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Abstract. Starting from the principle of virtual work, this paper states and estab-
lishes an extended version of D’Alembert’s Principle. Using this extended principle and
elementary linear algebra, it develops, from first principles, the explicit equation of mo-
tion for constrained mechanical systems. The results are compared with the authors’
previous results. The approach points to new ways of extending these results.

1. Introduction. In the first part of this paper, we state and prove an extended ver-
sion of the principle of D’Alembert. This principle does not appear in any of the standard
treatises on analytical dynamics such as those by Whittaker (1904), Pars (1979), Gant-
macher (1964), Neimark and Fufaev (1968), Goldstein (1980), and Rosenberg (1993).
Arnold (1980) alludes to it in his third volume on Dynamical Systems but he does not
provide a rigorous physically-based argument rooted in the fundamental postulate of the
principle of virtual work for its validity, as we do here. However, from a close and careful
reading of Gauss (1829) and Gibbs (1879) it appears that both Gauss and Gibbs may
possibly have been aware of the extended form of the result we present here; yet, neither
mentions the principle explicitly in his writings, nor establishes it.

In the second part of this paper we show that the explicit equations of motion for
nonholonomically constrained mechanical systems with regular Lagrangians can be ob-
tained in a straightforward manner through the application of this extended principle.
The constraints we consider include those that depend explicitly on time and/or non-
linearly on the displacements and velocities. The results encompass conservative and
nonconservative systems.
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Work on constrained Hamiltonian systems was first initiated in this century by Dirac.
In a series of papers, Dirac (1950, 1958, 1964) developed the Poisson bracket approach
where he dealt with Hamiltonian systems with singular Lagrangians. Through a se-
quential determination of primary and secondary constraints and the enforcement of
(weak) consistency conditions, Dirac (1964) provided a procedure or algorithm for ob-
taining the Lagrange multipliers that describe the total Hamiltonian of the constrained
system. (See also Hanson, Regge, and Teitelboim, 1976.) The approach presented in
this paper is entirely different; unlike Dirac, our approach does not aim at determining
the Lagrange multipliers that describe the total Hamiltonian of the system. Our result
differs from that of Dirac in that it is applicable to regular Lagrangians, and systems
which may be nonconservative and which may be subjected to constraints that depend
explicitly on time. The explicit equations of motion governing constrained mechanical
systems obtained in this paper, though shown to be equivalent to the explicit equations
obtained earlier (Udwadia and Kalaba, 1992), shed new light on the fundamental nature
of constrained motion and point to new ways of extending previoué results.

Consider, for simplicity, an unconstrained system of n particles whose configuration at
time ¢ is described by the Cartesian rectangular coordinate 3n-vector x = [z,z5 - - 3] T
The masses m;, i = 1,2,...,n, of the n particles will be taken to be constants. By uncon-
strained we mean that the 3n Cartesian coordinates used to describe the configuration
of the system at any time ¢t equals the number of degrees of freedom of the system. The
equation of motion for such a system at time ¢ may then be written, using either the
Lagrangian or the Newtonian approach, as

Mk = F(x, %, t) (1)

where the 3n by 3n diagonal matrix M is a known positive definite matrix and the
vector F constitutes the 3n-vector of the given force. The vector F is assumed to be
a known continuous function of its arguments. From (1), the “scaled” acceleration,
as(t) = M'/?%(t), of the unconstrained system can be expressed as A/ ~!/2F. We note
for future reference that were the vectors x(t) and %x(t) to be known at a given time ¢,
a,(t) would be known.

We now assume that this system is further constrained by the m consistent constraints

wilx,%,t) =0 i=1,2,...,m (2)

of which k < 3n are independent. We note in passing that the functions ¢, could involve
the #)s in a nonlinear manner. Assuming that Eqs. (2) are sufficiently smooth, we
differentiate them with respect to ¢ to obtain the linear set of equations

A(x, x,t)% = b(x, %, ) (3)

where the matrix A is m by 3n and has rank & at time ¢. Thus A and b are known
functions of their arguments. We assume that they are continuous functions of their
arguments; also, that x, x, and x are smooth functions of time. Given a set of initial
conditions x(0) and %(0) that satisfy the constraint equations (2) we shall determine,
from first principles, the equations of motion of the constrained system as defined above.
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The presence of the constraint set (2) brings into play forces of constraint, F¢(x, x, t),
so that the equation of motion at time ¢ of the constrained system can be expressed as

M% = F(x,%,t) + FO(x, %, t), (4)

where x, x, and % refer now to the 3n-displacement, velocity, and acceleration vectors re-
spectively, at time ¢ of the constrained system that has been described above. To explicitly
determine the constraint force F¢(x,%,t), we shall utilize an extension of D’Alembert’s
Principle. In the next section we establish this result.

Extended version of D’Alembert’s principle. We begin with a statement of
the extended version of D’Alembert’s Principle. Under the assumption that x(t), x(¢),
%(t), and F are smooth functions of time, at every instant of time ¢, the motion of the
mechanical system described above proceeds in such a manner that

V vectors v such that A(x(t),x(t),t)v =0, vTF¢(x(t),%(t),t) =0, (5)

where the m by 3n matrix A and the 3n-vector F¢ are as defined earlier in Egs. (3) and
(4) respectively.

An alternative geometric statement of this new principle is as follows.

At each instant of time, the force of constraint F¢ must be orthogonal to every vector
v that belongs to the null space of the matriz A at that time.

We note that:

1. this statement differs from the usual statement of D’Alembert’s Principle (e.g.,
Pars, 1979, p. 23) in that the matrix A corresponds to the matrix obtained by
differentiating the constraint equations (2) with respect to time, as indicated in
equation (3);

2. the matrix A is a function of x and ¢, as well as of x since the p;’s are, in general,
allowed to be nonlinear functions of the &;’s; and

3. when the constraints are linear functions of %, the extended Principle coincides
with the standard statement of D’Alembert’s Principle, as delineated, for example,
in Pars (1979).

Starting from the basic postulate of D’Alembert! (D’Alembert, 1743; Lagrange, 1788),

we establish statement (5) as follows.

We assume that at any given instant of time ¢, the displacement x(t) and velocity x(t)

are known. Now at the instant of time immediately after ¢, that is at time ¢ + dt, the
actual displacement of the constrained system can be written as

x(t + dt) = x(t) + (dt)x(t) + @i(t) +O(dt?), (6)

'D’Alembert stated his principle for a single rigid body around 1743. Lagrange realized its significance
and universality of application, and around 1760, stated it in the form that we generally use today.
Though. it might be better called the Lagrange-D’Alembert principle, we call it here by its customary
name, simply as D’Alembert’s principle.
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where dt is an infinitesimal quantity. Also, a possible displacement, that is, a displacement
that satisfies the constraint set (2), at that same instant of time can be expressed as

. (dt)? . 3
u(t + dt) = x(t) + (d)x(0) + (1) + O(ar). (7)

The vector i(t), though arbitrary, is not entirely so, for it must be such that the con-
straints are satisfied. We note that since x(t) and x(¢) are assumed known, u(t) = x(¢),
and u(t) = x(t) in Eq. (7).

A virtual displacement w at time ¢ + dt is any displacement from the actual configu-
ration of the system to a possible configuration. We hence have

(dt)®
2

w(t+dt) =u(t +dt) —x(t+dt) = [i(t) — x(t) + O(dt)]. (8)

Since u(t) = x(¢) and a(t) = %x(t), u(t) and a(t) automatically satisfy the equation
set (2) at time ¢; it is therefore the future positions of the system that must form the
subject of our inquiry. What interests us then is finding the condition that equation set
(2) is satisfied by (i) every possible displacement and, (ii) by the actual displacement at
the instant immediately succeeding time ¢, namely at time ¢ + dt. Using a Taylor series
expansion of the set (2) about the time ¢ and noting that d¢ is infinitesimally small, this
naturally requires that Eq. (3) be satisfied at time ¢ by every possible motion, as well as
by the actual motion.

Hence, we require that

and
A(u(t),a(t), t)i(t) = b(u(t), u(t),t). (10)

Noting that u(t) = x(t) and u(t) = %(t), Eq. (10) then leads to
A(x(t),%(t), t)a(t) = b(x(t),x(t), 1), (11)

and subtracting Eq. (9) from Eq. (11) yields
A(x(t), (), £)[ia(t) — %(t)] = 0. (12)

Hence, for u(t + dt) to represent a possible displacement, and therefore for w(t + dt) to
represent a virtual displacement, t(¢), while otherwise arbitrary, must satisfy Eq. (12).
Denoting the vector [ii(t) — x(¢)] by v(¢), every virtual displacement w(t + dt) at time
t + dt must be such that Eq. (12) is satisfied, i.e., such that at time t, Av = 0.

Next we show that corresponding to any given vector v at time ¢ for which Av = 0,
there exists a virtual displacement vector w(t + dt). We can write u(t) = %(¢) + v and
use this value of ii(¢) in the right-hand members of expressions (7) and (8) to yield the
vectors u, (¢t + dt) and w (¢ + dt) given by

u; (t +dt) = x(t) + dtx(t) + (%(t) + v) + O(dt?) (13a)

(dt)®
2



CONSTRAINED MECHANICAL SYSTEMS AND D’ALEMBERT’S PRINCIPLE 325

and
(dt)®
wi(t+dt) = - [v + O(dt)]. (13b)

Equation (13) yields i, (¢) = [X(t) + v]. Since Av = 0, in view of (3), we get Au,;(t) =
A(x%(t) +v) = b. This shows that 1;(¢) satisfies Eq. (11) and hence that the two vectors
u, (t + dt) and w;(t + dt) constitute a set of possible and virtual displacement vectors
respectively.

We have therefore shown that for any virtual displacement vector w(t + dt), there
exists a vector v(t) such that Av = 0 at time ¢, and vice-versa.

D’Alembert’s Principle states that at every instant of time, the work done by the force
of constraint F¢ under any virtual displacement w must equal zero. This implies that

wl(t 4+ dt)[Fipa = 0, (14)

where the subscript denotes that the quantity F¢(x,x,t) is evaluated at time ¢ + dt.
Using Eq. (8) and noting that dt # 0 this simplifies to

[(t) — %(t) + O(dt)] " [F)erar = 0. (15)

Under our assumptions, the force of constraint F¢ is continuous. Now taking the limit
in Eq. (15) as dt — 0 yields

() — %) T[F]e = v(t) " [F), =0, (16)
and statement (5) follows.

Equations of motion for constrained systems. Let us assume that at some given
time ¢, the vectors x(t) and x(t) are known, and are compatible with the constraints (2).
The basic problem of analytical mechanics then reduces to determining the acceleration
#(t) of the constrained system so that it is consistent with equation set (2) and with
D’Alembert’s Principle. It what follows we shall, for brevity, drop the arguments of the
various vectors and matrices, except where their inclusion is essential to our understand-
ing.

We begin by premultiplying equation (4) by M ~1/2 yielding an equation in the “scaled”
acceleration, M/2%(t), of the constrained system at time ¢ which we denote by &,(t).
Thus we obtain the set of 3n equations

%,(t) ~ FS = a, (1) (17)

where we have denoted the “scaled” force of constraint M ~'/?F¢ by F¢, and the “scaled”
acceleration, M ~1/2F, corresponding to the unconstrained system by as(t). Under our
assumption that x(t) and x(¢) are known, a,(¢) is known. Denoting by B the matrix
AM~1/2 the constraint equation at time ¢ can be expressed as

Bk, =b (18)



326 FIRDAUS E. UDWADIA. ROBERT E. KALABA., anp EUN HEE-CHANG

where the m by 3n matrix B and the m-vector b, being dependent on the known quan-
tities ¢, x(t), and x(¢), are known.

Since M is a positive definite matrix, the rank of the matrix B at time ¢ is k. Consider
the 3n —k linearly independent 3n-vectors v;,7 = 1,2,...,3n—k that span the null space
of B. Let the 3n by (3n —k) matrix V be denoted by [vivy -+ - vy, x]. At time ¢, relation
(5) can then be restated as

VIFS =0 (19)

where V is such that BV = 0. Equation (19) yields a set of (3n — k) equations.

In order to determine the equation of motion of the constrained system at time ¢, we
need to determine the 3n-vector X, and the 3n-vector F¢—a total of 6n unknowns. We
have thus encapsulated the problem of determining, at time ¢, the equation of motion
for a constrained mechanical system in terms of solving the linear equations (17), (18),
and (19), along with the condition that the matrix V satisfy the relation BV = 0.

We begin by stating our result.

(a) The acceleration at time ¢ of the constrained system described above is unique and
given by

%x(t) = M~ V2J[B"b + Ea,]. (20a)

Alternatively stated, the equation of motion of the constrained system at time ¢ is ex-
plicitly given by
M5x(ty = M'*J|B"b + Ea,)]. (20D)

(b) The 3n-vector F¢(¢) is unique and is given by
Fe(t) = M'/2J|B"b — Da,]. (21)
In equations (20) and (21),
D=B"B, E=VVT, and the symmetric matrix J = (D + E)~". (22)

Equation (20) is the explicit general equation of motion for the constrained system; the
constraint force is explicitly provided, at each instant of time ¢, by Eq. (21).
At time ¢, Eqs. (17), (18), and (19) can be expressed more compactly as

Lr=s (23)
where the (6n + m — k) by 3n partitioned matrix L is given by the relation

[I]thxiin, _[[]3”)(3!1
L= [B] mxan [O]m X3n s (24)
[0](3717/{)%571 [Vl](fin,—k)x.‘jn

the partitioned, unknown 6n-vector r is given by r = {x! [F¢]'}", and the partitioned,
known (6n + m — k)-vector s is given by s = {al’ b!" 0"}T.

The matrix B has k independent rows. Since BV = 0, every row of the matrix B is
orthogonal to every row of the matrix V. Since the number of independent rows of V'
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equals (3n — k), it follows then that the number of independent rows of L, and therefore
its rank, is 6n. A detailed proof of this statement may be found in Appendix 1.
We now premultiply both sides of Eq. (23) by LT to obtain the equation

— [I+D]3nx3n —[I]3nx3n :| r— |:as =+ BTb:!

Gr
_[I]SnXSn [I+E]3n><3n —as

(25)
where we have denoted the 6n by 6n symmetric matrix LTL by G. Since the rank of L
is 6n, the rank of GG is also 6n. Hence its inverse exists and the vector r can be uniquely
determined.

We have therefore shown that a unique acceleration vector, %, and a unique constraint
force vector, F¢, exist at time ¢ such that Eqgs. (17), (18), and (19) are satisfied along
with the condition BV = 0.

In fact, we can denote the inverse of the matrix G by the partitioned matrix

Gl= [1; é] (26)

where each of the matrices P, J, and R is 3n by 3n. The condition GG~! = I then yields
the relations P = (I + E)J,S = (I + D)J, and J = (D + E + DE)~!. Because BV = 0,
DE = B'BVVT = BT(BV)V'T = 0, and the last relation simplifies to J = (D + E)~'.
That the matrix G is nonsingular can also be seen by noting that the 3n by 3n symmetric
matrix D + E can be expressed as

D+E=[B"B+VvVvT =[BT V] [fT]. (27)

Because BV = 0, the rank of each of the matrices (in the brackets) in the last expression
on the right equals 3n; hence D + E is nonsingular and its inverse exists. Furthermore,
the condition GG~ ! = I = GG yields the following four relations:

DP = PD, (28)
EJ = JE, (29)
DJ=JD=1I-ES, (30)
ES = SE. (31)

Solving Eq. (25) for the partitioned vector r after using the relations obtained for
P, J,and S in G~!, we obtain the following relations:

%, = (I + E)J(a, + BTb) — Ja, (32)

and

F¢ = J(a, + B"b) — (I + D)Ja,. (33)
By Eq. (29), (I + E)J = J(I + E); also EBT = VVTBT = V(BV)T = 0. Hence Eq.
(32) reduces to

%s = J(I + E)(a; + B™) — Ja, = JBTb + JEa,, (34)
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—1/2%,. Also, simplifying Eq. (33) and using

from which Eq. (20) follows, because X = M
(30), Eq. (21) follows.

We observe that Egs. (20) and (21}, which describe the motion of constrained me-
chanical systems, are obtained using (a) the extended Principle of D’ Alembert established
earlier, and (b) elementary linear algebra. Their derivation is found to require no use or
knowledge of concepts such as the Moore-Penrose generalized inverse—concepts in terms
of which our earlier statements of these equations were obtained.

These equations can be further simplified by adding and subtracting the quantity
JBTBa, on the right-hand side of Eq. (34). Noting the definition of J in (22), the

“scaled” acceleration, X, can now be expressed as
%5 = a5 + JBT (b — Ba,). (35)

Thus the constrained, scaled acceleration equals the unconstrained, scaled acceleration
plus an additional term that is brought into play by virtue of the constraint set (2).
Furthermore, since D = BT B, Eq. (21) can be expressed as

Fe(t) = M/2JBT[b — Ba,). (36)

Comparison of Egs. (35) and (36) with the corresponding equations obtained by Udwadia
Kalaba (1992) indicates that the matrix J BT must be the Moore-Penrose inverse, BT,
of the matrix B. That this is indeed the case is shown in Appendix 2.

Our description of constrained motion in terms of the three sets of Egs. (17), (18),
and (19), and the determination of the equations of motion by solving these sets of linear
algebraic equations has the following advantage. We observe that we could have solved
the linear system of Eq. (23) pertinent to the time ¢, by premultiplying both sides of
the equation by the matrix LTW, where W (t) is, say, any positive definite matrix whose
elements are continuous functions of ¢, instead of simply premultiplying by the matrix
LT, as we did in Eq. (25). This would lead to the least-squares system of equations

Gwr = (L"WL)r = (L"W)s (37)

whose solution is

r=(L"WLY Y(L"W)s (38)
where the square matrix (LTW L)~ exists. Since the equation sets (17), (18), and (19)
are consistent, their solution is unique and hence the weighting matrix W has obviously no
influence on the solution vector r, and hence on the acceleration, %(t), of the constrained
system, or on the force of constraint F¢.

However, were the constraint equations (3) and/or the equations of motion of the
unconstrained system (1) inferred from a set of measurements, then these two sets of
equations could conceivably be inconsistent and in that case the elements of the weighting
matrix could serve as indicators of the accuracy of these measurements. The solution
vector r given by Eq. (38) would then indeed depend on the matrix W, yielding a least-
squares solution for the now inconsistent set of equations given by (17), (18), and (19).
Thus the general approach presented here, although straightforward, is powerful enough
that it can be extended to such situations. While these considerations may be important
in certain practical applications, a detailed development of Eq. (38) will lead us far afield
from the original intent of this paper, and will therefore not be pursued any further.
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Conclusion and remarks. Starting from the principle of virtual work, we have pre-
sented here a precise statement of an extended version of the Principle of D’Alembert
for systems subjected to the types of constraints described by equation set (2). These
constraints include those that may be nonlinear in the velocities (see Appell, (1911), for
examples of such constraints). It appears that in some instances this extended version
may have a more sharpened applicability than D’Alembert’s original postulate. We have
applied this new principle to a long-standing problem in classical mechanics—the de-
termination of the explicit, general equation of motion for nonholonomically constrained
mechanical systems.

Looking over the long, three hundred year history of analytical dynamics, one is
initially inclined to believe that a simple, explicit equation of motion for constrained
mechanical systems was so late in arriving (Kalaba and Udwadia, 1992; Udwadia and
Kalaba, 1993) because it relied on developments in the field of linear algebra, specifically,
the development of the concept of the Moore-Penrose generalised inverse—a relatively
recent invention. That this line of reasoning may indeed be specious, is shown in this
paper.

Rather than new concepts related to the generalized inverses of matrices, what appears
to have been lacking is perhaps a deeper understanding of one of the primal postulates
of mechanics—the Principle of D’Alembert!, which itself dates almost as far back as
the very statement, by Lagrange, of the problem of constrained motion. For, by using
this principle, the ezplicit equation of motion for general nonholonomically constrained
mechanical systems is shown to be determined in a straightforward manner, obviating
the need for notions like quasicoordinates (Appell, 1911; Poincaré, 1901), extended Pois-
son brackets (Dirac, 1964), and generalized inverses of matrices (Kalaba and Udwadia,
1992)—notions which have hereto been developed for grappling with the problem of con-
strained motion. It appears that the tools for obtaining the explicit equation of motion
for constrained mechanical systems have all along been with us, practically from the time
the problem was first formulated by Lagrange.

Appendix 1. We shall prove that the matrix L in Eq. (24) has 6n independent rows
by considering the linearly independent rows provided by the three different blocks of
the matrix L.

We begin by denoting each of the first 3n rows of the matrix L by the 6n component
vector éiT, 1 <1 < 3n; note that each row vector é;r has all its entries zero except for its
ith entry which is 1 and its (3n +¢)th entry which is —1. Since the rank of the matrix B
is k, we clearly need consider only those rows of L that contain these k independent rows
of B. Let us denote these rows of L by 13?, 1 < i <k; note that the first 3n elements of
each row vector f)zT are identical to those of each of the k linearly independent rows of
B, the remaining 3n elements being all zero. Referring to the 6n vector [0 v]] (where
v; are the columns of the matrix V), by \A'lT, 1 <4 < (3n—k), we need to prove that the
only solution to the system of 6n equations given by

3n—k

3n k
D g +> Bibi+ Y ;=0 (A1)
=1 i=1 =1



330 FIRDAUS E. UDWADIA. ROBERT E. KALABA, anp EUN HEE-CHANG

is o =[onay...03,]" =0,8=[852... 0" =0, and vy = [y172..-Ysn-k]" = 0.
We express Eq. (Al) in matrix notation as

o LS B (B e

where the k& by 3n matrix B; contains the k& linearly independent rows of the matrix B.
Solving the lower 3n block of equations in the set (A2) yields

a=Vsy. (A3)
Using this value of « in the first 3n block of equations of (A2) now gives
Vy+B{B=0. (A4)
Premultiplying Eq. (A4) by VT and noting that B,V = 0 yields
Vivy =o0. (A5)

Since the matrix V has rank (3n—k), the square matrix VTV has full rank, and it follows
from (A5) that 4 = 0. Then by Eq. (A3), a = 0, and by (A2) we must have 3 = 0 since
the matrix BT has linearly independent columns. This proves our assertion. O

Appendix 2. We shall show that the matrix JBT satisfies the following four Moore-
Penrose (MP) conditions:

(1) B(JBMB =B, (2) (JBY)B(JB") =JB",
(3) (BJBTT = BJBT, (4) (JB™BY' =JBTB

and therefore equals B, the Moore-Penrose inverse of B.

(1) B(JJBT)B = BJD = B(I — ES) = B— BES, where we have used Eq. (30). Since
BV =0, BE = BVVT = (BV)VT =0, and the first MP condition is satisfied.

(2) (JB"B(JBT) = J(B"B)JB" = JDJBT = J(I - ES)BT = JB" - JESB"
where we have again used Eq. (30). But by Eq. (31) JESBT = JSEB", and EBT =
VVTBT = V(BV)T = 0; therefore, the second MP condition is satisfied.

(3) (BJB™)T = BJTB" = BJBT since J is symmetric.

(4) (JB™B)T = (B'B)JT = DJ = JD = JBT B, since by Eq. (30) D.J = JD.
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