β_{i}^{\prime} are prescribed elements of $\mathcal{P}_{f}\left(\tilde{A}^{*}\right)$, and the $T_{j, x}$ are the unknowns. A solution to (5) is a vector $\left\{T_{j, x}: x \in X, 1 \leq j \leq k\right\}$ of elements of $\mathcal{P}_{f}\left(\tilde{A}^{*}\right)$ that satisfies (5). We seek to decide whether (5) has a solution which also fulfills (6) and such that that each $T_{j, x}$ is prefix-closed.
Lemma 3. The system (2) has a solution $\left\{T_{x}: x \in X\right\}$ which is prefix-closed if and only if the system (5)(6) has a solution $\left\{T_{j, x}: x \in X, 1 \leq j \leq k\right\}$ which is prefix-closed.

Proof. 1- Suppose $\left\{T_{x}: x \in X\right\}$ is a prefix-closed solution to system (2).
Let us consider it as a vector of sets of reduced words. Let $\left\{T_{j, x}: x \in X, 1 \leq j \leq k\right\}$ be defined by formula $(3,4)$. One can check that

$$
r\left(\alpha_{i, x} \cdot T_{x}\right)=\sum_{j=1}^{k} \alpha_{i, j, x} \cdot T_{j, x}
$$

Applying the map r on both sides of equations (2) we thus obtain equations (5). Hence $\left\{T_{j, x}: x \in X, 1 \leq j \leq k\right\}$ is a solution to system (5). Formula (3,4) show that inequalities (6) are fulfilled too. Finally, the assumption that T_{x} is prefix-closed implies that $T_{j, x}$ is prefix-closed too.
2- Suppose $\left\{T_{j, x}: x \in X, 1 \leq j \leq k\right\}$ is a prefix-closed solution to system (5)(6).
Let us define, for every $x \in X$,

$$
\begin{equation*}
T_{x}=\sum_{j=1}^{k} u_{j}^{-1} \cdot T_{j, x} \tag{7}
\end{equation*}
$$

Each T_{x} is clearly a finite subset of \tilde{A}^{*}. By the first inclusion of $(6), T_{x} \subseteq R E D\left(\tilde{A}^{*}\right)$. The definition of the set S shows that $\left\{u_{j} \mid 1 \leq j \leq k\right\}$ is suffix-closed, which implies that $\left\{u_{j}^{-1} \mid 1 \leq j \leq k\right\}$ is prefix-closed. As well each $T_{j, x}$ is assumed prefix-closed. It follows that formula (7) defines a prefix-closed subset T_{x}. The second inclusion of (6) entails:

$$
r\left(\alpha_{i, x} \cdot T_{x}\right)=\sum_{j=1}^{k} \alpha_{i, j, x} \cdot T_{j, x}
$$

which, together with system (5), shows that $\left\{T_{x}: x \in X\right\}$ is a solution to system

$$
\sum_{x} r\left(\alpha_{i, x} \cdot T_{x}\right)+r\left(\beta_{i}\right)=_{\mathcal{P}_{f}\left(\tilde{A}^{*}\right)} \sum_{x} r\left(\alpha_{i, x}^{\prime} \cdot T_{x}\right)+r\left(\beta_{i}^{\prime}\right), \quad i=1, \ldots, n
$$

Hence, the vector $\left\{T_{x}: x \in X\right\}$, viewed as a vector of subsets of $F G(A)$, is a solution to (2).
Step 2: For each set U of words in \tilde{A}^{*}, let $\operatorname{Pref}(U)$ denote the set of prefixes of words in U. Though the existence of a finite solution $\left\{E_{j, x}: x \in X, j=1, \ldots, k\right\}$ to (5)(6) does not necessarily imply the existence of a finite prefix-closed solution to these equations, we can note that this is in a sense "almost" the case, and we will see how to impose additional conditions to obtain a finite prefix closed solution to this system of equations. Let N be the maximum length of a word in any of the sets $\alpha_{i, j, x}, \alpha_{i, j, x}^{\prime}, \beta_{i}$, and β_{i}^{\prime}.

Suppose that $\left\{E_{j, x}: x \in X, j=1, \ldots, k\right\}$ is a solution to (5)(6). We first prove the following Lemma.

Lemma 4. Suppose that $u \in \operatorname{Pref}\left(E_{j, x}\right)$ for some j and some x, and that $|u|>N$. Then for all $i=1, \ldots, n$, if $v \in \alpha_{i, j, x}$, then $v \cdot u \in \sum_{x} \sum_{j} \alpha_{i, j, x}^{\prime} \cdot \operatorname{Pref}\left(E_{j, x}\right)+\beta_{i}^{\prime}$.
Proof. There exists a reduced word $s \in \tilde{A}^{*}$ such that $u \cdot s \in E_{j, x}$ and $u \cdot s$ is reduced as written. It follows that $v \cdot u \cdot s \in \sum_{x} \sum_{j} \alpha_{i, j, x}^{\prime} \cdot E_{j, x}+\beta_{i}^{\prime}$. Since $|u|>N$ it follows that $v \cdot u \cdot s \notin \beta_{i}^{\prime}$, so $v \cdot u \cdot s \in \sum_{x} \sum_{j} \alpha_{i, j, x}^{\prime} \cdot E_{j, x}$. Hence there exist $y, \overline{\mathrm{~J}}$ and $v^{\prime} \in \alpha_{i, \overline{\mathrm{~J}}, y}^{\prime}, e^{\prime} \in E_{\overline{\mathrm{J}}, y}$ such that $v \cdot u \cdot s=v^{\prime} \cdot e^{\prime}$. But again, since $|u|>N, s$ must be a suffix of e^{\prime}, so $e^{\prime}=u^{\prime} \cdot s$ for some u^{\prime}. So we have $v \cdot u \cdot s=v^{\prime} \cdot u^{\prime} \cdot s$ in \tilde{A}^{*}. It follows that $v \cdot u=v^{\prime} \cdot u^{\prime}$ where $u^{\prime} \in \operatorname{Pref}\left(E_{\overline{\mathrm{J}}, y}\right)$.

Step 3: Lemma 1 shows that if $\left\{E_{j, x}: x \in X, j=1, \ldots, k\right\}$ is a solution to $(5,6)$, then $\left\{\operatorname{Pref}\left(E_{j, x}\right): x \in X, j=1, \ldots, k\right\}$ is "almost" a solution to $(5,6)$. In order to arrange for a prefix-closed solution to $(5,6)$ we need only assume some additional conditions on the "short" prefixes of elements of each set $E_{x, j}$. Since these prefixes must be included in a finite set that we know in advance, we are able to formulate appropriate additional conditions as follows.
Denote by \tilde{A}^{N} [resp. $\left.\tilde{A}^{\leq N}\right]$ the set of words in \tilde{A}^{*} of length $N[$ resp. $\leq N]$. Let us introduce another vector of unknowns, $\left\{P_{j, x}: x \in X, j=1, \ldots, k\right\}$ and consider the additional conditions:

$$
\begin{gather*}
P_{j, x} \subseteq E_{j, x}, x \in X, j=1, \ldots, k \tag{8}\\
E_{j, x} \subseteq P_{j, x}+\left(P_{j, x} \cap \tilde{A}^{N}\right) \cdot \tilde{A}^{*}, x \in X, j=1, \ldots, k \tag{9}\\
P_{j, x} \subseteq \tilde{A}^{\leq N}, x \in X, j=1, \ldots, k \tag{10}
\end{gather*}
$$

We have the following two lemmas.
Lemma 5. Let $\left\{\left(P_{j, x}, E_{j, x}\right): x \in X, j=1, \ldots, k\right\}$ be a solution to (5,6,8,9,10) such that each $P_{j, x}$ is prefix-closed. Then $\left\{\operatorname{Pref}\left(E_{j, x}\right): x \in X, j=1, \ldots, k\right\}$ is a prefix-closed solution to $(5,6)$.

Proof. Since $\left\{E_{j, x}: x \in X, j=1, \ldots k\right\}$ is a solution to (5), it is clear that $\beta_{i} \subseteq \sum_{x} \sum_{j} \alpha_{i, j, x}^{\prime} \cdot E_{j, x}+\beta_{i}^{\prime}$ for each $i=1, \ldots, n$. Let $u \in \operatorname{Pref}\left(E_{j, x}\right)$ and $v \in \alpha_{i, j, x}$ for some i, j, x. If $|u|>N$ then we already know by Lemma 1 that $v \cdot u \in \sum_{x} \sum_{j} \alpha_{i, j, x}^{\prime} \cdot E_{j, x}+\beta^{\prime}$. So assume that $|u| \leq N$. There exists some (reduced) word s such that $u \cdot s \in E_{j, x}$ and $u \cdot s$ is reduced as written. If $u \cdot s \in P_{j, x}$, then $u \in P_{j, x}$ since we are assuming that each $P_{j, x}$ is prefix-closed. Otherwise we must have $u \cdot s \in\left(P_{j, x} \cap A^{N}\right) \cdot A^{*}$ by (9). But then since u is a prefix of $u \cdot s$ of length $\leq N$, we must have that u is a prefix of a word in $P_{j, x}$, and so (again since $P_{j, x}$ is prefix-closed) we must have $u \in P_{j, x}$. Hence $v \cdot u \in \alpha_{i, j, x} \cdot E_{j, x}$ by (8). Since $\left\{E_{j, x}: x \in X, j=1, \ldots, k\right\}$ is a solution to (5), this implies that $v \cdot u \in \sum_{x} \sum_{j} \alpha_{i, j, x}^{\prime} \cdot E_{j, x}+\beta_{i}^{\prime}$. It follows that $\sum_{x} \sum_{j} \alpha_{i, j, x} \cdot \operatorname{Pref}\left(E_{j, x}\right)+\beta_{i} \subseteq \sum_{x} \sum_{j} \alpha_{i, j, x}^{\prime} \cdot \operatorname{Pref}\left(E_{j, x}\right)+\beta_{i}^{\prime}$ for each $i=1, \ldots, n$. The reverse inclusion follows dually and so $\left\{\operatorname{Pref}\left(E_{j, x}\right): x \in X, j=1, \ldots, k\right\}$ is a solution to (5), as required.
The hypothesis that $E_{j, x}$ satisfy (6) implies that $\operatorname{Pref}\left(E_{j, x}\right)$ satisfy the same inclusions (6).

Lemma 6. Let $\left\{T_{j, x}: x \in X, j=1, \ldots, k\right\}$ be a finite prefix-closed solution to $(5,6)$ and set $E_{j, x}=T_{j, x}$ and $P_{j, x}=T_{j, x} \cap A^{\leq N}$ for each $x \in X$ and $j=1, \ldots, k$. Then $\left\{\left(P_{j, x}, E_{j, x}\right): x \in X, j=1, \ldots, k\right\}$ is a solution to (5,6,8,9,10) and each $P_{j, x}$ is prefix-closed.

Proof. It is trivial to verify that conditions $(5,6),(8)$, and (10) are satisfied by our choice of the $P_{j, x}$ and $E_{j, x}$. To verify (9), simply note first that any word in $T_{j, x}$ of length $\leq N$ is in $P_{j, x}$ by definition of $P_{j, x}$. Also, if u is a word in $T_{j, x}$ of length $\geq N$, then we may write $u=u^{\prime} \cdot s$ where u^{\prime} is a prefix of u of length N and $s \in \tilde{A}^{*}$. But then since $T_{j, x}$ is prefix-closed, $u^{\prime} \in T_{j, x}$ and so $u \in\left(P_{j, x} \cap \tilde{A}^{N}\right) \cdot \tilde{A}^{*}$. This completes the verification that (9) is satisfied.
Step 4 - The Decision Algorithm: By Lemmas 5 and 6, we are reduced to deciding whether, among all the prefix-closed $P_{j, x}$ satisfying (10), there is a collection such that $(5,6)$ (where the unknowns are renamed $E_{j, x}$), (8), and (9) are also satisfied by some finite sets of words.

Enumerate effectively all of the prefix-closed $P_{j, x}$ satisfying (10). We now translate each of the conditions (5), (6), (8), and (9) into their "mirror" conditions in the dual semigroup to \tilde{A}^{*}. For each word $w=s_{1} s_{2} \ldots s_{k}$ (with each $s_{j} \in \tilde{A}$), we define \hat{w} to be the mirror word $\hat{w}=s_{k} \ldots s_{2} s_{1}$. For each subset $F \subseteq \tilde{A}^{*}$ we define $\hat{F}=\{\hat{w}: w \in F\}$. For a given collection of prefix-closed sets $P_{j, x}, x \in X, j=1, \ldots, k$, one can consider the mirror versions of (5), (6), (8), and (9).

The mirror version of (5) is

$$
\begin{equation*}
\sum_{x} \sum_{j} F_{j, x} \cdot \hat{\alpha}_{i, j, x}+\hat{\beta}_{i}=\sum_{x} \sum_{j} F_{j, x} \cdot \hat{\alpha}_{i, j, x}^{\prime}+\hat{\beta}_{i}^{\prime}, i=1, \ldots, n \tag{11}
\end{equation*}
$$

Notice that in these equations, the variables $F_{j, x}$ are on the left and the constants are on the right. Also, the equations (11) have a solution $\left\{F_{j, x}: x \in X, j=1, \ldots, k\right\}$
if and only if the equations (5) have a solution $\left\{E_{j, x}: x \in X, j=1, \ldots, k\right\}$, where $F_{j, x}=\hat{E}_{j, x}$ for each $x \in X, j=1, \ldots k$. Also notice that the existence of a solution to (11) is expressible in $\operatorname{MSOL}\left(T_{\tilde{A}}\right)$, because right product by given words is a finite composition of successor functions. Similarly, a system of mirror inequations can be written for (6):

$$
\begin{align*}
F_{j, x} \cdot \hat{u}_{j}^{-1} & \subseteq R E D\left(\tilde{A}^{*}\right) \\
F_{j, x} & \subseteq R E D\left(\tilde{A}^{*}\right)-\tilde{A}^{*} a_{j}^{-1} \tag{12}
\end{align*}
$$

But this implies that the existence of a finite solution to $(5,6)$ (i.e. a solution where all sets $F_{j, x}$ are finite) is also expressible in $\operatorname{MSOL}\left(T_{\tilde{A}}\right)$, simply because finiteness is expressible in $\operatorname{MSOL}\left(T_{\tilde{A}}\right)$. [Let us recall this standard trick: by König's Lemma, a set $F \subseteq \tilde{A}^{*}$ is infinite iff it admits a set of prefixes F^{\prime} such that every element of F^{\prime} has some successor inside F^{\prime}; this characterisation is expressible in $\left.\operatorname{MSOL}\left(T_{\tilde{A}}\right)\right]$.

The mirror version of (8) is

$$
\begin{equation*}
\hat{P}_{j, x} \subseteq F_{j, x}, x \in X, j=1, \ldots, k \tag{13}
\end{equation*}
$$

Here each $\hat{P}_{j, x}$ is a fixed finite subset of \tilde{A}^{*} (corresponding to the fixed choice of the $P_{j, x}$ that we are working with), and each $F_{j, x}$ is a variable. Clearly the existence of a solution to these conditions is expressible in $\operatorname{MSOL}\left(T_{\tilde{A}}\right)$.

In order to express the mirror version of (9) in $\operatorname{MSOL}\left(T_{\tilde{A}}\right)$, notice that the mirror image $R_{j, x}$ of $\left(P_{j, x} \cap \tilde{A}^{N}\right) \cdot \tilde{A}^{*}$ is the smallest subset X of \tilde{A}^{*} such that $w \cdot s \in X$ for all $w \in \tilde{A}^{*}$ and all s in the fixed finite set consisting of mirror images of words in $\left(P_{j, x} \cap \tilde{A}^{N}\right)$. Since there are again just finitely many choices for these words s, since all variables w occur on the left, and since it is possible to express in $\operatorname{MSOL}\left(T_{\tilde{A}}\right)$ the fact that a set X is the smallest subset satisfying some other property that is expressible in $\operatorname{MSOL}\left(T_{\tilde{A}}\right)$, membership in the sets $R_{j, x}$ is expressible in $\operatorname{MSOL}\left(T_{\tilde{A}}\right)$. The mirror version of (9) then becomes

$$
\begin{equation*}
F_{j, x} \subseteq \hat{P}_{j, x}+R_{j, x}, x \in X, j=1, \ldots, k \tag{14}
\end{equation*}
$$

where the $F_{j, x}$ are variables and the $R_{j, x}$ are described above. Hence it is possible to express in $\operatorname{MSOL}\left(T_{\tilde{A}}\right)$ the fact that the $F_{j, x}$ satisfy these conditions.

Finally, notice now that for fixed finite prefix-closed sets $P_{j, x}(x \in X, j=1, \ldots, k)$ satisfying (10), the existence of sets $E_{j, x}(x \in X, j=1, \ldots, k)$ that satisfy $(5,6,8,9)$ is translated in the mirror conditions to the existence of sets $F_{j, x}$ that satisfy $(11),(12),(13)$ and (14), and that $F_{j, x}=\hat{E}_{j, x}$ for each x and j. We can decide, using Rabin's tree theorem, whether $(11,12,13,14)$ has at least one finite solution $\left\{F_{j, x}: x \in X, j=1, \ldots, k\right\}$ in $\mathcal{P}\left(\tilde{A}^{*}\right)$, and the answer to this decides whether $(5,6,8,9)$ has at least one solution $\left\{E_{j, x}: x \in X, j=1, \ldots, k\right\}$ in $\mathcal{P}_{f}\left(\tilde{A}^{*}\right)$ (for the $P_{j, x}$ under scrutiny). If, for some finite prefix-closed sets $P_{j, x}$ satisfying (10), the
answer is "Yes", then $(5,6)$ has some prefix-closed solution: otherwise, $(5,6)$ has no prefix-closed solution. This completes the proof of Theorem 2.

As an immediate corollary we obtain the following result.
Theorem 7. Let A be a finite set. Then the extendibility problem for FIM (A) is decidable.

3. The Consistency Problem for Single-variable Equations

Recall that the theorem of Rozenblat [25] shows that the consistency problem for finite systems of equations in $F I M(A)$ is undecidable. Deis [6] has shown that the consistency problem for a system consisting of one multilinear equation in $F I M(A)$ (i.e. an equation $u=v$ in which each variable labels exactly one edge in $M T(u) \cup M T(v))$ is decidable, but that the consistency problem for finite systems of multilinear equations in $F I M(A)$ is undecidable. In this section we show how the results of the previous section may be applied to study the consistency problem for systems consisting of one single-variable equation in $F I M(A)$. A single-variable equation in $F I M(A)$ is an equation involving just one variable x (that may occur many times in the equation, with exponent ± 1). We are able to solve the consistency problem for a large class of single variable equations in $F I M(A)$.
It is clear from Theorem 7 that the consistency problem for a class of equations in $F I M(A)$ is decidable if the corresponding equations in $F G(A)$ have only finitely many solutions. A class of single-variable equations for which this is the case was identified in a paper of Silva [27].

In the following, we consider a single-variable equation $w(x)=1$ in $F G(A)$, where $w(x)$ is the reduced word

$$
\begin{equation*}
w(x)=c_{1} x^{\epsilon_{1}} c_{2} x^{\epsilon_{2}} \ldots c_{t} x^{\epsilon_{t}} c_{t+1} \tag{15}
\end{equation*}
$$

with each $c_{i} \in \tilde{A}^{*}$ and $\epsilon_{i} \in\{-1,1\}$.
The proof of the following result in [27] is attributed to James Howie.
Theorem 8. Let $w(x)=1$ be a single-variable equation in $F G(A)$ and suppose that the exponent sum of the single variable x in $w(x)$ is not zero. Then the equation $w(x)=1$ can have at most one solution in $F G(A)$.
As an immediate corollary of this and Theorem 7, we obtain the following fact.
Corollary 9. Consider the class \mathcal{C} consisting of single-variable equations $u=v$ in $F I M(A)$ in which the sum of the exponents of the variable in u is not equal to the sum of the exponents of the variable in v. Then the consistency problem for this class is decidable.

That is, there is an algorithm such that on input one equation $u=v$ in \mathcal{C}, will produce the output "Yes" if the equation is consistent in $\operatorname{FIM}(A)$, and "No" if it is inconsistent.

Remark 10. The same result holds for finite systems of equations, all written with the same single variable.

In order to extend this result to other classes of single variable equations in $F I M(A)$, we recall some of the established literature on single variable equations in free groups. A parametric description of the set of all solutions to a single-variable equation $w=1$ in $F G(A)$ was obtained by Lyndon [15]. Lyndon's result was refined somewhat by Appel [1] and subsequently by Lorents [13] (Gilman-Myasnykov [9] give a variant).

Let M be twice the maximum of the lengths of the c_{i} in equation (15). In the following result, a parametric word is a word of the form $u=w_{1} w_{2}^{\alpha} w_{3}$ in which α is a parameter, $w_{1} w_{2}^{\epsilon} w_{3}$ is reduced for $\epsilon \in\{-1,1\}$, and w_{2} is cyclically reduced and not a proper power. A value of u is the element of $F G(A)$ obtained by substituting an integer value for α. The refinement of Lyndon's and Appel's result that we shall use (due to Lorents [13]) is the following.

Theorem 11. The set of solutions to any equation of the form $w(x)=1$ in $F G(A)$, where $w(x)$ is the word (15), is the union of:
(A) a finite set of solutions whose lengths are $\leq 4 M$; and
(B) the set of all values of some finite set of parametric words.

We remark that the proofs of the theorems in the papers by Appel and Lorents are effective, so the set of parametric words that can yield solutions to $w(x)=1$ in $F G(A)$ is effectively constructible (in fact $\left|w_{1} w_{2} w_{3}\right| \leq 5 M$, in the notation above). This, together with the following definition, will enable us to extend Theorem 8 to a larger class of single-variable equations for which the consistency problem is decidable.

Define $\mathcal{V}:\left(\tilde{A} \cup\left\{x, x^{-1}\right\}\right)^{*} \rightarrow F I M(x)$ by $\mathcal{V}(a)=1$ if $a \in \tilde{A}$ and $\mathcal{V}(x)=x$. Thus if $u=w_{1} x^{\epsilon_{1}} w_{2} \cdots x^{\epsilon_{n}} w_{n}$ where $w_{j} \in \tilde{A}^{*}$ for $j=1, \ldots, n$ and $\epsilon_{i}= \pm 1$, then $\mathcal{V}(u)=x^{\epsilon_{1}} x^{\epsilon_{2}} \cdots x^{\epsilon_{n}}$ in FIM(x).

Theorem 12. Let \mathcal{C} be the class of single-variable equations of the form $u=v$ in $\operatorname{FIM}(A)$ for which $\mathcal{V}(u) \neq \mathcal{V}(v)$ as elements of $F I M(x)$. Then the consistency problem for \mathcal{C} is decidable.

That is there is an algorithm that on input an equation $u=v$ in \mathcal{C}, produces the output "Yes" if this equation is consistent and "No" if it is inconsistent. Since $u, v \in\left(\tilde{A} \cup\left\{x, x^{-1}\right\}\right)^{*}$ then we have

$$
\begin{equation*}
u=u_{1} x^{\epsilon_{1}} u_{2} x^{\epsilon_{2}} \cdots x^{\epsilon_{n-1}} u_{n} \text { and } v=v_{1} x^{\delta_{1}} v_{2} x^{\delta_{2}} \cdots x^{\delta_{t-1}} v_{t} \tag{16}
\end{equation*}
$$

where $u_{i}, v_{j} \in \tilde{A}^{*}$ for $1 \leq i \leq n, 1 \leq j \leq t$ and $\epsilon_{i}, \delta_{j} \in\{1,-1\}$ for $1 \leq i \leq n, 1 \leq$ $j \leq t$.

If there are only finitely many solutions to $u=v$ in $F G(A)$ then there is an effective bound on the length of all such solutions, by Theorem 11. Thus in this case we can
decide whether the equation $u=v$ is consistent in $F I M(A)$ since the extendibility problem is decidable. So suppose that there are infinitely many solutions to $u=v$ in $F G(A)$. Then again by Theorem 11, we may effectively find finitely many parametric words of the form $w_{1} w_{2}^{\alpha} w_{3}$ such that $\phi_{m}(x)=w_{1} w_{2}^{m} w_{3}$ is a solution to $u=v$ in $F G(A)$ for any integer m. We will show that there are only finitely many values of the integer m (for each such parametric word) such that ϕ_{m} can possibly extend to a solution to $u=v$ in $F I M(A)$. Again, since the extendibility problem is decidable, this will enable us to decide whether the equation $u=v$ is consistent in $\operatorname{FIM}(A)$.

Recall that the free group on $x, F G(x)$, is isomorphic to the additive group \mathbf{Z} of integers. Thus every Munn tree in the Cayley graph of $F G(x)$ can be viewed as an integer interval containing 0

$$
\{i \in \mathbf{Z} \mid p \leq i \leq s\}=[p, s] \text { where } p \leq 0 \leq s
$$

and if $w \in F I M(x)$ the rooted tree $(M T(w), r(w))$ can be identified with the triple (p, q, s) with $-p, s \in \mathbf{N}$ and $p \leq q \leq s$. The initial root of the corresponding birooted tree is 0 and $r(w)=x^{q}$.

Let $\mathcal{V}(u)$ be identified with the triple $\left(l_{u}, n_{u}, r_{u}\right)$ and let $\mathcal{V}(v)$ be identified with the triple $\left(l_{v}, n_{v}, r_{v}\right)$. Since $\mathcal{V}(u) \neq \mathcal{V}(v)$ it follows that $\left(l_{u}, n_{u}, r_{u}\right) \neq\left(l_{v}, n_{v}, r_{v}\right)$. If $n_{u} \neq n_{v}$ then the sum of the exponents of the variable x in u is not equal to the sum of the exponents of the variable x in v. But then from [27] there exists at most one solution to $u=v$ in $F G(A)$. Since we are assuming that $u=v$ has infinitely many solutions, this does not occur. Thus $n_{u}=n_{v}$ and since $\left(l_{u}, n_{u}, r_{u}\right) \neq\left(l_{v}, n_{v}, r_{v}\right)$ then either $l_{u} \neq l_{v}$ or $r_{u} \neq r_{v}$. Without loss of generality assume that

$$
\begin{equation*}
r_{u}>r_{v} \tag{18}
\end{equation*}
$$

(A dual argument will apply to the case when $l_{u} \neq l_{v}$).
Before proceeding to the proof of theorem 12 we need some preliminar results about word combinatorics.

Let us restate a definition from [7, section 6], (generalizing the definition from [14, section 12.1 .5$]$). Let $\omega \in \tilde{A}^{*}$ be some primitive, reduced word. Given a word $z \in \tilde{A}^{*}$, its ω-stable normal decomposition is the sequence of words

$$
\begin{equation*}
\left(z_{1}, \omega^{p_{1}}, z_{2}, \ldots, \omega^{p_{\ell}}, z_{\ell+1}\right) \tag{19}
\end{equation*}
$$

such that $\ell \geq 0, z_{k} \in \tilde{A}^{*}$ (for all $1 \leq k \leq \ell+1$), $p_{k} \in \mathbf{Z}$ (for all $1 \leq k \leq \ell$) and the following conditions are satisfied:

- $w=z_{1} \cdot \omega^{p_{1}} \cdot z_{2} \cdot \ldots \cdot \omega^{p_{\ell}} \cdot z_{\ell+1}$
- $\ell=0$ if and only if neither ω^{2} nor ω^{-2} is a factor of w
- if $\ell \geq 1$ then:

$$
-z_{0} \in \tilde{A}^{*} \omega^{s\left(p_{1}\right)}-\tilde{A}^{*} \omega^{ \pm 2} \tilde{A}^{*}
$$

$$
\begin{aligned}
& -z_{k} \in \omega^{s\left(p_{k-1}\right)} \tilde{A}^{*} \cap \tilde{A}^{*} \omega^{s\left(p_{k}\right)}-\tilde{A}^{*} \omega^{ \pm 2} \tilde{A}^{*}-\left\{\omega, \omega^{-1}\right\}, \text { for all } 2 \leq k \leq \ell \\
& -z_{\ell+1} \in \omega^{s\left(p_{\ell}\right)} \tilde{A}^{*}-\tilde{A}^{*} \omega^{ \pm 2} \tilde{A}^{*}
\end{aligned}
$$

where $s(p)$, the sign of p is +1 (resp. -1) when $p>0($ resp. $p<0)$.
From the hypothesis that ω is reduced and primitive, one can derive the unicity, for every word z, of its ω-stable normal decomposition. We define a function θ from the set of reduced words in \tilde{A}^{*} to \mathbf{Z} in the following manner. Let $z \in \tilde{A}^{*}$ be a reduced word. We define

$$
\begin{equation*}
\theta(z)=\sum_{k=1}^{\ell} p_{\ell} \tag{20}
\end{equation*}
$$

where the integers p_{ℓ} are those appearing in the ω-stable normal decomposition (19) of z. For every non-empty finite subset $S \subseteq F G(A)$ we define

$$
\begin{equation*}
\hat{\theta}(S)=\max \{\theta(z) \mid z \in S\} ; \quad \check{\theta}(S)=\min \{\theta(z) \mid z \in S\} \tag{21}
\end{equation*}
$$

(in the above definition, we identify an element of the free group with its associated reduced word).

Lemma 13. Let z be a reduced word over \tilde{A}. Then $\theta\left(z^{-1}\right)=-\theta(z)$.
Proof: It suffices to notice that the inverse of a ω-stable normal decomposition of z is a ω-stable normal decomposition of z^{-1}.

Lemma 14. Let z, z^{\prime} be reduced words over \tilde{A}. Then $\left|\theta\left(r\left(z \cdot z^{\prime}\right)\right)-\theta(z)-\theta\left(z^{\prime}\right)\right| \leq 9$.

Proof: We treat first the particular case where $z \cdot z^{\prime}$ is reduced too, and treat the general case afterwards.
Case 1: suppose that $z \cdot z^{\prime}$ is reduced.
Let us consider the ω-stable normal decompositions of z, z^{\prime} :

$$
\left(z_{1}, \omega^{p_{1}}, z_{2}, \ldots, \omega^{p_{\ell}}, z_{\ell+1}\right), \quad\left(z_{1}^{\prime}, \omega^{p_{1}^{\prime}}, z_{2}^{\prime}, \ldots, \omega^{p_{\ell^{\prime}}^{\prime}}, z_{\ell^{\prime}+1}^{\prime}\right)
$$

Clearly:

$$
z \cdot z^{\prime}=z_{1} \cdot \omega^{p_{1}} \cdot z_{2} \cdots \omega^{p_{\ell}} \cdot z_{\ell+1} \cdot z_{1}^{\prime} \cdot \omega^{p_{1}^{\prime}} \cdot z_{2}^{\prime} \cdots \omega^{p_{\ell^{\prime}}^{\prime}} \cdot z_{\ell^{\prime}+1}^{\prime}
$$

The word $z_{\ell+1} \cdot z_{1}^{\prime}$ is thus reduced and has a ω-stable normal decomposition:

$$
\left(y_{1}, \omega^{q_{1}}, y_{2}, \ldots, \omega^{q_{m}}, y_{m+1}\right)
$$

The length m, of this decomposition must fulfill

$$
\begin{equation*}
m \in\{0,1,2\} \tag{22}
\end{equation*}
$$

since a value greater or equal to 3 would imply that ω^{2} or ω^{-2} is a factor of at least one of the words $z_{\ell+1}, z_{1}^{\prime}$, which is impossible by definition of a normal ω-stable decomposition. For every $k \in\{1, m\}$ we must have

$$
\begin{equation*}
\left|q_{k}\right| \leq 1 \tag{23}
\end{equation*}
$$

otherwise, again, ω^{2} or ω^{-2} would be a factor of at least one of the words $z_{\ell+1}, z_{1}^{\prime}$. In the case where $z_{\ell+1} \cdot z_{1}^{\prime}=\omega^{h}$, for some $h \in \mathbf{Z}$, by the same argument we must have

$$
\begin{equation*}
|h| \leq 3 \tag{24}
\end{equation*}
$$

Subcase 1.1: $z_{\ell+1} \cdot z_{1}^{\prime}=\omega^{h}$, for some $h \in \mathbf{Z}$
The ω-stable normal decomposition of $z z^{\prime}$ is thus

$$
\left(z_{1}, \omega^{p_{1}}, z_{2}, \ldots, \omega^{p_{\ell}+h+p_{1}^{\prime}}, z_{2}^{\prime}, \ldots, \omega^{p_{\ell^{\prime}}^{\prime}}, z_{\ell^{\prime}+1}^{\prime}\right)
$$

Using inequality (24), we obtain: $\left|\theta\left(r\left(z \cdot z^{\prime}\right)\right)-\theta(z)-\theta\left(z^{\prime}\right)\right| \leq 3$.
Subcase 1.2: $z_{\ell+1} \cdot z_{1}^{\prime}$ is not a power of ω.
The ω-stable normal decomposition of $z z^{\prime}$ is thus

$$
\left(z_{1}, \omega^{p_{1}}, z_{2}, \ldots, \omega^{p_{\ell}}, y_{1}, \omega^{q_{1}}, y_{2}, \ldots, \omega^{q_{m}}, y_{m+1}, \omega^{p_{1}^{\prime}}, z_{2}^{\prime}, \ldots, \omega^{p_{\ell^{\prime}}^{\prime}}, z_{\ell^{\prime}+1}^{\prime}\right)
$$

Using inequalities $(22)(23)$, we obtain: $\left|\theta\left(r\left(z \cdot z^{\prime}\right)\right)-\theta(z)-\theta\left(z^{\prime}\right)\right| \leq 2$.
Case 2:General case.
Suppose that $z=z_{1} \cdot z_{2}, z^{\prime}=z_{2}^{-1} \cdot z_{3}$ where z_{1}, z_{2}, z_{3} are reduced words and $z_{1} z_{3}$ is reduced. Using case 1 we know that the three integers

$$
\left|\theta\left(z_{1} z_{3}\right)-\theta\left(z_{1}\right)-\theta\left(z_{3}\right)\right|,\left|\theta(z)-\theta\left(z_{1}\right)-\theta\left(z_{2}\right)\right|, \quad\left|\theta\left(z^{\prime}\right)-\theta\left(z_{2}^{-1}\right)-\theta\left(z_{3}\right)\right|
$$

are smaller or equal to 3 . Decompositiong the expression $\left|\theta\left(z_{1} z_{3}\right)-\theta(z)-\theta\left(z^{\prime}\right)\right|$ as

$$
\left|\theta\left(z_{1} z_{3}\right)-\theta\left(z_{1}\right)-\theta\left(z_{3}\right)-\theta(z)+\theta\left(z_{1}\right)+\theta\left(z_{2}\right)-\theta\left(z^{\prime}\right)+\theta\left(z_{2}^{-1}\right)+\theta\left(z_{3}\right)\right|
$$

and using the triangular inequality we obtain

$$
\left|\theta\left(z_{1} z_{3}\right)-\theta(z)-\theta\left(z^{\prime}\right)\right| \leq 9
$$

Proof of theorem 12: Let us use the mapping θ associated with the word w_{2}, which is reduced and primitive (and in addition, cyclically reduced). Let

$$
\begin{gathered}
P=\cup_{k=1}^{n}\left\{u_{k}\right\} \cup \cup_{k=1}^{t}\left\{v_{k}\right\} ; \quad D=\max \{|\theta(z)| \mid z \in \operatorname{Pref}(P)\} \\
K=9(n+t)\left(2+\left|\theta\left(w_{1}\right)\right|+\left|\theta\left(w_{3}\right)\right|+D\right)
\end{gathered}
$$

We claim that if $|m|>2 K+2$, then the solution ϕ_{m} of $u=v$ in $F G(A)$ does not extend to a solution in $\operatorname{FIM}(A)$.

Let i be an integer such that

$$
\begin{equation*}
r_{u}=\sum_{k=1}^{i} \epsilon_{k}>0 \tag{25}
\end{equation*}
$$

From hypothesis (18) it follows that $i>0$ and $\epsilon_{i}=1$. We shall denote by α the word

$$
\alpha=\Phi_{m}\left(\left(\prod_{k=1}^{i-1} u_{k} x^{\epsilon_{k}}\right) u_{i}\right)
$$

16 Timothy Deis and John Meakin and G. Sénizergues
$\left(r(\alpha)\right.$ is a designated vertex of the lefthand-side u, for the solution Φ_{m} in the free group). Assume, for sake of contradiction, that:

$$
\begin{equation*}
m>2 K+2 \text { and } \phi_{m} \text { is extended to a solution } \psi \tag{26}
\end{equation*}
$$

of $u=v$ in $F I M(A)$, where $\psi(x)=e \phi_{m}(x)$ for some idempotent e.
Choose a vertex $a \in M T(e)$ for which

$$
\begin{equation*}
\theta(a)=\hat{\theta}(M T(e)) . \tag{27}
\end{equation*}
$$

We distinguish several cases for a node $c \in M T(\psi(v))$ (see figures 1,2) and show, in every case, that $\theta(c)<\hat{\theta}(M T(\psi(u)))$.
Case 1: $\beta=\Phi_{m}\left(\left(\prod_{k=1}^{j-1} v_{k} x^{\delta_{k}}\right) v_{j}\right), \delta_{j}=1, b \in M T(e), c=r(\beta \cdot b)$.

Fig. 1. Case 1.

Using the quasi-additivity of θ (Lemma 14), the choice of i (property (25)) and the

Fig. 2. Case 2.
fact that $\theta\left(w_{2}^{m}\right)=m-2$, we get the two following sequences of inequalities:

$$
\begin{aligned}
\theta(r(\beta \cdot b)) & \leq\left(\sum_{k=1}^{j-1} \delta_{k}\right)(m-2)+\left(\theta\left(w_{1}\right)+\theta\left(w_{3}\right)\right)(j-1)+\sum_{k=1}^{j} \theta\left(v_{k}\right)+\theta(b)+18 t \\
& \leq\left(\sum_{k=1}^{j-1} \delta_{k}\right)(m-2)+\theta(b)+K \\
& \leq\left(\sum_{k=1}^{j} \delta_{k}\right)(m-2)-(m-2)+\theta(b)+K \\
& \leq\left(\sum_{k=1}^{i} \epsilon_{k}\right)(m-2)-2(m-2)+\theta(b)+K .
\end{aligned}
$$

$$
\begin{align*}
\theta(r(\alpha \cdot a)) & \geq\left(\sum_{k=1}^{i-1} \epsilon_{k}\right)(m-2)+\sum_{k=1}^{i} \theta\left(u_{k}\right)+\theta(a)-18 n \\
& \geq\left(\sum_{k=1}^{i} \epsilon_{k}\right)(m-2)-(m-2)+\theta(a)-K \tag{28}
\end{align*}
$$

Since, by $(26),(m-2)>2 K$, the two above inequalities give

$$
\theta(r(\beta \cdot b))<\theta(r(\alpha \cdot a)) \leq \hat{\theta}\left(M T\left(\Phi_{m}(u)\right)\right)
$$

Case 2: $\left.\beta=\Phi_{m}\left(\prod_{k=1}^{j} v_{k} x^{\delta_{k}}\right), \delta_{j}=-1, b \in M T(e), c=r(\beta \cdot b)\right)$. Here we get

$$
\begin{aligned}
\theta(r(\beta \cdot b)) & \leq\left(\sum_{k=1}^{j} \delta_{k}\right)(m-2)+\left(\theta\left(w_{1}\right)+\theta\left(w_{3}\right)\right)(j)+\sum_{k=1}^{j} \theta\left(v_{k}\right)+\theta(b)+18 t \\
& \leq\left(\sum_{k=1}^{j} \delta_{k}\right)(m-2)+\theta(b)+K \\
& \leq\left(\sum_{k=1}^{j-1} \delta_{k}\right)(m-2)-(m-2)+\theta(b)+K \\
& \leq\left(\sum_{k=1}^{i} \epsilon_{k}\right)(m-2)-2(m-2)+\theta(b)+K
\end{aligned}
$$

which, together with (28) and assumption that $m>2 K$ leads again to

$$
\theta(r(\beta \cdot b))<\theta(r(\alpha \cdot a)) \leq \hat{\theta}\left(M T\left(\Phi_{m}(u)\right)\right)
$$

Case 3: $c=r\left(\Phi_{m}\left(\left(\prod_{k=1}^{j} v_{k} x^{\delta_{k}}\right) \cdot v_{j+1}^{\prime}\right)\right)$ with v_{j+1}^{\prime} prefix of v_{j+1}.
We get

$$
\begin{aligned}
\theta(c) & \leq\left(\sum_{k=1}^{j} \delta_{k}\right)(m-2)+\sum_{k=1}^{j} \theta\left(v_{k}\right)+\theta\left(v_{j+1}^{\prime}\right)+18 t \\
& \leq\left(\sum_{k=1}^{j} \delta_{k}\right)(m-2)+K \\
& \leq\left(\sum_{k=1}^{i} \epsilon_{k}\right)(m-2)-(m-2)+K .
\end{aligned}
$$

Since, by $(26),(m-2)>2 K$, using (28) we obtain

$$
\theta(c)<\theta(r(\alpha \cdot a)) \leq \hat{\theta}\left(M T\left(\Phi_{m}(u)\right)\right)
$$

But every node $c \in M T(\psi(v))$ fulfills one of cases (1),(2) or (3). It follows that

$$
\hat{\theta}(M T(\psi(v)))<\hat{\theta}(M T(\psi(u)))
$$

contradicting assumption (26) that ψ is a solution in $\operatorname{FIM}(\mathrm{A})$ of the equation $u=v$. By similar arguments, one can prove that the assumption that

$$
\begin{equation*}
m<-2 K-2 \text { and } \phi_{m} \text { is extended to a solution } \psi \tag{29}
\end{equation*}
$$

leads to some contradiction too: just consider an element $\check{a} \in M T(e)$ for which

$$
\begin{equation*}
\theta(\check{a})=\check{\theta}(M T(e)) . \tag{30}
\end{equation*}
$$

and show that, for every $c \in M T(\psi(v)), \theta(c)>\theta(r(\alpha \cdot \check{a})) \geq \check{\theta}(M T(\psi(u)))$. It is thus established that the only extendible solutions in the free group ly among a finite set of solutions that we can compute. Decidability of the consistency problem follows from Theorem 7.

Remark 15. Decidability of the consistency problem also holds for finite systems of equations, all of which fulfill the hypothesis of theorem 12.

In order to study the consistency problem for equations $u=v$ for which $\mathcal{V}(u)=$ $\mathcal{V}(v)$, it is convenient to note the following lemma.

Lemma 16. Let $u=v$ be an arbitrary equation in $F I M(A)$ and let $\phi: X \rightarrow \tilde{A}^{*}$ be a solution to $u=v$ in $F G(A)$. If the set of designated vertices in $M T(\phi(u))$ is equal to the set of designated vertices in $M T(\phi(v))$, then ϕ extends to a solution in FIM(A).

Proof: Let $\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ be the union of the sets of designated vertices in $M T(\phi(u))$ and in $M T(\phi(v))$. View each w_{j} as a reduced word in \tilde{A}^{*}. Let

$$
g=\phi(u) \phi(u)^{-1} \phi(v) \phi(v)^{-1}
$$

and note that $M T(g)=M T(\phi(u)) \cup M T(\phi(v))$. Let

$$
E=\left(w_{1}^{-1} g w_{1}\right)\left(w_{2}^{-1} g w_{2}\right) \cdots\left(w_{k}^{-1} g w_{k}\right)
$$

and let $T=M T(E)$.
Extend the map ϕ by defining

$$
\psi: X \rightarrow \tilde{A}^{*} \text { by } \psi\left(x_{i}\right)=E \phi\left(x_{i}\right)
$$

for each variable x_{i} in the content of u and in the content of v.
From the definition of a designated vertex, it follows that at each vertex labeled by $w_{j}(j=1, \ldots, k)$, the tree

$$
w_{j} T=\cup_{i=1}^{k} w_{j} M T\left(w_{i}^{-1} g w_{i}\right)
$$

is a subtree of $M T(\psi(u))$ and that in fact

$$
M T(\psi(u))=w_{1} T \cup w_{2} T \ldots w_{k} T \cup M T(\phi(u))
$$

From the sequence of inclusions

$$
M T(\phi(u)) \subseteq M T(g) \subseteq w_{j} M T\left(w_{j}^{-1} g w_{j}\right) \subseteq w_{j} M T(E)=w_{j} T
$$

it follows that $M T(\phi(u)) \subseteq w_{j} T$ for all j, and so $M T(\psi(u))=w_{1} T \cup w_{2} T \ldots w_{k} T$. Similarly, $M T(\psi(v))=w_{1} T \cup w_{2} T \ldots w_{k} T$, and so $M T(\psi(u))=M T(\psi(v))$, whence ψ is a solution to $u=v$ in $\operatorname{FIM}(A)$ that extends ϕ.

We will introduce the concept of a standard factorization or a Choffrut factorization of a word. Let $u \in \tilde{A}^{*}$. A reduced factorization of $r(u)$ is a tuple of words

$$
\left(u_{1}, u_{2}, \cdots, u_{n}\right)
$$

such that every u_{i} is a non-empty word and $r(u)=u_{1} \cdot u_{2} \cdots u_{n}$. For $i=1,2, \cdots, n$ set $u_{i}=u_{i}^{\prime} c_{i}$ where c_{i} is the last letter of u_{i}.
Theorem 17 (Choffrut [4]). Let $u \in \tilde{A}^{*}$ and let $\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ be a reduced factorization of $r(u)$. Then there exists a tuple of words $\left(e_{0}, u_{1}, e_{1}, u_{2}, \cdots, e_{n-1}, u_{n}, e_{n}\right)$ (which we call a Choffrut factorization of u) of \tilde{A}^{*} such that
CF1- $e_{0}, e_{1}, e_{2}, \cdots, e_{n}$ define idempotents of $\operatorname{FIM}(A)$
CF2- $u={ }_{I} e_{0} u_{1} e_{1} u_{2} \cdots e_{n-1} u_{n} e_{n}$
CF3- for all $i=1,2, \cdots, n, u_{i}^{\prime} u_{i}^{\prime-1} \geq e_{i-1}$
CF4- for all $i=1,2, \cdots, n, u_{i} u_{i}^{-1} \nsupseteq e_{i-1}$
CF5- for all $i=1,2, \cdots, n, c_{i}^{-1} c_{i} \nsupseteq e_{i}$.
Moreover, this tuple is unique, up to componentwise equality in $\operatorname{FIM}(A)$.
(See figure 3).

Fig. 3. Choffrut factorization.

The two following lemmas about Choffrut factorizations are useful. Let us denote by d the usual distance over $F G(A)$: for every $x, y \in F G(A), \mathrm{d}(x, y)=\left|r\left(x^{-1} y\right)\right|$. The diameter of a subset $Q \subseteq F G(A)$ is then: $\operatorname{diam}(Q)=\max \{\mathrm{d}(x, y) \mid x, y \in Q\}$.
Lemma 18 (contraction). Let $u \in \tilde{A}^{*}$ with Choffrut factorization:

$$
\left(e_{0}, u_{1}, e_{1}, \ldots, u_{i-1}, e_{i-1}, u_{i}, e_{i}, u_{i+1}, e_{i+1}, \ldots, u_{n}, e_{n}\right)
$$

Then

$$
\left(e_{0}, u_{1}, e_{1}, \ldots, u_{i-1}, e_{i-1}^{\prime}, u_{i} u_{i+1}, e_{i+1}, \ldots, u_{n}, e_{n}\right)
$$

where $e_{i-1}^{\prime}=e_{i-1}\left(u_{i} e_{i} u_{i}^{-1}\right)$ is again a Choffrut-factorization of the same word.
Proof: Easy verification: just check that the proposed tuple satisfies conditions CF1-CF5 of theorem 17.

Lemma 19 (product). Let $u \in \tilde{A}^{*}$ with Choffrut factorization:

$$
\left(e_{0}, u_{1}, e_{1}, \ldots, u_{n}, e_{n}\right)
$$

and let $w \in \tilde{A}^{*}$.
1- If $\operatorname{diam}(M T(w))<\left|u_{1}\right|$ then $w \cdot u$ admits a Choffrut factorization of the form

$$
\left(e_{0}^{\prime}, r\left(w u_{1}\right), e_{1}, u_{2}, e_{2}, \ldots, u_{n}, e_{n}\right)
$$

2- If $\operatorname{diam}(M T(w))<\left|u_{n}\right|$ then $u \cdot w$ admits a Choffrut factorization of the form

$$
\left(e_{0}, u_{1}, e_{1}, u_{2}, e_{2}, \ldots, u_{n-1}, e_{n-1}^{\prime}, r\left(u_{n} w\right), e_{n}^{\prime}\right)
$$

Proof: 1- Suppose $\left(e_{0}, u_{1}, e_{1}, \ldots, u_{n}, e_{n}\right)$ and w fulfill the hypothesis. Let us check that the choice

$$
e_{0}^{\prime}=w e_{0} w^{-1}
$$

satisfies the announced property.
CF1: It suffices to see that e_{0}^{\prime} is a Dyck word, hence defines an idempotent element of $F I M(A)$.
CF2: The equality

$$
\begin{equation*}
e_{0}^{\prime} r\left(w u_{1}\right)={ }_{I} w e_{0} u_{1} \tag{36}
\end{equation*}
$$

is equivalent with $w e_{0} w^{-1} r\left(w u_{1}\right)={ }_{I} w e_{0} u_{1}$, which amounts to

$$
\left\{r(x) \mid x \in \operatorname{Pref}\left(w e_{0} w^{-1} r\left(w u_{1}\right)\right)\right\}=\left\{r(x) \mid x \in \operatorname{Pref}\left(w e_{0} u_{1}\right)\right\}
$$

This last equality can be easily checked. From (36) follows that

$$
e_{0}^{\prime} r\left(w u_{1}\right) e_{1} u_{2} e_{2} \cdots u_{n} e_{n}={ }_{I} w e_{0} u_{1} e_{1} \cdots u_{n} e_{n}
$$

hence that CF2 is fulfilled.
CF3: Let us check that $r\left(w u_{1}^{\prime}\right) r\left(w u_{1}^{\prime}\right)^{-1} \geq w e_{0} w^{-1}$. There exists reduced words w_{1}, w_{2}, v_{2} such that

$$
w=w_{1} w_{2}, \quad u_{1}^{\prime}=w_{2}^{-1} v_{2}, \quad r\left(w u_{1}^{\prime}\right)=w_{1} v_{2} .
$$

By hypothesis

$$
u_{1}^{\prime} u_{1}^{\prime-1} \geq e_{0}
$$

Multiplying on the left by $w=w_{1} w_{2}$ on the right by $w^{-1}=w_{2}^{-1} w_{1}^{-1}$ we get

$$
w_{1} w_{2} u_{1}^{\prime} u_{1}^{\prime-1} w_{2}^{-1} w_{1}^{-1} \geq w e_{0} w^{-1}
$$

Replacing u_{1}^{\prime} by $w_{2}^{-1} v_{2}$ we get

$$
w_{1} w_{2} w_{2}^{-1} v_{2} v_{2}^{-1} w_{2} w_{2}^{-1} w_{1}^{-1} \geq w e_{0} w^{-1}
$$

Since for every $u \in \tilde{A}^{*}, 1 \geq u u^{-1}$, we obtain:

$$
w_{1} v_{2} v_{2}^{-1} w_{1}^{-1} \geq w_{1} w_{2} w_{2}^{-1} v_{2} v_{2}^{-1} w_{2} w_{2}^{-1} w_{1}^{-1}
$$

and, finally, by the two last inequalities

$$
w_{1} v_{2} v_{2}^{-1} w_{1}^{-1} \geq w e_{0} w^{-1}
$$

i.e. $r\left(w u_{1}^{\prime}\right) r\left(w u_{1}^{\prime}\right)^{-1} \geq w e_{0} w^{-1}$.

CF4: Let us check that $r\left(w u_{1}\right) r\left(w u_{1}\right)^{-1} \nsupseteq e_{0}^{\prime}$.
The Munn-tree of e_{0}^{\prime} decomposes as:

$$
\begin{equation*}
M T\left(w e_{0} w^{-1}\right)=M T(w) \cup r(w) \cdot M T\left(e_{0}\right) \tag{37}
\end{equation*}
$$

Let us consider $x=r\left(w u_{1}\right)$.
Since $\mathrm{d}(r(w), x)=\left|u_{1}\right|, r(w) \in M T(w)$ and $\operatorname{diam}(M T(w))<\left|u_{1}\right|$, we are sure that

$$
\begin{equation*}
x \notin M T(w) . \tag{38}
\end{equation*}
$$

By hypothesis $u_{1} u_{1}^{-1} \nsupseteq e_{0}$ and $u_{1}^{\prime} u_{1}^{\prime-1} \geq e_{0}$, hence $u_{1} \notin M T\left(e_{0}\right)$, so that

$$
\begin{equation*}
x=r\left(w u_{1}\right) \notin r(w) \cdot M T\left(e_{0}\right) \tag{39}
\end{equation*}
$$

By $(38,39)$ and the decomposition (37), $x \notin M T\left(e_{0}^{\prime}\right)$, hence $r\left(w u_{1}\right) r\left(w u_{1}\right)^{-1} \nsupseteq e_{0}^{\prime}$. CF5: Since the values of e_{i}, c_{i} for $1 \leq i \leq n$ did not change, this property is trivially preserved.
2-Let us choose the idempotents $e_{n-1}^{\prime}, e_{n}^{\prime}$ such that

$$
\begin{equation*}
\left(e_{n-1}^{\prime}, r\left(u_{n} w\right), e_{n}^{\prime}\right) \tag{40}
\end{equation*}
$$

is a Choffrut factorization of $e_{n-1} u_{n} e_{n} w$. Let us check properties CF1-CF5 for the tuple ($\left.e_{0}, u_{1}, e_{1}, u_{2}, e_{2}, \ldots, u_{n-1}, e_{n-1}^{\prime}, r\left(u_{n} w\right), e_{n}^{\prime}\right)$ thus defined.
CF1: is clearly true.
CF2: is true because $e_{n-1} u_{n} e_{n} w={ }_{I} e_{n-1}^{\prime} r\left(u_{n} w\right) e_{n}^{\prime}$.
CF3,CF4: follow from the hypothesis that $\left(e_{0}, u_{1}, e_{1}, u_{2}, e_{2}, \ldots, u_{n-1}, e_{n-1}, u_{n}, e_{n}\right)$ and (40) do fulfill CF3,CF4.
CF5: For $i \neq n-1$ here again the property follows from CF5 applied on the two initial Choffrut factorizations. Let us check that $c_{n-1}^{-1} \notin M T\left(e_{n-1}^{\prime}\right)$.
The Munn-tree of $e_{n-1} u_{n} e_{n} w$ decomposes as:

$$
\begin{equation*}
M T\left(e_{n-1} u_{n} e_{n} w\right)=M T\left(e_{n-1} u_{n}\right) \cup u_{n} \cdot M T\left(e_{n}\right) \cup u_{n} \cdot M T(w) \tag{41}
\end{equation*}
$$

By CF5 applied on the initial Choffrut factorization we know that $c_{n-1}^{-1} \notin M T\left(e_{n-1}\right)$ and, since $c_{n-1} u_{n}$ is a reduced word, $c_{n-1}^{-1} \notin M T\left(u_{n}\right)$, which, alltogether, show that

$$
\begin{equation*}
c_{n-1}^{-1} \notin M T\left(e_{n-1} u_{n}\right) \tag{42}
\end{equation*}
$$

If c_{n-1}^{-1} belongs to $u_{n} \cdot M T\left(e_{n}\right)$, then the geodesics from c_{n-1}^{-1} to u_{n} would be included in $u_{n} \cdot M T\left(e_{n}\right)$; since the vertex $r\left(u_{n} c_{n}^{-1}\right)$ belongs to this geodesics, by left-translation by u_{n} we would get that $c_{n}^{-1} \in M T\left(e_{n}\right)$, contradicting CF5 on the initial Choffrut factorization. It follows that

$$
\begin{equation*}
c_{n-1}^{-1} \notin u_{n} \cdot M T\left(e_{n}\right) \tag{43}
\end{equation*}
$$

Since $\mathrm{d}\left(c_{n-1}^{-1}, u_{n}\right)=\left|u_{n}\right|+1, u_{n} \in u_{n} \cdot M T(w)$ and $\operatorname{diam}\left(u_{n} \cdot M T(w)\right)<\left|u_{n}\right|$, we are sure that

$$
\begin{equation*}
c_{n-1}^{-1} \notin u_{n} \cdot M T(w) \tag{44}
\end{equation*}
$$

The decomposition (41) combined with properties (42),(43),(44) show that $c_{n-1}^{-1} \notin$ $M T\left(e_{n-1} u_{n} e_{n} w\right)$, and, a fortiori

$$
c_{n-1}^{-1} \notin M T\left(e_{n-1}^{\prime}\right)
$$

which proves that $c_{n-1}^{-1} c_{n-1} \nsupseteq e_{n-1}^{\prime}$.

Theorem 20. The consistency problem for equations of the form $u_{1} x^{\zeta_{1}} u_{2}=$ $v_{1} x^{\zeta_{2}} v_{2}$ where $u_{i}, v_{i} \in\left(A \cup A^{-1}\right)^{*}$ and $\zeta_{i}= \pm 1$ for $i=1,2$ in $\operatorname{FIM}(A)$ is decidable.

Proof: If $\zeta_{1} \neq \zeta_{2}$ then the consistency problem is decidable by Corollary 9 . We will assume that $\zeta_{1}=\zeta_{2}$. Without loss of generality assume that $\zeta_{1}=\zeta_{2}=1$. The case when $\zeta_{1}=\zeta_{2}=-1$ will follow by considering the equation $u_{2}^{-1} x u_{1}^{-1}=v_{2}^{-1} x v_{1}^{-1}$. From Theorem 11 we know that there exists a finite set of parametric words defining the solution set to this equation in $F G(A)$. Choose one such parametric word: there are corresponding reduced words w_{1}, w_{2} and w_{3} so that $w_{1} w_{2}^{ \pm 1} w_{3}$ is reduced as written, w_{2} is cyclically reduced and primitive, and $w_{1} w_{2}^{n} w_{3}$ is a solution in $F G(A)$ for all $n \in \mathbf{Z}$.

Let

$$
\begin{gathered}
E=\left(u_{1} w_{1} w_{1}^{-1} u_{1}^{-1}\right)\left(u_{2}^{-1} w_{3}^{-1} w_{3} u_{2}\right)\left(v_{1} w_{1} w_{1}^{-1} v_{1}^{-1}\right)\left(v_{2}^{-1} w_{3}^{-1} w_{3} v_{2}\right)\left(w_{2} w_{2}^{-1}\right) \\
D=\operatorname{diam}(M T(E))
\end{gathered}
$$

Assume that for some value of n, the solution $w_{1} w_{2}^{n} w_{3}$ extends to a solution to the equation in $F I M(A)$. Without loss of generality we may assume that $n \geq 0$ (replace w_{2} by w_{2}^{-1} if necessary). Choose $N \in \mathbf{N}$ minimal such that $\phi(x)=w_{1} w_{2}^{N} w_{3}$ extends to a solution $\psi(x)$ in $\operatorname{FIM}(A)$. We will show that $N<8 D+2$.

Suppose on the contrary that

$$
\begin{equation*}
N \geq 8 D+2 \tag{45}
\end{equation*}
$$

Factor $\psi(x)$ using the Choffrut factorization based on the reduced word $w_{1} w_{2}^{N} w_{3}$ to get

$$
\begin{equation*}
\psi(x)={ }_{I} e_{-1} w_{1} e_{0} w_{2} e_{1} \cdots e_{N-1} w_{2} e_{N} w_{3} e_{N+1} \tag{46}
\end{equation*}
$$

Let α, β be the integers defined by:

$$
\begin{equation*}
\left|w_{1} w_{2}^{\alpha-1}\right| \leq D<\left|w_{1} w_{2}^{\alpha}\right|,\left|w_{3}^{-1} w_{2}^{-\beta+1}\right| \leq D<\left|w_{3}^{-1} w_{2}^{-\beta}\right| \tag{47}
\end{equation*}
$$

Claim 21. : $\alpha \leq D+1, \beta \leq D+1$.
By definition of α, β,

$$
\begin{equation*}
(\alpha-1)\left|w_{2}\right| \leq D, \quad(\beta-1)\left|w_{2}\right| \leq D \tag{48}
\end{equation*}
$$

hence $\alpha \leq D+1$, and $\beta \leq D+1$.
Since $\left|u_{1}\right| \leq D<\left|w_{1} w_{2}^{\alpha}\right|$, the last letter of w_{2} cannot be cancelled in any reduction from $u_{1} w_{1} w_{2}^{\alpha}$ to its normal form $r\left(u_{1} w_{1} w_{2}^{\alpha}\right)$. Hence, as w_{2} is cyclically reduced, all the words

$$
r\left(u_{1} w_{1} w_{2}^{\alpha}\right) w_{2}^{h}
$$

are reduced, for $h \geq 0$. Similarly all the words $r\left(v_{1} w_{1} w_{2}^{\alpha}\right) w_{2}^{h}, w_{2}^{h} r\left(w_{2}^{\beta} w_{3} u_{2}\right), w_{2}^{h} r\left(w_{2}^{\beta} w_{3} v_{2}\right)$ are reduced, for $h \geq 0$. By claim 21 and the above properties, the two following factorizations are reduced:

$$
\begin{align*}
& (r\left(u_{1} w_{1} w_{2}^{\alpha}\right), \underbrace{w_{2}, \cdots, w_{2}}_{N-(\alpha+\beta)}, r\left(w_{2}^{\beta} w_{3} u_{2}\right) \tag{49}\\
& (r\left(v_{1} w_{1} w_{2}^{\alpha}\right), \underbrace{w_{2}, \cdots, w_{2}}_{N-(\alpha+\beta)}, r\left(w_{2}^{\beta} w_{3} v_{2}\right)) \tag{50}
\end{align*}
$$

Either $r\left(u_{1}\right)=r\left(v_{1}\right)$ or $r\left(u_{1}\right) \neq r\left(v_{1}\right)$ in $F G(A)$. When $r\left(u_{1}\right)=r\left(v_{1}\right)$, then the designated u-vertex and designated v-vertex are the same and so by Lemma 16 the equation $u=v$ is consistent, so we may suppose that $r\left(u_{1}\right) \neq r\left(v_{1}\right)$ in $F G(A)$. This implies that $r\left(u_{1} w_{1} w_{2}^{\alpha}\right) \neq r\left(v_{1} w_{1} w_{2}^{\alpha}\right)$ in \tilde{A}^{*}. Thus the reduced factorizations (49) and (50) of $r(\phi(u))=r(\phi(v))$ are not identical.

Without loss of generality assume that $r\left(v_{1} w_{1} w_{2}^{\alpha}\right)$ is a proper prefix of $r\left(u_{1} w_{1} w_{2}^{\alpha}\right)$. Then there exists $w^{\prime} \in \tilde{A}^{*}$ such that

$$
\begin{equation*}
r\left(u_{1} w_{1} w_{2}^{\alpha}\right)=r\left(v_{1} w_{1} w_{2}^{\alpha}\right) w^{\prime}, w^{\prime} w_{2}^{N-(\alpha+\beta)} r\left(w_{2}^{\beta} w_{3} u_{2}\right)=w_{2}^{N-(\alpha+\beta)} r\left(w_{2}^{\beta} w_{3} v_{2}\right) \tag{51}
\end{equation*}
$$

in \tilde{A}^{*}.
Claim 22. $\left|r\left(u_{1} w_{1} w_{2}^{\alpha}\right)\right| \leq 3 D$ and $\left|r\left(v_{1} w_{1} w_{2}^{\alpha}\right)\right| \leq 3 D$.
By inequality (48) $\left|w_{2}^{\alpha-1}\right| \leq D$ hence $\left|w_{2}^{\alpha}\right| \leq D+\left|w_{2}\right| \leq 2 D$. Since $\left|r\left(u_{1} w_{1}\right)\right| \leq$ D, the claim follows.
Let us show that the word w^{\prime} is a power of w_{2}. Let $q \in \mathbf{N}$ such that

$$
q\left|w_{2}\right| \leq\left|w^{\prime}\right|<(q+1)\left|w_{2}\right| .
$$

If the first inequality was strict, then the following comparisons between the lengths of prefixes of $r(\psi(u))$ would hold:
$\left|r\left(v_{1} w_{1} w_{2}^{\alpha}\right) w_{2}^{q}\right|<\left|r\left(v_{1} w_{1} w_{2}^{\alpha}\right) w^{\prime}\right|<\left|r\left(v_{1} w_{1} w_{2}^{\alpha}\right) w_{2}^{(q+1)}\right|<\left|r\left(u_{1} w_{1} w_{2}^{\alpha}\right) w_{2}\right|<\left|r\left(v_{1} w_{1} w_{2}^{\alpha}\right) w_{2}^{q+2}\right|,(52)$

Fig. 4. the occurence of w^{\prime}.
(see figure 4).
The first two inequalities follow from the definition of q. The third and fourth inequality are obtained from the first and second one, just by adding $\left|w_{2}\right|$ on both sides of it. By claim $22,\left|r\left(u_{1} w_{1} w_{2}^{\alpha}\right) w_{2} w_{2}\right| \leq 5 D$, while, by claim 21 , and inequality (45), $N-\alpha-\beta \geq 5 D$, hence the fifth word in the above inequality is really a prefix of $r\left(v_{1} w_{1} w_{2}^{\alpha}\right) w_{2}^{N-(\alpha+\beta)}$.

Suppose that $q\left|w_{2}\right|<\left|w^{\prime}\right|<(q+1)\left|w_{2}\right|$, and let us examine several occurences of the word w_{2} inside the same word $r(\psi(u))=r(\psi(v))$:
-an occurence of w_{2} ends at distance $\left|r\left(u_{1} w_{1} w_{2}^{\alpha}\right) w_{2}\right|$ of the leftside
-an occurrence of w_{2}^{2} begins at distance $\left|r\left(v_{1} w_{1} w_{2}^{\alpha}\right) w_{2}^{q}\right|$ and ends at distance $\left|r\left(v_{1} w_{1} w_{2}^{\alpha}\right) w_{2}^{q+2}\right|$.
By the inequalities (52), the first occurence of w_{2} would ly strictly inside the second occurrence of w_{2}^{2}, which is impossible since w_{2} is primitive. We have established that

$$
q\left|w_{2}\right|=\left|w^{\prime}\right|
$$

and, since w^{\prime} is a prefix of $w_{2}^{N-\alpha-\beta}$ (see (51)),

$$
\begin{equation*}
w^{\prime}=w_{2}^{q} \tag{53}
\end{equation*}
$$

Claim 23. $q \leq 3 D$.
By Claim (22) the word $r\left(u_{1} w_{1} w_{2}^{\alpha}\right)$ has a length smaller than $3 D$. Since w^{\prime} is a suffix of this word, the claim holds.
We now compare two Choffrut factorizations of $\psi(u)={ }_{I} \psi(v)$ deduced from the Choffrut factorization (46) of $\psi(x)$ by means of the contraction lemma 18 and the product lemma 19. Let

$$
K=N-(\alpha+\beta+q)
$$

Applying iteratively the contraction-lemma to the Choffrut factorization (46), we obtain the Choffrut factorization of $\psi(x)$:

$$
\begin{equation*}
\left(e_{0}^{\prime}, r\left(w_{1} w_{2}^{\alpha}\right), e_{\alpha}, \ldots, e_{\alpha+K-1}, w_{2}, e_{1}^{\prime}, r\left(w_{2}^{\beta+q} w_{3}\right), e_{N+1}\right) \tag{54}
\end{equation*}
$$

By the product-lemma, since $\left|u_{1}\right| \leq D<\left|r\left(w_{1} w_{2}^{\alpha}\right)\right|$, and $\left|u_{2}^{-1}\right| \leq D<\left|r\left(w_{3}^{-1} w_{2}^{-\beta}\right)\right|$, we obtain a Choffrut factorization of $\psi(u)$:

$$
\begin{equation*}
\left(g_{0}, r\left(u_{1} w_{1} w_{2}^{\alpha}\right), e_{\alpha}, \ldots, e_{\alpha+K-1}, w_{2}, g_{1}, r\left(w_{2}^{\beta+q} w_{3} u_{2}\right), g_{2}\right) \tag{55}
\end{equation*}
$$

and by similar arguments, a Choffrut factorization of $\psi(v)$:

$$
\begin{equation*}
\left(g_{0}^{\prime}, r\left(v_{1} w_{1} w_{2}^{\alpha+q}\right), e_{\alpha+q}, \ldots, e_{\alpha+K+q-1}, w_{2}, g_{1}^{\prime}, r\left(w_{2}^{\beta} w_{3} v_{2}\right), g_{2}^{\prime \prime}\right) \tag{56}
\end{equation*}
$$

for some idempotents $g_{0}, g_{1}, g_{2}, g_{0}^{\prime}, g_{1}^{\prime}, g_{2}^{\prime \prime}$.
By unicity of the Choffrut factorization associated to a given reduced factorization, (55) and (56) must coincide:

$$
\begin{equation*}
\left(e_{\alpha}, e_{\alpha+1}, \ldots, e_{\alpha+K-1}\right)=_{I}\left(e_{\alpha+q}, e_{\alpha+q+1}, \ldots, e_{\alpha+q+K-1}\right) \tag{57}
\end{equation*}
$$

By Claim 21 and Claim 23 and hypothesis (45)we know that $\alpha+\beta+2 q \leq$ $2 D+2+6 D \leq N$ or, in other words

$$
q \leq K
$$

Equating the prefixes of length q of both sides of equation (57) gives:

$$
\begin{equation*}
\left(e_{\alpha}, e_{\alpha+1}, \ldots, e_{\alpha+q-1}\right)=_{I}\left(e_{\alpha+q}, e_{\alpha+q+1}, \ldots, e_{\alpha+2 q-1}\right) \tag{58}
\end{equation*}
$$

Let $\phi^{\prime}(x)={ }_{M} w_{1} w_{2}^{N-q} w_{3}$ and consider the map:
$\psi^{\prime}(x)={ }_{M} e_{-1} w_{1} e_{0} w_{2} e_{1} \cdots w_{2} e_{\alpha-1} w_{2} e_{\alpha+q} w_{2} e_{\alpha+q+1} \cdots e_{\alpha+q+i} w_{2} \cdots e_{N-1} w_{2} e_{N} w_{3} e_{N+1}$,
In other words, $\psi^{\prime}(x)$ is obtained from the righthand side of (46) by cutting out the factor $w_{2} e_{\alpha} w_{2} e_{\alpha+1} \cdots w_{2} e_{\alpha+q-1}$, as shown on figure 5 .

Fig. 5. Shrinking ψ.

Let us consider the decompositions over $\operatorname{FIM}(A): \psi(u)={ }_{I} P_{u} \cdot S_{u}, \psi(v)={ }_{I} P_{v} \cdot S_{v}$, where:

$$
\begin{aligned}
& P_{u}={ }_{M} u_{1} e_{-1} w_{1} e_{0} w_{2} \cdots e_{\alpha+q-1} w_{2}, \quad S_{u}=_{M} e_{\alpha+q} w_{2} \cdots e_{N-1} w_{2} e_{N} w_{3} u_{2}, \\
& P_{v}={ }_{M} v_{1} e_{-1} w_{1} e_{0} w_{2} \cdots e_{\alpha+2 q-1} w_{2}, \quad S_{v}={ }_{M} e_{\alpha+2 q} w_{2} \cdots e_{N-1} w_{2} e_{N} w_{3} u_{2}
\end{aligned}
$$

Claim 24. $P_{u}={ }_{I} P_{v}, \quad S_{u}={ }_{I} S_{v}$.
Since $r\left(P_{u}\right)=r\left(u_{1} w_{1} w_{2}^{\alpha+q}\right)$ and $r\left(P_{v}\right)=r\left(v_{1} w_{1} w_{2}^{\alpha+2 q}\right)$, we know that $r\left(P_{u}\right)=$ $r\left(P_{v}\right)$, and by cancellativity of the product in the group $F G(A)$ we also know that $r\left(S_{u}\right)=r\left(S_{v}\right)$. Let us consider the decomposition of the tree $M T(\psi(u))$ as

$$
M T(\psi(u))=T_{1} \cup T_{2}
$$

where $T_{1}-\{r(P)\}\left(\right.$ resp. $\left.T_{2}-\{r(P)\}\right)$ is the connected component of $M T(\psi(u))-$ $\left\{r\left(P_{u}\right)\right\}$ which posesses 1 , (resp. is the union of the connected components which do not posess 1) and $\left\{r\left(P_{u}\right)\right\}=T_{1} \cap T_{2}$. Since $\operatorname{diam}\left(M T\left(u_{1}\right)\right) \leq D<\left|w_{1} w_{2}^{\alpha}\right|$, every vertex of $M T\left(P_{u}\right)$ belongs to T_{1}. Analogously, since $\operatorname{diam}\left(M T\left(u_{2}\right)\right) \leq D<\left|w_{2}^{\beta} w_{3}\right|$, every vertex of $r(T) \cdot M T\left(S_{u}\right)$ belongs to T_{2}. Using the same arguments about P_{v}, S_{v} we arrive at:

$$
M T\left(P_{u}\right) \subseteq T_{1}, \quad M T\left(P_{v}\right) \subseteq T_{1}, \quad r\left(P_{u}\right) \cdot M T\left(S_{u}\right) \subseteq T_{2}, \quad r\left(P_{v}\right) \cdot M T\left(S_{v}\right) \subseteq T_{2}
$$

This shows that $M T\left(P_{u}\right)=T_{1}=M T\left(P_{v}\right)$ and $M T\left(S_{u}\right)=r\left(P_{u}\right)^{-1} \cdot T_{2}=M T\left(S_{v}\right)$.

Let $P_{u}^{\prime}={ }_{M} u_{1} e_{-1} w_{1} e_{0} w_{2} e_{1} \cdots e_{\alpha-1} w_{2}$ and $P_{v}^{\prime}={ }_{M} v_{1} e_{-1} w_{1} e_{0} w_{2} e_{1} \cdots e_{\alpha+q-1} w_{2}$.

Fig. 6. Decomposition of $M T(\psi(u))$.

Claim 25. $P_{u}^{\prime}={ }_{I} P_{v}^{\prime}$.

This claim is obtained by the same kind of argument as Claim 24: just consider the decomposition of $M T(\psi(u))-\left\{r\left(P_{u}^{\prime}\right)\right\}$ in connected components.
Let us look at the following decompositions (which follow from the mere definition of $\left.\psi^{\prime}(x)\right)$:
$\psi^{\prime}(u)={ }_{M}\left(u_{1} e_{-1} w_{1} e_{0} w_{2} e_{1} \cdots w_{2} e_{\alpha-1} w_{2}\right) \cdot\left(e_{\alpha+q} \cdots e_{N-1} w_{2} e_{N} w_{3} u_{2}\right)$
$\psi^{\prime}(v)={ }_{M}\left(v_{1} e_{-1} w_{1} e_{0} w_{2} e_{1} \cdots w_{2} e_{\alpha-1} w_{2}\right) \cdot\left(e_{\alpha+q} w_{2} \cdots e_{\alpha+2 q-1} w_{2}\right) \cdot\left(e_{\alpha+2 q} \cdots w_{2} e_{N} w_{3} v_{2}\right)$
Plugging identity (58) into the equality (61) results in:
$\psi^{\prime}(v)={ }_{I}\left(v_{1} e_{-1} w_{1} e_{0} w_{2} e_{1} \cdots w_{2} e_{\alpha-1} w_{2}\right) \cdot\left(e_{\alpha} w_{2} \cdots e_{\alpha+q-1} w_{2}\right) \cdot\left(e_{\alpha+2 q} \cdots w_{2} e_{N} w_{3} v_{2}\right)$.
With the above notations, equalities (60) (62) express that

$$
\psi^{\prime}(u)={ }_{M} P_{u}^{\prime} \cdot S_{u}, \quad \psi^{\prime}(v)={ }_{I} P_{v}^{\prime} \cdot S_{v} .
$$

It follows from these two decompositions and Claims 24-25 that

$$
\psi^{\prime}(u)={ }_{I} \psi^{\prime}(v)
$$

Finally, ψ^{\prime} is a solution of the equation in $F I M(A)$ that extends ϕ^{\prime} contradicting the minimality of N. Hence, if there is any integer $n \in \mathbf{Z}$ such that $w_{1} w_{2}^{n} w_{3}$ extends to a solution in $F I M(A)$, then there must be such an integer n with $|n|<8 D+2$. By Theorem 7, this implies that the consistency problem is decidable.

4. Final comments

In fact our treatment of the extension-theorem 7 does not use the full power of Rabin's theorem, since we only use decidability of the weak Monadic Second-Order Logic over the tree T_{A}. The decidability of WMSOL over T_{A} was proved by Doner in [8].
Since we established theorem 7, M. Lohrey and N. Ondrusch have extended the result to inverse monoids presented by a finite number of idempotent relators over the free inverse monoid (such monoids were previously studied in [18]); their extension of our arguments really use the full power of Rabin's tree theorem.
The treatment of left-linear equations over finite subsets of the free monoid (without the prefix-closedness constraint) by means of reduction to WMSOL and treeautomata was already achieved in [2], where the authors also give a precise complexity analysis of this problem: it is exactly Exp-Time complete.
The consistency problem for all single-variable equations in $F I M(A)$, remains open; we hope that the arguments involved in the proofs presented here may be extended to more general cases and, possibly, to all single-variable equations.

Acknowledgments

The second author was supported by NSF grant No. DMS-9970471. The third author thanks V. Diekert for invitating him in Stuttgart University with the support of the Humboldt fundation. We thank F. Baader, R. Gilman, M. Lohrey and N. Ondrusch for useful information on the subject.

References

[1] K. I. Appel, One-variable equations in free groups, Proc. Amer. Math. Soc. 19 (1968), 912-918.
[2] F. Baader and P. Narendran, Unification of concept terms in description logics, J. Symbolic Computation 31 (2001), 277-305.
[3] J. Barwise (Ed.) Handbook of Mathematical Logic, North Holland (1978).
[4] C. Choffrut, Conjugacy in free inverse monoids, Int. J. Alg. Comp. 3.2 (1993), 169188.
[5] L. P. Comerford and C. C. Edmunds, Products of Commutators and Products of Squares in a Free Group, Int. J. Alg. Comp. 4.3 (1994) 469-480.
[6] T. Deis, Equations in Free Inverse Monoids, Ph.D. Thesis, Univ. of Nebraska (1999).
[7] V.Diekert, C.Gutierrez,and C.Hagenah, The existential theory of equations with rational constraints in free groups is PSPACE-complete, to appear in Information and Computation (2005), 1-45.
[8] J. Doner, Tree acceptors and some of their applications, J. Comput. System Sci. 4 (1970), 406-451.
[9] R.H. Gilman and A.G. Myasnikov, One-variable equations in free groups via contextfree languages, Computational and experimental group theory, Contemp. Math. 349 (2004), 83-88.
[10] C. Gutiérrez, Satisfiability of Equations in Free Groups is in PSPACE, 32nd Ann. ACM Symp. Theory Comput. (STOC'2000), ACM Press 2000.
[11] O. Kharlampovich and A.G. Myasnikov, Tarski's problem about the elementary theory of free groups has a positive solution, Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 101-108.
[12] Mark. V. Lawson, Inverse Semigroups; the theory of Partial Symmetries, (World Scientific 1998).
[13] A. A. Lorents, Representations of sets of solutions of systems of equations with one unknown in a free group, Dokl. Akad. Nauk. SSSR 178 (1968), 290-292 (Russian).
[14] M. Lothaire, Algebraic Combinatorics on Words, (Cambridge University Press 2001).
[15] R. C. Lyndon, Equations in free groups, Trans. Amer. Math. Soc. 96 (1960), 445-457.
[16] G. S. Makanin, Equations in a Free Group, Izv. Akad. Nauk. SSR, Ser. Math 46 (1983) 1199-1273. English transl. in Math. USSR Izv. 21 (1983).
[17] G. S. Makanin, Problem of Solvability of Equations in Free Semigroup, Math. Sbornik 103 (1977) 147-236. English transl. in Math. USSR Sbornik 32 (1977).
[18] S. Margolis and J. Meakin, Inverse monoids, trees and context-free languages, Trans. Amer. Math. Soc. 335.1 (1993), 259-276.
[19] W. D. Munn, Free inverse semigroups, Proc. London Math .Soc. (3) 29 (1974), 385404.
[20] A.L.T. Patterson, Groupoids, Inverse Semigroups, and their \mathbf{C}^{*}-algebras, (Birkhäuser 1998).
[21] M. Petrich, Inverse semigroups, (Wiley 1984).
[22] W. Plandowski, Satisfiability of Word Equations with Constants is in PSPACE, Proc. 40th Ann. Symp. Found. Comput. Sci. (FOCS'99), IEEE Computer Society Press, (1999) 495-500.
[23] M. O. Rabin, Decidability of Second Order Theories and Automata on Infinite Trees, Trans. Amer. Math. Soc. 141 (1969) 1-35.
[24] A. A. Razborov, On Systems of Equations in a Free Group, Math. USSR-Izv. 25 (1985) 115-162.
[25] B. V. Rozenblat, Diophantine theories of free inverse semigroups, Sibirskii Mat. Zhurnal (6) 26 (1986), 101-107 (Russian); english transl. in pp. 860-865.

30 Timothy Deis and John Meakin and G. Sénizergues
[26] H.E. Scheiblich, Free inverse semigroups, Semigroup Forum (4) 29 (1972), 351-359.
[27] P. V. Silva, Word Equations and Inverse Monoid Presentations, in Semigroups and Applications, Including Semigroup Rings, ed. S. Kublanovsky, A. Mikhalev, P. Higgins, J. Ponizovskii, "Severny Ochag", St. Petersburg (1999).

