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Various properties of the equations of collective submanifold derived in part I are investigated. 
Especiaily, it is stressed that the equations are invariant for any canonical transformation of collective 
coordinate system and for symplectic transformation of intrinsic coordinate system. Further, initial 
condition for solving the equations is shown. 

§ 1. Introduction 

In part I, equations of collective submanifold were given with the help of the time
dependent Hartree-Fock theory in a canonical form which is combined with a certain 
canonical transformation}) They consist of two types. One is called the first equation 
and, by solving it, we can pick up the collective degree of freedom from a many-body 
system. The other is called the second one. If the solution is obtained, we can determine 
the intrinsic degrees of freedom. As was mentioned in part I, the first equation is of the 
same form as that we already obtained in a method different from that in part I.2) The 
second is a set of linear partial differential equations. On the other hand, the second 
equation which we obtained previously is non-linear.2) Therefore, a new one is expected 
to be practically useful. 

As was stressed by the present authors, the first equation is canonically invariant with 
respect to any canonical transformation for the collective variables.3) From this fact, we 
could derive a unique solution in contrast to the discussion, for example, given by 
Mukherjee and Pal.4

) If we follow their discussion, we cannot get the unique solution. 
The reason comes from the lack of the viewpoint of canonical invariance. This suggests 
that it is inevitable for obtaining the solution to investigate the property of the equations 
in relation to the canonical transformation. 

The main aim of part II is to investigate various properties of the second equations. 
As was clear from the experience on the·first equations,3) ~llch an investigation gives.us 
important help for obtaining the solution of the second equations. In the present case, not 
only the canonical invariance for the collective degree of freedom but also that for the 
intrinsic degrees of freedom are interesting. As an important conclusion, the second 
equations are invariant with respect to arbitrary canonical transformation for the col
lective and the symplectic transformation for the intrinsic degrees of freedom. From this 
conclusion, we have an idea how the coordinate system is specified. Through solving the 
first equations, we could specify the collective coordinate system.3) In the same way, the 
intrinsic coordinate system is specified through the solution of the second equations. 

In the next section, we will make a discussion on the canonical invariance of our basic 
relations. In § 3, the second equation of collective submanifold obtained in part I will be 
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transformed. From this transform, the relation between the second equation of collective 
submanifold and the second condition of canonical transformation,is clarified. Section 4 
will be devoted to general discussion on the specification of coordinate system. Finally, 
in § 5, we will give the initial condition for the second equation. The present paper is the 
second part of the series. Then, hereafter, part I will be referred to as (I). 

§ 2. Canonical invariance 

By solving the first and the second equations of collective submanifold given in Eqs. 
(I ·4·17) and (I ·4·19), respectively, we can separate the whole degrees of freedom into the 
collective and the intrinsic ones. Needless to say, the first and the second conditions of 
canonical transformation shown in Eqs. (I. 4·2) and (I. 4·4), respectively, are also neces
sary. Therefore, our present main interest is concerned with the problem how to solve 
them. For the preparation of this task, we will investigate canonical invariance property 
of the equations of collective submanifold. 

In (I), we mentioned that coordinate systems obeying the condition Hd=O are con
nected with one another through relations (I. 4 ·14), (I. 4 ·15) and (I. 4 ·16) for (qf, P f) , 
(qm, Pm; m* f) and (a, 7[), respectively. Further, we introduced new variables (Q, P), 
which we called collective variables, through Eqs. (I ·4·22). Under the approximation 
adopted in (I), we can prove the following relation: 

aQ' ap' aQ' ap'_ 
aQ . ap - ap . aQ -1 . 

Here, Q' and p' are defined by 

P'=7['+p/ . 

(2·1) 

(2· 2) 

Relation (2·1) means that the transformation (Q, P) -> (Q', P') is canonical. On the other 
hand, as is clear from Eqs. (I ·4·15), the transformation (qm, Pm; m* f) -> (qm', Pm'; m* f) 

is also canonical, i.e., symplectic transformation. This fact tells us that the coordinate 
systems obeying Hd=O are connected through arbitrary canonical transformation for the 
collective and symplectic transformation for the intrinsic degrees of freedom. Main aim 
of this section is to investigate transformation property of the equations of collective 
submanifold and the conditions of canonical transformation with respect to the above
mentioned two types of the canonical transformations. 

Let us start from the discussion concerning the collective degrees of freedom. It is 
enough to investigate the case (a, 7[) -> (a', 7['), which obeys relations (I. 4·16). Under the 
relation (I. 4 ·16), the following relation can be easily derived: 

(2·3) 

Here, X and Yare arbitrary functions of (a, 7[) and, for example, X' represents 

X=X(a7[) =X(a(a' 7[') 7[((l 7[')) =X'(a' 7[') =X' . (2· 4) 

Relations (2·3) mean that the form Z(a7[) is invariant for any canonical transformation 
of (a, 7[). The left-hand sides of Eqs. (I·4-2b) and (1-4-17) are three examples of the 
form Z( a7[). Therefore, they are invariant under the transformation (a, 7[) -> (a', 7['). 
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In other words, the first equations are canonically invariant for the collective degrees of 
freedom. Next, we contact with the second equations. The unknown functions Arm, 
Brm, Crm and D rm (r=l, ... , j; m=l, ... J -1) are determined by Eqs. 0 ·4·4) and (I ·4·19). 
The first terms of the left-hand sides of Eqs. 0 ·4·19) are the examples of the form Z(a7f) 
and the coefficients of Asm, etc., in the second terms are also of the form Z(a7f). 
Therefore, Eqs. 0·4·19) are invariant for the transformation (a, 7f)-4 (a',7f'). If Arm, 
etc., satisfy Eqs. (I. 4·4) in the coordinate system (a, 7f), they also obey Eqs. (I. 4·4) in 
(a', 7f'). Therefore, we can conclude that the second equations are also canonically 
invariant for (a, 7f) -4 (a', 7f'). 

N ext, we investigate the case of the intrinsic degrees of freedom. In this case, as was 
already mentioned, the symplectic transformation is essential. Since the first equations 
do not connect with this transformation, we investigate the second equations. We 
express Qr(l) and Pr(l), which are given in Eqs. (I ·4·7) for the (q, p) coordinate system, as 
the following forms for the (q', p') coordinate system: 

(2· 5) 

With the use of relations (I ·4·15), the following equations are obtained from Eqs. (I ·4·7) 
and (2·5): 

f-l _ _ 

A~m= ~ (ArnDmn-CrnBmn) , 
n=l 
f-l _ _ 

B~m= 1: (BrnDmn- DrnBmn) , 
n=l 

Further, we impose the conditions 

AAmn=ABmn=ACmn=ADmn=O. 

(2·6) 

(2· 7) 

Then, we can see that A'rm, etc., satisfy the same forms as those given in Eqs. (I·4·19). 
The operator A' is equal to A and, for example, A' A~m is given as follows: 

. (2·8) 

Here, the conditions (2·7) were used. Substituting Eqs. (1·4·19) into the parts of AArn 
and ACrn and, then, using Eqs. (2· 6), we can see that A' A~m is of the linear combination 
of A~m and B~m and the coefficients are identical to those of AArm. Further, with the use 
of relations (I. 4 ·15a) and (2·6), we can prove that relations (I. 4·4) hold for A'rm, etc. 
For the above-mentioned reason, the second equations are canonically invariant for the 
symplectic transformation with conditions (2·7). Conditions (2·7) will play an essential 
role for the determination of Arm. 

Thus, we learned that the first and the second equations are invaricnt under any 
canonical transformation for the collective and the symplectic transformation for the 
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intrinsic coordinate system. This fact is quite important: The collective submanifold is 
independent of the choice of coordinate system. Therefore, as was already stressed by 
the present authors,3) we have freedom of choosing the coordinate system, with the use of 
which the collective submanifold is expressed. 

§ 3_ Transform of the second equation of 
collective submanifold 

The quantites Arm, Brm, Crm and D rm are determined by solving Eqs. 0-4-4) and 
(I -4 -19). However, the number of the equations is excess of that of the unknown 
quantities. Therefore, it is necessary to investigate if these equations are compatible or 
not. 

For this aim, we introduce the following set of partial differential equations: 

AJl + ~[ aQr A ap8 - aQr A ap8]Jl - ~[ aQr A aQ8 - aQr A aQ8]93 =0 
rm 8 aa aJ[ aJ[ aa 8m 8 aa aJ[ aJ[ aa 8m , 

A93 + ~[aPr A ap8 - aPr A ap8]Jl - ~[aPr A}Q8 - aPr A aQ8]93 =0 
rm 8 aa aJ[ aJ[ aa 8m 8 aa aJ[ aJ[ aa 8m , 

A C + ~[ aQr A ap8 - aQr A ap8 ] C - ~[ aQr A aQ8 - aQr A aQ8]!1J =0 
rm· 8 aa aJ[ aJ[ aa 8m 8 aa aJ[ aJ[ aa 8m , 

A!1J m+ ~[aPr A ap8 - aPr A ap8] C - ~[aPr A aQ8 _}Pr A aQ8]!1J =0. 
r 8 aa aJ[ aJ[ aa 8m 8 aa aJ[ aJ[ aa 8m 

(3-1) 

It can be proved from Eqs. (3 -1) that Jl rm , 93 rm, C rm and !1J rm satisfy 

A~( Jl rm a:; -93 rmla~r )=0, A~( Jl rm ~r -93 rm aa~8 )=0 '} 

A~(C aPr /1) aQr)-o A~(C aPr /1) aQr)-o "'7 rm aa -:v rmaa -, "'7 rm aJ[ -:v rm----a;r - . 

Further, under relations (3-2a), we have 

A~(Jlrm93rn-93rm. Jlrn):O 'I 
A~( C rmfD rn-!1J rm ern) -0, 

r 

A~(Jlrm!1Jrn-93rmC rn)=O. 
r 

(3-2b) 

The set of partial differential equations (3 -I) can be rewritten in terms of the 
variables (H, r) obtained from (a, J[) through the relation 

(3- 3) 

The variable H denotes the Hamiltonian determined by the first equations in terms of 
(a, J[) and, therefore, r is a momentum conjugate to H. In the variables (H, r), the 
oper-ator A is expressed by 

a 
A=-ar· (3-4) 
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The coefficients of the linear combinations for Jl rm , etc., are functions of (H, r). 
However, Eqs. (3 ·1) are ordinary differential equations for the variable rand H plays a 
role of parameter in these equations. Then, by solving Eqs. (3 '1), we have the following 
type of solution: 

Jl rm = Jl rm ( r; Hlalm' 'arf/31m' '/3fm) , I 
fl3 rm =f13 rm (r; Hlalm' 'afm/31m' '/3fm) , 
C rm= C rm(r; HI'Ylm' ''YfmOlm' 'Ofm) , 
fDrm=fDrm(r; HI'Ylm' ''YfmOlm' 'Ofm) , 

(3·5) 

Here, arm, /3rm, 'Yrm and Orm (r=l, "', f) are the integral constants and they are fixed, for 
example, by equating the values of Jl rm, etc., at r = 0 to certain values which we denote 
Jl<,tJh, fl3<,tJh, C<,tJh and fD<,tJh. This is nothing but the initial condition for Eqs. (3·1). Thus, 
we can determine Jl rm , etc. Let Jl<,tJh, etc., satisfy the same relations as Eqs. (1·4·4) with 
oQr/oa, oQr/OJ[, OPr/oa and OPr/OJ[ at r=O: 

~(Jl<,tJh( 0Jar)o -f13<,tJh( °o~r )J=O, 
~( C<,tJh( arar 

\ -fD<,tJh( °o~r )J=O, 

~(Jl<,tJhf13<,tJJ-f13<,tJhJl<,tJJ) =0 I 
~( C (0) fD(O) - m(o) C (0») -0 ' 
L..J rm Tn :;v rm Tn - , 

r 

~(Jl<,tJhfD<,tJJ- fl3<,tJh C<,tJJ) = Omn . 
r 

~(Jl<,tJh( a:; \ -f13<,tJh( °o~r )J=O '} 
~(C(o)(oPr) -fD(O)(~) )=0 "'i:' rm OJ[ 0 rm OJ[ 0 ' 

(3·1a) 

(3·6a) 

Here, (OPr/oa) 0, etc" denote the values of oPr/oa, etc., at r=O. Then, noting the 
differential operator (3·4) and Eqs. (3'2), we can see that Jl rm , etc" at any value of r 
satisfy also the same forms as Eqs, (1·4·4). From the above discussion, we get a 
conclusion that the set of Eqs, (3'1) has a solution which is compatible with Eqs, (1·4·19). 

Under the above preparation, we contact with the second equation (1·4 ·19). The set 
of equations can be rewritten as 

AA rm + ~[ OQr A oPs - OQr A oPs JA - ~[oQr A oQs - oQr A oQs JB 
s oa OJ[ OJ[ oa sm s oa OJ[ OJ[ oa sm 

+( OQr , 0
2 
H _ oQr. 0

2 
H )~(A OPs _ B oQs) 

oa OJ[2 OJ[ oaoJ[ s 8m oa sm oa 

_(oQr. 02H _ OQr. 02H)~(A OPs_ B oQs)-O 
oa oaoJ[ OJ[ oa2 s sm OJ[ sm OJ[ - , 

ABrm+ ~[oPr A oPs - OPr A oPs JA - ~[oPr A oQs - OPr A fJQs JB 
s oa OJ[ OJ[ oa sm s oa OJ[ OJ[ oa sm 
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ACrm+ ~[oQr A oPs - OQr A oPs]C - ~[oQr A oQs _ oQr A oQs]D 
s 00: oJ[ oJ[ 00: sm s 00: OJ[ OJ[ 00: sm 

+(oQr.oZH_oQr.oZH)·~(C oPs_ D oQs) 
00: oJ[z oJ[ oo:oJ[ s sm 00: sm 00: 

_( oQr. oZH _ oQr. oZH )~(C oPs _ D oQs )-0 
00: oo:oJ[ OJ[ oo:z s sm OJ[ sm OJ[ - , 

(3· 7) 

From the comparison of Eqs. (3·7) with Eqs. (3'1), we can see that, as a possible set of 
solutions of Eqs. (I. 4 '19), there exists the following: 

Arm=.Jl rm , Brm=!B rm , Crm= C rm, Drm={f}rm. (3'8) 

Clearly, .Jlrm , etc., are the solutions of Eqs. (3·1) with the initial conditions (3'6). Since 
the solutions satisfy Eqs. (I. 4· 4), Eqs. (I. 4·4) and (I. 4 ·19) are compatible with each other. 

§ 4. Specification of coordinate system 

In § 2, we have shown that the equations of collective submanifold are canonically 
invariant. This is a quite natur,al fact, because the collective submanifold does not 
depend· on the choice of its coordinate system. However, it is necessary to fix the 
coordinate system in order to express the Hamiltonian in a concrete form. For the case 
of the collective coordinate system, we have already discussed our basic idea in some 
papers.Z

),3) Then, for the completeness of the paper, first, we will mention briefly the 
specification of the collective coordinate system. 

Let us discuss a typical example. We note H(o:, J[) (or H(Q, P)) given in Eq. 
0·4,20) (or Eq. 0·4·21)). This is a function of only (0:, J[) (or (Q, P)) through Qr(O:J[) 
and PAO:J[) (or Qr(QP) and Pr(QP))' Therefore, we call H the collective Hamiltonian 
and, hereafter, we denote it as Hcon. Our task is to determine Hcon concretely. A 
practical method is to obtain it successively from the lower to the higher terms in the 
framework of power series expansion for J[: 

(4·1) 

Here, we assumed that Hcon is stationary at the point O:=J[=O. Practically, we have to 
stop the expansion at a finite power. Therefore, it is undesirable that the power, at which 
we stop the expansion, changes if we view from another coordinate system. Of course, it 
connects to the original by a canonical transformation. The point transformation, which 
is shown in the following, satisfies this condition: 
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7[ 

df(a) , 
da 

where f( a) is an arbitrary function. 

589 

(4· 2) 

Keeping the invariance property of expansion (4·1) in mind, let us consider how to 
solve the first equations 0·4·2b) and 0·4·17). As was already mentioned, they are 
invariant for any canonical transformation. Therefore, in the framework of Eqs. 
0·4·2b) and 0·4, 17), it is impossible to specify the coordinate system in one special type. 
Then, instead of Eq. 0·4· 2b), we adopt Eqs. 0·4· 2a), from which Eq. 0·4· 2b) is derived. 
In this case, Eqs. 0·4 ·17) and 0·4· 2a) with W = ° are not invariant for any canonical 
transformation, but the point transformation (4·2). Therefore, in the framework of Eqs. 
0·4·17) and 0·4·2a) with W=O, we can specify the coordinate system except the choice 
of the function f(a) in Eqs. (4·2). In order to fix f(a), we set up M(a) =1, where M(a) 
appears in expansion (4·1). By adopting the condition that the small amplitude limit is 
reduced to the random phase approximation, we can solve the first equations. This is the 
outline of the specification of the collective coordinate system, which we have discussed in 
other papers.2),3) 

Main interest of this paper is how to specify the intrinsic coordinate system. As an 
interpretation of the solution (3·5), we mentioned that, in order to solve the second 
equations, it is necessary to give, as the initial condition, Jl<J!ln, etc; satisfying Eqs. (3·6). 
The total number of Jl<J!ln, etc., is 4f(j -1) and the number of Eqs. (3·6) is 2(j -1)2+3(j 
-1). Therefore, 2(j-1)2+(j-1) of Jl<;!ln, etc., are free and we cannot fix all of Jl<J!ln, etc. 
Further, we do not have any additional condition for fixing all of them. It seems for us 
that our theory is not self-contained. However, this question can be solved. We should 
remember that, if a set of certain Arm, etc., is a solution of the second equations, the set 
of A'rm, etc., satisfying relations (2·6) and (2·7) is also a solution. The parameters A mn , 

Bmn , Cmn and Dmn , which are independent of r, are related to the symplectic transforma
tion 0·4·15) and obey relations 0·4·15a). The number of Amn, etc., is 4(j_1)2 and the 
number of the relations (4·15a) is 2(j -1)2- (j -1). Therefore, 2(j _1)2+ (j -1) of Amn , 

etc., are free. The number 2(j -1) 2 + (j -1) is equal to that in the case of Jl~~, etc. This 
means that, as a result of the canonical invariance, a general solution of the second 
equations contains 2(j -1) 2 + (j -1) parameters and our theory is self-contained. From 
the' above analysis, it is necessary to introduce a condition for fixing all of Jl<J!ln, etc., from 
the outside. With the aid of the condition, we can specify the intrinsic coordinate system. 

§ 5. Initial condition for the second equation 

As was already mentioned in § 4, the specification of the intrinsic coordinate system 
is reduced to giving all of Jl<J!ln, 93<J!ln, C <J!ln and fl)<J!ln which playa role of the initial condition 
for the second equation. Needless to say, they obey the conditions (3·6). Main aim of 
this section is to give a concrete form of the set Jl<J!ln, etc., obeying Eqs. (3·6). 

First, we introduce the following 2f-dimensional matrix r: 

(5·1) 
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Here, K, L and.M are I-dimensional matrices, the elements of which are given by 

Krs=ors-[(~) (aps) _( aQr) (aps) ], 
aa 0 alf 0 alf 0 aa 0 

Lrs=(~) (~) -(~) (aQs) , aa 0 alf 0 alf 0 aa 0 

Mrs=( aPr) (aps) _( aPr) (aps) . 
aa 0 alf 0 alf 0 aa 0 

Clearly, Land M satisfy 

LT=-L, MT=-M. 

(5· 2a) 

(5·2b) 

(5·2c) 

(5·3) 

With the use of the first condition of canonical transformation (I. 4· 2b), we can prove 

(5·4) 

The above relations tell us that the matrix r is an idempotent matrix and 2 and 2(j -1) 
eigenvalues are zero and one, respectively. The following relations are easily derived: 

rr (~~ )01 =0 

( 
ap) , 
aa 0 

(5· 5) 

Here, the column vectors consist of (aQI/aak··(aQf/aa)O, (aPI/aa)o···(aPf/aa)o and 
(aQI/alf)o···(aQf/alf)O, (aPI/alfk··(aPf/alf)o. Further, Jl~k, etc., satisfying the condi
tions (3·6a) obey 

(5·6) 

The interpretation of the notations may not be necessary. 
Now, let us suppose that Jlm(O), etc., satisfy the following relations: 

rT !J(O)r m 
[ 

Jl (0)] 
!B m(O) [ 

fl) m(O) ] 
=Qm _ C m(O) , (5·7a) 

rT !J(O)r m [ 
c (0)] 
fl) m (0) [ 

-!Bm(O)] 
- Jlm(O) . (5·7b) 

Here, !J(O) is a 2/-dimensional matrix defined by 

!J(O) = QQ , QP 
[ 

!J(O) !J(O) ] 
!J(Wb, !J(<t~ , (5·S) 

( 11(0») _( aZ!J() (t1r(0») _( aZ!J( ) } Jt.QQrs- aQraQs 0' Jt.QPrs- aQraps 0' 

( 11(0») _( aZ!J() (11(0») _( aZ!J( ) 
Jt.PQ rs- apraQs 0' Jt.PP rs- apraps o· 

(5·Sa) 
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The quantities of the right-hand sides of Eqs. (5·8a) are given by substituting r=O to those 
shown in Eq. (I ·4·10c). Later, we will determine Qm. For a moment, we assume that if 
m-=t n, Qm-=tQ n and all Q m -=to. Then, with the use of the transpose of relations (5·5) and 
Eqs. (5·7), relations (3·6a) can be derived. Further, if m-=t n, we can prove relations 
(3·6b). In the case m= n, the first and the second of Eqs. (3·6b) are trivial and the the 
third is used for the normalization. Therefore, the solution of Eqs. (5·7) gives us the 
initial condition for the second equation. 

Thus, our problem is reduced to solving Eqs. (5·7). 
following eigenvalue equations for the eigenvalue Q m : 

These equations become the 

] TrT !J{(O)r,]TT !J{(O)r[ Jlm(O)] =Qm[ Jlm(O)] 
iBm(O) iBm(O) , (5·9a) 

] TrT !J{(O) r,]rT !J{(O)r m =Q m [ 
c (0)] [ c (0)] 
!J) m (0) in!J) m (0) 

(5·9b) 

Here, ] is a 2/-dimensional matrix defined by 

]=[ -~ ~l· (5·10) 

The symbols 0 and 1 denote I-dimensional null and unit matrices, respectively. There
fore, if we solve the eigenvalue equations (5·9), our task finishes. As is clear from Eqs. 
(5·9), there exist two independent eigenvectors for each eigenvalue. Also, Eqs. (5·5) tell 
us that the matrix ]TrT !J{(O)r]r T !J{(O)r has two independent eigenvectors with 
eigenvalue O. Therefore, it is enough to pick up the eigenvectors with non-vanishing 
eigenvalues. 

Finally, we will mention briefly the small amplitude limit of the initial condition. In 
this limit, (Q r/ aa) 0 and (ap r/ ale) 0 become certain constants which relate to the collective 
solution of the random phase approximation for the first equation. Further, (aQr/a7f)o 
and (aPr/aa)o vanish.2

) Then, relations (3·6) are reduced to the ortho-normalization 
conditions of the random phase approximation. Therefore, in the small amplitude limit, 
the initial condition becomes non-collective solution of the random phase approximation 
automatically. In the near future, we will report some numerical results based on the 
present method. 
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