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Abstract. A formulation of many-body perturbation theory starting from the operator 
equation [ H ,  Q-'1 = WQ.' is presented. The method of solution is based on an operator 
scalar product, (XI Y) = Tr(X-t Y), which allows us to use resolvent and partitioning tech- 
niques to establish Rayleigh-Schrodinger or Brillouin-Wigner perturbation theory for 
the excitation energy and excitation operator, Q'. The excitation operator contains all 
information about the two states involved in the transition. Specific results are given 
for removal or addition of an electron and for excitations of particle-hole type and 
comparison with the Green's function methods is made. 

1. Introduction 

It has recently been pointed out by one of us (Simons 1977) that the solutions to 
operator-level equations may have certain advantages over solutions to the corre- 
sponding function-level equations. For a given Hamiltonian H ,  the eigenoperators 
Q" and eigenenergies o which obey [ H ,  Q'] = oQ' are uniquely determined, apart 
from multiplication by any operator that commutes with H ,  whereas the solutions 
Q" and io of the function-level equation H Q ' / $ )  - o f H / $ )  = &&'I$),  for a 
chosen reference function I $ ) ,  are not uniquely determined. That is, for a given 
H and a given I$), which may even be an exact eigenstate of H ,  there are an infinite 
number of excitation operators 0.' corresponding to any resulting eigenenergy &. 
These eigenenergies io may be equal to exact excitation energies or ionisation energies, 
but the fact that the operators Q" are not uniquely determined is a bothersome 
feature of the solution. 

The possibility of formulating quantum mechanics entirely in terms of operators 
and mappings of operators, i.e. superoperators, was pointed out by Crawford (1958). 
Similar concepts were employed by Primas (1961) in an operator treatment of many- 
body perturbation theory. Dirac (1966) found the use of operator equations instead 
of Schrodinger equations to be almost a necessity in quantum electrodynamics. A 
particularly compact operator formulation of resolvent and partitioning techniques 
in perturbation theory has been given by Lowdin (1968). 

In the present paper emphasis will be placed on how one can solve operator- 
level equations of motion using perturbation theory and how the resulting formalism 
is applied in a straightforward manner to treat, as examples, electronic excitation 
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and ionisation processes in atoms and molecules. In 3 2 the derivation of our working 
equations is achieved through the introduction of an operator scalar product which 
fulfils all of the mathematical requirements and, hence, permits us to use the concepts 
of projection onto a particular operator and its orthogonal complement. General 
expressions are given for the 11th-order excitation energies and excitation operators 
in terms of the perturbation operator V and a specific zeroth-order reference operator. 
In 93 we demonstrate how this perturbative treatment can be applied to problems 
of electronic ionisation which, in zeroth order, are described by the addition (or 
removal) of a single electron to (or from) a spin orbital. Specific results are given 
for the electron affinities (or ionisation potentials) through third order and compari- 
son with results from Green's function theory and Rayleigh-Schrodinger perturbation 
theory is made. Section 4 contains an analogous treatment and discussion of elec- 
tronic excitations which, in zeroth order, are described as promotion of a single 
electron from an occupied spin orbital to an unoccupied orbital. Our concluding 
remarks together with a review of the results are given in 45. 

2. General formalism 

We consider the equation of motion for an excitation operator, Q', in the form 

[H. Q '1 = COQ.'. (1) 

It is natural to expect that there will be solutions to equation (1) which are power 
series in a perturbation parameter, i.e. 

Q' = Qt + Q: + Q: + . . .  
0 = CO, + w1 + w2 + . * .  

when the Hamiltonian is a sum of a zeroth-order term and a perturbation: 

H = Ho + V. (3) 
Introducing equations (2) and (3) in (1) and collecting terms of the same order in 
V, we find a set of Rayleigh-Schrodinger perturbation theory equations 

The superoperator notation BOX = [H,, X] and V X  = [V, X] for any operator X ,  
is used (Goscinski and Lukman 1970). 

The methods which one might use in order to solve these equations are com- 
pletely analogous to the treatments of the same equations in ordinary perturbation 
theory for state vectors. However, both the resolvent and the expansion techniques 
are based on the existence of a scalar product defined on the particular state-vector 
space. Thus, we need a similar concept here. The operator scalar product employed 
by Goscinski and Lukman (1970) in propagator theory will not serve our purpose, 
because we want to avoid any reference to a particular state, and because it does 
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not 
(X- 
will 

provide any 

be based on 
-YIX-Y) = 0 

means of deciding whether two operators are identical or not (i.e. 
is not necessary and sufficient for X = Y). Instead our development 
the following definition of the scalar product, (XI Y), between two 

operators X and Y (Crawford 1958, Primas 1961, Banwell and Primas 1963, Lowdin 
1976) 

(XI Y) = Tr(X' Y). ' (7) 
It is readily checked that this scalar product fulfils the mathematical axioms of 
a scalar product, namely 

and 

(XjX) = O H X  = 0. (11) 
It is equation (11) which permits us to test whether two operators are equal. A 
solution of the equations (4)-(6) may now be established in the normal way. Assume 
that the unperturbed excitation energy, coo, and excitation operator, Q;, are known 
and that m0 is non-degenerate. Equation (5) implies that 

we see that the first-order correction to the excitation energy is 

In the following we will always assume that 

i.e. we adopt the intermediate normalisation condition. In order to proceed in a 
manner corresponding to the resolvent technique (Lowdin 1968) we define a super- 
operator projector, Ifo, for the orthogonal complement of Q:. Formally we may 
write 

I f 0  = 1 - Q$(QJl. (16) 

fioQof = 0 (17) 

Two important properties of this operator are 

and 

[Ao,fio] = 0. 

A formal solution of equation (5) for the first-order correction to the excitation opera- 
tor may now be expressed as 

Q: = (00 - Ao)-'fioPQZ (19) 
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but in the applications in the following sections it will prove at times more convenient 
to use an integral representation 

(20) Q" 1 = _ _  J y  dt sgn ( t )  exp [i(wo - f iO) t ] f iO PQ;. 
2 -J) 

The precise definition of the sign function sgn (t) ,  appearing in this equation will 
here be chosen to be 

when t < 0 
when t 3 0. sgn ( t )  = lim 

Similarly we find the general expression for the izth-order correction to the excitation 
energy and excitation operator as 

respectively. Equations (22) and (23) are, of course, identical in form to the results 
of ordinary, non-degenerate Rayleigh-Schrodinger perturbation theory. A Brillouin- 
Wigner form of perturbation theory might similarly be derived, e.g. by means of 
the partitioning of Lowdin (1968). 

In the applications to removal or addition of an electron, and to particle-hole-type 
excitations, described in the next two sections, the unperturbed excitations will be 
degenerate when the zeroth-order Hamiltonian is taken to be Ho = C E , ~ , .  Here the 
number operator for the spin orbital labelled r is denoted IZ,. The degeneracy arises 
because Ho commutes with any function of number operators. Consider e.g. the 
choice Qof = a:al: so that AOQ: = (ek - q)QZ.  The operator Q"' = u ~ u l n , n Y .  . . . 
obeys the same equation, since 

l?oQ"; = (A~QZ)IZ,~Z,., . . . = ( ~ k  - E~)Q"O+. 
Thus there will be a manifold of operators satisfying equation (4). A complete charac- 
terisation of the degeneracy, which arises in this manner, may be achieved by choosing 
the degenerate operators so as to correspond to excitations from different unperturbed 
initial states, which can be specified by a set of spin-orbital occupation numbers 
fi(s). The projectors onto these states can be represented as 

A superoperator, p:, is defined by the relation 

p x  = XP,? (25) 
for any operator X. With the operator scalar product of equation (7), p: is Hermitian 
and 

( P y  = fi: (26) 
so that also p: is a projector. When the unperturbed Hamiltonian is taken to be 
H o  = CE,n, we have 

[A0,p^g] = 0 (27) 
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i.e. p: describes a symmetry of the superoperator I?,. The set of operators {p:} 
is complete in the sense that 

xf: = 7. (28) 
We will choose the unperturbed excitation operators to be symmetrised so that 

p: Q,’(s) = hssj Q: (s). 

A few possible representations of the Q,’(s) corresponding to removal of an electron, 
addition of an electron, and to a particle-hole-type excitation are: 

where p and k label orbitals whose occupation numbers are f p ( s )  = 0 and fh(s) = 1, 
respectively. When evaluating scalar products involving these operators, the following 
relations are useful 

In solving the above perturbation equations, (4)-(6), a form of degenerate perturbation 
theory has to be applied because the unperturbed projectors PT do not commute 
with P and hence the perturbed excitation operators Q+(s) will not obey equation 
(29). The degeneracy is lifted in first order, however, and the operators given by 
equation (30) are the correct zero-order combinations of degenerate operators since 

(Q;(s’)I PI Q:(s)) = J w ~ i ( s )  (34) 
as a consequence of equations (32) and (33). In the following treatment of this degener- 
ate problem, we will keep the normalisation condition as given by equation (15), 
which now reads 

(Qo’(s)IQ’(s)) = 1. (35) 
As discussed by, for instance, Condon and Shortley (1935) we may proceed in 

either of two different ways in order to obtain the perturbative solution for Q’(s). 
We could redefine 8, and so as to remove the degeneracy in zero order. A particu- 
lar way of doing this is to define 

H k  = E?, + C Q,’(s”)wl(s”)(Qo+(s”)~ (36) 
S“ 

and 

Pi  = P - 1 Q~+(s”)co,(s”)(Q:(s”)~ (37) 
S” 

where s” runs over the degenerate manifold, so that the new reference excitation 
energies, which are of first order in p but zero order in pl, would be 

4 s )  = 0 0  + 01(s). (38) 
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The non-degenerate perturbation theory, described above, could then be applied 
directly. 

Another procedure is to solve the Rayleigh-Schrodinger perturbation theory equa- 
tions successively in the following manner. Assume that the corrections Q:(s), . . . , 
(2:- l(s) have been found. The equation 

n - 2  

(BO - o~)Qnf(~) = 2 on-j(s)Q;(s) + (o1(s) - P)Qnf-l(~) (39) 
j = O  

has solutions only if the right-hand side is orthogonal to all QZ(s’), and we assume 
that this condition is fulfilled. Using the projector onto the complement of the 
degenerate manifold { Q :(s’) 3 ,  

l& = 1 - 2 Qof(s”)(QJ(s”)I 
S” 

we write Q,’(s) as 

Q n f ( ~ )  = f J o Q n f ( ~ )  + C ~(s”)Qof(s”) .  (41) 
s” # s 

The term for which s” = s is excluded because (Qof(s) 1 Q,‘(s)) = 0. Only the first part, 
fi0 Qnf(s), can be determined from equation (39). The coefficient K ~ ( s ” )  can be derived 
uniquely from the requirement that the right-hand side of the next higher order 
equation, 

n -  1 

also belongs to the complement of the degenerate manifold. We find, using equation (41) 
in equation (42), that for n 2 2 

and that K ~ ( s ” )  vanishes identically. 
Thus, the floQnf(s) component is obtained from equation (23) and the remainder 

is given in equation (43). The nth-order excitation energy is still given by equation 
(22). 

Transition moments, 

M = ( s l R / s * )  = Tr(ls)(s /RIs*)(s / )  = Tr(P,RQ+(s)) 

corresponding to the excitation described by the operator Q+(S), as well as the proper- 
ties of the initial state 1s) and the final state Is*), may also be calculated to any 
desired order in the perturbation within the present formalism. To this end we need 
the perturbed projector P,, which commutes with the total Hamiltonian and has 
the property 

PsQ+(s‘) E Q+(s’)Ps = hsssQ+(~’).  (44) 

One might attempt to calculate P, by means of an expansion in powers of the pertur- 
bation I/. We would then get a set of perturbation theory equations for the corrections 
to P,” and the ‘excitation energy’ would be zero through all orders. Equation (1) 
does not have a unique solution when o equals zero, however, not even when the 
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normalisation condition (P," I P,) = 1 is invoked. Thus instead, we choose to express 
the projector P, in terms of the excitation operator Q'(s) as 

If Q+(s) is correct through nth order, equations (44) and (45) will hold through this 
order only. 

The transition moment, M ,  for the transition we are studying is now given by 

M = (PSI RI Q'(.y)) (46) 

where R denotes, for instance, the dipole moment operator. Similarly the total energies 
of the initial and final state are 

E(s)  = ( P S I  H) and E(s*) = (P,* 1 H )  (47) 

where the projector onto the excited state is 

Thus it is apparent that the excitation operator Q+(s) contains all information about 
both the initial and the final state of the transition. 

3. Removal or addition of an electron 

The general manifold of zeroth-order operators Q; (s) can, according to equation 
(30), be decomposed into orthonormal and non-interacting subsets of eigenoperators 
of the superoperator fi, defined as fix = C r [ n r , x ]  for any operator x, according 
to their eigenvalues. In this section, we apply the perturbative developments of $ 2  
to those operators Q;(s) which obey fiQ;(s) = klQ:(s), i.e. those which involve 
addition or removal of a single electron from the parent system whose zeroth-order 
occupation numbers are fr(s). 

The unperturbed electronic Hamiltonian and the perturbation are written as 

and 

where the Mulliken notation is employed for the two-electron integrals. In equation 
(48), the orbital energies E ,  and the corresponding orbitals q5, are assumed to have 
been obtained from a one-electron Schrodinger equation in which the effective poten- 
tial v appears. This potential may be the Hartree-Fock potential corresponding to 
occupation numbers fk(s): 

where ( r l  r'l)) = (rll r'l)) - (rl'l r'l), or it may be any of several other common one-elec- 
tron potentials. For example, U could be a local exchange potential (Slater 1975), 
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one of the so-called V N - ’  potentials (Huzinaga et al 1973), a pseudopotential (Melius 
et a1 1974), or one of the several varieties of Hartree-Fock potentials. 

With the above decomposition of the electronic Hamiltonian, and with the par- 
ticular zeroth-order ionisation operator Q;(S)  = U ~ P ;  as our chosen reference, we 
obtain the following first-order correction (equation (14)) to the Koopmans’ theorem 
electron affinity (wo(s) = E ~ ) :  

01(4 = E ( P P  I /  k k ) f , ( s )  - L’pp. (51) 
k 

The techniques used to evaluate ot(s)  are illustrated in the appendix. Clearly, if 
v is equal to the Hartree-Fock potential corresponding to the orbital occupation 
numbers f k ( s ) ,  wl(s) will vanish. However, the other first-order correction, ol(s’), will 
not be zero, and, in general, o,(s’) # wl(s”) ifs’ # s”, i.e. the degeneracy of the zeroth- 
order operators is lifted in first order. 

The first-order correction to the ionisation operator, which is needed to compute 
02(s) and co3(s), is from equation (20) 

X 

Q:(s) = - i 5 dt sgn (t) exp [i(wo - H o ) t ]  [V, a,’P,“] exp (iHot) (52) 
2 -nc 

which can be written more explicitly as 

Q:(s) = (-4 ~ * ( r p ~ r ’ l ’ ) a ; i - a S a , ,  - 1 AF.,~:~PP 
rr’l’  r 

(53) - 1 C* ( r l  (r’l’)a,’ [a:aS al ,a l ,  P:] - C ACrla,f [a;‘ al ,  P,”] 
rr’ll’  rl 

where the * indicates that neither r nor r’ equals 1’ in the first sum and that neither 
r nor r’ equals 1 or 1’ in the other sum. For notational ease we define 

and the quantities A& and ( r l i r ‘ f )  are defined to be zero whenever the denominator 
vanishes. To obtain the second-order correction to the ionisation energy we compute 

oz (3 )  (Q:(s)l PI Q:(s)) (57) 
for which we find 

2 m 

+ 1 [ ( P P  ii am) A U m a  + A u a m ( m a  R P P ) I  + C ~ ~ p l  ~ v l p  (58 )  
m,a 1 

where the orbitals m,iz ( x , P )  have occupation number equal to zero (unity) in the 

If U is chosen equal to the Hartree-Fock potential (uHF(s)) corresponding to occu- 
pancies {fv(s)}, Au = 0 and oz(s) is equal to the standard second-order Rayleigh- 
Schrodinger perturbation theory estimate of the ion-neutral energy difference (Pickup 

list { f r ( s ) > .  
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and Goscinski 1973). In this case, oz(s) is also identical to a diagonal element of 
the second-order part of the self-energy or optical potential evaluated at E = wo(s) 

(59) 0 2 ( s )  = x g $ E  = E&.  

For this specific choice of U, the other w2(s’) (s’ # s) must still be calculated from 
equation (58). The more general result given in equation (58) also allows one to 
compute ionisation energies which are correct through second order for other choices 
of the potential U such as those mentioned earlier in this section. ,Equivalent results 
were derived diagrammatically by Paldus and Cizek (1975). 

To obtain the third-order correction to the above ionisation energy, we must 
calculate 

w3(s) = (Q&)IPIQ:(~)) (60) 

which by using equations (5) and (6) can be rewritten in terms of Q:(s) as 

wds) = (Q:(s)IP- Oi(s)IQ:(s)). (61) 

Because we do not have to solve for Q ~ ( s ) ,  and because ~ ~ ( s ‘ ’ )  = 0, we need not 
employ either of the two previously discussed treatments of the degeneracy of oo(s). 
This problem would first arise in calculating U&). 

In the case for which the reference potential U is chosen to be equal to U&), 

we obtain: 
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where each primed term is formed from the respective unprimed term by performing 
the substitutions: cx--+m, p+n, y+r ,  6+q,  r + u ,  m - - + y  and taking the complex 
conjugate. 

The analogous expression giving q ( s ) ,  oz(s) and w3(s) for the choice of zeroth- 
order operator which involves removal of an electron from spin orbital 
&(QO+(s) = ahP,”) can be obtained from the above results by simply replacing $ p  

by &, cp  by eh and changing the sign. Thus, the perturbative solution of the operator 
equation of motion is, as expected, equally suited to treatment of electron affinities 
and ionisation potentials. Results equivalent to equation (62) were given by Ceder- 
baum (1973) in the form of a diagrammatic expansion of the electron propagator 
self-energy. 

4. Particle-hole excitations 

A very important type of excitation in atomic or molecular systems, which is observed 
in ultraviolet spectroscopy, may be classified as being of particle-hole type. The zero- 
order excitation operator and energy are then 

and 
w&) = E p  - Eh 

respectively. The first-order correction to the excitation energy is obtained from equa- 
tions (22) and (49) as 

When the potential v is the Hartree-Fock potential given by equation (50) this result 
reduces to - ( p p  1 1  hh), a well known result in propagator theory (Linderberg and 
Ohrn 1973). The degeneracy of the unperturbed operators {Qb(s”)} is again lifted 
in first order since the difference 

(66) 

will be non-vanishing for a general set of spin orbitals except when fi(s) = fi(s’) for 
all r # k, p ,  i.e. when s = s’, since fh(s) = fh(s’) = 1 and fp(s) = fp(s’) = 0. It should 
be noted that we assume that no orbital energies or two-electron integrals are equal 
by symmetry. Degeneracies related to the possible angular momentum symmetry, 
spin symmetry or point-group symmetry of the Hamiltonian may be treated as usual 
by choosing the proper tensor components for the unperturbed excitation operators. 
For simplicity we do not consider this problem here. 

The calculation of the first-order correction to the excitation operator is similar 
to the calculation in the preceding section. We write the results as 

w ( s )  - a1(s’) = c [(PP I 1  T T )  - ( kh  I 1  rr)l(fi(s) - m’)) 
r 
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(VI) 
(67) 

The * has the same meaning as in equation (53). 

energy. First we write 
We are now ready to calculate the second-order correction to  the excitation 

WZ(S) = (Q: (s) / (wo - fio)IQ:(s)). (68) 
This form is convenient since the only effect of (coo - do)  on Q:(s) is to remove 
all denominators and change the sign of all terms in equation (67). The calculation 
of oz(s) is then equivalent to the evaluation of the norm of Q:(s), which is facilitated 
by the orthogonality properties of the operators appearing in equation (67). The 
overlap matrix for these operators has the structure 

I I1 I11 IV v VI 
I X 0 0 0 0 0 
I1 0 X X X X 0 
I11 0 X X 0 0 0 (69) 
IV 0 X 0 X X 0 
v 0 X 0 X X 0 
VI 0 0 0 0 0 X 

and we observe that the number of distinct operator scalar products we have to 
evaluate, in order to find oz(s), is 10.*The sum of these terms may be written as 
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Again a considerable simplification is obtained when the orbitals are calculated using 
a Hartree-Fock potential corresponding to the occupation numbers {fk(s)). In this 
case the second-order excitation energy correction agrees with the result of Odder- 
shede and Jorgensen (1977) derived from a perturbation expansion of the polarisation 
propagator self-energy. This comparison is of course only a check on the calculations. 
Paldus and Cizek (1975) have analysed the particle-hole excitation energy diagram- 
matically and given results equivalent to equation (70). 

5. Concluding remarks 

In this paper we have shown how one can solve operator equations of motion in 
a perturbative manner. The essential ingredients which allow us to develop a rigorous 
solution of these perturbation equations, which in the examples considered are 
degenerate in zeroth order, are the trace form of operator scalar product and the 
symmetry projectors which remove this degeneracy in first order. This operator scalar 
product fulfils all the axioms of a scalar product defined on a linear space. The 
solution of the operator equation of motion through any order is shown to result 
in a projector which permits the calculation of transition moments and expectation 
values, which are correct through the same order. 

As applications of the theory we studied electronic ionisation and excitation pro- 
cesses. The ionisation energies obtained by solving the operator equations were shown 
to agree, through third order, with the results of perturbation treatments in Green’s 
function theory, a comparison that serves as a check on the calculations. Explicit 
formulae were given for electron affinities (and ionisation potentials) and particle-hole 
excitation energy through third and second order, respectively. We have included 
through second order, the possibility that a general one-particle potential is used 
to define the zeroth-order Hamiltonian. 

The approach to many-body perturbation theory employed here is similar to 
the perturbation theory for propagators, which is also conveniently studied using 
superoperators, operator scalar products, inner projections and partitioning techniques 
(Goscinski and Lukman 1970, Pickup and Goscinski 1973, J~rgensen and Simons 
1975, Nerbrant 1976). The propagator theory is based on a different operator scalar 
product, however. Both procedures aim at direct calculation of observable quantities 
such as transition moments and energies. While the propagator has a set of poles 
in the complex plane corresponding to a certain manifold of transitions, the present 
application of Rayleigh-Schrodinger perturbation theory for excitation operators con- 
centrates on one particular transition. Our approach is completely equivalent to stan- 
dard perturbation theory for the individual states involved in the transition studied. 
The possible advantage of the operator treatment lies in the compact expressions 
it offers for the quantities of interest. 

Appendix 

The purpose of this appendix is to give a brief description of how the operator 
scalar products are calculated in practice. Using the anticommutation relations for 
creation and annihilation operators, 

[a:, as1 + = 6,s 
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any of the scalar products involved in $93 and 4 of this paper may be written as 
a sum of terms like 

('4.2) x = Tr(P:a: a: . . . a,, ak'). 
When the projector, P,", is given by equation (24), the trace will vanish unless all 
the indices k l ,  . . match the indices . . . l'k' so that we may write 

I .  ' I  
The trace of a product of commuting factors, which may be looked upon as acting 
on different sp;iccs. is equal to the product of the traces of the individual factors over 
the corresponding space, i.e. 

Tr (PPnknl . . . ) = n Tr(') [(l - J ( s )  - n,)( - l)fr(')] n Tr(') [( -f,(s)n,)( - l)fF(')] 
r # k , l , . . ,  r =  k , l , , . .  

('4.4) 

( A 4  

( A 4  

where 

Tr(*)(A) = (vac1 Alvac) + (vacIa,Aa: Ivac). 

Tr(P,onkn, . . . ) = fk(s)J;(s) . . . 
We find then 

since the occupation numbers are either zero or one, which when used in equation 
(A.3) completes the evaluation of x. 
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