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1 Introduction

Pure spinors A\ in ten and eleven dimensions have been useful for constructing vertex
operators and computing on-shell scattering amplitudes with manifest spacetime super-
symmetry in super-Yang-Mills, supergravity and superstring theory [1-4]. After including
non-minimal variables (\y, 74 ), pure spinors have also been useful for constructing BRST-
invariant off-shell actions for these maximally supersymmetric theories [5-7].

These BRST-invariant actions have a very simple form and were constructed by Ced-
erwall using superfields ¥(z™, 0% \*, Ay, o) which transform covariantly under space-
time supersymmetry and depend on both the usual superspace variables (z,60%) and
the non-minimal pure spinor variables (A%, Ay, 7). Although the actions require a non-
supersymmetric regulator to define integration over the non-minimal pure spinor variables,
it is easy to show that the supersymmetry transformation of the regulator is BRST-trivial
so the action is spacetime supersymmetric.

However, since the superfields ¥ can depend in a non-trivial manner on the non-
minimal variables, it is not obvious how to show that the solutions to the equations of



motion correctly describe the usual on-shell D = 10 and D = 11 superfields which depend
only on the (2™, 0%) superspace variables.

In this paper, an explicit procedure will be given for extracting the usual on-shell
D = 10 and D = 11 superfields from the equations of motion of the pure spinor actions
for the cases of D = 10 supersymmetric Born-Infeld and for D = 11 supergravity. This
procedure will be given explicitly to first order in the coupling constant in these two actions,
but it is expected that the procedure generalizes to all orders in the coupling constant as well
as to other types of actions constructed from pure spinor superfields. A similar procedure
was used by Chang, Lin, Wang and Yin in [8] to find the on-shell solution to abelian and
non-abelian D = 10 supersymmetric Born-Infeld, and in this paper, it will be extended to
D = 11 supergravity.®

The procedure consists in using BRST cohomology arguments to define a unique de-
composition of the on-shell pure spinor superfield ¥(z™, 0%, A%, A4, 74) into the sum of two
terms as

W(x™, 0% N Aoy 7o) = T(2™, 0% XY) + A(x™, 0% X%, Ao, 7o)

where \if(xm,ﬁa,)\a) is independent of the non-minimal variables and A is constructed
from the superfields in ¥ and the non-minimal variables. Since ¥ will have a fixed ghost
number g (g=1 for D = 10 super-Born-Infeld and g = 3 for D = 11 supergravity), it can be
expanded as ¥ = A\*A,(z,0) or ¥ = AN \Cyp,(x,0), and it will be shown to first order
in the coupling constant that A, (z,#) and éa57($, 0) correctly describe the on-shell spinor
gauge superfield of D = 10 super-Born-Infeld and the on-shell spinor 3-form superfield of
D = 11 supergravity.

We expect it should be possible to generalize this procedure to all orders in the cou-
pling constant and to other types of pure spinor actions, but there is an important issue
concerning these pure spinor actions which needs to be further investigated. If the super-
fields ¥ in these actions are allowed to have poles of arbitrary order in the non-minimal
pure spinor variables, the cohomology arguments used to define the on-shell superfields
become invalid. This follows from the well-known property of non-minimal pure spinor
variables that one can construct a state £(\, A, 0, 7) satisfying Q¢ = 1 if £ is allowed to have
poles of order A~ in D = 10 or poles of order A™23 in D = 11. And if ¢ is allowed in the
Hilbert space of states, all BRST cohomology becomes trivial since any state V' satisfying
QV =0 can be expressed as V = Q(&V).

So in order for these actions to correctly describe the on-shell superfields, one needs to
impose restrictions on the possible pole dependence of the superfields ¥. But since the pole
dependence of the product of superfields can be more singular than the pole dependence of
individual superfields, it is not obvious how to restrict the pole dependence of the superfields
in a manner which is consistent with the non-linear BRST transformations of the action.

In section 2 of this paper, the D = 10 pure spinor superparticle and the pure spinor
actions for D = 10 super-Maxwell and super-Yang-Mills will be reviewed. And in section 3,
these actions will be generalized to abelian D = 10 supersymmetric Born-Infeld constructed

'We thank Martin Cederwall for informing us of the work of [8] after the first version of our preprint
was submitted.



in terms of a non-minimal pure spinor superfield W. The super-Born-Infeld equations of
motion take the simple form

QU + k(™ 0) (A" X T) ¥ = 0 (L1)

where k is the dimensionful coupling constant and y® and Fpy are operators depending in
a complicated manner on the non-minimal variables. After expanding ¥ in powers of k as
=3, k*W;, one finds that W satisfies the equation QW = 0 with the super-Maxwell
solution ¥y = A*A,(x, ), and ¥; can be uniquely decomposed as

\Pl('x? 07 A? 5\’ /r) = @1(%” 07 )\) + A(Aa7 )\7 x? T)
where U, satisfies [8, 9]
Q\ill + (M) (AY"X) Finn = 0 (1.2)

and x® and F,,, are the linearized spinor and vector field-strengths constructed from the
super-Maxwell superfield in Wq. It is straightforward to show that (1.2) correctly describes
the first-order correction of Born-Infeld to the super-Maxwell equations.

In section 4 of this paper, the D = 11 pure spinor superparticle and the pure spinor
action for linearized D = 11 supergravity will be reviewed. And in section 5, this action
will be generalized to the complete D = 11 supergravity action constructed in terms of a
non-minimal pure spinor superfield ¥. The supergravity equations of motion take the form

QU + g(AFabA)R“\PRb\If + gqf{Q, T — R2(AL\)TURYWRY =0 (1.3)

where k is the dimensionful coupling constant and R* and 71" are operators depending in
a complicated manner on the non-minimal variables. After expanding ¥ in powers of k
as U =73 £"0;, one finds that ¥ satisfies the equation Q¥ = 0 with the linearized
supergravity solution ¥y = A*\? XN'Capy(x,0), and ¥y can be uniquely decomposed as

Wy (x,0,\, A, 1) = Uy (x,0,)) + A(Caps, A\, A, 1)
where \ill satisfies

-1
QU + §(Arabx)¢>aq>b =0 (1.4)

and ¢ = )\O‘E&O)PE p%(z,0) is constructed from the linear deformation of the supergravity
supervielbein and the background value of its respective inverse. It is straightforward to
show that (1.4) correctly describes the first-order correction to the linearized supergravity
equations.

Finally, appendices A and B will contain some useful gamma matrix identities in
D =10 and D = 11, and appendix C will explain the relation of the D = 11 supergravity
superfields W and $¢.



2 Ten-dimensional pure spinor superparticle and super Yang-Mills

In this section we will review the pure spinor description for the ten-dimensional super-
particle and its connection with ten-dimensional super-Maxwell. We will then discuss the
generalization to the non-abelian case.

2.1 D = 10 pure spinor superparticle

The ten-dimensional pure spinor superparticle action is given by [2, 10]
S = /dT [Pr0- X™ + 070" 4+ w,0-\'] (2.1)

where X™ is a ten-dimensional coordinate, 6* is a ten-dimensional Majorana-Weyl spinor,
A" is a bosonic ten-dimensional Weyl spinor satisfying Ay"*A = 0; and P, p,, w, are the
conjugate momenta relative to X, 0*, A respectively. We are using Greek/Latin letters
from the middle of the alphabet to denote ten-dimensional Majorana-Weyl spinor/vector
indices. Furthermore, (y™)* and (y™),, are 16 x 16 symmetric real matrices satisfying
(Y™ (YY) o + (Y)Y (™) e = 2™k, The BRST operator is given by

Qo = Mdy (2.2)

where d, = p, — (¥"0), Py are the fermionic constraints of the D = 10 Brink-Schwarz
superparticle [11]. The physical spectrum is defined as the cohomology of the BRST
operator )g. Omne can show that the ten-dimensional super-Maxwell physical fields are
described by ghost number one states: ¥ = A A,. This can be easily seen since states in
the cohomology satisfy the equation of motion and gauge invariance

("I D LA, = 0
0A, = D,A (2.3)

where D, = B% — (7™0) 0. These are indeed the superspace constraints describing ten-
dimensional super-Maxwell. It can be shown that the remaining non-trivial cohomology
is found at ghost number 0, 2 and 3 states; describing the super-Maxwell ghost, antifields
and antighost, respectively, as dictated by BV quantization.

2.2 D = 10 super-Maxwell

In order to describe D = 10 super-Maxwell (2.3) from a well-defined pure spinor action
principle, one should introduce non-minimal pure spinor variables [12]. These non-minimal
variables were studied in detail in [13] and consist of a pure spinor ;\u satisfying Ay = 0,
a fermionic spinor r,, satisfying Ay = 0 and their respective conjugate momenta wH, sH.
The non-minimal BRST operator is defined as @ = Qo + r,w", so that these non-minimal
variables will not affect the BRST cohomology. This means that one can always find a
representative in the cohomology which is independent of non-minimal variables.

Note that it will be assumed that the dependence on the non-minimal variables of the
states is restricted to diverge slower than (AA)™'" when A\* — 0. Without this restriction,



any BRST-closed operator is BRST-trivial since Q(£V) = V where & = (A + 70) 71 (A\0).
Since the gauge transformation 6 = QA of super-Maxwell is linear, this restriction is easy
to enforce by imposing a similar restriction on the gauge parameter A. However, for the
non-linear gauge transformations discussed in the following sections for the super-Yang-
Mills, supersymmetric Born-Infeld, and supergravity actions, it is unclear how to enforce
this restriction. We shall ignore this subtlety here, but it is an important open problem to
define the allowed set of states and gauge transformations for ¥ and A in these nonlinear
actions.
Let Sgum be the following pure spinor action

Ssut = / [dZ) TQU (2.4)

where [dZ] = [d'2][d'90][d\][d\][dr] N is the integration measure, W is a pure spinor super-
field (which can also depend on non-minimal variables) and @ is the non-minimal BRST-
operator. Let us explain what [dZ] means. Firstly, [d'°2][d'06] is the usual measure on
ordinary ten-dimensional superspace. The factors [d\][d)][dr] are given by

[AA] MNYNP = (eT—yrve d\71 .. d\1

01...011

(5] XA Ay = (€7),,7 1 dBy ... AN
[dr]:(eT‘l)W/JalmUH;\H/_\V/_\p< 0 )( 8 ) (25)

Org, Orgy,

011

where the Lorentz-invariant tensors (€T'),,,,7' ' and (eI~1)*?,, . were defined in [13].
They are symmetric and gamma-traceless in (p, v, p) and are antisymmetric in [o1, ..., 011].
N = e QR0 = (A=rb) g 4 regularization factor. Since the measure converges as
MMM when A — 0, the action is well-defined as long as the integrand diverges slower
than A~8\~11,

One can easily see that the equation of motion following from (2.4) is given by

QU =0 (2.6)

and since the measure factor [dZ] picks out the top cohomology of the ten-dimensional pure
spinor BRST operator, the transformation ¥ = QA is a symmetry of the action (2.4).
Therefore, (2.4) describes D = 10 super-Maxwell.

2.3 D = 10 super Yang-Mills

Let us define Sgy to be

Ssyui = / 7] Tr (;\mqf + gqxw) (2.7)

where [dZ] is the measure discussed above, U is a Lie-algebra valued generic pure spinor
superfield, @ is the non-minimal BRST operator and g is the coupling constant. For SU(n)
gauge group, expand ¥ in the form: W = U*T* where T'* are the Lie algebra generators and



a=1,...,n2—1. Using the conventions: [T%, T?] = f®°T° with fo%¢ totally antisymmetric,
and Tr(T°T?) = §%, one can rewrite (2.7) as follows

Ssya = / [dZ] GWQ\IJ“ + % f“bcwawqu0> . (2.8)
The e.o.m. following from this action is given by:
QU + g Fabegbye — (2.9)
or in compact form
QY + g¥¥ = 0. (2.10)

It turns out that (2.9) is invariant under the BRST symmetry
SWT = QA® 4 frbewbAC (2.11)
or in compact form
U = QA+ [T, A]. (2.12)

Since the equations (2.10), (2.12) describe on-shell D = 10 Super Yang-Mills on ordinary
superspace [10], one concludes that the action (2.7) describes D = 10 Super Yang-Mills on
a pure spinor superspace.

3 Pure spinor description of Abelian supersymmetric Born-Infeld

In this section, we review the construction of the pure spinor action for supersymmetric
abelian Born-Infeld and deduce the equations of motion on minimal pure spinor superspace
to first order in the coupling.

3.1 Physical operators

In order to deform the quadratic super-Maxwell action to the supersymmetric Born-Infeld
action, Cederwall introduced the ghost number -1 pure spinor operators [7]

N 1 1 - 1<
A, = —— |=(Y"N)Npn + = AN
i (D) + —— (3, )N,
m = — =< 'm - 'm T n
40 32002 P
1 _
oM (v NHA,,
=5 (v A)
Frn = —L(r A)—L(;\ Pr)iA (3.1)
mn — 4()\5\) TmnX) = 8()\5\) Ymn P
where A,, is defined by
1 1
Ay = O+ —(rvm ————— (" Vinpr ) NP 3.2



These operators are constructed to satisfy
[Qﬂiu} =—-D, - 2(77")\)”/17,1

{Q7 Am} = Om — ()"me()

[Qv)%u] = _%(,ymn)\) mn

which mimic the superspace equations of motion of D = 10 Super-Maxwell
Do¥o+ QoA +2(v"N)yAm =0
Om¥o — QOA — (Mmx) =0
Qox" + = ()\’ymn)“Fm" =0
QoFmn — 2(Mmnx) = 0 (3.4)

with g = MA,.
If one acts with these operators on W, they satisfy

AWy=A4, A, U=A4,  o=x"  FunY = Fun (3.5)
up to BRST-exact terms and certain “shift-symmetry terms” defined in [6, 7]. For example,
the operator Au acts as

1

AWy = A, — 8y

S M)A mA) (3.6)

where the shift symmetry is 64, = (M) ,¢™ for any ¢™. For A,, one finds that

N 1
AnVo = A — (Aym AMmA 3.7
: ) +Q | 155 )| (5.7)
where the on-shell relation D, A,y = —(7™) . A has been used, A, = (Aym)p! is the
shift symmetry, and
L s 1
s (M (rymA) - (3-8)

= 3o T A S

~

Analogously, one can show a similar behavior for the other operators x*, Fyn.

3.2 D = 10 Abelian supersymmetric Born-Infeld

The deformation to the linearized action (2.4) consistent with BRST symmetry is given
by [7]

Ssnr = [142] | 39QW + S¥OG WO W) (5.9)



which is invariant under the BRST transformation
ST = QA + k(W™ W) (A" R8) B A + 26008 (A" KA B @ (3.10)

for any ghost number 0 pure spinor superfield A. Note that k is a dimensionful parameter
related to the string tension by & = /2. The equation of motion coming from (3.9) is

QU + k(M T) (A" YY) Fppp U = 0 (3.11)

which can be written in terms of A,,, as follows

Eooo

QU+ (BB (A, 0)(3y8) = 0. (3.12)

Since the equation of motion of (3.12) for ¥ depends explicitly on the non-minimal
variables, it is not obvious how to extract from W the Born-Infeld superfield fl“(m, 0) which
should be independent of the non-minimal variables. However, it will now be argued that
there is a unique decomposition of the solution to (3.12) as

Uz, 0, \ A\, 1) = MA,(,0) + A(A,, N\, 7) (3.13)

where A, (,0) is the on-shell Born-Infeld superfield and A depends on A, and on the non-
minimal variables. This will be explicitly shown here to the leading Born-Infeld correction
to super-Maxwell, and work is in progress on extending this to the complete Born-Infeld
solution. As mentioned in footnote 1, a similar procedure was used in [8] for the abelian
and non-abelian Born-Infeld solutions.

To extract this leading-order correction to super-Maxwell from (3.12), we will first
expand the pure spinor superfield ¥ in positive powers of k:

U(z, 0,0 A1) =Y KV, (3.14)
1=0

The replacement of (3.14) in (3.12) gives us the following recursive relations

QUy =0 (3.15)
1

Q¥ = _W(/\anpr)ﬁm‘l’oﬁn‘yoﬁp‘l’o (3.16)
3 _

@2 = _S(AX)a(Mm"pr)Am‘PlAn‘PoAp‘Po (3.17)

To determine A in (3.13), first note that (3.15) has the solution Wy = A*Ag, where
Ap,, is the super-Maxwell superfield which is independent of the non-minimal variables.
However, the solution ¥; to (3.16) must depend on the non-minimal variables because the
right-hand side of (3.16) depends on these variables. To decompose the solution ¥; to
the form

Uy (2,0, \, A7) = MAy (2, 0) + A, (3.18)



note that (3.16) implies

0 < (;X)z(Aymnpr)AquoAanoquf()) ~0. (3.19)

Since any BRST-closed expression can be expressed in terms of minimal variables up to a
BRST-trivial term, there must exist a term A such that
1 _

- 8(MN)?2 (M) A WoApWoApTo = QA + F(P) (3.20)

where F(¥() is independent of non-minimal variables. This equation determines A and
F(WUg) up to the shift

SA = H(To) +QQ,  0F(To) = —QH(Wp) (3.21)

where H(¥() only depends on the minimal variables. But the BRST-trivial shift F'(¥() —
F(Uy) — QH(¥() can be cancelled by a redefinition of the field ¥y — Wy — kH(¥g). So
the ambiguity in defining A in (3.20) does not affect the physical spectrum.

In order to find A and F(¥y) in (3.20), first write A,, in the more convenient form

Am = Om —{Q, A} + Aymé (3.22)

where éu is an operator depending on Np,,, Dy, etc. Although it is not complicated to
determine §,, this will not be relevant for our purposes as we will see later. Using the
on-shell relation 0y, A, — Dy Ap = (YmX)u, one finds that

Ay Vo = ()"YmX) + )\7me + S\Vmé\IJO . (3'23)

So

1 - 1 _
——(M"Pr) AR VoA, VAT = _8()\5\)2 MY Pr) [(AYm X)) (AMnX) (AMpX)

8
+3(MmQp) (M X) (MpX)
+3(Am@p) (M Qp) (A pX)
+(AmQp) A mQp) (M Qp)] - (3.24)

The first term H; = —m(S\’ymnpr)(/\’ymx)()\'y”)()()\'ypx) will provide us the term inde-
pendent of non-minimal variables:

1

=g AX)Q(X'ymmﬂ“)(k'ymx)(M”X)(Afy”x)

(Ar) (MY X) (Y™ x) (A" x)

= 4(/1“) (7™ X) (A x) (MnX) —

=Q 4&A)(anx)(>\'V’“><)(M”><) = Frn (M) (M) (3.25)

1
8(AN)2



where the identity (A.4) was used. Analogous computations show us that the other terms
are Q-exact:

Hy = — i (A1) (A Qp) (MY x) (Mpx)

—0 [ég(i‘huvmnczp><mmx><w<>] (3.26)

Hy = - (3 5 (AP (MmQp) (A Qp) (M pX)

8
= @[5 Q") (3:27)
Hy = = (0™r) (V@) V1 @0) (V15 @)
=Q [8(;)(anQp)(Mme)(M”Qp)] : (3.28)
Hence, one obtains

1 -
—g M) AnToAnToAy Yo = Q[A] = Finn(Ay™x) (M1"X) (3.29)

where A is defined by the expression

A i(anx)(M’”X)(M"X) + i—(X%me)(W”X)(A’Y”x)

RTEYY 40\
+ 4(iA)(anQp)(M’”Q/})(A'y”x) + Zl()l\)\)()\vanp)()\’mep)()\'ynQp) . (3.30)

Now, let us define the field ¥ = Wy + k(¥; — A) which satisfies to first order in k the
equation of motion

QY = Q(¥o + k(¥1 — A)) = —kFpn (A" X) (M"X) (3.31)

where F,,, x* are the usual super-Maxwell superfields constructed from Ag,. Since the
equation (3.31) does not involve non-minimal variables, the solution is

U =\A, (3.32)
where flu = Aoy + kAy, satisfies
NN [Dyy Ay + (™0 ) Fn | = 0. (3.33)

This equation of motion coincides, at first order in k, with the abelian supersymmetric
Born-Infeld equations of motion [14-16]. So it has been shown to first order in k that

U = MNA, + kA (3.34)

where A, (z,0) is the on-shell Born-Infeld superfield and A depends on Ag, and on the

non-minimal variables.

,10,



4 Eleven-dimensional pure spinor superparticle and supergravity

In this section we review the eleven-dimensional pure spinor superparticle and its connec-
tion with linearized eleven-dimensional supergravity.

4.1 D = 11 pure spinor superparticle

The eleven-dimensional pure spinor superparticle action is given by [3, 17]
g = / dr [P, X 4 Pu0, 0 4w (0,37 + 0,2V 035 \7) (4.1)

where X" is an eleven-dimensional coordinate, #* is an eleven-dimensional Majorana
spinor, ZM = (X™ "), \* is a bosonic eleven-dimensional Majorana spinor satisfying
A\ = 0; Pp,, P, wy are the conjugate momenta relative to X™, 6#, A* respectively, and
Qup® is the spin connection of the background. We are using Greek/Latin letters from
the beginning of the alphabet to denote tangent-space eleven-dimensional spinor/vector in-
dices, and Greek/Latin letters from the middle of the alphabet to denote coordinate-space
eleven-dimensional spinor/vector indices. Furthermore, capital letters from the beginning
of the alphabet will denote tangent-space indices (both spinor and vector) and capital let-
ters from the middle of the alphabet will denote coordinate-space indices (both spinor and
vector). Finally, (I'*)*% and (I'%)ss are 32 x 32 symmetric matrices satisfying (I'*)*% (%) g5
+ (%)% (T'%) g5 = 27?55, The BRST operator is given by

Qo = N\, (4.2)
where
dy = EaM(PM + QMﬂﬁ’w’y)\ﬂ) . (4.3)

In a flat Minkowski background, d, = P, — (I'"0),P,, are the fermionic constraints of the
D = 11 Brink-Schwarz-like superparticle.

The physical spectrum is defined as the cohomology of the BRST operator g. One
can show that the eleven-dimensional linearized supergravity physical fields are described
by ghost number three states: ¥ = A*\/ /\5Ca/35 [3] where the physical state condition
imposes the following equations of motion and gauge transformations for C,gs

DCgsey = (I'")(apClajse)
0Cap5 = D(aAB(;) (4.4)

for some superfield Ags. These are the superspace constraints describing eleven-dimensional
linearized supergravity [18]. It can be shown that the remaining non-trivial cohomology is
found at ghost number 0, 1, 2, 4, 5, 6 and 7 states; describing the ghosts, antifields and
antighosts as dictated by BV quantization of D = 11 linearized supergravity.

— 11 —



4.2 D = 11 linearized supergravity

In order to describe D = 11 linearized supergravity (4.4) from a pure spinor action princi-
ple, one should introduce eleven-dimensional non-minimal pure spinor variables [6]. These
non-minimal variables were studied in detail in [19, 20] and consist of a pure spinor ), sat-
isfying A\I'®\ = 0, a fermionic spinor r, satisfying A\I'%r = 0 and their respective conjugate
momenta w®, s* The non-minimal BRST operator is defined as Q) = Q¢ + row®, so that
these non-minimal variables will not affect the BRST cohomology.

Let Stsa be the following pure spinor action

Suse = /[dZ] Qv (4.5)

where [dZ] = [d''x][d*?0][d\][d\][dr]N is the integration measure, ¥ is a pure spinor su-
perfield (which, in general, can also depend on non-minimal variables) and @ is the non-
minimal BRST-operator. Let us explain what [dZ] means. Firstly, [d''z][d326] is the usual
measure on ordinary eleven-dimensional superspace. The factors [dA][dA][dr] are given by

AN AT\ = (e )2aT d\PY . d)\P28
3

B1...82
751"'623d5\51 e d5\523

[dA] Aay - Aay = (€T)

ai..«
- < 0 0
dr] = (eT 1)o7 Aag - A : 4.6
The Lorentz-invariant tensors (ET)OQ‘,,M’BI”'B23 and (eT‘l)al”'o‘751mﬂ23 were defined in [20].
They are symmetric and gamma-traceless in (a1, ..., a7) and are antisymmetric in [51, .. .,
—A\—70

Bas]. N is a regularization factor which is given by N = e Since the measure

converges as A'6A%% when \ — 0, the action is well-defined if the integrand diverges slower
than A\~16\=23,
One can easily see that the equation of motion following from (4.5) is given by

QU =0 (4.7)

and since the measure factor [dZ] picks out the top cohomology of the eleven-dimensional
pure spinor BRST operator, the transformation ¥ = QA is a symmetry of the action (4.5),
that is a gauge symmetry of the theory. Therefore, (4.5) describes D = 11 linearized
supergravity.

5 Pure spinor description of complete D = 11 supergravity

As discussed in [5, 6], the pure spinor BRST-invariant action for complete D = 11 super-
gravity is given by

1 1 1 3 .
Ssa = — / [dZ] [2%2\1/ + 5 (OTap) <1 - 2T\1:> TR \beqf] (5.1)
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which is invariant under the BRST symmetry
1 1
00 = QA + (AT A\)ROWRUA + S V{Q.TIA — SA{Q, T} — 2(AT o \) TWRWRPA
— (AT \) (TA)R* W RO (5.2)

for any ghost number 2 pure spinor superfield A. Here x is the gravitational coupling
constant, and R* and 1" are ghost number -2 and -3 operators respectively, defined by the
relations [5, 20]

1 s 1 o pe <
R = -8 5(Arabx)ab + ?()\F“b/\)(AFCdT)(AFdeD)

—7;13(/\F“b/\)()\PCdr)()\Fefr)()\F N (AL gew)
+7;13(/\F“C/\)(/\Fder)()\ber)()\F N (AT cgew) (5.3)
T = 2 (AT3) (3r) () N (5.4)

and n = (A\I'°X)(AI'y)\). Note that the action is invariant under the shift symmetry
dR* = (A\I'*O) for any operator O.
The equation of motion coming from the action (5.1) is

QU + %xp{@, TV 4+ %()\Fab)\)(l _OTW)RUURNY — 0. (5.5)

To compare with the linearized equations, it is convenient to rescale ¥ — kWU so that k
drops out of the quadratic term in the action, and the e.o.m. takes the form

QU + g(AFab/\)R“\DRb\If + gqf{Q, T} — 2N \)TYRWRMY = 0. (5.6)

In order to find the superspace equations of motion, we expand the pure spinor superfield
W in positive powers of k

=) k"0, (5.7)
n=>0

where W is the linearized solution satisfying QW = 0, which describes linearized 11D
supergravity. The recursive relations that one finds from equation (5.6) are:

QUy =0 (5.8)

1 1
QU + i(AFabA)Ra\IIORb\PO + 5\IJO{Q,T}\I/O =0 (5.9)

The procedure will now be the same as that applied to the Born-Infeld case: we will first
write the non-minimal contribution to (5.9) as a BRST-exact term QA. We will then define

,13,



a new superfield ¥ = ¥ — A, which will satisfy the equation Q¥ = G(¥g) where G(¥p) is
independent of non-minimal variables. We will finally identify CN'Oé/g7 = Cpapy + kC1apy in
T = \*\° )\Véam as the first-order correction to the linearized D=11 superfield.

To find A and G(¥y), the first step will be to write R*¥ in terms of a superfield
®%(x,0, \) depending only on minimal variables as

Ry = ®%z,0,\) + Q(f*) + \I'*O (5.10)

where AI'*O is the shift symmetry of R*. To linearized order in the supergravity deforma-
tion of the background, the superfield ®* can be expressed in terms of the super-vielbein
EAP and its inverse Ep? as

¢ = \YEOP ppe (5.11)
where E4f and Ep4 have been expanded around their background values E 4P and EPA as

EaP = EaP + kEVF + 2B
Ep? = Ep? + HE](DO)A + KQEI(})A +.... (5.12)

For example, if one is expanding around the Minkowski space background, B = ok,

E* = 6 and E,m = —(I'"0)4. Note that E((IO)PEP‘L + EapEg))a = 0, so one can also

express ¢ to linearized order in the deformation as
0 = —\E,PED” (5.13)

Since all of the supergravity fields are contained in Wq, one should be able to describe ®
in terms of Wy. As discussed in [20], this relation is given by (5.10) and it will be explicitly
shown in appendix C that

2 o UM
fe= —?()\Pab/\)(/\FCdT)()\Fde)écgag)\a)\ﬁ - ?(Arabx)cbaﬁxaﬂ. (5.14)

Plugging eq. (5.10) in (5.9) implies that
QU + %(ArabA)[@ + QY@ +Qf" - Q B%T%] — 0, (5.15)
which implies that
Q(T; —A) = —%(/\Fab)\)@a@b (5.16)

where

1 1
A = SUTWo + (AT A" = S (TN f7Qf".

Hence one can define the superfield U:

U =Ty + /{(\I’l - A) (5.17)
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which will satisfy the following e.o.m. at linear order in s
Q¥ = —g(xram)qﬂ@b (5.18)
which implies

A NN | Do Cigse + g<rab>agE§°>P Ep*EOREG] =0 (5.19)

where U = A*NAC,,55.

This equation of motion (5.19) will now be shown to coincide with the D = 11 su-
pergravity equations of motion at first order in k. The non-linear D = 11 supergravity
equations of motion can be expressed using pure spinors as

A NNTN H o5 = 0 (5.20)

where we use the standard transformation rule from curved to tangent-space indices for
the 4-form superfield strength:

Hupse = E,MEsNEsPE CHynpq (5.21)
and Hynpq = ViuCnpg)- Furthermore, (5.21) implies that one can choose conventional

constraints (by appropriately defining Cg, and Cqqp) so that

1
Haﬁ'yé = Haﬁ'ya = 07 Haﬁab = _ﬁ(rab)aﬂ-

This is expected since there are no physical supergravity fields with the dimensions of
Haﬁ'y& Haﬁ*ya and Hozﬁab-
To perform an expansion in x and compare with (5.19), define

Hogys = EaMEﬁNEAVPE(s QHMNPQ- (5.22)
Equation (5.20) implies that

0 = A NN (Hppys + 46 EMESNEPEOC Hyyvpo

+6r7 B M EgN BT Es O npg + . ) (5.23)
= NNNN (Hopos + 46 B M BN B, P EVEAENP EpC EP Hapep

+6r2E,M BN EOP BV By AENPEpCEQP Hapep + .. (5.24)
= AN NNN (Hopys + 12628, P BV EOC EQP H g

+6r:2EOP Ept B9 EQY Hogay + .. ) (5.25)
= XTAATN (H‘aw - %n2E§0>PEpaE§0)QEQb(Fab)aﬁ - ) (5.26)

where ... denotes terms higher-order in . Since
ANINYN Ho 5 = RANPAIN D, Clgs,

equation (5.26) for the back-reaction to IA{ag—yg coincides with (5.19).
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A D = 10 gamma matrix identities

In D = 10 dimensions, one has chiral and antichiral spinors which have been denoted here
by x* and x,, respectively. The product of two spinors can be decomposed into two forms
depending on the chiralities of the spinors used:

1 1 1
Eix" = 1602(6X) — 5315 (™€) + s O ) (A)
1 1 1
X" = 157m (€1"™X) + g6 Cmnp)™ (€9™X) + 25 Ymnpr (€7™X) - (A-2)
The 1-form and 5-form are symmetric, and the 3-form is antisymmetric. Furthermore, it
is true that (y™")", = —(y""), ", (Y"POH, = (yP9), 1.
Two particularly useful identities are:
(’Vm)(,uu(’ym)p)a =0 (AS)
(V") (mn)? o = 4V (Y v — 261,05 — 86507 . (A.4)

From A.4 we can deduce the following;:

(Y") A = 200" (vpm) 7y, + 67,767 — (p 4 0) (A.5)
(Y™™ (Ymnp)pe = =276 (Ypm)! 5 + 6(1p)vedly — (p <> 0) (A.6)
Vinp(Y™ )T = 12T (V) =t ()] (A7)
B AP = 48(6 Y — 516Y) . (A.8)

B D = 11 gamma matrix identities

In D = 11 dimensions, one has Majorana spinors and an antisymmetric tensor C,g (and
its inverse) which can be used to raise and lower spinor indices. The product of two spinors
can be decomposed into the form

1 1 1 1
a B afs = mayaf _ ab\af abeyaf
X" 3307 0)+ 55 (M) (X at) = 5o ()™ Ol apt) + 520 (M) (X abet))
1 abed\af 1 abedeyaf

The 1-form, 2-form and 5-form are symmetric; and the O-form, 3-form and 4-form are
antisymmetric.
The crucial identity in eleven dimensions is

(T™) (ap(Tb)se) = 0. (B.2)
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One can find analogous formulae to (A.4)-(A.8) for D = 11 dimensions. However,
they do not enter into any computations of this paper, therefore we will not list them.

From (B.2) and the pure spinor constraint, one can find the following useful pure spinor
identities

If a is a shift-symmetry index, there exists a very useful identity which states the
following

(TR (ATaA) = 5o, (B.7)
This can be easily seen from the following argument. Eq. (B.2) implies the relation
—(ADX) (AL, A) = 2(AT X (ATRCN) + 2(ADPT ) (AL N)
which can be rewritten in the more convenient form
—(ADPX) (AT A) = AL, 4 462 (AN)2 — 46%(ALPA) (AL \)
where £ is defined as follows
£X = —2(AT)%(AN) = 2(ATO) (AT eA) 4 2(ATpe) ¥ (ATON) + 4A¥ (AT )

The use of (B.1) allows us to write

N 1 1 abede Y A\

—(AN)? = —o1" " 38310 40()\F bede \) (AT apede M)

N N 7 1 abcde 5\ 3\
(AP*A)(ATa) = =) = 5o (AL A) (AL apede )

Therefore,

- - 1
(ATX)(ATapA) = S 0¢n + AL

C Relation between ¥ and ®¢

At linearized level, there exists a simple relation between W and ®“. To find this relation,
define

I:IABCD = EAMEBNECPEDQHMNPQ (Cl)
as in (5). Using the conventions

1

E(Fab)aﬁ Habca = 07 (02)

Ha,@év =0 Haaﬁé =0 Habaﬁ = -
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one finds that
AN NN Hynpy = NN NEMENESPECENAENP Ep© EgP Hagep
= 3N NN ENEO Hopry + ..
- iﬁq)b)‘ﬂxf(rab)ﬁw LIRS
where ... denotes terms of order k2 and ®° = —)\aEAaNEJ(\?)b.

Since

N NN gy = (00T — 3QAN o),

one obtains the relation
1
0aWo = £ (AT \)®” +3Q(A* N Caag)
The use of equation (C.6) and the linearized e.o.m.

DaWo + 3Q0(Cups) N’ A = —6(T%N) o Caps NN

(C.6)

(C.7)

allows us to compute the action of R* on ¥, in the form displayed in (5.10). To see this,

it will be useful to express R® in the more convenient way [5]
R = -8 [n( T8y + — 2 (Ar“bA)(chdr)(ArbcdD)
~{@ TG | ()
Therefore,
R, = 8[ (AL X) abq/0+77 (AL X)(ALY) (AT peqg D)

+3 {Q, (AL X) (AT )}(Arbcd)acamw}

= -8 [1 DYDY abqfo—i(/\rabx)(mcd V(AT pea)*(QCups) NN
Us

3

()\F“bA)(/\FCd Y ATpeal'*A) Cons A N?
+3 {Q, (AL X (A< )} (Arbcd)acaﬁgﬂﬁ}

1
= 8{ (AI?)) ab\IJO+Q[ (I‘“bA)()\FCdr)()\Fbcd)acag(;)\ﬁ)\‘s]
U s

6

2 (AT X) (AT [—2(AT pa )7+ (AT caN) 775 ] Coap A2 N }

- 8{717()\F“b)\)8b\IIO+Q[ (AP X) (AT %y )(Arbad)acaﬁgﬂxs]

+7(5\1"‘1b7")0 ap AN — ()\F“b)\)(/\I‘Cdr)()\I‘cd)\)Cbaﬁ)\“)\ﬂ}
n n?

,18,
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1 _ _ _ _
= -8 {()\Fab)\)(’)b\llo—i—Q [32(AF“’)A)(APC%)(Arbcd)acamAﬁAé]
U n

+Q [3(ArabA)0baﬁAaAﬁ] —z(AF“b)\)Q[CbaB)\O‘)\ﬁ}}

—E(XF“”X)(AFbCA)@CJrQ [23(XrabX)(chdr)(Arbcd)acamxﬁAéM(Xrabﬂ)cbaﬁvw
n n n

2% 24 -
= U4Q [—le()\F“b)\)()\l““lr)()\Fbcd)“Cag(;)\B)\‘s—n()\P“b)\)Cbag)\“/\B] . (C.9)

Notice that in order for the normalization factor of ®* to be one after applying R® on W,
one should choose the conventions used for R* in (5.3) and those displayed in (C.2).
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