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Abstract In the presented paper the equations of
motion of a rotating composite Timoshenko beam are
derived by utilising the Hamilton principle. The non-
classical effects like material anisotropy, transverse
shear and both primary and secondary cross-section
warpings are taken into account in the analysis. As an
extension of the other papers known to the authors a
nonconstant rotating speed and an arbitrary beam’s
preset (pitch) angle are considered. It is shown that the
resulting general equations of motion are coupled
together and form a nonlinear system of PDEs. Two
cases of an open and closed box-beam cross-section
made of symmetric laminate are analysed in details. It
is shown that considering different pitch angles there
is a strong effect in coupling of flapwise bending with
chordwise bending motions due to a centrifugal force.
Moreover, a consequence of terms related to noncon-
stant rotating speed is presented. Therefore it is shown
that both the variable rotating speed and nonzero pitch
angle have significant impact on systems dynamics

F. Georgiades

School of Engineering, Faculty of Science, University of
Lincoln, Lincoln, UK

e-mail: fgeorgiadis@lincoln.ac.uk

J. Latalski (D) - J. Warminski

Department of Applied Mechanics, Lublin University of
Technology, 20-618 Lublin, Poland

e-mail: j.latalski@pollub.pl

J. Warminski
e-mail: j.warminski@pollub.pl

and need to be considered in modelling of rotating
beams.
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1 Introduction

Rotating beams are important structures widely used
in mechanical and aerospace engineering as tur-
bine blades, various cooling fans, windmill blades,
helicopter rotor blades, airplane propellers etc. Intro-
duction of composite materials technology has signif-
icantly influenced their design and opened new
research areas. Various elastic couplings, resulting
from the directional-dependent properties of compos-
ites and ply-stacking sequences combinations might
be exploited to enhance their response. A profound
understanding of rotating composite beams dynamics
is essential towards taking the full advantage of their
design potential and avoiding failures.

An interest of modelling composite rotating beams
started in mid 80s and increasing number of research
work led to several review papers, where different
approaches to rotating composite beam modelling
were discussed. In 1994 Kunz [17] and later Volovoi
et al. [32] made an extended assessment of rotating
beam modelling methods with special regard to
helicopter rotor blades.
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Currently available approaches to analysis of
composite beams fall in one of the three cases [13]:
(a) theories in which some a’priori cross-sectional
deformation is assumed leading to 1-D governing
equations; (b) theories based on equations for the
blade as a one-dimensional continuum, the cross-
section properties of which are obtained from separate
source e.g. [12]; (c) approach where the beam and
cross-sectional governing equations are rigorously
reduced from three-dimensional elasticity theory.
Although ‘ad hock’ theories (a) have some drawbacks
(see [36]) they still stay to be one of the most common
ones.

A very extensive work devoted to thin-walled
composite beam analysis was done by Librescu and
Song [21, 28, 29] and their co-workers e.g. [23, 24].
Authors developed and refined a theory of beams
modelled as thin-walled structures of an arbitrary,
closed or open cross-section. The work-out theory
encompassed a number of non-classical effects such as
the anisotropy and heterogeneity of constituent mate-
rials, transverse shear, primary and secondary warping
phenomena (Vlasov effect) etc. under assumption of
the cross-section to be rigid in its own plane. In the
performed analysis of rotating systems [29] the effects
of the centrifugal and Coriolis forces were taken into
account. Furthermore, the importance of shear effects
in composite material was emphasized.

Kaya and Ozgumus in [15] performed an analysis
of the free vibration response of an axially loaded,
closed-section composite Timoshenko beam which
featured material coupling between flapwise bending
and torsional vibrations due to ply orientation. The
governing differential equations of motion were
derived and the impact of the various couplings, as
well as the slenderness ratio on the natural frequencies
were investigated. Although only the cases of constant
rotating speed and zero pitch angle were considered.

Sina et al. [27] analysed a rotating tapered thin-
walled composite Timoshenko beam in linear regime
following Librescu’s approach. In the performed
analysis centrifugal and Coriolis forces were taken
into account; however no beam presetting angle nor
variable rotating speed were considered in that paper.
A discussion of taper and slenderness ratio impact on
natural frequencies and mode shapes was furthermore
presented.

Jun et al. [14] studied the dynamics of axially
loaded thin-walled beams of open, mono-symmetrical
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section. The studies considered the effect of warping
stiffness, but were restricted to Euler—Bernoulli beam
theory and isotropic material only. An impact of axial
force and warping stiffness on the coupled bending
torsional natural frequencies with various boundary
conditions is examined.

The analysis of a nonlinear rotating thin-walled
composite beam was presented by e.g. Arvin and
Bakhtiari-Nejad [2]. Authors developed a model for
rotating composite Timoshenko beam considering
centrifugal forces by means of von-Karmans strain—
displacement relationships. The system was studied
using the multiple time scales method and nonlinear
normal modes theory. Again assumptions regarding
zero pitch angle and constant rotation speed were
made. Ghorasi [11] developed a nonlinear model of
the rotating thin-walled composite Euler—Bernoulli
beam using the previously mentioned variational
asymptotic method elaborated by Cesnik and Hodges
[6]. He considered a non-zero pitch angle but again
only in parallel with constant rotating speed case.
Avramov et al. [4] modelled rotating Euler—Bernoulli
beams made by isotropic material with asymmetric
cross-sections considering non-zero pitch angle but
constant rotation speed. The study of flexural-flexural-
torsional nonlinear vibrations using nonlinear normal
modes approach were presented.

Effect of an initial beam pre-twist was examined by
several researchers too. Chandiramani et al. [7]
studied free linear vibrations of the rotating pre-
twisted thin-walled composite Timoshenko beams
considering a non-zero pitch angle but a constant
rotating speed. Also Oh et al. [23] modelled and
studied the similar system, but again following an
assumption of the constant rotation speed.

Possible interactions and mode couplings observed
in rotating ‘smart’ beams gained attention of several
researchers in recent years too. Na et al. [22] addressed
the problem of modelling and bending vibration
control of tapered rotating blades represented as
nonuniform thin-walled beams and incorporating
adaptive capabilities. The blade model incorporated
most non-classical features and their assessment on
system dynamics including the taper characteristics
was accomplished. Ren et al. [25] modelled a rotating
thin-walled shape memory alloy composite Euler—
Bernoulli beam, considering centrifugal and Coriolis
forces with non-zero pitch angle but constant rotating
speed. Free vibrations of the system were studied.
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Choi et al. [8] modelled rotating thin walled composite
Timoshenko beams with macro fiber composite actu-
ators and sensors using Librescu’s approach. Again
zero pitch angle and constant rotating speed assump-
tions were made.

The research on free vibrations of the rotating
inclined cantilever beam was done by Lee and Sheu
[20]. Influence of the beam setting angle and the
inclination angle on the first two natural frequencies of
the system were examined. Moreover different hub
radius to beam length ratios were tested. This study
was limited to isotropic materials, so only very little of
possible internal couplings observed in the case of
composite materials were recorded and commented.

A nonlinear model of rotating isotropic blades based
on the Cosserat theory of rods without restrictions on
the geometry of deformation was presented in [18].
The roles of internal kinematic constraints such as
unshearability of the slender blades, coupling between
flapping, lagging, axial and torsional deformations
were studied. The authors showed an influence of the
angular velocity on the possible internal resonances
which may occur in the considered rotating structure.
The method of multiple time scales was applied
directly to PDE of motion in order to determine the
back-bone curves of the flapping modes out of internal
resonance [3]. The hardening and softening effect was
shown for selected angular velocities, and the impor-
tance of 2:1 internal resonance between flapping and
axial modes leading to additional interactions and
changing dynamics was demonstrated. As results from
the paper the angular speed may be treated as the
geometrical tuning mechanics leading to specific
dynamic interactions between modes. As in the case
of previously mentioned papers the assumption of
constant rotating speed stayed in force.

Case of non-constant rotating speed with respect to
isotropic material blade was examined by Vyas and
Rao [33]. The equations of motion of a Timoshenko
beam mounted on a disk rotating with constant
acceleration were given. In the derivation higher order
effects due to Coriolis forces were included, but
impact of non-zero presetting angle was ignored;
moreover no numerical examples were given. War-
minski and Balthazar [34] modelled a rotating Euler—
Bernoulli beam made of isotropic material with a tip
mass. In the analysis geometrical nonlinearities and
nonconstant rotating speed were taken into account,
but an impact of pitch angle has been neglected. The

authors showed transitions through the resonances for
a reduced order discrete system. This topic was also
investigated and continued afterwards by Fenili and
Balthazar [9, 10]. Authors considered the non-ideal
system’s power supply where the response of the
excited beam affected the behaviour of the energy
source. The performed simulations led to the obser-
vation, that this interaction caused a damping of the
beam response.

Apart from analytical based models composite thin
walled beams are studied also by means of finite
element method. Altenbach et al. [1] developed a
generalized Vlasov theory for thin-walled composite
beam and next an isoparametric finite element with
arbitrary nodal degrees of freedom. The element was
tested for multiple cases of open and closed cross-
section cantilever designs, although only static cases
were considered. The 3D model of a rotating beam
with geometric nonlinearities was investigated in [30]
by the p-version of finite element method. The two
models, Bernoulli-Euler and Timoshenko, were stud-
ied and the importance of warping function for
different rectangular cross-sections was shown. More-
over, authors concluded that additional shear stresses
which appeared while bending and torsion were
coupled have an essential influence on the beam’s
dynamics. In the latest paper [31] the p-version of
finite element was used for 3D Timoshenko beam
model in which two types of nonlinearity were
considered, a nonlinear strain-displacement relation
and inertia forces due to rotation. The deformation in a
longitudinal direction due to warping was taken into
account. Dynamics was studied for constant and
nonconstant rotation speed and for harmonic external
loading.

A very comprehensive theory of rotating slender
beams has been developed since the nineties by
Hodges and his co-workers. It was presented in a series
of papers and later collected in a book by Hodges [13].
In order to derive the equations of motions they used
Cosserat theory (a director theory) for the determina-
tion of generalized strains. The modelling was based
on asymptotic procedures that exploited the smallness
of system’s parameters such as strain and slenderness.
The approach extracted from a three-dimensional
elasticity formulation the two sets of analyses: one
over the cross section, providing elastic constants that
might be used in a suitable set of beam equations, and
the other set beeing the beam equations themselves.
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Fig. 1 Rotating thin-walled beam under consideration and reference frames

Authors developed a software called variational
asymptotic beam section analysis (VABS) which used
the originally worked-out analysis method. The VABS
software was later verified and validated within the
frame of several works e.g. by Yu et al. [36], by
Kovvali et al. [16]. The worked out theory is especially
well suited for helicopter rotor blades modelling since
it accounts for initial twist and geometrical nonlinear-
ities (i.e. large displacements and rotations caused by
deformation) preserving small strain condition. It
allows for arbitrary cross-sectional geometry and
material properties as well. In spite of the fact that
authors have not assumed constant angular velocity
there is a lack of explicit dependencies in the case
when nonlinear couplings arise from nonconstant
angular velocity. This phenomenon is essential in case
of study of so called non-ideal system when energy
source e.g. DC motor interacts with the power-driven
structure. Nonlinear coupling terms may be observed
by Sommerfeld effect [5, 34].

Although of evident practical importance, to the best
of the authors knowledge, no studies on possible
interactions occurring in composite beams rotating with
nonconstant speed have been found in the specialised
literature. Also the assumption of the arbitrary pitch
angle in the performed analysis still leaves some space
for discussion. To address this situation a derivation of
equations of motion of the rotating thin-walled com-
posite Timoshenko beam is presented. In the performed
analysis most non-classical effects like material anisot-
ropy, transverse shear and both primary and secondary
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cross-section warpings are taken into account, as well as
arbitrary pitch angle and nonconstant rotating speed.
The resulting general equations form a system of
nonlinear PDEs that are coupled together. To illustrate
the potential of this study a more detailed examination of
two cases of open and closed box-beam cross-sections
made of symmetric laminate is performed. It is shown
that considering different pitch angles one observes a
strong effect in coupling of flapwise bending and
choordwise bending motions due to centrifugal force.
Moreover, the consequence of terms related to noncon-
stant rotating speed is exemplified.

2 Theory
2.1 Problem formulation

Let us consider a slender, straight and elastic com-
posite thin-walled beam clamped at the rigid hub of
radius R experiencing rotational motion as shown in
Fig. 1. The length of the beam is denoted by [, its wall
thickness by A and it is assumed to be constant
spanwise. The composite material is linearly elastic
(Hookean) and its properties may vary in directions
orthogonal to the middle surface.

2.1.1 Coordinate systems

Four coordinate systems are defined to describe the
motion of the beam:
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— global and fixed in space Cartesian coordinate
system (Xy, Yo,Zo) attached at the center of the
hub O (Fig. 1a),

— beam Cartesian coordinate system (Xi,Y;,Z;)
with origin O set at the center of the hub, rotating
with arbitrary angular velocity y(¢) about axis
0Z, = 0Z, (Fig. 1a),

— beam Cartesian coordinate system (x,y, z) located
at the blade root and oriented with respect to plane
of rotation (X;Y;) at angle 0 denoting blade
presetting (pitch) angle (Fig. 1b). Axis ox is
directed along beam span and oz axis is normal to
the beam chord. The origin o of the (x,y,z)
coordinates is set at the center of the beam cross-
section, therefore axes ox and OX; coincide,

— local, curvilinear coordinate system (x,n,s)
related to blade cross-section—see Fig. lc. Its
origin is set conveniently at the point on a mid-line
contour. The circumferential coordinate s is mea-
sured along the tangent to the middle surface in a
counter-clockwise direction, whereas n points
outwards and along the normal to the middle
surface.

2.1.2 Assumptions

For the development of the equations of motion the
following kinematic and static assumptions are
postulated:

(a) the original shape of the cross-section is main-
tained in its plane, but is allowed to warp out of
the plane,

(b) the concept of the Saint-Venant torsional model
is discarded in the favour of the non-uniform
torsional one. Therefore the rate of beam twist
¢’ = d/dx depends in general on the spanwise
coordinate x,

(c) in addition to the primary warping effects
(related to the cross-section shape) the secondary
warping related to the wall thickness is also
considered,

(d) the transverse beam shear deformations y,,, 7,
are taken into account. These are assumed to be
uniform over the beam cross-section,

(e) the ratio of wall thickness to the radius of
curvature at any point of the beam wall is
negligibly small while compared to unity.

In a special case of the prismatic beams
made of planar segments this ratio is
exactly O,

(f) the stress in transverse normal (g, ) direction and
the hoop stress resultant (N,,) are very small and
can be neglected.

2.2 Beam model

The equations of motion of the rotating beam are
derived according to the extended Hamilton’s princi-
ple of the least action

5]

51:/(M:®U+5m@m:o, (1)

131

where J is the action, T is the kinetic energy, U is the
potential energy and the work of the external forces is
given by the W,,, term. One of the key steps of the
derivation procedure is associated with the definition
of a position vector and subsequently velocity and
acceleration ones.

2.2.1 Position vector

Let us consider any arbitrary point A located on the
beam’s profile mid-line specified by its position vector
r = {x,y, z}T in the local beam’s coordinate system—
Fig. 2. As the system rotates and A experiences
displacement D = {D,,D,,D.}" it occupies a new
position A’ given by a position vector R defined in
fixed inertial frame.

To find the position vector R in the global
coordinate system transformation matrices defining
transitions to subsequent reference frames need to be
defined. For this purpose the method of four dependent
Euler parameters is used—see e.g. Shabana [26].

Transformation between XoYoZy and X,Y\Z,
frames

Transformation between XyYoZ, and X,Y;Z;
frames is related to the rotation through angle v(7)
about OZ; = 0Zy axis. Therefore a transformation
matrix is given as

cosy(r) —siny(r)

0
AD = |'siny(r)  cosy(r) O (2)
0 0 1
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(b)

Fig. 2 a Position vectors of point A in reference frames; b transformation of an arbitrary cross-section as rigid body motion; point P
denotes cross-section pole and vp, wp its transversal displacements while ¢(x, ) is cross-section rotation

Transformation between (xyz) and (X,1Y1Z,) frames

Transformation from beam’s local xyz frame to
X1Y1Z, one is related to the rotation about OX; axis
through angle 0 (see Fig. 1) corresponding to beam’s
pitch angle and next the translation along the hub
radius Ry. So the second rotation matrix is

1 0 0
AM =10 cosf —sin0 (3)
0 sinf  cosf

In the following discussion, to distinguish between
coordinates associated with cross-section’s mid-line
points and off-mid line ones lower (y, z) and capital (Y,
Z) letters are used correspondingly. Following this
notation setting (in beam’s local coordinate system)
the initial position vector r of any arbitrary point of the
cross-section

r=xi+ Yj+Zk (4)

and applying subsequent transformations the position
vector R in inertial (global) frame is

R=AU[A™(r + D) + R| (5)

Substituting (2), (3) and (4) into the above relation one
obtains

where D,, D, and D, are individual terms of
deformation vector D in local coordinates as defined
later in (9).

2.2.2 Velocity vector

The velocity vector of an arbitrary point A of the elastic
body in the inertial frame can be obtained by differ-
entiating the position vector (6) with respect to time.
This requires evaluating the time derivative of the
transformation matrix. Next a skew symmetric matrix
needs to be defined to formulate an angular velocity
vector in a global coordinate system as describedine.g.
[26]. After appropriate manipulations one arrives at
R, =[—(Dy+x+Ro)siny(t) — (Dy+Y)cosOcosy(t)

+ (D, +Z)sinOcos (1) | (1)

+ Dy cosy(t) — DycosOsiny() + D, sin Osiny (1)
Ry=[(Dx+x+Ro)cosy(t) — (Dy+Y)cosOsiny(t)

+(D,+Z)sinOsiny (1) | ()

+D,siny(t) + Dycos Ocosy(t) — D, sinOcos (1)
R.=D,sin0+ D,cos0 (7)
where overdot means time derivative, so DX, Dy and DZ
terms correspond to velocities of deformation.

(Dy 4+ x4 Ro)cosy(t) — (Dy + Y) cos Osiny(t) + (D, + Z) sin O sin (1)
R = (Dy+x+Rp)siny(t) + (Dy + Y)cosOcos y(t) — (D, + Z) sin 0 cos y(r) (6)
(Dy +Y)sin0+ (D, + Z) cos 0
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2.2.3 Acceleration vector

Following the same approach as the above one an
acceleration vector is obtained:

R, =[—(Dy+x+Ro)siny(t) — (Dy+Y)cosbcosy ()
+(D.+Z)sin0Ocosy(1)] (1)
+ [—(Dy+x+Ro) cos (1) + (Dy+Y ) cos Osiny (t)
— (D.+Z)sinOsiny (1)] (ﬁz(t) +2[—D,siny(z)
—DycosOcosy(t)+D.sinOcosy(1)] W (1)
+ Dy cosy(t) — DycosOsiny (t) + D, sinOsini (¢)
v =[(Dx+x+Rp)cosi(t) — (Dy+Y) cosOsinyy ()
+ (D, +Z)sinOsiny (1) (1)
+ [—(Dy+x+Ro)siny (1) — (Dy+Y)
x cosOcosy (1) + (D.+Z)sinOcosy (t)] lﬁz(t)
+2[Dycosy(t) —DycosOsiny(t)
+D,sinOsin (1) |y () + Dysinp ()
+ D, cosOcosi(r) — D sinOcosy(t)
R, :ﬁy sin0+D,cos0

i

(8)

Commenting on the velocity relation (7) and the
acceleration formula (8) one can notice that supposing
constant angular velocity condition y(¢) = const. and
zero pitch angle =0 these simplify exactly to the
formulations given for cases examined by other
researchers e.g. by Choi et al. [8], Librescu and Song
[21] or Sina et al. [27].

2.2.4 Displacement field

Following the assumptions given in the section 2.1.2
the displacements of an arbitrary point of the cross-
section are defined as (Librescu and Song [21])

Dy = ug(x,1) + 0 (x, 1 )(z—nj—> + 0 (x, t)(y+";£)

— G(n,s)¢' (x,1) = up(x, 1) + 9y(x,0) Z+ 9, (x,1) Y
—G(n,5)¢'(x,1)

Dy =v, (x,1) — (Y — y,) (1 — cos ¢ (x,1))
—(Z—zp)sinp(x,1) = v, (x,1) fl(ny‘,,)

2

x (p(x,1))* = (Z — ) p(x,1)

D, =w, (x,1) + (Y — yp) sin(x, 1) — (Z — z,)
(1 —cosp(x,1)) = wp (x,1) + (Y — yp)0(x, )

) (o(x,1)? 9)

where G(s,n) is a warping function formulated in
Appendix 1, ¢(x,t) denotes rotation of the cross-
section (twist angle) as seen in Fig. 2 and prime
denotes differentiation with respect to the span
coordinate (x). Angles Uy(x,7) =y, —w, and
I, (x, 1) = Vey — v;) represent cross-sections’ rotations

1
—Z(Z—
2(

about respective axes y and z at pole P. The coordi-
nates associated with off-mid-line points are denoted
by capital letters (Y, Z), while mid-line ones are
denoted by small y and z as already has been
explained. Moreover, in the above formula the mod-
erately large rotations are allowed by the approxima-
tion cos @ ~ 1 — @?/2. The later linearisation of the
respective resulting equations is performed after
incorporation of this approximation.

2.2.5 Strains

We restrict our modelling to linear elastic range,
therefore we consider only linear strains. The axial and
circumferential-axial ones are split into mid-line terms

(superscript (-)<O>) and off-mid-line ones (superscript

(-)(1>) as proposed by Librescu and Song [21]

e = £ + nell) (10a)
Vo =79 + myy) (10b)
Ven =V (10c)

It should be noted that considering linearised
displacement field of equations (9) the following strains
(eyy = &z = 7)) are identically zero. The respective
parts are defined in terms of mid-line coordinates

& = uy + 20, + 39, — GV(s)o" (11a)
‘(l) — / (1) " 11b
b = T 19) dsﬂ G (s)e (11b)
7w =78 +8% )¢’ (11c)
dz dy

9, +v)— 11d
W = Wy +w) o+ (4 v) (11d)
7w =W (s)e/ (11e)
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Fig. 3 In-plane and
transversal stress resultants
and stress couples acting on
a beam’s wall element

?S] + (9 + v, dz

and primary and secondary warping functions
GO(s), GW(s) and g, gV functions formulas are
given explicitly in the Appendix 1.

’y)(m -

(11f)

—(vy +w)

2.3 Energies

Following the displacement field, the position vector
formula and acceleration dependencies (see Sects.
2.2.1,2.2.2 and 2.2.3) the formulas for the appropriate
energies are derived in subsequent paragraphs.

2.3.1 Potential energy

The potential energy of the elastic system under
consideration is given by

1 h/2
1
U = 5// / (Gxxﬁxx + Oxnxn + styxs)dndsdx =
0 ¢ —h/2

1
2 / / [NVt + Lce®) + Negy) + Ny
0 c
+Lxs%(cl)] dsdx (12)

whereas formulations for stress resultants and stress
couples (see Fig. 3) as defined in (95-97) were used.
Integral’s subscript ¢ denotes integration along the
mid-line contour. The variation of the potential energy
arising from Eq. (12) is

1
oU = / [N0e®) + Lidel) + Nyl + Nyl

+ Lxséyg)]dsdx. (13)
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The requested variations of strains given by
formulas (11) are

069 = dup) + 200, + you, — G (s)0¢" (14a)

dell) = _?(w; + %519; —GW(s)d¢g" (14b)
s s

dz dz dy dy
O =259, +—ow! 59, 5 5
T = >+dswp+ + v+g 9 (s)d¢’
(14c¢)

syl = g (s)d¢’ (14d)

dy
50 = Dy D5
V ds 7 ds W

Xn

dz dz
— 09, + =V 14e
ers ¢ Jra’s ' (14e)

Integrating given in Appendix 2 formulas for
stress resultants (95, 96) and stress couples (97)
along the mid-line contour the following one-
dimensional stress measures are introduced

T, = / N, ds

o [ (o ) "

the shear force in y-direction

dz d
QZ:/(N ds N)‘"d_y>d
p (17)
the shear force in z-direction
M, = /

the twisting moment about x-axis

the axial force (15)

Nxv+g< >( ) x.v)ds
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M, = / (2o —Lxx%>ds

(19)
the bending moment in y-axis
d
M, = / (3o + L5 s
c ’ (20)
the bending moment in z-axis
B, = / (GO(5)Ne + GV (5)Lyy ) ds
/ (21)

the warping torque, bimoment

Therefore considering equations (14a) and the above
given stress measures, relation (13) after integration
by parts and reordering takes the final form

1
5U:/ { — T/ Suo— 0, v,— 0w,
0

(0 M) 0, (0, M) 30

—(M.+B]) 5¢}dx
x=I =1 x=l
+ T Oup +0,0v, +00w,
x=0 x=0 x=0
x=I x=I x=I
+M,00,|  +M.00.|  +(M+B) 5¢. )
x=I
—B,6¢’

(22)

Appearing in the above one-dimensional stress mea-
sures might be expressed in terms of basic unknown
functions of the problem (or their spatial derivatives)
ie. up(x,1), vp(x,1), wy(x,1), Oy (x,1), ¥, (x,1) and @ (x,1).
To do this the strain definitions (11) are substituted
into stress resultants and stress couples definitions as
given in (104)

N5, x) = K% + K79 + K30’ + Kyl

XX XS

(23)
Nx_y(s,x) = K218)(c?c) + Kzz“?i? + K23(p, + K248)(C}C)

(24)
Le(5,%) = Kael) + K7 + Kizp' + Kusiel))

(25)
Ly(s,x) = K518,(C?C) + Ksz?)(g) + Ks3¢' + K548,(Cl)

(26)

an(s7x) - C44V(0) (27)

xn

Ny, (Sv )C) = C45V<O) (28)

Xn

and next substituted in (15-21). After unknowns
reordering one arrives at final formulas for one-
dimensional stress measures

T, =anuy + aisVy + a3, + ag?; + and, + aigv,
+aisw, + a7’ — aiso”,

Oy =aruy + assVy + aza ¥, + asd; + auV, + auv,
+ a45w; + a47(p' — 6146(p”7

Q. =aisuy + assvy + ass + assV, + ars, + assv,
+ aSSW;, +as7¢0' — assq”,

M, =ayquy + asydy + ax ¥, + agnV; + ax?, + agv,
+ a57w;) +ane' —age”,

M, =ayzuy + azsVy + a3 + asg?; + ad, + asv,
+ azsw, + az ¢’ — aze”,

M, =ajuy + axsVy + a2319;, + a?; + an?. + a24v;
—+ azswé + an¢' — axe”,

B, =aigty + asedy + aze?), + ass?; + axs?,
+ ageV), + asew,, + ag1¢" — ags "

(29)

where the coefficients a;; (i,j = 1,...7) are defined in
Appendix 2.

2.3.2 Kinetic energy

The kinetic energy of the system is defined
1 ST
14

where designation p refers to average composite
material density and V refers to volume element and
dV = dndsdx. From the above we obtain the variation

oT = / p RT6RAV

\%4

B 0 T T

—/p&(R 5R)dV7/pR SRAV (31)
1% \4

Integration of the above relation over the time interval
(t1,1,) and keeping in mind that OR; vanishes at time
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t =1 and t = 1, yields the kinetic energy variation
term for the Hamiltonian principle (1)

12 15
/ oTdt = — / / p RTORAVdt
n nhVv

[5)
=— / / p(R:SR. + R,6R, + R.OR.)dVdt
v

(32)

Cartesian coordinates of the position vector variation
OR, as well as appropriate basic unknowns terms are
given in Appendix 3.

2.3.3 Work of external forces

Consider the general case of beam loading expressed
in terms of

— F;—body forces per unit mass, with corresponding
external work W, 1,

— g;—surface loads per unit area applied at the
beam’s middle surface with external work Wy, 7,

— t,—traction loads per unit area applied at longitu-
dinal (side) sections of open cross-section beams
with resulting external work W, 3,

— f—traction loads per unite area applied in beams
with open cross-sections of at free edges of the
cross-section with external work W,,; 4,

— T,y ,—torque applied at hub for nonconstant
rotational speed, W,,;s.

The respective terms are as follows

I k2
Wext,l = // / Po (FxDx + FyDy + FZDZ)dndsdx
0 ¢ —h/2

1
Wexip = // (qxﬁx + %rﬁy + CIzbz)dex
0 c

h/2
/ x=I

Wens = ny [ / / (t:.Dx + t,D, + tzDz)dnds}
‘i x=0
—1 x=0
with n, = 1 x=1

0 elsewhere
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[ h/2 —
Wexra = 1y { / / (:Dx + 1,D, +tAZDZ)dndx}
0 —h/2 e
-1 s =5
with ng = 1 s =5

0 elsewhere
WextA,S = Texl,zlp(t) (33)

whereas superposed bar indicates displacements
of the mid-surface contour points (n=0).
Therefore, the total work and its perturbation are as
follows

Wext :Wext,l + Wext,Z + Wext,3 + Wext,4 + Wexr,S
5Wext :5Wext‘l + 5Wexfﬁ2 + 5Wext73 + 5Wext,4 + 5Wext,5

(34)

Then the external works equations system (33) using
also displacement relations (9) takes the form

I h2
Wext,l:// / Po[quo-l-FxZﬁy-ﬁ-FxYﬁz
0 ¢ —n/2

—F,.G(n,s)¢' + Fyv, + F,w,
+ [FZ(Y 7yp) - Fy(Z - Zp)]§0:| dndsdx

l
Wext,Z = // {%Mo + C]xzﬁy + quﬁz - qu(O) (S) QD/
0 ¢

+qyvp +q:wp + [‘]z(y - yp) - %‘(Z - ZP)](P} dsdx

k)2
Wext.S - |:nx/ / [[xl/t() + foﬂy + tJCY{ﬁZ
¢ —h/2

—1,G(n,s)¢" + tyv, + t;w,

x=l

+ (Y —yp) —1,(Z —z,,)]q)]dnds]

x=0
I h/2
Wm_4:50n5{ / / [fattg + 1,20, + £,Y0,
0 —h/2

—1,G(n,s)¢’ + by, + 1w,

A fy(Z—zp)yp]dndx}

§=52

§=51

(35)
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where J is a tag indicting case of open (09 =1) or
closed case (09 =0). Formulas for the appropriate
work terms in (35) are given in Appendix 4.

2.4 Equations of motion

In this section the final form of the equations of
motions of the system is derived. Starting from Eq. (1)
and considering Egs. (32), (13), and (121) the least
action principle results in the relation

t 1 h/2
5]:/{—// / pRTéRdndsdx
n 0 c —hp2

1
— [ [ o+ Loy + wman +
0 c
+ L0369 ) dsdx + W1 + W

+ 5Wext,3 + 5W6xt,4 + 5Wext,5 }dt =0. (36)

Considering for variation of potential energy (22),
variation of kinetic energy Eqgs. (110)—(115) and
variation of external work equation (122), the least
action principle equation (36), after integration with
respect to time leads to the following equations with
respect to variation of problem’s independent variables

° (1)
— By () — Byaliy(t) cos® 0 — B3l (1) sin 0

1
+2By5l (1) cos Osin 0 — / 28, (Ro + x)uoi (1)
0

+2(By2cos” 0 — By sinfcos 9)vptﬁ(t)
+ 2(311 sin’0 — By, sin 0 cos Q)Wpl/;(l)
+2B11(Ro + x)0, () + 2B12(Ro+x)0.3 (1)
+2(By7 sin*0— B3 cos Q)mzﬁ(t)
—2B7(Ro+x)¢' +2(Bis — Bio) pi(t) sin O cos 0} dx
I
_ / {(B” sin 0— By, cos 0)120+Bl (Ro +x)V,cos0
0
— Bi(Ro + x)W, sin0+ (By3sin0 — Bys cos 9)19'},
+ (Bissin0 — By cos (9)19'Z + (Bycos 0 — Bgsin0) ¢’

— (B3 sin 0 + B, cos 9) (Ro + x)qo] dx
1
- / {ZBl(RO + Xy (1) — ZBmiplﬁ(t) sin 6 cos 6
0
+ ZBlzvplﬁ(t) cos? 0 — 2an,,l/}(z) sin 6 cos 6
+ 2By 1w, (t) sin? 0 + 2By (Ro + )0, (1)
+2B12(Ro + 2)0:1p (1) — 2B7(Ro +x)¢'1 (1)
+ 2By17y (1) sin” 0 — 2B g () cos® 0
+ 2(Big — B1o) (1) sin 0 cos H] dx+Toy, = 0
(37)

o 5M0,

— Biiig — B1o¥. — Bi1Jy + By ¢’ + 2By, (1) cos 0

— 2B,y (1) cos O — 2By v,y (1) sin O — 2B3yj(t) sin 0
4 Bi(Ro +x + uo)y (£) + Bia0i (1)

+ Budy (1) = B (1) — Biw, (1) sin 0

— B3gyi(t) sin 0 — By (¢) sin 0 + Byv, (1) cos 0

— By (1) cos 0 + By (1) cos 0

+ Ty + Pexir + 60Pexc = 0 (38)

with boundary conditions,

to|,_o =0, [T + Qx| = 0 (39)

e Iy,

— BV, + By — 2B1dolﬁ(t) cos0 — ZBlzﬁzzﬁ(t) cosf

— 2B,y (1) cos 0+ 2B7 ¢y (1) cos 0

—Blw,,xﬂz(t) sin9cosH—B3<plﬁ2(t) sinfOcos 0

—Bnlﬂz(t) sin@cos@—i—Bw,,x/f(t) cos® 0

- quolﬂz(t) cos?0 —|—B]2|ﬁ2(t) c0s>0 — B (Ro + x + u)

x (1) cos O — B0y (1) cos O — By 0,3 (t) cos 0

+B7¢" (1) €08 0+ Q) + Perry + 80Pexry =0
(40)

with boundary conditions,

Vpli—o = 0, [Qv + nxQext,y”x:l =0 (41)
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e ow,

B3 +2Biig (1) sin0+2B1,0.4 (1) sin0
+2B1, 9,4 (1) sin0 —2B7¢'yi (1) sin0+Blw,,¢2(t) sin?0
+B3(plﬁ2(t) sin29+B111ﬁ2(t) sin? 0

,Blvl,lf(t) sin@cos@Jrqu)gbz (¢)sinfOcos0
—Blzlﬁz(t) sin0cos 0+ By (Ry+x+uo )Y (t)sin0

+ B0 (t)sin0+ By 9, (1) sin0

—B1' (1) $in0+ QL+ Peys . + 60Pexi . =0

— By, —

(42)
with boundary conditions,
W["X:O = 07 [QZ + nxQext,szx:l = O (43)
e 9,

— Byiip — B3V, — Bist, + By’ + 2By v, () cos 0
— 2B16j (1) cos O — 2By, (1) sin 0 — 2B 17 (1)
x sin + By (Ro + x + uo)lpz(f) + Blsﬁzlﬁz(f)

+ Bisty” (1) — Bs@'li* (1) — Buwp (1) sin 0

— Bi7oy(t) sin 0 + By, (t) cos 0

— By (1) cos 0 — B3 () sin 0 + Bysy(¢) cos 0
- Qz + M; + Mexty + 50mext,y =0

(44)
with boundary conditions,
Ol =0,  [My+nM.,] _, =0 (45)
e 00,

— By — Blslé.y — 31419; + ngb/ + 2312\},, l//([) cos 0
— 2B18<px/)(t) cos O — ZBlzwpxﬁ(t) sin 0

— 2Bioup (1) sin 0 + Bya(Ro + x + o)y () + Bradp (1)

.2 .2 . .

+ B]5’l9yl// (l) — Bg([)’l/l (l‘) — Blzw,,x//(t) sin 0

— Blgwlﬁ(t) sin 0 + Buvplﬁ(t) cos 0 — Blg(pzﬁ(t) cos 0
— Bysy(¢) sin 0 4 By (1) cos 6 — Oy + M. + My,
+ 5Orhext,z =0 (46)

with boundary conditions,

192‘)(:0 = Oa [Mz =+ anext,Z]

=0 (47)

x=l
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° 0¢

By, — B4 — B3, — Bsgp

+ B3 (Ro +x) (1) cos 0 + By (Ro + x + uo) Y (t) cos 0
— By(Ro + x) @y (t) sin 0 + B3 (Ro + x + uo)y () sin 0
+ Bis9 Y (1) cos 0 + B170,y(¢) sin 0 + Bys 9,y (¢) cos 0
+ B199,s(t) sin 0 — Bag 'y (t) cos 0 — Byt (¢) sin 0
—Blglﬁz(z‘) 00520+Bl71ﬁ2(t) sin” 0

+ (316 - Blg)ll}z(t) cosBsinf —Bzvplﬁz(t) cos? 0

— B3 vpxﬁz(t) sinfcos 0 + B2w,,lﬁ2(t) sinfcos 0

+ B3wpxp (1)sin® 0 + B4(plﬁ2(t) cos> 0

- Blgqnp (t)cos® 0+ Bs qmﬁz(t) sin” 0

fBlﬁqnﬁ (1) 51n20+Bl7q01/)2(t) sinfcos 0

+Blg(plp (t)cos@sin(9—|—2Bzuolﬁ(t)cos0

+ 2Bsiigl (1) sin 0 + 2B 1619, () cos 0

+231719y1p 1) sm0+281819 zp( )cos O

+2B 190 (1) sm0+236(plp (t)sinfcos

— 2BV (1) cos 0 — 2By, ¢y () sin

+ [Ba(Ro+x+u0)] ' (1) + (Byvy) (1) cos 0

— (Bywy) (¢)sin 0 + (Bgy ) (1) + (Bov.) (1)
— (Bzo(p)/l/;([) cosl — (qu))/l]/'(t) sin 0
+2(B7\},,)/1ﬁ(t) 005072(B7w,,)/1ﬁ(t) sin6

- 2(Bzoqb)/x/)(t) cos0 —2(By; ([))/lﬁ(t) sinf — (Bglgy)/

= (B’ = (i) + (Bog?) - (Bioo)'¥ (1)
+ M/ + B” + Mext x + mex[ w + 50m€XtX + 50mext w 0

(48)

/\/\

with boundary conditions,

¢'|,y=0, @[,_,=0,

[Bglp(t) cos0 — By (t)sin 0+ B7v, V(1) cos 0

— Booi(1)cos 0 — Bywyif (1) sin0 — Bayj (1) gsin ] .,
+ [(Ro+x+uo) Bl (1) + Bty (1) + Byt (1)
—Bm(p'lﬁz(t)] |x:l+ [2B7x/'/(t)\>pc050

— 2By (t)pcos0—2B7y(t)w),sind

— 2B,y (1) psin0)] |,

+ [B10§' — Briig — Bs ¥y — By, _

+ [My+ B, =My — Mext o+ 1M ]|, =0

— [Bu+nMe ]|, =0 (49)

x=l
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Relations (37)—(49) form a nonlinear system of PDEs
with all equations coupled together. It should be noted
that in a case of the nonrotating beam and zero pitch
angle the above system of equations corresponds
exactly to the particular case given by Librescu and
Song in [21]. The equations derived in this paper take
into account nonconstant angular velocity and also
arbitrary pitch angle of the beam. These two effects are
essential for the study of dynamics of rotating blades.

3 Results

In this section two cases of composite beams are examined
in order to study the impact of the variable rotating speed
and the pitch angle on system’s motion. The geometries of
both cross-sections are presented in Fig. 4. To simplify the
evaluation a symmetrically lay-up composite material is
considered for both beams. Therefore the coupling
stiffness matrix coefficients B;; [see definition (99)]
vanish. Moreover it is assumed that the cross-section
pole coincides with the spanwise axis x; therefore
Vp — Vo, W, — wo. This results in simplification

w=2=0 (50)
3.1 Symmetric composite blade

A symmetric composite beam with rectangular open
cross-section as indicated in Fig. 4a is examined. In
this case, considering the inertia and stiffness coeffi-
cients given in Appendix 5, Tables 1 and 2 individual
equations of motion are given by

° &p
— Bxo(1)

I

- / [2B1(Ro + x)uoth (1) + 2(B1s — Bro ) (1)

0

— B14ll/./.(l) COS2 0 — B13llp(t) sin2 0

!
X sm@cos@ / 2B (Ry + x uolp( )
0
+ 2(Big — B1o) (1) sin 0 cos 0]dx
1
/ B R0—|—x Vocos O — Bl(R0+x)w0 sin 0

B39, sin 0 — B4, cos 0]dx + Tewr. =0 (51)

°*  duy

— Buiig + 2B vy (1) cos 0 — 2By vingif (¢) sin 0

4 Bi(Ro + x + o)y () — Bywois (1) sin 0

+ Byvoi(1) cos 0 + (a”ug), + (a1415‘z), + (a14v6),

+ Porix 4 00Peix = 0 (52)

with boundary conditions,

MO‘X:O = 07 [a11u6 +al419z +a14V6 +nxQext.x] ’x:l = 07
(53)

o 5\/0
— By — ZBll;t()l,b(t) cos ) — B]W()l//z(t) sin 0 cos 0
+ Blvolﬂz(t) cos? 0 — By (Ro~+x+1uo)y (1) cos 0

+ (6114112))/ + [a44(191 + V{))]/ + Pext,y + 50133xt,y =0
(54)

with boundary conditions,

Yo ‘x:O = 0’ [a14u6 tau (7‘92 + v()) + nxQext,y] ’x:l =0

—
9,1
W

~—

° (3W0

— Byio + 2Biio (1) sin 0 + Bywoys” (1) sin® 0
—Blvolf( )s1n60059+B1(R0+x+u0) ( ) sin
+ [5155 (79) + W())] + Pext.,z + 50Pext . =0 (56)

with boundary conditions,

WO‘X:() = Oa [6155 (19v + W()) + nxQext‘Z:I x=[ =0
(57)
e 09,
.. L .2
— B39y — 2B16@¥Y (1) cos 0 + B3y (¢)
— B (1) cos 0 — By33(1) sin 0
+ Mext,y + 50mext7y - a5579y - 6155W6 + (d33’l9;)/
+ (a37§0,)l =0
(58)
with boundary conditions,
19y|x:0: 0, [03319; + 03790/ + anextA,y“x:l =0,
(59)
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z
(a) (b) n
Z g
n
My ) c
h/g Y
d
d

Fig. 4 Beam cross-sections to be considered: a blade (open section) b closed box beam

o 01,

.. Lo . .2
— Bl4l9z - 2319@!//([) sin 0 4+ Bpﬂ?zlp ([)

— Bio@V(1) sin 0 + B4 (1) cos 0 (60)
+ Motz + O0Mexr; — Aralty — Aaa¥; — aavyy

+ (a)" =0

with boundary conditions,
D=0, [amdinda ] =0, (o)
o ¢

— B4 — B + BigOyi(t) cos 0 + B0,y (1) sin 0

+ (Bis — B,g)lffz(t) cos 0sin 0 + B4(p¢2(t) cos® 0

- Blg(plﬁz(t) cos” 0 + Bs qolﬁz(t) sin” 0

- Bléq)vﬁz(t) sin? 0 + 2B,9,4(t) cos 0

+ 2B190) (1) sin 0 + (Bio@)' — (Biog')¥/ (7)
+ Mextx + My + OoMexx + oty ,

+ (ax?,) + (an¢’) — (aes9”)" =0, (62)
with boundary conditions,

¢ =0, ¢ =0,

[ — aes®” + nMew ]| _, =0,

[— Bloq)'kbz(f) + Bio§' + ax¥), +an¢' — (6166(/’”)/
— Moty — Mexty + MeMext]| _, = 0, (63)

It should be noted that in relations (52)—(63) in all
equations there is a term which corresponds to
nonconstant rotation. Therefore all equations are
coupled together and form a nonlinear system of
PDE:s. Detailed analysis of the above equations is given
together with a set arising for the box-beam case.
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3.2 Symmetric composite uniform box-beam

In this section a composite symmetric beam with
rectangular closed cross-section as indicated in Fig. 4b
is examined; the circumferentially uniform stiffness
(CUS) composite configuration is assumed, which is
achievable via usual filament winding technology. In
this case, considering the inertia and stiffness coeffi-
cients given in Appendix 5 Tables 1 and 2 respectively
the equations of motion are given by

o Oy

— Ly(t) — Bialji (1) cos® 0 — Bysls(1) sin® 0
[

- / 2B (Ro + x)uoii (1)

- ;(Bm — Bio)@¥(1) sin O cos 0] dx

- / 2B (Ro + x)iio¥ (1) (64)
- ;(316 — Bio) (1) sin O cos 0] dx

I
- / [B] (R()—Fx)l./.o cos 0 — B (Ro—‘y-x)l;t;'o sin 0
0
+ Bmély sin 0 — B]41§z cos 0} dx +Tpy, =0
*  duy,
— Byiip + 2B11}01ﬁ(t) cos 0 — 2Blv'v0lﬁ(t) sin 6
) .
+ B (Ro + x + uo)y (1) — Biwoy(t) sin 0
+ Byvoy (1) cos 0 + (anuh) + (a170') + Pexrr
+ 50Pexz,x =0
(65)
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Table 1 General

.. . . Inertia coefficient I;
definitions of inertia

Open section

Closed-section

eticins £ o
symmetric laminate with
rectangular cross-section f f hﬁz&(z Zp)dndy 0
ffh;jz o(Y — y,)dnds 0
= [ [, 0(Z — 2, dnds mad
= [ Sl e(Y = y,)dnds Lmod®
= fhéz/u —2,)(Y — yp)dnds 0
= [ /17, eG(n, s)dnds 0
= [ [, 0ZG(n,s)dnds 0
ffh/zgYGn s)dnds 0
By = Lh/z 0G?*(n, s)dnds Lmod®
By = [ [, oZdnds 0
2= f f h/zngnds 0
Biz= [ f W2 0Z>dnds mod
Biy= |, f—h/z oY?dnds ﬁm0d3
Bis= | ff{fﬁ oYZdnds 0
Big = [ [")}, 0Z(Z — z,)dnds mad
Biy = [ ["], 0Z(Y — y,)dnds 0
= [ [, @Y (Z — 2, )dnds 0
Bwfffh/z Y(Y —y,)dnds Lmod?
By = [ ["1],0(Z = 2,)G(n, s)dnds 0
0

f]h/z o(Y —yp)G(n, s)dnds

+ R3+ 2xRo)dndsdx

b+ R+ RoP)

2my(c +d)

0

0

myc* (3d+c) + 2m2d
myd® (3c+d) + 2m2c
0

0

0

0

e
0

0

moc? (3d+c) 4 2myd
mod® (3¢+d 4 2mae
0

ML) 4 Jyd
0

0

modz(3c+d +2m2c
0

0

bi (5 + R3L+ RoP2)

iy
= Jo S Lt 0
with boundary conditions,
| _, =0, lanug + a17¢" + n Qe[ ,_, = 0
(66)
e vy

— Byvg — ZBldolﬁ(t) cos 0 — Blwotﬂz(t) sin 0 cos 0

+ B]volﬁz(t) cos 0 — By (Ry+x+uo ) (t) cos 0

+ [asa (D +vp)] + (a349,) + Pexty + 6Py = 0
(67)

with boundary conditions,

Vo |x:0 = 07 |:(,l44 (191 + V()) + (,13419; + nxQexl‘.,yi| |x:l =

L4 5W0

(68)

— Bywg + 2By lﬁ(l‘) sin 0 + 31W0¢2(l) sin” 0

- Blvolﬁz(t) sin 0 cos 0 + By (Ro+x-+uo)Y(¢) sin 0

+ (@s9) +

[055 (19y + W())]/ + Pext,z + 50Pext,z =0

(69)
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Table 2 Definitions of stiffness coefficients a;;

Stiffness coefficient a;

Open section

Closed-section

ai = [Kyds (Extensional)

ap = f(Kn y+ K14%)ds

c

(Extension-chordwise bending)
a3 = [ (Knz— K14Z—§)ds

(Extension-flapwise bending)
aly = fr K 12 % ds

(Extension-choordwise transverse shear)
als = fc K 12 %ds

(Extension-flapwise transverse shear)
aje = fc [K“G(O)(S) —+ K14G(])(s)]ds

(Extension-warping)
a17 = [ Ki3ds (Extension-twist)

. N2
an = [.[Kuy* +2Kia Ly + Kuy (%) ]ds

(Chordwise bending)
axg = f [Ku vz — K4 dsy +Kip & Sz—Ku Z;Zﬂds

(Chordwise bending-flapwise bending)

G = f (Klz dAy + K24 ds ds )dS

(Chordwise bending-chordwise transverse shear)
as = [ [Kin%y + Ko (% ) |ds

(Chordwise bending-flapwise transverse shear)
ax = [,[Ki1Gs)y+KiaG(s)y+Kia GO s) &
+K44G1)(s) % ] ds (Chordwise bending-warping)
ay; = f [Klgy + Ky3 ﬂ] (Chordwise bending-twist)
a3 = |, [KIIZ —2K14 Z+K44( ) }d.s

(Flapwise bending)

s = [ [Kide - Kuu(%) s

(Flapwise bending-chordwise transverse shear)
axs = J (Kot — K )

(Flapwise bending-flapwise transverse shear)
azs = [.[Ku GOYs)z+K14 GV (s)z— K14 GOXs) %
—KyG(s) dif]ds ( Flapwise bending-warping)
ax = |, [Kg 72— K3 § d ]ds (Flapwise bending-twist)
ass = [ [Kn (%) + Au(%))ds

(Chordwise transverse shear)

ass = [ (Kn G = Au i )ds

(Chordwise transverse shear-flapwise transverse shear)

ase = j[ [Klz(;(o) (S) % + K24G(1) (S) %}ds
(Chordwise transverse shear-warping)

agy; = f K23 ds (Chordwise transverse shear-twist)

K|1d

0

—Kipd

d
K3z

Dy d

2D d
Kyd

2K1| (C + d)

0

2K12 cd
K“ %2(3C+d) + 2D226‘

K12 cd

0
Ki1 S (c+3d) +2Dx»n d

—Klz cd

0
2K» d + 2A44 ¢
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Table 2 continued

Stiffness coefficient a;

Open section Closed-section

ass = [, [Kn ()" + Au(3)]ds
(Flapwise transverse shear)
ase — fc [K]zG(O) (S) % -+ K24G(l)(s) %]ds

(Flapwise transverse shear warping)

as7 = fc Ky j’; ds (Flapwise transverse shear-twist)
aee — fc {K” (G(O) (S))z + 2K14G(0) (S)G(])(S)

+Kys (G (s))*]ds (Warping)

ag7 = |, [Kl 3 GOs) + Kys G(')(s)]ds (Warping-twist)

ar = fr [K23 g(0>(5) + K53 g(l)(s)} ds
(Twist)

A44 d 2K22 ¢+ 2A44 d
0 0
0 0

& Ad?(c—d)?
Dnt; K 2614((c+d1))

+Dyp <

0 0
2Dgsd 24 Ky +8(c +d)Des

Integrals calculated upon laminate symmetry assumption and circumferentially uniform stiffness (CUS) configuration for the closed

cross-section

with boundary conditions,

W0| =0, [(125192 +ass (19, +W6) +nxQext7z]

x=0 =0
)

(70
e 9,

— B30, — 2B16¢j(¢) cos 0 + Bysd i (1)
— Bléqmﬁ(t) cos 0 — Bmﬁ(r) sin 0
— assVy — axsV, — asswy + (a3319;)/ + (a34v6)/
+ (613419z)l + Myt y + OoMlexry = 0
(71)

with boundary conditions,

xX=

19}' ‘X:() = 07 (Cl33’l9;, + a34v6 + (134’!91 +anexf,y)‘ / =0
(72)

o 01,

— Buadl, — 2Bioguj (1) sin 0 + Byat. (1)

— Bio@y(t) sin 0 + Bi4s(t) cos 0

— agV, — a3419; —agvy + (azsﬂy),

+ (azswé))/ + (azzﬁg)/ + My + Ot =0 (73)
with boundary conditions,

Oo| =0, (as9y+azswy+ant,+nMey:)| _,=0

x=l

(74)

e J¢p

— B4 — Bsp + Big9, (1) cos 0 + Bio® s (t) sin 0

+ (Bis — Blg)l/)z(t) cos 0sin 0 + (B4 — 319)@/)20)

x cos? 0 + (Bs — B16)(/7¢2(f) sin 0 + 2B160, (1)

x c0s 0 + 2B199.y) (1) sin 0 + (Blo(ﬁl)/

~ (B 10@/)/¢2(1) + Mt x + Mg, + O0Mlext x

+ dottyy ,, + (arrup) + (a¢") = (asep”)” =0,
(75)

with boundary conditions,

q0’X:0 =0, q),’x:() =0,
[ - a66(,0// + anext,w | 1 - 07

=
12 ..

[ — B¢y (t) + Bio¢' + aruy + azre’ — (a66§0”)/

— Mextw — ’/hext,w + anext,x“x:l =0,

(76)

Considering equations (64)—(76), similarly with open
cross-section case, they form a nonlinear system of all
equations coupled.

4 Discussion

Looking at relations (51)—(63) and (65)-(76) one
observes in all these equations there is at least one term

@ Springer



1850

Meccanica (2014) 49:1833-1858

where the angular acceleration lﬁ(t) is multiplied by a
certain problem variable (or it’s spatial derivative).
Therefore all the resulting equations are coupled
together and form a nonlinear system of PDEs.
Similar terms have also arised in paper [34], where a
case of Euler-Bernoulli beam made of isotropic
material rotating with nonconstant velocity has been
considered. It is worth to note here that assuming
temporary the zero value for the pitch angle and the
constant rotating speed case (and position vector
restricted to the middle-line contour material points)
the obtained system of equations (64)—(76) coincides
exactly with the one reported by Librescu and Song in
[21].

Analysing the derived axial displacement equation
in both of the considered cross-section cases [see egs.
(52) and (65)] one can notice that u is coupled to
transverse displacements (v and w DOFs) not only by
Coriolis terms but by nonconstant rotation velocity

Y(2) terms as well. In these two equations fixing the
preset position of a structure at @ = 0 makes the terms
corresponding to beam’s vertical movement (i.e.
flapping w) to disappear.

In the second limit case of § = /2 presetting the
axial dynamics of the box-beam [Eq. (65)] is similar
because all v originating terms disappear. Since
transverse displacements v and w are defined in local
coordinate system one can conclude, that in both of the
two discussed limit cases (0 = 0,7/2) only the lead-
lag plane displacement enters the axial equation of a
box-beam.

For the symmetric blade and limit case of 0 = /2
presetting the axial dynamics is different. This is
related to the presence of a coupling term (a14v;,)/ in
(52) which does not depend on presetting angle. It
means that apart from the discussed special case of
0 = 0 both lead-lag and flapping couplings are always
present in (52). Also for the box-beam case coupling
terms originating from both transverse displacements
are present in axial equation (65) for the general
presetting 6 # (0, 7/2).

It should be noted that the numerical modal analysis
of the rotating symmetric composite beam with open
section for 0°, 45° and 90° pitch angles has been
presented by authors in paper [19]. In case of 0° and
90° presettings the observed free vibration bending
modes correspond to either flapwise of choordwise
bendings. However in case of analysed 45° pitch angle
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free vibration bending modes exhibit mixed flapwise
and with chordwise displacements. Hence the impact
of arbitrary presetting angle modelled in this article is
in full agreement with the findings reported in [19].

Studying the transverse displacement equations
(54)/(67) and (56)/(69) one observes that the noncon-
stant rotation velocity introduces additional inertia
terms rendering coupling to the axial displacement u.
Considering special cases of 0 = 0, 7/2 presetting one
observes that these terms affect only the lead-lag
displacements (i.e. parallel to the plane of rotation).
This coupling scheme is also confirmed by the
appropriate terms in torsion equation (62)/(75).

Analysis of eqs. (58)/(71) and (60)/(73) reveals the
considered nonconstant rotating speed to introduce
additional coupling terms also between the rotatory
DOFs. Discussion of the special cases 0 =0,7/2
yields that the additional coupling term involving
torsion angle ¢ impacts only flapping cross-section
rotation (i.e. about horizontal axis) and is not present
in lead-lag plane. This is also confirmed by the
detailed analysis of torsion equation (62)/(75).

Further analysis of the pitch angle impact on the
systems dynamics reveals that its non-zero value
introduces new additional coupling between transverse
displacements. The terms incorporating sin 6 cos 6
product that are not present in case of zero or /2
presetting appear in transverse displacement formulas
(54)/(67) and (56)/(69) formulas. This renders the
bendings in both planes to be coupled. The similar
sin f cos 0 product appears also in the equation of
torsion as an additional centrifugal term.

5 Conclusions

The equations of motion of composite Timoshenko
beam experiencing variable angular velocity were
derived. In the performed analysis also the general
case of non-zero pitch angle and arbitrary hub’s radius
were taken into account. The equations of motion form
anonlinear system of PDEs coupled together. Detailed
analysis of symmetric layup of the composite beam of
rectangular open and closed cross-section cases
showed similar characteristics considering noncon-
stant rotating speed and the effect of pitch angle.
Considering nonconstant angular velocity in both
cases the nonlinear system of PDEs with all equations
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coupled together arises. Non-zero pitch angle results
in direct coupling of flapwise bending motion with
choordwise bending motion. As it was shown the
nonconstant rotating speed introduces additional cou-
plings to the system of equations of motion, which are
not observed in /(t) = const. cases discussed in the
literature. Therefore nonconstant angular velocity and
non-zero pitch angle have to be considered in mod-
elling of rotating beams and in examination of their
dynamics.

The equations derived in this paper are fundamental
for further study of dynamics of rotating blade
systems. The investigations will be developed in
(a) the aspect of variable pitch angle which takes place
in e.g. helicopter rotor dynamics and (b) the aspect of
non-ideal systems where the structure interacts with
the energy source [5, 35].
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Appendix 1

The primary and secondary warping functions and
torsional functions for open and closed section beams
are defined as given in [21]. The warping function
G(n,s) is the sum of primary G*)(s) and secondary

one nG" (s)
G(n,s) = GO(s) + nGY(s) (77)

To simplify further expressions the following quanti-
ties are defined (see also Fig. 2)

B =R = =) o G-w) (79

1851
Ry(s) = (Y —3) 5= (- 2) D (19)
P = 0 =) E = (=5 (30)

to represent distances from pole P to the tangent and to
the normal of the mid-line beam contour as shown in
Fig. 2.

In case of open section one gets

G‘(JO)(S) = /V,I(f)dfz 2Qus G((,I)(S) = —VZ(S)
0

(81)

whereas Q; is the area enclosed by the center line and

5 is a dummy variable measured along centerline till

the point of interest. The torsional function gV (s) and

gs)]) one for this case are given by

g)(s)=0  gl(s)=2 (82)

In case of closed sections both warping functions take
the form

s s

)= [ [ (g o

) ) 9 e
20
=2Q,s——s 83
5 (83)
GO (s)=—r,(s 2/ ! 1>d§
¢ dsh( 5)Grs(3)
0
=—r:(s) (84)

where h(s) is the thickness, G.,(s) is the shear modulus
of the cross-section in circumferential surface and f

denotes mid-line contour perimeter and the g£'>(s)
functions are given by,
$ra(3)ds 1 20

) (5) = - B
8 (s) f(m) h(s)Gxs(s) B

(85)

(1) (g) = gds : -
g (5) 2§(h(s’)6(1;:x(s’)) h(s)Gys(s) ? %)

whereas the last equalities are true in case of uniform
h(s)G,, product with respect to s coordinate.
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Appendix 2

The constitutive equations for the k th laminate
orthotropic layer in reference system out of its
principal axis have the form

Ak k k 0]
B e
k k k k
Ox ng) C£2> C§3) 0 0 Cg())
k k k k
Onn _ ng) C£3) C§3) 0 0 Cgs)
Tan o o o c¥ c® o
Osn k k
o o o c¥ c% o
Oxs k k k k
I e e O B N e
gSS
Exx
8”1" (87)
Vxn
ySl’l
yxs (k)

Considering the assumption of the normal stress a,,, to
be negligible (see Sect. 2.1, item (f)) the correspond-
ing strain in wall thickness direction can be defined as
(k) (k)
C C cl
& = — %855 - %Sxx ?6) Vxs (88)
Gy G C3z
Setting the above into (87) and using the cross-section
non-deformability condition 7y, = y,, = 0 [Sect. 2.1,
item (a)] results in the system of reduced equations

= 01t + 0 6 + Ol s (89)

= 0 e + Oy e + 0o 7as (90)

=047 (°1)
o =07, (92)
o) = 01 s + O e + Og s (93)
where

k k

o) =0 =cp - C’%C)(%) for ij=1,2,6

§4i - C4,’ fOr l - 4-7 5

are reduced stiffness coefficients for k-th laminate
layer.

@ Springer

Define the following 2-D stress resultants:

membraine

N, e  g®

No z IR )

Ny ) axs)

— transverse
[ ()

(=% [ o o
(k1)

— stress couples

(-5 [ b o

N(k—1)

where L, term is set to O due to shallow shell
assumption [Sect. 2.1, item (e)].

According to the above N definition and also
considering the (f) assumption and equations (10a,
b), (89) one gets

Ny = Z/

-1

o®dn=0—=

N Tk

—(k —(k —(k
S [ (@ 0+ 0l ) in=0=
k=1

M(e-1)
A o) B ) _Ate o) _Bie )
o= — 20 120216, 0) 16,0 98
€ A“S Allsxx A“yx.s A“yXA ( )
whereas
N N 3
a=3> [ 5= [ngfan
k=1 k=1
(e-1) n(k-1)
N "
D;=Y" / >0y dn (99)
k=1

Therefore using relation (98) the constitutive equa-
tions (89)— (92) are:

—®)
) _ (@22) leAlz) ( o leBu)Sm
XX Al XX All XX

(k)
A(k) Q12A16 ) Qi Bis (1)
+ (Qze An ) < nQyg — AL Vs

(100)
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ApAie A12Bi6
Kix — 0O Are — M B, —
xn Q44 xn (101) . 8 ( ? AH > T8 2 All
AA A1B
Ky = g(o)<A66 - j: 16) +g(l)<B66 - j: 16)
® _ 5%.0 102 ! .
O = Qas T (102) ) Ai6B12 M Bi2Bis
Ky = g"( Bas — " + 8| D — "
11 1
oW oW A6B BisB
—k) QigAn —(k) Qi1¢B12 () _ A16D16 ) 16516
0)(51;):< 26 1211 )8)(c?c)+<nQ26 _—1‘:11 el 4 Ks3 = g"| Beo An +8"| Ds AL
(106)

Ak — (k)
(_(k) _M> 7O 4 <n—(k) Qe Bl6> » (D
66 All XS 66 Al] xs
(103)

and subsequently after re-ordering and using (11d) the
2-D stress resultants and stress couples are

Ny, (K11 Kio Ki3 Kig 0] )
Ny Ky Kypn Ky Ky 0 ?&
Lo | |Ks Ko Kiz Kis O in
Ly [ |Ksi Ko Ks3 Ksi O Q(DI)
Ny 0 0 0 0 Ay ‘?)
Ny, L0 0 0 0 Ags] 7w
(104)

where the beam effective stiffness coefficients Kj; are
given as follows

AppA ApA
Ky = (Azz— X 12> K = (Azs—ﬂ>

Bl2A12 BIZAIG

Kt = (B — Ki» = (B —

41 (22 AL 42 %~ 4
BlzBlz> ( A12316>

Ky = — Ks1 =B

44 (22 A s1 yw
AIGBI6> ( BIZBlé>

Ks» = (B Ksq =

52 (66 AL 54 ) AL

(105)

In the above relations symmetry is preserved for terms
K12 = K21, K14 = K41 and K24 = K42. The remaining
Ki3,i=1,2,4,5 terms depend whether the cross-
section is open or closed one. General formulas have
the form

In case of open sections, according to (82) relation, the
above expressions simplify to

ApB A B
K13=g(1)<326——z 16> K23:g(1)(Bé6_ o IG)

1 A

B,B BisB
K43g(1)(D26_j421116> K53g(1)<D66_j461116>
(107)

Appendix 3

Following the position vector R as defined by (6) and
displacement field (Sect. 2.2.4) the components of IR
are

OR, = =[x+ Ro+uo(x,1) + 9y (x,)) Z+9.(x,1) Y
—G(n,9) ¢’ (x, f)} sinip (1) (1)
[ 9 (zxat)(
—(Z-¢ ) (x t)] cos O cos (1) (1)
+H[Z 4w (x,0) + (Y —yp)(x,1)

_ w (Z - 2,)] sinOcos (1) (1)

+cosy(t)oug(x,t) — cos Osinys(1)ov, (x,1)

+ sinOsin i (1)ow, (x,1)

+Zcosy(t)0dy(x,1) + Ycos (1) o9, (x,1)

— G(n,s)cosy(1)0¢’ (x,1)

+ [(Y = yp)p(x, 1) cos Osin (1)

+(Z —zp) cosOsiny (1)

+ (Y —y,)sinOsiny(r)

—(Z—2z,)sinOsiny (1) p(x, )] 5ep(x, 1)
ORy =[x+ Ro+uo(x,1) + Oy (x,0) Z+ 9, (x,1) Y

~ Gln,s) @' (x,1)] cos y(1)ow (1)

Y—y,)
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2X
RALIES

)] cos Osiny(1)oy ()
+ (Y —yp)o(x,1)

_ w(z —2,)] sinOsiny (1) (1)

+siny(r)dug(x, 1) +cos O cos (1) ov, (x,1)
—sinfcosy(1)owy(x,1)
+ Zsiny(1)00,(x, 1) + Ysiny(1)09,(x,1)
— G(n,s)siny(1)0¢’ (x,1)
+ [= (Y = yp)@(x,1) cos Ocos (i)
—(Z—2z,)cosOcosy(r)
— (Y —y,)sinfcosy(r)
+(Z —zp) sinOcos (1) p(x,1)| 5¢p(x, 1)
OR; = sin8 v, + cos 0 ow,
— [(Z—=2,)sin0— (Y — y,) cos 0] d¢(x,1)
= [(Z—2zp)cos0+ (Y —y,) sin0] p(x, 1) d¢p(x,1)
(108)

[Y—i—v,, x,1)

—(Z=z)o(x,
+ [Z+wp xt

Inserting the above terms (108) and accelerations (8)
into energy variation time integral (32) and rearranging
all the terms according to variations of respective basic
unknowns of the problem and skipping higher order
terms resulting from cosine approximation, yields

o OY(t) term

15}

- /dt{Bzglﬁ(t) + Bialji (1) cos® 0

1
+ B3l () sin® 0 — 2B, 51y (t) cos O'sin 0
1

+ / {ZBI(RO + x)uodi(f)

0
—2B7(Ro + x) @' (£) + 2B11 (Ro + x) 9, (1)
+ 2B12(Ro + )04 (1) + 2B1avpi (1) cos® 0
— 2By v, Ys(t) sin 0 cos 0 + 2B w,i(t) sin” 0
— 2B1aw, (1) sin 0 cos 0 — 2B gy () cos® 0
+ 2317gol.p'(t) sin? 0 — ZBlgq)lﬁ(t) sin 0 cos 0
+ 2B 16 (1) sin 0 cos 0} dx

1

+ / [(Bll sin @ — By, cos 0)1,{0
0
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+ B1(Ry + x)V, cos 8 — By (R + x)w, sin 0
+ (Bi3sin0 — Bys cos 0)19;
+ (315 sin 0 — B4 cos 9)19;

— (B3 sin0+ B, cos 0) (Ry + x)¢
I

+ (By cos 0 — Bgsin 0) ¢ }dx + / [231 (Ro + x)iigy (1)
0
+2(Bi2 cos® 0 — By sin O cos H)vpll}(t)
+ 2(811 sin” 0 — By, sin 0 cos G)v{/pl/}(t)
+2B11 (Ro + x) 9, (1)
+2B12(Ro + x)0 (1) — 2B7(Ro + x) 9" (1)
+ 2(817 sin” 0 — Byg cos’ 9) q')l/)(t)
+2(B1s — Blg)(j)l/}(t) sin 0 cos 0} dx}
(109)

e Jup term

—/dt/ [B]IZ0+B1219.1+31179:V_B7¢/

— 2BV, (1) cos 0 + 2B, o (1) cos 0

+ 2B, (1) sin 0+ 2B3 i () sin 0

— Bi(Ro +x+ o)y (1) — Biatoi (1)
—Budy (1) + BVl (1) + Biw,h (1) sin 0
+ B3y (1) sin 0 + By () sin 0

— B, (1) cos 0+ By (1) cos 0

— Bt )cos@}dx (110)

e v, term

5]

!
—/dt/ [Blﬁp—qub-i-ZBluolﬁ(t)cosH
noo

+ 2B 10,4 (1) cos 0+ 2By, 9,y (1) cos 0

— 2B1¢/(£) cos 0+ Byw,” (¢) sin Ocos 0

—|—Bg(pzﬁ2(t) sinfcos 0 + B l/)z(t) sinfcos 0

- Blvpgﬁz (t)cos® 0+ leplﬁz (t)cos? 0

— By’ () cos? 0+ B (Ry +x + ug)

X (1) cos 0 + B0y (1) cos

+ B9y (1) cos 0 — B7 @' (1) cos 0} dx
(111)
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* Jw, term

o) 1
_/dt/ [BIWP+B3¢—ZB|ﬂol/}(Z)Sin0
0

— 2By (1)sinf — ZBllﬂ)M(t) sinf
+2B7¢/ () sin0— Byw, (1) sin® 0
—Bj (plﬁz(t) sin®0 — By lﬁz(t) sin0
+B, v,,t/)z(t) sinfcos 0 — Bqulﬁz(t) sinfcos 6
+Blzlﬁ2(t) sinOcos0 — By (Ro+x+up)
X (¢)sin 0 — B9,y (1) sin
— Bty (0)sin0-+ By (1) sin 0| dx
(112)

e 49, term

_/dt/ [B”zzo+31319'y+31519;—38¢’

a1

— 2By, (1) cos 0+ 2B 16y () cos 0

+ 2By 19,4 (¢) sin 0 + 2B 17y (1) sin 0
—B11(Ro+x+u0)p” (1) — Brsi (1)

- Blsﬁyll}z(t) —i—ngo’lf(t) +Biyw, Y (1)sin0
+B170Y(t)sin® — By v, (t) cos 0

+ B1sV(t) cos 0+ B3 (t) sin

— Bysyi(1) cos 0 | dx (113)

e 01U, term

5]

- fa

14l

I
/ [Blziio +BIS/§y + B4,
0

—By¢' — 2Blzvplﬁ(t) cosO+2B1g @y (1) cosd
+2B 1, () sin 0+ 2B13 o (1) sin0
—Bia(Ro+x+uo)” (1)

—31479z¢2(l) _31579yl//2(t) +B9€0’¢2(I)
+Biaw, Y (t) sin0+Biopys(r)sind

— B1av, (1) cos 0+ Big i (1) cos b
+B5y/(1)sinf— B 4y (1) cos 0| dx (114)

o Jp term

[5)
_ /dz/ { — By, + Byvi, + (By + Bs) (1)
f
— 2(B5 cos 0 + Bj sin 0)iigy) (1)
— 2(Bjg cos 0 + By7 sin 0)19}1#(t)
— 2(Bg cos 0 + Byo sin 0)9, (1)
+ 2(Byg cos 0 + By sin 0)¢'yi (1)
— (B3 cos 0 — B, sin 0)(Ro+x) o] (t)

+ (B cos® 0 + Bs sin 0 cos H)V,,t// (1)

— (B, sin 0 cos 0 + B sin? Q)WPlﬁz(t)

— (Bigsin0cos 0 + By7 sin 0 cos 0

— By sin® 0 — Bjg cos® 0)(p1ﬁ2(t)

— (2Bg sin 0 cos 0 4 Bs sin® 0 + B4 cos> 0)(p¢2(t)

+ (B1g cos® 0 — By7 sin® 0 + By sin 0 cos 0

— Bjgsinfcos H)ll}z(t)

— (B cos O+Bj sin 0)(Ry+x+uo )Y (1)

— (Bigcos 0 + By7 sin 0)19}'&0)

— (Big cos 0+ Bg sin 0)9. (1)

+ (Bag cos 0 + B,y sin 0) @'y (1)

+ (Baiio)'+(Bsty)' + (Botl:)'~ (Biog)

+2[(Baop) 05 0 + (B219)'sin 0] (1)

— 2(B79,) (1) cos 0 + 2(Byvi,) i (1) sin 0

= [B1(Ro + 3+ w) ()

= (B0, () = (Bo0:) (1)

(Biog!)' /" (1) = (B7v,) (1) cos 0

(Bywy)' (1) sin 0 + (Bao) V(1) cos 0

(B219)" (1) sin 0| dx

- /{ — Byiip — 3819:\) — By, + B¢’

+ 2BV, (1) cos O — 2By (1) sin O
— 2(320 cos 0 + B, sin 9) ([)l//(l)
o+ Br(Ro +x+ uo)y (1) + Bt (1)
+ 39191!%2(?) - Blo¢/lﬁ.2(t2
+ By (1) cos 0 — Bywp (1) sin 0
— (Bao cos 0 + By sin 0) (1)

. x=l
+ (Bg cos 0 — Bg sin 0)1//(t)]dt 6(/)‘ S

(115)

where, in order to simplify the notation, inertia /; terms
are given in Table 2 in 1. A reader may easily notice in
the foregoing equations terms related to nonconstant
angular velocity and terms corresponding to Coriolis
and centrifugal accelerations.
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Appendix 4

According to the assumed general loading conditions
the following external loads are defined

e Shear forces

h/2
Pex,,y:/ / pOFydnds—F/qyds
c 7h/2 c
h/2
Pey,= / / poF . dnds + / q.ds
¢ 2 c
h/2 h/2
Qexty = Ny / / tydnds Qe ;= ny / / t.dnds
c —h/2 ¢ —h/2
h/2 s h/2 —
Py = {ns / f)dn] P, = [ns / fzdn}
“h)2 =5 k)2 =0
(116)
e Axial forces
h/2
ex,xf// pPoFx dnder/qxds
¢ —h/2
h/2
Qexrx :nx/ / t, dnds (117)
¢ 2
h/2 —s
Poiy = [ns / I dn] H
—h/2 =
e Bending moments
h/2
Moyt x = / / polF:(Y —yp) — Fy(Z — z,)]dnds
¢ —h)2
+/[qz(y = ¥p) — ay(z = zp)]ds
h/2
mx—nx// (Y —yp) — t,(Z — zp)|dnds
¢ —h/2
h/2 —
Moyt = {ns / (Y —yp) —1,(Z - Zp)]dn}
—h/2 :
(118)

@ Springer

e Bi-moments
h/2

mmw:/ / pOFXG(n,s)dnds+/qu(())(s)ds

¢ —h/2
h/2

ext w — nx/ / tx n S dnds

¢ —h/2
h/2

nAlext,w = |:l’ls / fo(n, S) dn]

—h/2

§=52

(119)

§=S5]

e Bending moments
h/2

mm‘y:// pOFXZdnds+/qxzds

c _h/2 c
h/2

Mextz = / / poF <Y dnds + / gxy ds

c 7h/2 c
h/2

Mext,y = nx/ / t.Z dnds

¢ —h/2
h/2

Mext,z - nx/ / tdel’ldS

¢ —h/2

/2

Moxty = {ns / tZ dn}
' —h/2
h)2

Woxtz = [ns / fodn}
“h)2

Using equations (116)—(120) the work defining equa-

tions (35) take the form
I

Wext,l + Wext,Z = / [Pext.,xMO + mext,yﬁy + mext,zﬁz
0
+ PextyVp
+ PextzWp + Mo x @ — mext,w(p/] dx

Wexr,3 = |:nx (Qext.XMO + Mext,yﬁy + Mext,z'l?z
- Mext.,wq)/

+ Qext,yvp + Qext,zwp + Mext,xqo):|
1

Wext,4 = / |:Pext,xu0 + mext,}rﬂy + ’hext.,zﬂz

S=52

5=
=5

(120)

§=51

x=l

x=0

0
+ ﬁext,yvp + ﬁext,zéwp
+ ”’Aiext,xq) - nclext,wgol} dx (121)
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The variation of the total external work expressed by

all its components takes the form
1

Wo + Wz = / [Poss 81t & Moy 50, + sy 260
0
+ Pextty(svp
+ Peys 0wy, + (mext,x + m;x;‘w)é@] dx

x=[

- [mext,wé(p]

)»":07
5Wext,3 = [nx (Qext.,x‘suo + Mext,yéf&y + Mext.,zéﬂz
- Mext,wé(p/

x=l

+ Qext‘y(svp + Qextjz(gwp + Mexr,xé(/))]
1

5Wext,4 = / [ﬁext.xéuo + "hexf,yéﬂy + ntlexttzéﬂz
0
+ f’ex,yév,,

+ pe)”:z(swl’ + (r;lextv" + ﬁl;xt,w)é([)] dx

k]

x=0

x=l

I

- [mext,wa(P] =0

(SWexLS = Text,z(s‘// (t) 5
(122)

Appendix 5

In order to provide a self-contained theory and a
system of equations the inertia coefficients requested
for kinetic energy (110)—(115) and stiffness coeffi-
cients of the system are given in explicit form. Setting
the terms

h/2 h/2

my = / odn my = / on’dn

—h/2 —h/2

(123)

the definitions of inertia coefficients B; are summa-
rised in Table 1. The definition of introduced stiffness
coefficients are given in Table 2.

References

1. Altenbach J, Altenbach H, Matzdorf V (1994) A generalized
Vlasov theory for thin-walled composite beam structures.
Mech Compos Mater 30(1):43-54

2. Arvin H, Bakhtiari-Nejad F (2013) Nonlinear free vibration
analysis of rotating composite Timoshenko Beams. Compos
Struct 96:29-43

3. Arvin H, Lacarbonara W, Bakhtiari-Nejad F (2012) A
geometrically exact approach to the overall dynamics of

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

elastic rotating blades—part 2: flapping nonlinear normal
modes. Nonlinear Dyn 70(3):2279-2301

. Avramov KV, Pierre C, Shyriaieva N (2007) Flexural-

flexural-torsional nonlinear vibrations of pre-twisted rotat-
ing beams with asymmetric cross-sections. J Vib Control
13(4):329-364

. Balthazar JM, Mook DT, Weber HI, Brasil RM, Fenili A,

Belato D, Felix JLP (2003) An overview on non-ideal
vibrations. Meccanica 38(6):613-621

. Cesnik CES, Hodges DH (1997) VABS: a new concept for

composite rotor blade cross-sectional modeling. J Am
Helicopter Soc 42(1):27-38

. Chandiramani NK, Shete CD, Librescu L (2003) Vibration

of higher-order-shearable pretwisted rotating composite
blades. Int J Mech Sci 45(12):2017-2041

. Choi S-C, Park J-S, Kim J-H (2006) Active damping of

rotating composite thin-walled beams using MFC actuators
and PVDF sensors. Compos Struct 76(4):362-374

. Fenili A, Balthazar JM (2005) Some remarks on nonlinear

vibrations of ideal and nonideal slewing flexible structures.
J Sound Vib 282(1-2):543-552

Fenili A, Balthazar JM, Brasil R (2003) Mathematical mod-
elling of a beam-like flexible structure in slewing motion
assuming non-linear curvature. J Sound Vib 268(4):825-838

Ghorashi M (2012) Nonlinear analysis of the dynamics of
articulated composite rotor blades. Nonlinear Dyn 67(1):
227-249

Hodges DH (1990) A mixed variational formulation based
on exact intrinsic equations for dynamics of moving beams.
Int J Solids Struct 26(11):1253-1273

Hodges DH (2006) Nonlinear composite beam theory,
volume 213 of Progress in astronautics and aeronautics.
American Institute of Aeronautics and Astronautics, Res-
ton, Va

JunL, Rongying S, Hongxing H, Xianding J (2004) Coupled
bending and torsional vibration of axially loaded Bernoulli—
Euler beams including warping effects. Appl Acoust 65(2):
153-170

Kaya MO, Ozdemir Ozgumus O (2007) Flexural-torsional-
coupled vibration analysis of axially loaded closed-section
composite Timoshenko beam by using DTM. J Sound Vib
306(3-5):495-506

Kovvali RK, Hodges DH (2012) Verification of the varia-
tional-asymptotic sectional analysis for initially curved and
twisted beams. J Aircr 49(3):861-869

Kunz D (1994) Survey and comparison of engineering beam
theories for helicopter rotor blades. J Aircr 31(3):473—479

Lacarbonara W, Arvin H, Bakhtiari-Nejad F (2012) A
geometrically exact approach to the overall dynamics of
elastic rotating blades—part 1: linear modal properties.
Nonlinear Dyn 70(1):659-675

Latalski J, Georgiades F, Warminski J (2012) Rational
placement of a macro fibre composite actuator in composite
rotating beams. J Phys 382:012021

Lee SY, Sheu JJ (2007) Free vibrations of a rotating inclined
beam. J Appl Mech 74(3):406-414

Librescu L, Song O (2006) Thin-walled composite beams:
theory and application. Springer, Dordrecht

Na S, Librescu L, Shim JK (2003) Modeling and bending
vibration control of nonuniform thin-walled rotating beams

@ Springer



1858

Meccanica (2014) 49:1833-1858

23.

24.

25.

26.

27.

28.

29.

incorporating adaptive capabilities. Int J Mech Sci 45(8):
1347-1367

Oh SY, Song O, Librescu L (2003) Effects of pretwist and
presetting on coupled bending vibrations of rotating thin-
walled composite beams. Int J Solids Struct 40(5):
1203-1224

Qin Z, Librescu L (2002) On a shear-deformable theory of
anisotropic thin-walled beams: further contribution and
validations. Compos Struct 56(4):345-358

RenY, Yang S (2012) Modeling and free vibration behavior
of rotating composite thin-walled closed-section beams
with SMA fibers. Chin J Mech Eng 25(5):1029-1043
Shabana AA (2005) Dynamics of multibody systems, 3rd
edn. Cambridge University Press, Cambridge

Sina SA, Ashrafi MJ, Haddadpour H, Shadmehri F (2011)
Flexural-torsional vibrations of rotating tapered thin-walled
composite beams. Proc Inst Mech Eng 225(4):387—402
Song O, Librescu L (1993) Free vibration of anisotropic
composite wthin-walled beams of closed cross-section
contour. J Sound Vib 167(1):129-147

Song O, Librescu L (1997) Structural modeling and free
vibration analysis of rotating composite thin-walled beams.
J Am Helicopter Soc 42(4):358-369

@ Springer

30.

31.

32.

33.

34.

35.

36.

Stoykov S, Ribeiro P (2010) Nonlinear forced vibrations and
static deformations of 3D beams with rectangular cross section:
the influence of warping, shear deformation and longitudinal
displacements. Int J Mech Sci 52(11):1505-1521

Stoykov S, Ribeiro P (2013) Vibration analysis of rotating
3D beams by the p-version finite element method. Finite
Elem Anal Des 65:76-88

Volovoi VV, Hodges DH, Cesnik CES, Popescu B (2001)
Assessment of beam modeling methods for rotor blade
applications. Math Comput Modell 33(10-11):1099-1112
Vyas NS, Rao JS (1992) Equation of motion of a blade
rotating with variable angular velocity. J Sound Vib 156(2):
327-336

Warminski J, Balthazar JM (2005) Nonlinear vibrations of a
beam with a tip mass attached to a rotating hub. In Volume
1: 20th Biennial conference on mechanical vibration and
noise, Parts A, B, and C, ASME, pp 1619-1624
Warminski J, Balthazar JM, Brasil RM (2001) Vibrations of
a non-ideal parametrically and self-excited model. J Sound
Vib 245(2):363-374

Wenbin Y, Volovoi VV, Hodges DH, Hong X (2002) Val-
idation of the variational asymptotic beam sectional ana-
lysis (VABS). ATAA J 40(10):2105-2113



	Equations of motion of rotating composite beam with a nonconstant rotation speed and an arbitrary preset angle
	Abstract
	Introduction
	Theory
	Problem formulation
	Coordinate systems
	Assumptions

	Beam model
	Position vector
	Velocity vector
	Acceleration vector
	Displacement field
	Strains

	Energies 
	Potential energy
	Kinetic energy
	Work of external forces

	Equations of motion

	Results
	Symmetric composite blade
	Symmetric composite uniform box-beam

	Discussion
	Conclusions
	Acknowledgments
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5 
	References


