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1 Introduction

Pure spinors λα in ten and eleven dimensions have been useful for constructing vertex

operators and computing on-shell scattering amplitudes with manifest spacetime super-

symmetry in super-Yang-Mills, supergravity and superstring theory [1–4]. After including

non-minimal variables (λ̄α, rα), pure spinors have also been useful for constructing BRST-

invariant off-shell actions for these maximally supersymmetric theories [5–7].

These BRST-invariant actions have a very simple form and were constructed by Ced-

erwall using superfields Ψ(xm, θα, λα, λ̄α, rα) which transform covariantly under space-

time supersymmetry and depend on both the usual superspace variables (xm, θα) and

the non-minimal pure spinor variables (λα, λ̄α, rα). Although the actions require a non-

supersymmetric regulator to define integration over the non-minimal pure spinor variables,

it is easy to show that the supersymmetry transformation of the regulator is BRST-trivial

so the action is spacetime supersymmetric.

However, since the superfields Ψ can depend in a non-trivial manner on the non-

minimal variables, it is not obvious how to show that the solutions to the equations of
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motion correctly describe the usual on-shell D = 10 and D = 11 superfields which depend

only on the (xm, θα) superspace variables.

In this paper, an explicit procedure will be given for extracting the usual on-shell

D = 10 and D = 11 superfields from the equations of motion of the pure spinor actions

for the cases of D = 10 supersymmetric Born-Infeld and for D = 11 supergravity. This

procedure will be given explicitly to first order in the coupling constant in these two actions,

but it is expected that the procedure generalizes to all orders in the coupling constant as well

as to other types of actions constructed from pure spinor superfields. A similar procedure

was used by Chang, Lin, Wang and Yin in [8] to find the on-shell solution to abelian and

non-abelian D = 10 supersymmetric Born-Infeld, and in this paper, it will be extended to

D = 11 supergravity.1

The procedure consists in using BRST cohomology arguments to define a unique de-

composition of the on-shell pure spinor superfield Ψ(xm, θα, λα, λ̄α, rα) into the sum of two

terms as

Ψ(xm, θα, λα, λ̄α, rα) = Ψ̃(xm, θα, λα) + Λ(xm, θα, λα, λ̄α, rα)

where Ψ̃(xm, θα, λα) is independent of the non-minimal variables and Λ is constructed

from the superfields in Ψ̃ and the non-minimal variables. Since Ψ̃ will have a fixed ghost

number g (g=1 for D = 10 super-Born-Infeld and g = 3 for D = 11 supergravity), it can be

expanded as Ψ̃ = λαÃα(x, θ) or Ψ̃ = λαλβλγC̃αβγ(x, θ), and it will be shown to first order

in the coupling constant that Ãα(x, θ) and C̃αβγ(x, θ) correctly describe the on-shell spinor

gauge superfield of D = 10 super-Born-Infeld and the on-shell spinor 3-form superfield of

D = 11 supergravity.

We expect it should be possible to generalize this procedure to all orders in the cou-

pling constant and to other types of pure spinor actions, but there is an important issue

concerning these pure spinor actions which needs to be further investigated. If the super-

fields Ψ in these actions are allowed to have poles of arbitrary order in the non-minimal

pure spinor variables, the cohomology arguments used to define the on-shell superfields

become invalid. This follows from the well-known property of non-minimal pure spinor

variables that one can construct a state ξ(λ, λ̄, θ, r) satisfying Qξ = 1 if ξ is allowed to have

poles of order λ−11 in D = 10 or poles of order λ−23 in D = 11. And if ξ is allowed in the

Hilbert space of states, all BRST cohomology becomes trivial since any state V satisfying

QV = 0 can be expressed as V = Q(ξV ).

So in order for these actions to correctly describe the on-shell superfields, one needs to

impose restrictions on the possible pole dependence of the superfields Ψ. But since the pole

dependence of the product of superfields can be more singular than the pole dependence of

individual superfields, it is not obvious how to restrict the pole dependence of the superfields

in a manner which is consistent with the non-linear BRST transformations of the action.

In section 2 of this paper, the D = 10 pure spinor superparticle and the pure spinor

actions for D = 10 super-Maxwell and super-Yang-Mills will be reviewed. And in section 3,

these actions will be generalized to abelianD = 10 supersymmetric Born-Infeld constructed

1We thank Martin Cederwall for informing us of the work of [8] after the first version of our preprint

was submitted.
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in terms of a non-minimal pure spinor superfield Ψ. The super-Born-Infeld equations of

motion take the simple form

QΨ+ k(λγmχ̂Ψ)(λγnχ̂Ψ)F̂mnΨ = 0 (1.1)

where k is the dimensionful coupling constant and χ̂α and F̂mn are operators depending in

a complicated manner on the non-minimal variables. After expanding Ψ in powers of k as

Ψ =
∑∞

i=0 k
iΨi, one finds that Ψ0 satisfies the equation QΨ0 = 0 with the super-Maxwell

solution Ψ0 = λαAα(x, θ), and Ψ1 can be uniquely decomposed as

Ψ1(x, θ, λ, λ̄, r) = Ψ̃1(x, θ, λ) + Λ(Aα, λ, λ̄, r)

where Ψ̃1 satisfies [8, 9]

QΨ̃1 + (λγmχ)(λγnχ)Fmn = 0 (1.2)

and χα and Fmn are the linearized spinor and vector field-strengths constructed from the

super-Maxwell superfield in Ψ0. It is straightforward to show that (1.2) correctly describes

the first-order correction of Born-Infeld to the super-Maxwell equations.

In section 4 of this paper, the D = 11 pure spinor superparticle and the pure spinor

action for linearized D = 11 supergravity will be reviewed. And in section 5, this action

will be generalized to the complete D = 11 supergravity action constructed in terms of a

non-minimal pure spinor superfield Ψ. The supergravity equations of motion take the form

QΨ+
κ

2
(λΓabλ)R

aΨRbΨ+
κ

2
Ψ{Q, T}Ψ− κ2(λΓabλ)TΨRaΨRbΨ = 0 (1.3)

where κ is the dimensionful coupling constant and Ra and T are operators depending in

a complicated manner on the non-minimal variables. After expanding Ψ in powers of κ

as Ψ =
∑∞

i=0 κ
iΨi, one finds that Ψ0 satisfies the equation QΨ0 = 0 with the linearized

supergravity solution Ψ0 = λαλβλγCαβγ(x, θ), and Ψ1 can be uniquely decomposed as

Ψ1(x, θ, λ, λ̄, r) = Ψ̃1(x, θ, λ) + Λ(Cαβδ, λ, λ̄, r)

where Ψ̃1 satisfies

QΨ̃1 +
1

2
(λΓabλ)Φ

aΦb = 0 (1.4)

and Φa ≡ λαE
(0)P
α ÊP

a(x, θ) is constructed from the linear deformation of the supergravity

supervielbein and the background value of its respective inverse. It is straightforward to

show that (1.4) correctly describes the first-order correction to the linearized supergravity

equations.

Finally, appendices A and B will contain some useful gamma matrix identities in

D = 10 and D = 11, and appendix C will explain the relation of the D = 11 supergravity

superfields Ψ and Φa.
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2 Ten-dimensional pure spinor superparticle and super Yang-Mills

In this section we will review the pure spinor description for the ten-dimensional super-

particle and its connection with ten-dimensional super-Maxwell. We will then discuss the

generalization to the non-abelian case.

2.1 D = 10 pure spinor superparticle

The ten-dimensional pure spinor superparticle action is given by [2, 10]

S =

∫

dτ [Pm∂τX
m + pµ∂τθ

µ + wµ∂τλ
µ] (2.1)

where Xm is a ten-dimensional coordinate, θµ is a ten-dimensional Majorana-Weyl spinor,

λµ is a bosonic ten-dimensional Weyl spinor satisfying λγmλ = 0; and Pm, pµ, wµ are the

conjugate momenta relative to Xm, θµ, λµ respectively. We are using Greek/Latin letters

from the middle of the alphabet to denote ten-dimensional Majorana-Weyl spinor/vector

indices. Furthermore, (γm)µν and (γm)µν are 16 × 16 symmetric real matrices satisfying

(γm)µν(γn)νσ + (γn)µν(γm)νσ = 2ηmnδ
µ
σ . The BRST operator is given by

Q0 = λµdµ (2.2)

where dµ = pµ − (γmθ)µPm are the fermionic constraints of the D = 10 Brink-Schwarz

superparticle [11]. The physical spectrum is defined as the cohomology of the BRST

operator Q0. One can show that the ten-dimensional super-Maxwell physical fields are

described by ghost number one states: Ψ = λµAµ. This can be easily seen since states in

the cohomology satisfy the equation of motion and gauge invariance

(γmnpqr)µνDµAν = 0

δAµ = DµΛ (2.3)

where Dµ = ∂
∂θµ

− (γmθ)µ∂m. These are indeed the superspace constraints describing ten-

dimensional super-Maxwell. It can be shown that the remaining non-trivial cohomology

is found at ghost number 0, 2 and 3 states; describing the super-Maxwell ghost, antifields

and antighost, respectively, as dictated by BV quantization.

2.2 D = 10 super-Maxwell

In order to describe D = 10 super-Maxwell (2.3) from a well-defined pure spinor action

principle, one should introduce non-minimal pure spinor variables [12]. These non-minimal

variables were studied in detail in [13] and consist of a pure spinor λ̄µ satisfying λ̄γmλ̄ = 0,

a fermionic spinor rµ satisfying λ̄γmr = 0 and their respective conjugate momenta w̄µ, sµ.

The non-minimal BRST operator is defined as Q = Q0 + rµw̄
µ, so that these non-minimal

variables will not affect the BRST cohomology. This means that one can always find a

representative in the cohomology which is independent of non-minimal variables.

Note that it will be assumed that the dependence on the non-minimal variables of the

states is restricted to diverge slower than (λλ̄)−11 when λµ → 0. Without this restriction,
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any BRST-closed operator is BRST-trivial since Q(ξV ) = V where ξ ≡ (λλ̄ + rθ)−1(λ̄θ).

Since the gauge transformation δΨ = QΛ of super-Maxwell is linear, this restriction is easy

to enforce by imposing a similar restriction on the gauge parameter Λ. However, for the

non-linear gauge transformations discussed in the following sections for the super-Yang-

Mills, supersymmetric Born-Infeld, and supergravity actions, it is unclear how to enforce

this restriction. We shall ignore this subtlety here, but it is an important open problem to

define the allowed set of states and gauge transformations for Ψ and Λ in these nonlinear

actions.

Let SSM be the following pure spinor action

SSM =

∫

[dZ] ΨQΨ (2.4)

where [dZ] = [d10x][d16θ][dλ][dλ̄][dr]N is the integration measure, Ψ is a pure spinor super-

field (which can also depend on non-minimal variables) and Q is the non-minimal BRST-

operator. Let us explain what [dZ] means. Firstly, [d10x][d16θ] is the usual measure on

ordinary ten-dimensional superspace. The factors [dλ][dλ̄][dr] are given by

[dλ]λµλνλρ = (ǫT−1)µνρσ1...σ11
dλσ1 . . . dλσ11

[

dλ̄
]

λ̄µλ̄ν λ̄ρ = (ǫT ) σ1...σ11

µνρ dλ̄σ1
. . . dλ̄σ11

[dr] = (ǫT−1)µνρσ1...σ11
λ̄µλ̄ν λ̄ρ

(

∂

∂rσ1

)

. . .

(

∂

∂rσ11

)

(2.5)

where the Lorentz-invariant tensors (ǫT )µνρ
σ1...σ11 and (ǫT−1)µνρσ1...σ11

were defined in [13].

They are symmetric and gamma-traceless in (µ, ν, ρ) and are antisymmetric in [σ1, . . . , σ11].

N = e−Q(λ̄θ) = e(−λ̄λ−rθ) is a regularization factor. Since the measure converges as

λ8λ̄11 when λ → 0, the action is well-defined as long as the integrand diverges slower

than λ−8λ̄−11.

One can easily see that the equation of motion following from (2.4) is given by

QΨ = 0 (2.6)

and since the measure factor [dZ] picks out the top cohomology of the ten-dimensional pure

spinor BRST operator, the transformation δΨ = QΛ is a symmetry of the action (2.4).

Therefore, (2.4) describes D = 10 super-Maxwell.

2.3 D = 10 super Yang-Mills

Let us define SSYM to be

SSYM =

∫

[dZ] Tr

(

1

2
ΨQΨ+

g

3
ΨΨΨ

)

(2.7)

where [dZ] is the measure discussed above, Ψ is a Lie-algebra valued generic pure spinor

superfield, Q is the non-minimal BRST operator and g is the coupling constant. For SU(n)

gauge group, expand Ψ in the form: Ψ = ΨaT a, where T a are the Lie algebra generators and

– 5 –
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a = 1, . . . , n2−1. Using the conventions: [T a, T b] = fabcT c with fabc totally antisymmetric,

and Tr(T aT b) = δab, one can rewrite (2.7) as follows

SSYM =

∫

[dZ]

(

1

2
ΨaQΨa +

g

6
fabcΨaΨbΨc

)

. (2.8)

The e.o.m. following from this action is given by:

QΨa +
g

2
fabcΨbΨc = 0 (2.9)

or in compact form

QΨ+ gΨΨ = 0 . (2.10)

It turns out that (2.9) is invariant under the BRST symmetry

δΨa = QΛa + fabcΨbΛc (2.11)

or in compact form

δΨ = QΛ + [Ψ,Λ] . (2.12)

Since the equations (2.10), (2.12) describe on-shell D = 10 Super Yang-Mills on ordinary

superspace [10], one concludes that the action (2.7) describes D = 10 Super Yang-Mills on

a pure spinor superspace.

3 Pure spinor description of Abelian supersymmetric Born-Infeld

In this section, we review the construction of the pure spinor action for supersymmetric

abelian Born-Infeld and deduce the equations of motion on minimal pure spinor superspace

to first order in the coupling.

3.1 Physical operators

In order to deform the quadratic super-Maxwell action to the supersymmetric Born-Infeld

action, Cederwall introduced the ghost number -1 pure spinor operators [7]

Âµ = −
1

(λλ̄)

[

1

8
(γmnλ̄)µNmn +

1

4
λ̄µN

]

Âm = −
1

4(λλ̄)
(λ̄γmD) +

1

32(λλ̄)2
(λ̄γ np

m r)Nnp

χ̂µ =
1

2(λλ̄)
(γmλ̄)µ∆m

F̂mn = −
1

4(λλ̄)
(rγmnχ̂) =

1

8(λλ̄)
(λ̄γ p

mn r)∆p (3.1)

where ∆m is defined by

∆m = ∂m +
1

4(λλ̄)
(rγmD)−

1

32(λλ̄)2
(rγmnpr)N

np . (3.2)
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These operators are constructed to satisfy

[

Q, Âµ

]

= −Dµ − 2(γmλ)µÂm

{Q, Âm} = ∂m − (λγmχ̂)

[Q, χ̂µ] = −
1

2
(γmnλ)µF̂mn

{Q, F̂mn} = 2(λγ[m∂n]χ̂) (3.3)

which mimic the superspace equations of motion of D = 10 Super-Maxwell

DαΨ0 +Q0Aµ + 2(γmλ)µAm = 0

∂mΨ0 −Q0Am − (λγmχ) = 0

Q0χ
µ +

1

2
(λγmn)

µFmn = 0

Q0Fmn − 2(λγ[m∂n]χ) = 0 (3.4)

with Ψ0 = λµAµ.

If one acts with these operators on Ψ0, they satisfy

ÂµΨ0 = Aµ ÂmΨ0 = Am χ̂µΨ0 = χµ F̂mnΨ0 = Fmn (3.5)

up to BRST-exact terms and certain “shift-symmetry terms” defined in [6, 7]. For example,

the operator Âµ acts as

ÂµΨ0 = Aµ −
1

2(λλ̄)
(λγm)µ(λ̄γmA) (3.6)

where the shift symmetry is δAµ = (λγm)µφ
m for any φm. For Âm one finds that

ÂmΨ0 = Am − (λγmρ) +Q

[

1

4(λλ̄)
(λ̄γmA)

]

(3.7)

where the on-shell relation D(µAν) = −(γm)µνAm has been used, δAm = (λγm)µρ
µ is the

shift symmetry, and

ρµ =
1

2(λλ̄)
(λ̄γm)µAm +

1

8(λλ̄)2
(λ̄γm)µ(rγmA) . (3.8)

Analogously, one can show a similar behavior for the other operators χ̂µ, F̂mn.

3.2 D = 10 Abelian supersymmetric Born-Infeld

The deformation to the linearized action (2.4) consistent with BRST symmetry is given

by [7]

SSBI =

∫

[dZ]

[

1

2
ΨQΨ+

k

4
Ψ(λγmχ̂Ψ)(λγnχ̂Ψ)F̂mnΨ

]

(3.9)
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which is invariant under the BRST transformation

δΨ = QΛ + k(λγmχ̂Ψ)(λγnχ̂Ψ)F̂mnΛ + 2k(λγmχ̂Ψ)(λγnχ̂Λ)F̂mnΨ (3.10)

for any ghost number 0 pure spinor superfield Λ. Note that k is a dimensionful parameter

related to the string tension by k = α′2. The equation of motion coming from (3.9) is

QΨ+ k(λγmχ̂Ψ)(λγnχ̂Ψ)F̂mnΨ = 0 (3.11)

which can be written in terms of ∆m as follows

QΨ+
k

8(λλ̄)2
(λ̄γmnpr)(∆mΨ)(∆nΨ)(∆pΨ) = 0 . (3.12)

Since the equation of motion of (3.12) for Ψ depends explicitly on the non-minimal

variables, it is not obvious how to extract from Ψ the Born-Infeld superfield Ãµ(x, θ) which

should be independent of the non-minimal variables. However, it will now be argued that

there is a unique decomposition of the solution to (3.12) as

Ψ(x, θ, λ, λ̄, r) = λµÃµ(x, θ) + Λ(Ãµ, λ, λ̄, r) (3.13)

where Ãµ(x, θ) is the on-shell Born-Infeld superfield and Λ depends on Ãµ and on the non-

minimal variables. This will be explicitly shown here to the leading Born-Infeld correction

to super-Maxwell, and work is in progress on extending this to the complete Born-Infeld

solution. As mentioned in footnote 1, a similar procedure was used in [8] for the abelian

and non-abelian Born-Infeld solutions.

To extract this leading-order correction to super-Maxwell from (3.12), we will first

expand the pure spinor superfield Ψ in positive powers of k:

Ψ(x, θ, λ, λ̄, r) =
∞
∑

i=0

kiΨi . (3.14)

The replacement of (3.14) in (3.12) gives us the following recursive relations

QΨ0 = 0 (3.15)

QΨ1 = −
1

8(λλ̄)2
(λ̄γmnpr)∆mΨ0∆nΨ0∆pΨ0 (3.16)

QΨ2 = −
3

8(λλ̄)2
(λ̄γmnpr)∆mΨ1∆nΨ0∆pΨ0 (3.17)

...

To determine Λ in (3.13), first note that (3.15) has the solution Ψ0 = λµA0µ where

A0µ is the super-Maxwell superfield which is independent of the non-minimal variables.

However, the solution Ψ1 to (3.16) must depend on the non-minimal variables because the

right-hand side of (3.16) depends on these variables. To decompose the solution Ψ1 to

the form

Ψ1(x, θ, λ, λ̄, r) = λµA1µ(x, θ) + Λ, (3.18)

– 8 –
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note that (3.16) implies

Q

(

1

(λλ̄)2
(λ̄γmnpr)∆mΨ0∆nΨ0∆pΨ0

)

= 0 . (3.19)

Since any BRST-closed expression can be expressed in terms of minimal variables up to a

BRST-trivial term, there must exist a term Λ such that

−
1

8(λλ̄)2
(λ̄γmnpr)∆mΨ0∆nΨ0∆pΨ0 = QΛ + F (Ψ0) (3.20)

where F (Ψ0) is independent of non-minimal variables. This equation determines Λ and

F (Ψ0) up to the shift

δΛ = H(Ψ0) +QΩ, δF (Ψ0) = −QH(Ψ0) (3.21)

where H(Ψ0) only depends on the minimal variables. But the BRST-trivial shift F (Ψ0) →

F (Ψ0) − QH(Ψ0) can be cancelled by a redefinition of the field Ψ0 → Ψ0 − kH(Ψ0). So

the ambiguity in defining Λ in (3.20) does not affect the physical spectrum.

In order to find Λ and F (Ψ0) in (3.20), first write ∆m in the more convenient form

∆m = ∂m − {Q, Âm}+ λ̄γmξ̂ (3.22)

where ξ̂µ is an operator depending on Nmn, Dµ, etc. Although it is not complicated to

determine ξ̂µ, this will not be relevant for our purposes as we will see later. Using the

on-shell relation ∂mAµ −DµAm = (γmχ)µ, one finds that

∆mΨ0 = (λγmχ) + λγmQρ+ λ̄γmξ̂Ψ0 . (3.23)

So

−
1

8
(λ̄γmnpr)∆mΨ0∆nΨ0∆pΨ0 = −

1

8(λλ̄)2
(λ̄γmnpr)[(λγmχ)(λγnχ)(λγpχ)

+3(λγmQρ)(λγnχ)(λγpχ)

+3(λγmQρ)(λγnQρ)(λγpχ)

+(λγmQρ)(λγnQρ)(λγpQρ)] . (3.24)

The first term H1 = − 1
8(λλ̄)2

(λ̄γmnpr)(λγ
mχ)(λγnχ)(λγpχ) will provide us the term inde-

pendent of non-minimal variables:

H1 = −
1

8(λλ̄)2
(λ̄γmnpr)(λγ

mχ)(λγnχ)(λγpχ)

=
1

4(λλ̄)
(rγmnχ)(λγmχ)(λγnχ)−

1

8(λλ̄)2
(λr)(λ̄γmnχ)(λγ

mχ)(λγnχ)

= Q

[

1

4(λλ̄)
(λ̄γmnχ)(λγ

mχ)(λγnχ)

]

− Fmn(λγ
mχ)(λγnχ) (3.25)
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where the identity (A.4) was used. Analogous computations show us that the other terms

are Q-exact:

H2 = −
3

8(λλ̄)2
(λ̄γmnpr)(λγmQρ)(λγnχ)(λγpχ)

= Q

[

6

8(λλ̄)
(λ̄γmnQρ)(λγmχ)(λγnχ)

]

(3.26)

H3 = −
3

8(λλ̄)2
(λ̄γmnpr)(λγmQρ)(λγnQρ)(λγpχ)

= Q

[

6

8(λλ̄)
(λ̄γmnQρ)(λγmQρ)(λγnχ)

]

(3.27)

H4 = −
1

8(λλ̄)2
(λ̄γmnpr)(λγmQρ)(λγnQρ)(λγpQρ)

= Q

[

2

8(λλ̄)
(λ̄γmnQρ)(λγmQρ)(λγnQρ)

]

. (3.28)

Hence, one obtains

−
1

8
(λ̄γmnpr)∆mΨ0∆nΨ0∆pΨ0 = Q[Λ]− Fmn(λγ

mχ)(λγnχ) (3.29)

where Λ is defined by the expression

Λ =
1

4(λλ̄)
(λ̄γmnχ)(λγ

mχ)(λγnχ) +
3

4(λλ̄)
(λ̄γmnQρ)(λγmχ)(λγnχ)

+
3

4(λλ̄)
(λ̄γmnQρ)(λγmQρ)(λγnχ) +

1

4(λλ̄)
(λ̄γmnQρ)(λγmQρ)(λγnQρ) . (3.30)

Now, let us define the field Ψ̃ = Ψ0 + k(Ψ1 − Λ) which satisfies to first order in k the

equation of motion

QΨ̃ = Q(Ψ0 + k(Ψ1 − Λ)) = −kFmn(λγ
mχ)(λγnχ) (3.31)

where Fmn, χ
µ are the usual super-Maxwell superfields constructed from A0µ. Since the

equation (3.31) does not involve non-minimal variables, the solution is

Ψ̃ = λµÃµ (3.32)

where Ãµ ≡ A0µ + kA1µ satisfies

λµλν
[

DµÃν + k(γmχ)µ(γ
nχ)νFmn

]

= 0 . (3.33)

This equation of motion coincides, at first order in k, with the abelian supersymmetric

Born-Infeld equations of motion [14–16]. So it has been shown to first order in k that

Ψ = λµÃµ + kΛ (3.34)

where Ãµ(x, θ) is the on-shell Born-Infeld superfield and Λ depends on A0µ and on the

non-minimal variables.
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4 Eleven-dimensional pure spinor superparticle and supergravity

In this section we review the eleven-dimensional pure spinor superparticle and its connec-

tion with linearized eleven-dimensional supergravity.

4.1 D = 11 pure spinor superparticle

The eleven-dimensional pure spinor superparticle action is given by [3, 17]

S =

∫

dτ
[

Pm∂τX
m + Pµ∂τθ

µ + wα(∂τλ
α + ∂τZ

MΩMβ
αλβ)

]

(4.1)

where Xm is an eleven-dimensional coordinate, θµ is an eleven-dimensional Majorana

spinor, ZM = (Xm, θµ), λα is a bosonic eleven-dimensional Majorana spinor satisfying

λΓaλ = 0; Pm, Pµ, wα are the conjugate momenta relative to Xm, θµ, λα respectively, and

ΩMβ
α is the spin connection of the background. We are using Greek/Latin letters from

the beginning of the alphabet to denote tangent-space eleven-dimensional spinor/vector in-

dices, and Greek/Latin letters from the middle of the alphabet to denote coordinate-space

eleven-dimensional spinor/vector indices. Furthermore, capital letters from the beginning

of the alphabet will denote tangent-space indices (both spinor and vector) and capital let-

ters from the middle of the alphabet will denote coordinate-space indices (both spinor and

vector). Finally, (Γa)αβ and (Γa)βδ are 32× 32 symmetric matrices satisfying (Γa)αβ(Γb)βδ
+ (Γb)αβ(Γa)βδ = 2ηabδαδ . The BRST operator is given by

Q0 = λαdα (4.2)

where

dα = E M
α (PM +ΩMβ

γwγλ
β) . (4.3)

In a flat Minkowski background, dα = Pα − (Γmθ)αPm are the fermionic constraints of the

D = 11 Brink-Schwarz-like superparticle.

The physical spectrum is defined as the cohomology of the BRST operator Q0. One

can show that the eleven-dimensional linearized supergravity physical fields are described

by ghost number three states: Ψ = λαλβλδCαβδ [3] where the physical state condition

imposes the following equations of motion and gauge transformations for Cαβδ

D(αCβδǫ) = (Γa)(αβC|a|δǫ)

δCαβδ = D(αΛβδ) (4.4)

for some superfield Λβδ. These are the superspace constraints describing eleven-dimensional

linearized supergravity [18]. It can be shown that the remaining non-trivial cohomology is

found at ghost number 0, 1, 2, 4, 5, 6 and 7 states; describing the ghosts, antifields and

antighosts as dictated by BV quantization of D = 11 linearized supergravity.
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4.2 D = 11 linearized supergravity

In order to describe D = 11 linearized supergravity (4.4) from a pure spinor action princi-

ple, one should introduce eleven-dimensional non-minimal pure spinor variables [6]. These

non-minimal variables were studied in detail in [19, 20] and consist of a pure spinor λ̄α sat-

isfying λ̄Γaλ̄ = 0, a fermionic spinor rα satisfying λ̄Γar = 0 and their respective conjugate

momenta w̄α, sα. The non-minimal BRST operator is defined as Q = Q0 + rαw̄
α, so that

these non-minimal variables will not affect the BRST cohomology.

Let SLSG be the following pure spinor action

SLSG =

∫

[dZ] ΨQΨ (4.5)

where [dZ] = [d11x][d32θ][dλ][dλ̄][dr]N is the integration measure, Ψ is a pure spinor su-

perfield (which, in general, can also depend on non-minimal variables) and Q is the non-

minimal BRST-operator. Let us explain what [dZ] means. Firstly, [d11x][d32θ] is the usual

measure on ordinary eleven-dimensional superspace. The factors [dλ][dλ̄][dr] are given by

[dλ]λα1 . . . λα7 = (ǫT−1)α1...α7

β1...β23
dλβ1 . . . dλβ23

[

dλ̄
]

λ̄α1
. . . λ̄α7

= (ǫT ) β1...β23

α1...α7
dλ̄β1

. . . dλ̄β23

[dr] = (ǫT−1)α1...α7

β1...β23
λ̄α1

. . . λ̄α7

(

∂

∂rβ1

)

. . .

(

∂

∂rβ23

)

. (4.6)

The Lorentz-invariant tensors (ǫT ) β1...β23

α1...α7
and (ǫT−1)α1...α7

β1...β23
were defined in [20].

They are symmetric and gamma-traceless in (α1, . . . , α7) and are antisymmetric in [β1, . . . ,

β23]. N is a regularization factor which is given by N = e−λλ̄−rθ. Since the measure

converges as λ16λ̄23 when λ → 0, the action is well-defined if the integrand diverges slower

than λ−16λ̄−23.

One can easily see that the equation of motion following from (4.5) is given by

QΨ = 0 (4.7)

and since the measure factor [dZ] picks out the top cohomology of the eleven-dimensional

pure spinor BRST operator, the transformation δΨ = QΛ is a symmetry of the action (4.5),

that is a gauge symmetry of the theory. Therefore, (4.5) describes D = 11 linearized

supergravity.

5 Pure spinor description of complete D = 11 supergravity

As discussed in [5, 6], the pure spinor BRST-invariant action for complete D = 11 super-

gravity is given by

SSG =
1

κ2

∫

[dZ]

[

1

2
ΨQΨ+

1

6
(λΓabλ)

(

1−
3

2
TΨ

)

ΨRaΨRbΨ

]

(5.1)
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which is invariant under the BRST symmetry

δΨ = QΛ + (λΓabλ)R
aΨRbΛ +

1

2
Ψ{Q, T}Λ−

1

2
Λ{Q, T}Ψ− 2(λΓabλ)TΨRaΨRbΛ

−(λΓabλ)(TΛ)R
aΨRbΨ (5.2)

for any ghost number 2 pure spinor superfield Λ. Here κ is the gravitational coupling

constant, and Ra and T are ghost number -2 and -3 operators respectively, defined by the

relations [5, 20]

Ra = −8

[

1

η
(λ̄Γabλ̄)∂b +

1

η2
(λ̄Γabλ̄)(λ̄Γcdr)(λΓbcdD)

−
4

η3
(λ̄Γabλ̄)(λ̄Γcdr)(λ̄Γefr)(λΓfbλ)(λΓcdew)

+
4

η3
(λ̄Γacλ̄)(λ̄Γder)(λ̄Γbfr)(λΓfbλ)(λΓcdew)

]

(5.3)

T =
512

η3
(λ̄Γabλ̄)(λ̄r)(rr)Nab, (5.4)

and η ≡ (λΓabλ)(λ̄Γabλ̄). Note that the action is invariant under the shift symmetry

δRa = (λΓaO) for any operator O.

The equation of motion coming from the action (5.1) is

QΨ+
1

2
Ψ{Q, T}Ψ+

1

2
(λΓabλ)(1− 2TΨ)RaΨRbΨ = 0 . (5.5)

To compare with the linearized equations, it is convenient to rescale Ψ → κΨ so that κ

drops out of the quadratic term in the action, and the e.o.m. takes the form

QΨ+
κ

2
(λΓabλ)R

aΨRbΨ+
κ

2
Ψ{Q, T}Ψ− κ2(λΓabλ)TΨRaΨRbΨ = 0 . (5.6)

In order to find the superspace equations of motion, we expand the pure spinor superfield

Ψ in positive powers of κ

Ψ =
∞
∑

n=0

κnΨn (5.7)

where Ψ0 is the linearized solution satisfying QΨ0 = 0, which describes linearized 11D

supergravity. The recursive relations that one finds from equation (5.6) are:

QΨ0 = 0 (5.8)

QΨ1 +
1

2
(λΓabλ)R

aΨ0R
bΨ0 +

1

2
Ψ0{Q, T}Ψ0 = 0 (5.9)

...

The procedure will now be the same as that applied to the Born-Infeld case: we will first

write the non-minimal contribution to (5.9) as a BRST-exact term QΛ. We will then define
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a new superfield Ψ̃ = Ψ− Λ, which will satisfy the equation QΨ̃ = G(Ψ0) where G(Ψ0) is

independent of non-minimal variables. We will finally identify C̃αβγ = C0αβγ + κC1αβγ in

Ψ̃ = λαλβλγC̃αβγ as the first-order correction to the linearized D=11 superfield.

To find Λ and G(Ψ0), the first step will be to write RaΨ0 in terms of a superfield

Φa(x, θ, λ) depending only on minimal variables as

RaΨ0 = Φa(x, θ, λ) +Q(fa) + λΓaO (5.10)

where λΓaO is the shift symmetry of Ra. To linearized order in the supergravity deforma-

tion of the background, the superfield Φa can be expressed in terms of the super-vielbein

EA
P and its inverse EP

A as

Φa = λαE(0)P
α ÊP

a (5.11)

where EA
P and EP

A have been expanded around their background values ÊA
P and ÊP

A as

EA
P = ÊA

P + κE
(0)P
A + κ2E

(1)P
A + . . . ,

EP
A = ÊP

A + κE
(0)A
P + κ2E

(1)A
P + . . . . (5.12)

For example, if one is expanding around the Minkowski space background, Êa
p = δ

p
a,

Êα
µ = δ

µ
α and Êα

m = −(Γmθ)α. Note that E
(0)P
α ÊP

a + Êα
PE

(0)a
P = 0, so one can also

express Φa to linearized order in the deformation as

Φa = −λαÊα
PE

(0)a
P . (5.13)

Since all of the supergravity fields are contained in Ψ0, one should be able to describe Φ

in terms of Ψ0. As discussed in [20], this relation is given by (5.10) and it will be explicitly

shown in appendix C that

fa = −
24

η2
(λ̄Γabλ̄)(λ̄Γcdr)(λΓbcd)

δCδαβλ
αλβ −

24

η
(λ̄Γabλ̄)Cbαβλ

αλβ . (5.14)

Plugging eq. (5.10) in (5.9) implies that

QΨ1 +
1

2
(λΓabλ)[Φ

a +Qfa][Φb +Qf b]−Q

[

1

2
Ψ0TΨ0

]

= 0, (5.15)

which implies that

Q(Ψ1 − Λ) = −
1

2
(λΓabλ)Φ

aΦb (5.16)

where

Λ =
1

2
Ψ0TΨ0 + (λΓabλ)Φ

af b −
1

2
(λΓabλ)f

aQf b.

Hence one can define the superfield Ψ̃:

Ψ̃ = Ψ0 + κ(Ψ1 − Λ) (5.17)
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which will satisfy the following e.o.m. at linear order in κ

QΨ̃ = −
κ

2
(λΓabλ)Φ

aΦb (5.18)

which implies

λαλβλδλǫ
[

DαC̃βδǫ +
κ

2
(Γab)αβE

(0)P
δ ÊP

aE(0)Q
ǫ ÊQ

b
]

= 0 (5.19)

where Ψ̃ = λαλβλδC̃αβδ.

This equation of motion (5.19) will now be shown to coincide with the D = 11 su-

pergravity equations of motion at first order in κ. The non-linear D = 11 supergravity

equations of motion can be expressed using pure spinors as

λαλβλγλδHαβγδ = 0 (5.20)

where we use the standard transformation rule from curved to tangent-space indices for

the 4-form superfield strength:

Hαβδǫ = E M
α E N

β E P
δ E Q

ǫ HMNPQ (5.21)

and HMNPQ = ∇[MCNPQ]. Furthermore, (5.21) implies that one can choose conventional

constraints (by appropriately defining Cαβa and Cαab) so that

Hαβγδ = Hαβγa = 0, Hαβab = −
1

12
(Γab)αβ .

This is expected since there are no physical supergravity fields with the dimensions of

Hαβγδ, Hαβγa and Hαβab.

To perform an expansion in κ and compare with (5.19), define

Ĥαβγδ = Ê M
α Ê N

β Ê P
γ Ê

Q
δ HMNPQ. (5.22)

Equation (5.20) implies that

0 = λαλβλγλδ(Ĥαβγδ + 4κÊα
M Êβ

N Êγ
PE

(0)Q
δ HMNPQ

+6κ2Êα
M Êβ

NE(0)P
γ Eδ

(0)QHMNPQ + . . .) (5.23)

= λαλβλγλδ(Ĥαβγδ + 4κÊα
M Êβ

N Êγ
PE

(0)Q
δ EM

AEN
BEP

CEQ
DHABCD

+6κ2Êα
M Êβ

NE(0)P
γ E

(0)Q
δ EM

AEN
BEP

CEQ
DHABCD + . . .) (5.24)

= λαλβλγλδ(Ĥαβγδ + 12κ2Êγ
PE

(0)a
P E

(0)Q
δ ÊQ

bHαβab

+6κ2E(0)P
γ ÊP

aE
(0)Q
δ ÊQ

bHαβab + . . .) (5.25)

= λαλβλγλδ

(

Ĥαβγδ +
1

2
κ2E(0)P

γ ÊP
aE

(0)Q
δ ÊQ

b(Γab)αβ + . . .

)

(5.26)

where . . . denotes terms higher-order in κ. Since

λαλβλγλδĤαβγδ = κλαλβλγλδDαC̃βγδ,

equation (5.26) for the back-reaction to Ĥαβγδ coincides with (5.19).
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A D = 10 gamma matrix identities

In D = 10 dimensions, one has chiral and antichiral spinors which have been denoted here

by χµ and χµ respectively. The product of two spinors can be decomposed into two forms

depending on the chiralities of the spinors used:

ξµχ
ν =

1

16
δνµ(ξχ)−

1

2!16
(γmn)ν µ(ξγmnχ) +

1

4!16
(γmnpq)ν µ(ξγmnpqχ) (A.1)

ξµχν =
1

16
γµνm (ξγmχ) +

1

3!16
(γmnp)

µν(ξγmnpχ) +
1

5!32
γµνmnpqr(ξγ

mnpqrχ) . (A.2)

The 1-form and 5-form are symmetric, and the 3-form is antisymmetric. Furthermore, it

is true that (γmn)µν = −(γmn) µ
ν , (γmnpq)µν = (γmnpq) µ

ν .

Two particularly useful identities are:

(γm)(µν(γm)ρ)σ = 0 (A.3)

(γmn)µν(γmn)
ρ
σ = 4(γm)µρ(γm)νσ − 2δµν δ

ρ
σ − 8δµσδ

ρ
ν . (A.4)

From A.4 we can deduce the following:

(γmn)µνγ
ρσ
mnp = 2(γm)µρ(γpm)σν + 6γµρp δσν − (ρ ↔ σ) (A.5)

(γmn)µν(γmnp)ρσ = −2γmνσ(γpm)µρ + 6(γp)νσδ
µ
ρ − (ρ ↔ σ) (A.6)

γµνmnp(γ
mnp)ρσ = 12[γµσm (γm)νρ − γµρm (γm)νσ] (A.7)

γµνmnpγ
mnp
ρσ = 48(δµρ δ

ν
σ − δµσδ

ν
ρ) . (A.8)

B D = 11 gamma matrix identities

In D = 11 dimensions, one has Majorana spinors and an antisymmetric tensor Cαβ (and

its inverse) which can be used to raise and lower spinor indices. The product of two spinors

can be decomposed into the form

χαψβ = −
1

32
Cαβ(χψ)+

1

32
(Γa)αβ(χΓaψ)−

1

2!.32
(Γab)αβ(χΓabψ)+

1

3!.32
(Γabc)αβ(χΓabcψ)

−
1

4!.32
(Γabcd)αβ(χΓabcdψ)+

1

5!.32
(Γabcde)αβ(χΓabcdeψ) . (B.1)

The 1-form, 2-form and 5-form are symmetric; and the 0-form, 3-form and 4-form are

antisymmetric.

The crucial identity in eleven dimensions is

(Γab)(αβ(Γb)δǫ) = 0 . (B.2)
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One can find analogous formulae to (A.4)–(A.8) for D = 11 dimensions. However,

they do not enter into any computations of this paper, therefore we will not list them.

From (B.2) and the pure spinor constraint, one can find the following useful pure spinor

identities

(λ̄Γabλ̄)(Γbλ̄)α = 0 (B.3)

(λ̄Γ[abλ̄)(λ̄Γc]dλ̄) = 0 (B.4)

(λ̄Γ[abλ̄)(λ̄Γcd]λ̄) = 0 (B.5)

(λ̄Γ[abλ̄)(λ̄Γcd]r) = 0 . (B.6)

If a is a shift-symmetry index, there exists a very useful identity which states the

following

(λ̄Γabλ̄)(λΓcbλ) =
1

2
δac η . (B.7)

This can be easily seen from the following argument. Eq. (B.2) implies the relation

−(λ̄Γabλ̄)(λΓbΓcλ) = 2(λ̄Γabλ̄)(λ̄ΓbΓcλ) + 2(λ̄ΓabΓcλ)(λ̄Γcλ)

which can be rewritten in the more convenient form

−(λ̄Γabλ̄)(λΓbΓcλ) = λΓaξc + 4δac (λλ̄)
2 − 4δac (λ̄Γ

bλ)(λ̄Γbλ)

where ξαc is defined as follows

ξαc = −2(λ̄Γc)
α(λ̄λ)− 2(λ̄Γb)α(λ̄ΓbΓcλ) + 2(λ̄Γbc)

α(λΓbλ̄) + 4λ̄α(λΓcλ̄) .

The use of (B.1) allows us to write

−(λλ̄)2 = −
1

64
η +

1

3840
(λΓabcdeλ)(λ̄Γabcdeλ̄)

(λ̄Γaλ)(λ̄Γaλ) = −
7

64
η −

1

3840
(λΓabcdeλ)(λ̄Γabcdeλ̄) .

Therefore,

(λ̄Γabλ̄)(λΓcbλ) =
1

2
δac η + λΓaξc .

C Relation between Ψ and Φa

At linearized level, there exists a simple relation between Ψ and Φa. To find this relation,

define

ĤABCD = Ê M
A Ê N

B Ê P
C Ê

Q
D HMNPQ (C.1)

as in (5). Using the conventions

Hαβδγ = 0 Haαβδ = 0 Habαβ = −
1

12
(Γab)αβ Habcα = 0, (C.2)
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one finds that

λαλβλγĤaαβγ = λαλβλγÊa
M Êα

N Êβ
P Êγ

QEM
AEN

BEP
CEQ

DHABCD (C.3)

= 3κλαλβλγÊα
NE

(0)b
N Habβγ + . . . (C.4)

=
1

4
κΦbλβλγ(Γab)βγ + . . . (C.5)

where . . . denotes terms of order κ2 and Φb = −λαÊα
NE

(0)b
N .

Since

λαλβλγĤaαβγ = κ(∂aΨ0 − 3Q(λαλβCaαβ)),

one obtains the relation

∂aΨ0 =
1

4
(λΓabλ)Φ

b + 3Q(λαλβCaαβ) . (C.6)

The use of equation (C.6) and the linearized e.o.m.

DαΨ0 + 3Q0(Cαβδ)λ
βλδ = −6(Γaλ)αCaβδλ

βλδ (C.7)

allows us to compute the action of Ra on Ψ0 in the form displayed in (5.10). To see this,

it will be useful to express Ra in the more convenient way [5]

Ra = −8

[

1

η
(λ̄Γabλ̄)∂b +

1

η2
(λ̄Γabλ̄)(λ̄Γcdr)(λΓbcdD)

−

{

Q,
1

η2
(λ̄Γabλ̄)(λ̄Γcdr)

}

(λΓbcdw)

]

. (C.8)

Therefore,

RaΨ0 = −8

[

1

η
(λ̄Γabλ̄)∂bΨ0+

1

η2
(λ̄Γabλ̄)(λ̄Γcdr)(λΓbcdDΨ0)

+3

{

Q,
1

η2
(λ̄Γabλ̄)(λ̄Γcdr)

}

(λΓbcd)
αCαβδλ

βλδ

]

= −8

[

1

η
(λ̄Γabλ̄)∂bΨ0−

3

η2
(λ̄Γabλ̄)(λ̄Γcdr)(λΓbcd)

α(QCαβδ)λ
βλδ

−
6

η2
(λ̄Γabλ̄)(λ̄Γcdr)(λΓbcdΓ

eλ)Ceαβλ
αλβ

+3

{

Q,
1

η2
(λ̄Γabλ̄)(λ̄Γcdr)

}

(λΓbcd)
αCαβδλ

βλδ

]

= −8

{

1

η
(λ̄Γabλ̄)∂bΨ0+Q

[

3

η2
(λ̄Γabλ̄)(λ̄Γcdr)(λΓbcd)

αCαβδλ
βλδ

]

−
6

η2
(λ̄Γabλ̄)(λ̄Γcdr)[−2(λΓbdλ)η

e
c+(λΓcdλ)η

e
b ]Ceαβλ

αλβ

}

= −8

{

1

η
(λ̄Γabλ̄)∂bΨ0+Q

[

3

η2
(λ̄Γabλ̄)(λ̄Γcdr)(λΓbcd)

αCαβδλ
βλδ

]

+
6

η
(λ̄Γabr)Cbαβλ

αλβ−
6

η2
(λ̄Γabλ̄)(λ̄Γcdr)(λΓcdλ)Cbαβλ

αλβ

}

– 18 –
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)
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= −8

{

1

η
(λ̄Γabλ̄)∂bΨ0+Q

[

3

η2
(λ̄Γabλ̄)(λ̄Γcdr)(λΓbcd)

αCαβδλ
βλδ

]

+Q

[

3

η
(λ̄Γabλ̄)Cbαβλ

αλβ

]

−
3

η
(λ̄Γabλ̄)Q[Cbαβλ

αλβ ]

}

= −
2

η
(λ̄Γabλ̄)(λΓbcλ)Φ

c+Q

[

−
24

η2
(λ̄Γabλ̄)(λ̄Γcdr)(λΓbcd)

αCαβδλ
βλδ−

24

η
(λ̄Γabλ̄)Cbαβλ

αλβ

]

= Φa+Q

[

−
24

η2
(λ̄Γabλ̄)(λ̄Γcdr)(λΓbcd)

αCαβδλ
βλδ−

24

η
(λ̄Γabλ̄)Cbαβλ

αλβ

]

. (C.9)

Notice that in order for the normalization factor of Φa to be one after applying Ra on Ψ,

one should choose the conventions used for Ra in (5.3) and those displayed in (C.2).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] P.S. Howe, Pure spinors lines in superspace and ten-dimensional supersymmetric theories,

Phys. Lett. B 258 (1991) 141 [Addendum ibid. B 259 (1991) 511] [INSPIRE].

[2] N. Berkovits, Covariant quantization of the superparticle using pure spinors,

JHEP 09 (2001) 016 [hep-th/0105050] [INSPIRE].

[3] N. Berkovits, Towards covariant quantization of the supermembrane, JHEP 09 (2002) 051

[hep-th/0201151] [INSPIRE].

[4] H. Gomez and C.R. Mafra, The closed-string 3-loop amplitude and S-duality,

JHEP 10 (2013) 217 [arXiv:1308.6567] [INSPIRE].

[5] M. Cederwall, D = 11 supergravity with manifest supersymmetry,

Mod. Phys. Lett. A 25 (2010) 3201 [arXiv:1001.0112] [INSPIRE].

[6] M. Cederwall, Pure spinor superfields — an overview, Springer Proc. Phys. 153 (2014) 61

[arXiv:1307.1762] [INSPIRE].

[7] M. Cederwall and A. Karlsson, Pure spinor superfields and Born-Infeld theory,

JHEP 11 (2011) 134 [arXiv:1109.0809] [INSPIRE].

[8] C.-M. Chang, Y.-H. Lin, Y. Wang and X. Yin, Deformations with Maximal Supersymmetries

Part 2: Off-shell Formulation, JHEP 04 (2016) 171 [arXiv:1403.0709] [INSPIRE].

[9] M. Cederwall, B.E.W. Nilsson and D. Tsimpis, D = 10 superYang-Mills at O(α′2),

JHEP 07 (2001) 042 [hep-th/0104236] [INSPIRE].

[10] N. Berkovits, ICTP lectures on covariant quantization of the superstring, ICTP Lect. Notes

Ser. 13 (2003) 57 [hep-th/0209059] [INSPIRE].

[11] L. Brink and J.H. Schwarz, Quantum Superspace, Phys. Lett. B 100 (1981) 310 [INSPIRE].

[12] N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP 10 (2005) 089

[hep-th/0509120] [INSPIRE].

[13] N. Berkovits and N. Nekrasov, Multiloop superstring amplitudes from non-minimal pure

spinor formalism, JHEP 12 (2006) 029 [hep-th/0609012] [INSPIRE].

– 19 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0370-2693(91)91221-G
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B258,141%22
https://doi.org/10.1088/1126-6708/2001/09/016
https://arxiv.org/abs/hep-th/0105050
https://inspirehep.net/search?p=find+EPRINT+hep-th/0105050
https://doi.org/10.1088/1126-6708/2002/09/051
https://arxiv.org/abs/hep-th/0201151
https://inspirehep.net/search?p=find+EPRINT+hep-th/0201151
https://doi.org/10.1007/JHEP10(2013)217
https://arxiv.org/abs/1308.6567
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.6567
https://doi.org/10.1142/S0217732310034407
https://arxiv.org/abs/1001.0112
https://inspirehep.net/search?p=find+EPRINT+arXiv:1001.0112
https://doi.org/10.1007/978-3-319-03774-5_4
https://arxiv.org/abs/1307.1762
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.1762
https://doi.org/10.1007/JHEP11(2011)134
https://arxiv.org/abs/1109.0809
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0809
https://doi.org/10.1007/JHEP04(2016)171
https://arxiv.org/abs/1403.0709
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.0709
https://doi.org/10.1088/1126-6708/2001/07/042
https://arxiv.org/abs/hep-th/0104236
https://inspirehep.net/search?p=find+EPRINT+hep-th/0104236
https://arxiv.org/abs/hep-th/0209059
https://inspirehep.net/search?p=find+EPRINT+hep-th/0209059
https://doi.org/10.1016/0370-2693(81)90093-9
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B100,310%22
https://doi.org/10.1088/1126-6708/2005/10/089
https://arxiv.org/abs/hep-th/0509120
https://inspirehep.net/search?p=find+EPRINT+hep-th/0509120
https://doi.org/10.1088/1126-6708/2006/12/029
https://arxiv.org/abs/hep-th/0609012
https://inspirehep.net/search?p=find+EPRINT+hep-th/0609012


J
H
E
P
0
8
(
2
0
1
8
)
0
3
3

[14] E. Bergshoeff, M. Rakowski and E. Sezgin, Higher derivative super Yang-Mills theories,

Phys. Lett. B 185 (1987) 371 [INSPIRE].

[15] S.J. Gates Jr. and S. Vashakidze, On D = 10, N = 1 Supersymmetry, Superspace Geometry

and Superstring Effects, Nucl. Phys. B 291 (1987) 172 [INSPIRE].

[16] N. Berkovits and V. Pershin, Supersymmetric Born-Infeld from the pure spinor formalism of

the open superstring, JHEP 01 (2003) 023 [hep-th/0205154] [INSPIRE].

[17] M. Guillen, Equivalence of the 11D pure spinor and Brink-Schwarz-like superparticle

cohomologies, Phys. Rev. D 97 (2018) 066002 [arXiv:1705.06316] [INSPIRE].

[18] L. Brink and P.S. Howe, Eleven-Dimensional Supergravity on the Mass-Shell in Superspace,

Phys. Lett. B 91 (1980) 384 [INSPIRE].

[19] M. Cederwall and A. Karlsson, Loop amplitudes in maximal supergravity with manifest

supersymmetry, JHEP 03 (2013) 114 [arXiv:1212.5175] [INSPIRE].

[20] M. Cederwall, Towards a manifestly supersymmetric action for 11-dimensional supergravity,

JHEP 01 (2010) 117 [arXiv:0912.1814] [INSPIRE].

– 20 –

https://doi.org/10.1016/0370-2693(87)91017-3
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B185,371%22
https://doi.org/10.1016/0550-3213(87)90470-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B291,172%22
https://doi.org/10.1088/1126-6708/2003/01/023
https://arxiv.org/abs/hep-th/0205154
https://inspirehep.net/search?p=find+EPRINT+hep-th/0205154
https://doi.org/10.1103/PhysRevD.97.066002
https://arxiv.org/abs/1705.06316
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D97,066002%22
https://doi.org/10.1016/0370-2693(80)91002-3
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B91,384%22
https://doi.org/10.1007/JHEP03(2013)114
https://arxiv.org/abs/1212.5175
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5175
https://doi.org/10.1007/JHEP01(2010)117
https://arxiv.org/abs/0912.1814
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.1814

	Introduction
	Ten-dimensional pure spinor superparticle and super Yang-Mills
	D=10 pure spinor superparticle
	D=10 super-Maxwell
	D=10 super Yang-Mills

	Pure spinor description of Abelian supersymmetric Born-Infeld
	Physical operators
	D=10 Abelian supersymmetric Born-Infeld

	Eleven-dimensional pure spinor superparticle and supergravity
	D=11 pure spinor superparticle
	D=11 linearized supergravity

	Pure spinor description of complete D=11 supergravity
	D=10 gamma matrix identities
	D=11 gamma matrix identities
	Relation between Psi and Phi**(a)

