
PACIFIC JOURNAL OF MATHEMATICS
Vol 118, No 2,1985

EQUATIONS IN PRIME POWERS

D . ESTES, R. GURALNICK, M. SCHACHER AND E. STRAUS (* }

Equations of formpa = (qn — l)/(q — 1) are considered wherep is
prime, q a prime power, and n > 3. These equations occur in group
theory and in number theory in an attempt to construct algebraic number
fields which are arithmetically equivalent but not isomorphic. Algorithms
are sought to determine all solutions when p is fixed.

Suppose p and r are positive prime integers. In this note we are
concerned with solutions

where a, q = rb

9 n are positive integers, n > 3. We will write (Γ) for the
resulting equation when q is an arbitrary integer that is not necessarily a
prime power.

Solutions of (1) have proved to be of interest in classifying finite
groups having non-conjugate subgroups which induce the same permuta-
tion representation, and the associated problem of finding non-isomorphic
number fields with the same Dedekind-zeta function (see for instance [3],
[5], and [9]). When (1) has no solution for a given prime p, then any two
/^-complements in a finite group are conjugate ([5, Corollary 3.2]).

The equations

73 = (83 - 1/8 - 1) and 1772893 = (II 9 - l ) / ( l l 3 - 1)

show that solutions of (1) can occur when q is not itself prime. The
equation I I 2 = (35 - l)/(3 — 1) gives the only known solution of (1)
when a > 2; by [7] it is the only solution when a = 2. It is proved more
generally in [7] that the only solution of y2 = (xn — l)/(x — 1) in in-
tegers occur when n = 4, x = 1 or n = 5, x = 3. One of our results
(Theorem 1) shows that in any solution of (1), n is prime and does not
divide a. The case a = 3 had been settled by Nagel [8] and Ljunggren [6].

(*) Our colleague Ernst Straus passed away during the preparation of this paper, and so it
could not reflect the careful attention he would have given it. We dedicate this paper to his
memory. Ernst Straus had been supported in part by NSF grant MCS-82-03 347.
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Since [8] is so inaccessible, we include a somewhat different version of the

proof (Theorem 2).

Baker's estimates on linear combinations of logarithms allows one to

give finiteness conditions on solutions to (1') (cf [1]). We close with a

discussion of this and some consequences to simple groups.

We would like to thank H. Edgar, D. Shapiro, and A. Van der

Poorten for informing us of certain results in the literature.

We will write (α, β) for the greatest common divisor of two integers a

and β\ this notation will persist with the usual ambiguity up to units when

a and β are in a principal ideal domain. We write Oκ for the integers of a

number field K. If a e K, we write N(a) for the norm from K to Q of

α, Q = rational numbers.

Suppose p is a prime. We denote by υp the additive /?-adic valuation

associated to /?, i.e. vp(m) = a if n = pat, (t, p) = 1. The following is an

easy application of the little Fermat theorem and the binomial theorem;

we omit the proof.

REMARK 1. For any integer q we have

(i) υp{q-\) = Q=*Όp(q>-l) = Q

(ii) vp(q-l)>0=>vp(qr-l) = vp(q-l) + l foτp>2.

As a consequence of Remark 1, (qp — l)/(q — 1) is never divisible by p2

ίorp Φ 2; this is the form in which we usually use Remark 1.

LEMMA 1. In any solution of(Y) we have:

(i) n is prime.

(ii) ifq = r m , then m = ne andp = 1 (mod ne+1).

(iii) pΦ 2.

(iv) p is not a Fermat prime.

Proof. Suppose n = aβ with 1 < α, β. Then

( 2 ) ,
1 ] P q-\ q* - 1 q - 1 *
Hence qa = 1 (mod/?) and so (qaβ - l)/(qa - 1) = β (mod/?). Thus

p\β. Since this holds for an arbitrary divisor of n, it follows that either n is

prime or n is a power of/?.

First assume p = 2. If n is a power of 2, then (as « > 2) by (2) we

have
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However, q2 4- 1 Φ 0 (mod4) and qφ 1, so this cannot hold. If n is

prime, then (qn - l)/(q — 1) is odd. Thus (ii) holds.

We can assume now p > 2. If n is not prime, then by (2) and what

was derived above

As p2 \ (qp - l)/(q - 1) by Remark 1, Z? = 1. But then # = 1 (mod p)

and/? = 1 (mod q), and so g =-(/? — 1), a contradiction. Thus (1) holds

and n Φ p.

Next assume q = rm. To prove the first part of (ii), it suffices to show

that if m is prime then m = n. If not, then

(3) ^ = 77^Γf = Φmn(r)Φπ(r)

where φd(x) is the dth cyclotomic polynomial (an mn th root of unity

which is not an mth root of unity is an nth root of unity). If m Φ p, then

xmn — 1 has distinct roots modulo/?. However, by (3), r is a double root.

Thus m = p. Since φn(r) = 0 (mod /?), rw = 1 (mod p). If r Ξ= 1 (mod /?),

then ρ l (mod p) and so (#" - l)/(q — 1) = n (mod /?), a contradic-

tion as n Φ p. Thus p \ rp — \, and so rΛ/? = 1 (mod pa) by (3). Hence

rn Ξ= 1 (mod z?""1) by Remark 1, and so pa ^ p (mod z^" 1 ) . This implies

a < 2. Hence φw/?(r) = 1, /?, or/?2. If φnp(r) = /?2, then φΛ(r) == 1, which

is obviously impossible. If φnp{r) = 1, then

(/•"̂  - l)(r - 1) = (rp - l )(r" - 1)

by (3). This yields r = 0 (mod r 2 ), a contradiction. If φw p(r) = /?, then

Φ,Λ(O = Φ»(r). Hence (r"p - l)(r - I ) 2 = (r^ - l)(r" - I ) 2 . This is

easily seen to be impossible by considering the r-adic expansion of both

sides.

Next note that if q = rn\ then r"e+1 Ξ= 1 (mod p). However, if q Ξ= 1

(mod /?), then/?α == (^" - \)/{q - 1) Ξ n (mod /?). Thus r has order ne+1

modulo/?, and so/? = 1 (mod ne+ι). This proves (ii).

Finally, note that (iv) follows from (i) and (ii).

THEOREM 1. In any solution o/(l), (a, n) = 1.

Proof, Suppose a = nm and set/ = /Λ Then

Note that/ΞΞ 1 (mod q) since otherwise/" > qn > (qn - l)/(q ~ 1). As

n is prime by Lemma 1, we conclude/has order n (mod q), q = r*. Thus
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n\rh~\r - 1). If r Ξ 1 (mod n) then

a contradiction as/Ξ= 1 (mod «) by Lemma 1. Hence r = n. Now/" = 1

( m o d ^ ) =>f=l ( m o d ^ 1 ) by Remark 1. Thus / - 1 = q{t/n) for

some integer /, and so

By Lemma 1, # = nπ . If λ = 0, then g = n and / = / " = 1 (mod τi),

/ > q, a contradiction as before. Thus λ > 1, and q> nn. Now nn < q <

(n/t)n + l > λ = / = l, s o / - l = ft""1. Since ft is odd (as π is a prime

and ft > 3), this implies / is even and so p = 2. This contradicts Lemma 1

again, and completes the proof of Theorem 1.

Before proving NageΓs result we need a lemma. Let C(n, k) denote

the binomial coefficient.

LEMMA 2. Let 3 Φ p be a prime dividing a. Then vp(C(n9 k)ak) >

vp(C(n,2)a2) for any 2 < k < n.

Proof. If not, then

C(n,k) \ l2C(n-2,k-2)ak-'

k~2In particular, (k - 2)vp(a) < vp(k(k - 1)) < log^ . Then 2*~2 <p

< k, whence k < 4. For k = 3 or 4, the result follows by inspection.

THEOREM 2. (Nagel) If x, y are integers with |x|, \y\ > 1, then yn = x2

4- x 4- 1 has no solutions for n not a power of 3.

Proof. We may assume n Φ 3 is prime. First note (y, 3) = 1 since

9 l ( x 2 + x + 1). Let 7? = Z[ω], ω = e 2 π z / 3 . So in R, yn = (x - ω)

(x — ω2). Also (x — ω, x — ω 2 ) | ( l - ω, y) = 1. Since R is a principal

ideal domain, it follows that

(4) x — ω = ε(a + bω)n

for some unit ε in R and integers a and b. Since the units of R are the

sixth root of unity and (3, n) = 1, we can assume ε = ± 1 . Reading (4)

modulo 6 yields b\ω and so b = ±1.

If n = 2, then x — ω = ε(α 2 + 2αZ>ω 4- ω2), and so 2αέ = 1 + ε.

Thus |αί>| < 1; but this fails for then either a 4- 6ω is a unit or has norm 3.
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Thus n is an odd prime, and so we can take ε = 1. Now (4) also yields
x — ω Ξ= a + bωnmoά n. Hence b = 1 or -1 depending upon whether
n Ξ= 2 mod 3 o r « ^ l mod 3. Moreover, if n = 2 mod 3, a = x mod n.

First consider the case n = 2 mod 3. We obtain

x = (a + ω)n + ω = naω + ω2 + ω Ξ= -1 -f H#CO mod # 2 .

Hence na = 0 mod α2, and so α = ±n, and Λ; Ξ- 1 mod a2. This is a
contradiction as 0 = a = x = -1 mod n.

Now assume /i s 1 mod 3. By replacing x by -x — 1 if necessary, we
also can assume x & 0 mod 3. It follows from (4) that a & 0 mod 3. We
now have

x = (a 4- ω)" + ω = X C(«, i t ) β V ^ + ω.

Since the right side is an integer, the coefficient of ω and ω2 must be the
same. This yields

<*= ΣC(n,k)ak= ΣC{n,k)ak = β,

where / = { ^ 0 mod3|l < k < m) and J = {k = 2 mod3|l < k <
n). If p is any prime dividing a (note p Φ 3), then by Lemma 2,
vp(a) > vp(β). Hence a = ± 1, a contradiction as before.

COROLLARY 1. Equation (1) λαs «6> solutions for n = 3 α«d α # 1.

Proof. This follows from Theorems 1 and 2.
In fact Ljunggren [6] found all solutions toj>3 = x2-f;c + l. As a

consequence, the only nontrivial solutions io yn = x2 + x + \ are n = 3,
y = 7, and x = 18 or -19.

As an application of Theorem 2 we show there are primes p for
which a solution of (1) is impossible other than the Fermat primes (as
noted in Lemma 1). If p — 1 = 2α3^, then (1) has a solution <=>/? =
(q3 — l)/(q — 1) by Lemma 1 and Theorem 2. Thus if p is not of the
form q2 + q + 1 for q a, prime power, then no solution of (1) exists. We
conclude that there is no solution of (1) when p = 19, 37, 109, 163, or
1459.

In fact Theorem 2 makes solutions of (1) effectively computable
for given p when n = 3; one need only check whether p is of
the form q2 + q + I ίoτ q < p & prime power. We remark that 73 =
(183 — 1)/(18 — 1) shows that both Theorems 1 and 2 are false when q
is not restrained to be a prime power.
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The techniques used in the proof of Theorem 2 fail to extend to the

general case for several reasons. The most crucial of these is the fact that

the unit group of the ring of algebraic integers in a cyclotomic field is

usually infinite. However, there is a related problem in quadratic exten-

sions of Q. Suppose a is an algebraic integer of degree 2. When can a and

a" generate the same order? Clearly this occurs if and only if a and an

have the same discriminant Δ. Thus we consider the sequence

where a is the conjugate of a. Hence Z[a] = Z[an] if and only if

an = ± 1 . Note {ak} is a defined by

(6) a0 = 0, aλ = 1, ak+2 = Tak+1 - Nak

where T = a + a is the trace of a and N = aa is the norm of a.

THEOREM 3. Let a be real Then Z[a] = Z[an]for n > 1 if and only if

n = landT = ± 1 .

Proof. By replacing α by +α or ±a if necessary, we can assume

a > \a\. If α = |α|, then ak = 0 for k even and ak > aλ = 1 for 1 Φ k odd.

So a > |δ|. Now (5) yields

i/ϊ"(**+i ~ **) = «*(« " 1) " δ*(δ - 1 ) .

Since αΛ > | δ Λ | and α - 1 > |δ - 1 | if T Φ 1, it follows that ak+ι > ak > 1

for k > 1. If T = 1, a - 1 = -α, and so

vβ"(**+i - **) = - ^ ί ^ " 1 - α^"1) > 0

unless k = 1. Hence for /: > 2, α^ > «2 > 1.

In the imaginary case there are solutions for n = 2,3 and 5. One can

ask whether there are finitely many solutions (α, n). We can give a

complete solution for n = 5.

THEOREM 4. Z[α] = Z[a5] if and only if ±a or ± δ z's 0/?e 0/ fAe

(a) 6 + fΛ9
(b) 6 + 7-331

(d)i/=Γ.

. Consider «5 as defined in (5). Then a5 = Γ 4 - 37VΓ2 + TV2,

where T and iV are the trace and norm of a. Solving the equation a5 = ± 1
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yields

3T2 ± β¥*
(7) N =

Thus 5Γ4 ± 4 = U2. Hence

U2 - 5Γ4

 = £/ - y^Γ 2 £7 + ^ΓΓ =

4 " 2 2 " "

It follows that (U + ]fST2)/2 = ±((1 ± i/5 )/2)* for some A:, and so T2

is a Fibonacci number. However, the only Fibonacci numbers which are
squares are 0,1 and 144 [2]. So T = 0, ± 1 or ± 12. The result now follows
from (7).

Note that Z[a] = Z[α10] only holds for a as in (c). Theorem 4 yields a
result on solutions of y5 = f(x).

COROLLARY 2. Let f(x) be a monic irreducible integral polynomial of
degree 2 with roots a and a. Assume

(a) Z[a] is the maximal order of Q(a),
(b) 5 does not divide the class number ofZ[a\ and
(c) a is not real.

Then y5 = f(x) has no integral solutions for y Φ 1, 2, or 3.

Proof. Supposey5 = f(x) for integers x andy. Hence

y5 = (x — oί)(x — α).

If P is a prime of Z[α] containing both (x — ά) and (x — α), then P
contains α — α and so is ramified. Thus P2 = (m), for m e Z. So y5 ^ P
implies x — α is divisible bym, a contradiction. It follows that x — α and
JC — α are relatively prime. By (b), it now follows that x — α = uβ5 for
some unit w. Since β(α) is an imaginary quadratic extension, u is a fifth
power, and so JC - α = β5. Thus Z[α] = Z[β] = Z[β 5]. Thus by The-
orem 4 and (a), y = ββ = 1, 2 or 3 (corresponding to the solutions in
Theorem 4c and 4d).

Although the existence of units of infinite order leads to many
difficulties in trying to prove nonexistence of solution to (Γ), there are
only finitely many solutions for a fixed p and indeed these solutions can
be found effectively (but not practically). This follows from the main
result in [10]. Shorey and Tijdeman [11] have used the results in [10] to
obtain more general results of the same nature. We sketch a proof of the
finiteness result in our situation since it is a bit more transparent than
[10].
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THEOREM 5. (See [10], [11].) For a given prime p, there are only finitely
many a, q, n > 3 such that

Proof. By Lemma 1, p = 1, mod n. So we can take n fixed. Clearly it
suffices to bound a. Let ω be a primitive nth root of 1. Let L be a finite
extension of β(ω) such that every ideal in Q[ω] becomes principal in L.
Since

and the factors on the right are relatively prime (as (q — ω\ q — ωJ)\
(w, /?")), we must have (p) = (aλ) (an_ι\ where (at)

a = (q - ω')
Choose a basis βl9...,βt for the torsion free part of the group of units of
OL such that |/? | > 1. We can assume q — ω = 7]λa^ where

ill = A W 1 * * A'1'*

β0 generates the roots of 1 in L and 0 < elt < a. Moreover, we shall
assume that q — ωJ = Vjap where aJ and aλ are conjugate. Hence

Vj = β$0 • • • βf"

where |e7,| < ka for some constant k. Now \a"\ — \q — ω'|/|τ7;| <
(Pa/"~1)/\βi • • • βs\

ka- Hence \a,\ < I, where / depends only on p. Thus
by Baker [1, Theorem 3.1], if Λ = log(η1α1Vη7αy

α) for j > 1, then |Λ| >
ca~d for positive constants c, d depending only on p. Thus,

ca-"<\A\ = log 1 +
q — ωJ

This bounds a and proves the result.

4o n /a

COROLLARY 3. If p is an odd prime, there are only finitely many simple
groups which have a p-complement (i.e., a subgroup of order prime to p and
of index a power ofp).

Proof. This follows from the list of simple groups with subgroups of
prime power index in [4] and the theorem.

Corollary 3 will hold for p = 2 if and only if there are finitely many
Mersenne primes.

We finish with a related question. Does the set of primes p for which
(1) has a solution have density zero; for this it is sufficient to take a > 2,
and there is only one known solution (p = 11).
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