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Abstract Explosive astrophysical systems - such as super-

novae or compact star binary mergers - provide conditions

where exotic degrees of freedom can be populated. Within

the covariant density functional theory of nuclear matter we

build several general purpose equations of state which, in ad-

dition to the baryonic octet, account for ∆(1232) resonance

states. The thermodynamic stability of ∆ -admixed nuclear

matter is investigated in the limiting case of vanishing tem-

perature for charge fractions YQ = 0.01 and YQ = 0.5 and

wide ranges of the coupling constants to the scalar and vec-

tor mesonic fields. General purpose equation of state models

with exotica presently available on the COMPOSE database

are further reviewed; for a selection of them we then inves-

tigate thermal properties for thermodynamic conditions rel-

evant for core-collapse supernovae and binary neutron star

mergers. Modifications induced by hyperons, ∆(1232), K−,

pions and quarks are discussed.

1 Introduction

In astrophysical events like core-collapse supernovae (CCSN)

[1,2,3,4,5] and binary neutron star (BNS) mergers [6,7,8,9,

10,11,12] as well as in the evolution of proto-neutron stars

(PNS) [13,14] and formation of stellar black holes (BH) [15,

16,17,18] high density and high temperature states of mat-

ter are populated. Under these circumstances the appearance

of non-nucleonic degrees of freedom (d.o.f.) - such as hy-

perons, meson condensates and quarks - is highly probable.

From the energetic view point these exotic phases are the

natural consequence of the Pauli principle and are expected
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to nucleate whenever the chemical potential of neutrons ex-

ceeds a certain threshold. Limited current information on the

equation of state (EoS) does nevertheless not allow to ascer-

tain the occurrence of any of these species and even less

to identify the thermodynamic conditions and astrophysical

environments where one species or another will dominate

over nucleonic matter.

Signatures of exotic matter are typically sought after by

comparing results of numerical simulations obtained by ac-

counting for various extra particle d.o.f. with those obtained

when only nucleons are considered. As such hyperons and

hadrons to quark phase transitions have been found to affect

the dynamics, neutrino signals and gravitational wave (GW)

emissions.

Sekiguchi et al. [19] has shown that the onset of Λ -

hyperons modifies the GWs emitted by the hypermassive

neutron star (HMNS) formed after BNS as well as the sur-

rounding torus. GW were found to be modified in two re-

spects. Firstly, the amplitude of quasiperiodic GW at the

black hole formation is damped. Second, the characteristic

GW frequency increases with time. According to Radice et

al. [20] the production of hyperons makes waveforms louder

and alter the amplitude modulation and phase evolution; other

modifications concern the compactness and binding energy

of the merger remnant, higher when hyperons are present.

Bauswein et al. [21,22] showed that hadron-quark phase

transitions occurring during the post-merger phase modify

the relation between the frequency of dominant gravitational-

waves and the tidal deformability during the inspiral. Pat-

terns of inspiral and postmerger GW signals have been con-

fronted by Most et al. [23], who shown that the latter has the

potential to bare clear signatures of phase transitions. Weith

et al. [24] demonstrated that the postmerger GW signal ex-

hibits two distinct fundamental frequencies before and af-

ter the phase transition. More precisely, if the collapse into

a BH is triggered by the phase transition, the frequencies

http://arxiv.org/abs/2205.03177v2
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of GW emitted by the HMHS increase as the collapse pro-

ceeds; if, at variance, the phase transition develops after the

merger and a metastable object with a quark-matter core is

formed, the transition to a signal at higher frequencies is

more smooth and the largest values are smaller than in the

first scenario. Modification of post-merger GW frequencies

by the quark deconfinement phase transition is confirmed

also by Prakash et al. [11] who have additionally studied

modifications of dynamical ejecta, remnant accretion disk

masses, r-process nucleosynthesis yields and electromag-

netic counterparts.

Effects of pions, hyperons and hadron-quark phase tran-

sition in stellar core collapse have been identified as well.

According to Sagert et al. [25], phase transitions occurring

during the early postbounce evolution might produce a sec-

ond shock wave. If this is strong enough a delayed super-

nova explosion is triggered and an additional neutrino-peak

generated. Zha et al. [26] have proved that if, due to the

QCD phase transition, the PNS collapses following the core-

collapse, a loud burst of GW is formed. Its properties - am-

plitude, frequency range, duration, energy - are different than

those of normally found postbounce GW. According to Lin

et al. [27] the neutrino signal emitted by these failed CCSN

is oscillatory. Effects of pions and Λ -hyperons, including a

possible strangeness-driven phase transition on the evolution

of core collapse and formation of stellar BH have been con-

sidered in Peres et al. [28]. It was found that the EoS soft-

ening results in reduced (increased) values of central den-

sity (temperature) at bounce; increased radii of the homolo-

gous core and PNS; steeper increase of central density dur-

ing postbounce; faster collapse into BH. The magnitude of

modifications increases with abundances of exotic species.

Phase transitions additionally induce core oscillations.

The consequences of phase transitions, non-monotonic

density-dependence of the sound speed and numerical acci-

dents in the surface of thermodynamic potentials have been

discussed by Aloy et al. [29]. Among their results we remind

the supersonic behavior of the infalling matter in connection

with a phase transition.

Numerical simulations of these phenomena require de-

tailed information on composition, thermodynamic and, prefer-

ably also, microscopic properties of matter over wide do-

mains of baryonic density 10−14 fm−3 ≤ nB ≤ 1.5 fm−3,

electron fraction 0 ≤Ye = ne/nB ≤ 0.6 and temperature 0 ≤

T ≤ 100 MeV. The first so-called general purpose EoS ta-

bles for astrophysical use have been made available by Lat-

timer and Swesty [30] and Shen et al. [31,32] and accounted

only for nucleonic d.o.f. For almost two decades they were

the only ones to exist. As such more ”finite-temperature”

EoS have been built heuristically by the so-called Γ -law,

which consists in supplementing cold EoS with ideal-gas

thermal contributions - a method still in use, see Sec. 6.

Starting with 2010 the situation improved significantly and

today almost one hundred such EoS exist. Out of them 36

account also for one or several exotic particles. These EoS

tables have been obtained within different theoretical frame-

works; rely on various baryon-baryon interactions; imple-

ment different constraints derived from nuclear physics, as-

trophysics and ab initio calculations; for a review, see [33,

34]. Though the collection of existing models is still far from

exhausting the huge parameter space associated with the un-

certainties in effective baryonic interactions at high densities

and isospin asymmetries, it allowed to identify how particle

abundances depend on thermodynamic conditions; the ex-

tend in which exotic d.o.f. impact on thermodynamic state

variables or derived quantities like adiabatic index or speed

of sound; whether correlations exist with EoS of nuclear

matter; investigate properties of isentropic PNS and the rela-

tion with their nucleonic counterparts [35,28,36,37,38,39,

40,41].

The first aim of this work is to present three general pur-

pose EoS models that account for the baryonic octet and

∆(1232)-resonances. They are derived in the framework of

the covariant density functional theory (CDFT), are avail-

able on the COMPOSE site 1 [42,43] and - to our knowl-

edge - are the first publicly available EoS models which ac-

count for ∆s. Accounting for ∆s, in principle, one may face

first order phase transition(s) in thermodynamic conditions

relevant for astrophysics [44]. Our EoS models are built by

giving to the coupling constants to meson fields values in

accord with present constraints. When the contribution of

the neutralizing electron gas is accounted for none of these

models manifests instabilities. Though, when only baryonic

matter is considered, one of the models shows ∆ -driven in-

stabilities.

The second motivation is to provide a better understand-

ing of the finite-T behavior of EoS models with exotic d.o.f.

To this end we review general purpose EoS tables with ex-

otica presently available on the COMPOSE site. Then, for

a collection of EoS models which allow for different exotic

d.o.f. and have the property that general purpose EoS ta-

bles for purely nucleonic matter exist as well a comparative

study is performed for a series of thermal properties. These

two aspects make present work be the follow-up of our pre-

vious paper devoted to EoS with nucleonic d.o.f. [45], called

in the following Paper I.

The paper in organized as follows. General purpose EoS

with exotica presently available on the COMPOSE site are

reviewed in Sec. 2. Sec. 3 offers an overview of CDFT mod-

els with density-dependent couplings. The role of hyperons

and ∆ -resonances at finite-T is analyzed in Sec. 5 by consid-

ering simplified mixtures of nucleons and the Λ -hyperons

and, respectively, ∆s. Thermodynamic stability of cold ∆ -

admixed nucleonic matter at T = 0 is investigated in Sec. 5.

Thermal properties of a large collection of models, including

1 https://compose.obspm.fr/

https://compose.obspm.fr/
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the newly proposed ones, are addressed in Sec. 6. In order

to better highlight the role of various particle d.o.f. or the

way in which the hadron to quark phase transition is imple-

mented none of the currently used constraints on parameters

of nuclear matter at saturation or properties of NS is used as

a filter.

Throughout this paper we use the natural units with c =

ℏ= kB = G = 1.

2 General purpose EoS models with exotic particle

degrees of freedom on COMPOSE

In this section we provide an overview of models with ex-

otic particle degrees of freedom for which general purpose

EoS tables are available on the COMPOSE site. General

purpose tables cover large ranges of baryon number den-

sities nB, temperatures T , and electron fractions Ye and are

ready to use in numerical simulations of CCSN, PNS and

BNS mergers. Contributions of electron-positron and pho-

ton gases, treated as ideal Fermi and Bose gases, are in-

cluded in all tables assuming that the net electron fraction

equals the baryon charge fraction, Ye = YQ, and that the dif-

ferent sectors are in thermal equilibrium. For some models

tables corresponding to pure baryonic matter are also pro-

vided.

The standard format for the name of a particular EoS ta-

ble takes the form XXX(YYY)zzz. XXX thereby indicates

the initials of the authors in the original publication(s) propos-

ing the corresponding model. YYY represents the name of

the interaction and provides information on the effective nu-

cleon potential and non-nucleonic particle degrees of free-

dom. zzz offers extra information on coupling constants in

the exotic sector, if tables are provided for more than one

XXX(YYY) model.

Table 1 lists the presently available tables, along with

information on the exotic particles and properties of cor-

responding cold β -equilibrated NS. With the exception of

GROM(LS220L), which relies on a non-relativistic Skyrme-

like effective interaction, all the models belong to CDFT.

The nuclear matter (NM) parameters of underlying nucle-

onic effective interactions are provided in Table 2. As with

the exception of DNS(CMF) [74,75] and BBKF(DD2F-SF) [76,

21,77] COMPOSE provides also general purpose EoS for

purely nucleonic matter and these have been discussed at

length in Paper I here we shall focus only on exotic d.o.f.

and the supra-saturation regime.

Experimental challenges due to the short lifetime of hy-

perons as well as low intensity beams make that only a few

hundreds scattering events exist for NΛ and NΣ ; only a few

scattering events exist for NΞ ; no scattering data is available

for YY . Unsufficient constraints on the hyperon-nucleon po-

tentials are reflected in different predictions of various mod-

els in spite of accurate description of scattering phase shifts

[82,83,84]. Realistic two-body baryon–baryon interactions

that describe the scattering data in free space along with phe-

nomenological three body forces have been exploited in mi-

croscopic approaches in order to extract the EoS of hyperon

admixed NS matter. Brueckner-Hartree-Fock calculations of

hypernuclear matter in [85,86,87,88] proved to be unable to

produce maximum NS mass of ≈ 2M⊙, which was in part

explained by a three body interaction not repulsive enough;

for more, see [34].

An alternative solution to extract information on the YN

and YY interactions relies on the study of hypernuclei, bound

systems composed of nucleons and one or more hyperons.

So far more than 40 single-Λ nuclei and a few double-Λ

and single-Ξ nuclei have been produced and studied. The

first estimation of the well depth of the Λ -hyperon in nuclear

matter, U
(N)
Λ (nsat)≈ −30 MeV, has been obtained from the

extrapolation at A → ∞, where A is the hypernucleus mass

number, of the experimental binding energy of single-Λ hy-

pernuclei [89]. Calibration of σΛ and ωΛ vertices on ex-

perimental data of binding energies of nuclei with a vari-

able number of nucleons and one Λ , realized by solving the

Dirac equations of the nucleons and the hyperon, confirm

this value [90]. [90] also shows that U
(N)
Λ is little affected by

the assumed nucleonic effective interaction and flavor sym-

metry arguments used for the vector mesons. The method

in [90] was further employed in [91] to calibrate the cou-

pling constants of the Ξ -hyperon to the experimental bind-

ing energy of the single-Ξ nuclei 15
Ξ−C and 12

Ξ−Be. The thus

obtained values −18.8 MeV . U
(N)
Ξ (nsat) . −14.6 MeV,

which depend on the nucleon effective interaction, are in fair

agreement with the value deduced from inclusive (K−,K+)

spectra, U
(N)
Ξ (nsat) ≈ −15 MeV [92] and underestimate the

more attractiveU
(N)
Ξ (nsat).−20 MeV obtained from Ξ−p→

ΛΛ two body capture events in 12C and 14N [93]. Exper-

imental data on strong-interaction level shifts, widths and

yields collected from Σ− atoms and inclusive (π−,K+) spec-

tra on medium to heavy targets indicate a repulsive but loosely

constrained ΣN potential U
(N)
Σ (nsat) ≈ 30± 20 MeV [89,

92].

−U
(Λ)
Λ (nsat) is extracted by identification with the ΛΛ

bond energy, ∆BΛΛ =BΛΛ

(

A
ΛΛ Z

)

−2BΛ

(

A−1
Λ Z

)

, where B
(

AZ
)

stays for the binding energy of the nucleus AZ, in double Λ

hypernuclei. The initial value, ∆BΛΛ = 1.01±0.2+0.18
−0.11 MeV

obtained in the KEK event [94] was revised to 0.67±0.17 MeV

[95] due to a change in the value of the Ξ− mass. The small

value of this attractive potential makes it that it is overlooked

in most EoS model calculations.

For EoS models which account for hyperons, Table 3

lists the values of well depths in symmetric saturated mat-

ter on which the coupling constant to the σ meson has been

fixed, the meson couplings and the flavor symmetry group

assumed for deciding the strengths of vector mesons. One
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Table 1 List of general purpose EoS tables with exotic degrees of freedom, available on COMPOSE. For each EoS model we provide informa-

tion on: considered degrees of freedom; maximum mass of cold β -equilibrated NS (Mmax
G ); radius of canonical 1.4M⊙ NS (R14); radius of a

2.072M⊙ NS (R2.072); limits of combined tidal deformability Λ̃ = 16
[

(M1 +12M2)M4
1Λ1 +(M2 +12M1)M4

2Λ2

]

/13(M1 +M2)
5

corresponding

to the GW170817 event with an estimated total mass MT = 2.73+0.04
−0.01M⊙ and a mass ratio range 0.73 ≤ q = M2/M1 ≤ 1. Present astrophysi-

cal constraints on EoS regard: i) the lower limit of maximum gravitational mass [46,47,48,49,50]; ii) radii of canonical mass NS [51,52]; iii)

radii of a massive NS [53,54]; iv) range for the tidal deformability obtained from the GW170817 event [55,56,57]. As in Paper I models in

tension with constraint i) M ≥ 2.01− 0.04M⊙ [47] are marked in bold. Values outside the ranges ii) 11.80 ≤ R(1.4M⊙) ≤ 13.10 km [53], iii)

11.41 km ≤ R(2.072M⊙) ≤ 13.69 km [54], iv) 110 ≤ Λ̃ ≤ 800 [57] are also marked in bold. For Mmax
G and R14 provided are the values on COM-

POSE or the original publications. As in Paper I R2.072, Λ̃(q = 0.73) and Λ̃ (q = 1) are calculated by using for the crust the EoS models by [58]

and [59]. n.a. (not available) means that quantities could not be calculated from the table, the reason being that, for baryonic densities exceeding a

certain value, Ye of β -equilibrated matter is lower than the lowest value in the table. Other notations are: q stands for u, d, s quarks; Λ denotes the

Λ -hyperon; ∆ is the ∆(1232) resonance; Y generically denotes the Λ , Σ and Ξ hyperons; π and K respectively stand for pions and kaons.

model non-nucleonic Mmax
G R14 R2.072 Λ̃ Λ̃ Ref.

d.o.f (M⊙) (km) (km) q=0.73 q=1

GROM(LS220L) no low densities Λ 1.91 12.4 - 576 498 [30,35]

GROM(LS220L) with low densities Λ 1.91 12.4 - 576 498 [30,35]

STOS(TM1L) Λ 1.90 14.4 - 1366 1283 [31,32,60]

IOTSY(TM1Y-30) Y 1.63 14.3 - - 1258 [61]

IOTSY(TM1Y0) Y 1.64 14.3 - 1361 1286 [61]

IOTSY(TM1Y30) Y 1.64 14.3 - 1362 1286 [61]

IOTSY(TM1Y90) Y 1.64 14.3 - 1362 1286 [61]

IOTSY(TM1Ypi-30) Y,π 1.66 13.6 - 844 781 [61]

IOTSY(TM1Ypi0) Y,π 1.66 13.6 - 858 778 [61]

IOTSY(TM1Ypi30) Y,π 1.66 13.6 - 858 778 [61]

IOTSY(TM1Ypi90) Y,π 1.66 13.6 - 858 778 [61]

SFHPST(TM1B139) q 2.08 12.6 - n.a. n.a. [31,32,25,62,63]

SFHPST(TM1B145) q 2.01 13.0 - n.a. n.a. [31,32,25,62,63]

SFHPST(TM1B155) q 1.70 10.7 - n.a. n.a. [31,32,25,62,63]

SFHPST(TM1B165) q 1.51 9.1 - n.a. n.a. [31,32,25,62,63]

FOP(SFHoY) Y 1.99 11.9 - 401 366 [64,65,66]

BHB(DD2L) Λ 1.95 13.2 - 787 757 [64,67]

BHB(DD2Lphi) Λ 2.10 13.2 12.2 790 757 [64,67]

OMHN(DD2Y) Y 2.03 13.2 - 787 756 [64,68]

MBB(DD2K) K− 2.19 13.2 13.0 798 758 [64,69]

MBB(BHBLphiK) Λ , K− 2.05 13.2 - 788 755 [64,70]

SDGTT(QMC-A) Y 2.08 13.0 n.a. n.a. n.a. [71,72,73]

R(DD2YDelta)(1.1;1.1;1.0) Y∆ 2.04 12.97 - 697 643 [64], this work

R(DD2YDelta)(1.2;1.1;1.0) Y∆ 2.05 12.30 - 470 434 [64], this work

R(DD2YDelta)(1.2;1.3;1.0) Y∆ 2.03 13.25 - 786 757 [64], this work

DNS(CMF) Y, q 2.1 14.0 12.6 1114 1043 [74,75]

BBKF(DD2F-SF)1.1 q 2.13 12.2 10.7 507 467 [76,21,77]

BBKF(DD2F-SF)1.2 q 2.15 12.2 11.4 501 473 [76,21,77]

BBKF(DD2F-SF)1.3 q 2.02 12.2 - 512 467 [76,21,77]

BBKF(DD2F-SF)1.4 q 2.02 12.2 - 516 467 [76,21,77]

BBKF(DD2F-SF)1.5 q 2.03 12.2 - 488 467 [76,21,77]

BBKF(DD2F-SF)1.6 q 2.00 12.2 - 513 467 [76,21,77]

BBKF(DD2F-SF)1.7 q 2.11 12.2 11.2 514 467 [76,77]

BBKF(DD2-SF)1.8 q 2.06 11.0 - 218 180 [76,77]

BBKF(DD2-SF)1.9 q 2.17 11.3 11.2 228 196 [76,77]

can see that all models are in fair agreement or marginally

consistent with present constraints on U
(N)
Λ and U

(N)
Ξ . The

wide range explored by U
(N)
Σ allows one to inspect the con-

sequences entailed by uncertainties in the NΣ interaction. So

far this aspect was systematically addressed only for cold β -

equilibrated NS [91,96]. Out of the considered models only

IOTSY models [61] account for YY potentials. The assumed

values are: U
(Σ)
Σ ≈U

(Σ)
Λ ≈U

(Λ)
Σ ≈ 2U

(Λ)
Λ ≈−40 MeV.

Some of IOTSY models [61] also account for free ther-

mal pions. Modification of pion masses due to the interac-

tion is disregarded. π−,0,+ number densities account for s-

wave pion condensation. This holds when the absolute value

of pion chemical potentials equals the pion mass. Pion chem-

ical potentials are calculated as µπ+ = µQ, µπ0 = 0, µπ− =

−µQ, where µQ = µp − µn is the charge chemical potential.

MBB(DD2K) [69] accounts for thermal (anti)kaons and

a Bose–Einstein condensate of K− mesons. The phase tran-

sition from the nuclear to antikaon condensed phase is second-

order. Nucleons in the antikaon condensed phase behave dif-

ferently than those in the hadronic phase. Kaon-nucleon in-
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Table 2 List of nucleonic effective interactions on which general purpose EoS tables in Table 1 are built. For each interaction we specify the

properties of symmetric nuclear matter at saturation density (nsat): energy per nucleon (Esat); compression modulus (Ksat); skewness (Qsat);

symmetry energy (Jsym); slope (Lsym); curvature (Ksym) and skewness (Qsym) of the symmetry energy.

int. nsat Esat Ksat Qsat Jsym Lsym Ksym Qsym Ref.

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

LS220 0.155 -16.64 219.85 -410.80 28.61 73.81 -24.04 96.17 [30]

TM1 0.145 -16.26 281.16 -285.22 36.89 110.79 33.63 -66.54 [78]

SFHo 0.158 -16.19 245.4 -467.8 31.57 47.10 -205.5 n.a. [65]

DD2 0.149 -16.02 242.72 168.65 31.67 55.04 -93.23 598.14 [79]

DD2F 0.149 -16.02 242.72 168.65 31.67 55.04 -93.23 598.14 [80]

CMF 0.15 -16.0 300 281 30 88 27 n.a. [81,74]

QMC-A 0.156 -16.2 292 n.a. 28.5 54.0 n.a. n.a. [73]

Table 3 Details on CDFT models on which EoS tables have been built: list of meson couplings and/or their type (col. 6); list of hidden-strangeness

mesons (if any) (col. 7); quark flavor symmetry group on which vertices of vector mesons to exotica have been fixed (col. 8). DD stays for density-

dependent. For FOP(SFHoY) i = 1, ...,6; j = 1, ...,3. U
(N)
X (nsat ), eq. (24), stays for the well depth of the particle X at rest in symmetric saturated

nuclear matter.

model U
(N)
Λ (nsat ) U

(N)
Σ (nsat) U

(N)
Ξ (nsat ) U

(N)
∆ (nsat) meson hidden str. flavor sym. Ref.

[MeV] [MeV] [MeV] [MeV] couplings mesons

STOS(TM1L) -30 - - - σ 3, σ 4, ω4 - SU(6) [60]

IOTSY(TM1Y-30) -30 -30 -15 - σ 3, σ 4, ω4 σ ∗, φ SU(3) [61]

IOTSY(TM1Y0) -30 0 -15 - σ 3, σ 4, ω4 σ ∗, φ SU(3) [61]

IOTSY(TM1Y30) -30 30 -15 - σ 3, σ 4, ω4 σ ∗, φ SU(3) [61]

IOTSY(TM1Y90) -30 90 -15 - σ 3, σ 4, ω4 σ ∗, φ SU(3) [61]

IOTSY(TM1Ypi-30) -30 -30 -15 - σ 3, σ 4, ω4 σ ∗, φ SU(3) [61]

IOTSY(TM1Ypi0) -30 0 -15 - σ 3, σ 4, ω4 σ ∗, φ SU(3) [61]

IOTSY(TM1Ypi30) -30 30 -15 - σ 3, σ 4, ω4 σ ∗, φ SU(3) [61]

IOTSY(TM1Ypi90) -30 90 -15 - σ 3, σ 4, ω4 σ ∗, φ SU(3) [61]

FOP(SFHoY) -30 30 -14 - σ 3, σ 4, ω4, σ iρ2, ω2 jρ2 φ SU(6) [66]

BHB(DD2L) -30 - - - DD - SU(6) [67]

BHB(DD2Lphi) -30 - - - DD φ SU(6) [67]

OMHN(DD2Y) -30 30 -18 - DD σ ∗, φ SU(6) [68]

SDGTT(QMC-A) -28 -0.96 -12.7 - QMC - - [73]

R(DD2YDelta)(1.1;1.1;1.0) -28 30 -20 -83 DD φ SU(6) this work

R(DD2YDelta)(1.2;1.1;1.0) -28 30 -20 -124 DD φ SU(6) this work

R(DD2YDelta)(1.2;1.3;1.0) -28 30 -20 -57 DD φ SU(6) this work

DNS(CMF) -28 5 -18 - σ 4, δ 4, ω4, σ 2δ 2 σ ∗, φ SU(3) [75]

teraction is considered in the same footing as the nucleon–nucleon

interaction. Kaon-vector meson coupling constants are fixed

by flavor symmetry arguments. The scalar coupling constant

is determined from the real part of K− optical potential at the

saturation density, U
(N)
K− = −120 MeV. MBB(BHBLphiK)

[70] additionally accounts for Λ -hyperons.

BBKF(DD2-SF) and BBKF(DD2F-SF) models [77] rely

on a two-phase approach for quark-hadron phase transitions,

which leads by construction to a first-order phase transi-

tion. In the hadron sector only nucleonic d.o.f. are consid-

ered; in the quark sector only up and down quarks are al-

lowed. The quark confinement is modeled within the string-

flip model [76]. The fact that hadrons are composite parti-

cles made of quarks is not considered in this description. As

frequently done in astrophysics, each phase is derived in-

dependently and the two phases are then merged through a

mixed phase construction. The solution adopted in this work

assumes thermal, mechanical and baryonic chemical equi-

librium between pure hadron and quark phases. The equal-

ity of charge chemical potentials between coexisting phases

is replaced, for convenience, by the equality of charge frac-

tions. It is argued that this simplification has only little ef-

fect on thermodynamics due to the close values of charge

fraction in the coexisting phases, which is a peculiarity of

this model. The neutralizing electron gas is added after the

phase construction is realized, which means that it does not

affect phase coexistence. Throughout this work we shall re-

fer to this phase-construction as approximate Gibbs con-

struction; the attribute ”approximate” is a reminder that the

equality of charge chemical potentials is not exactly ful-

filled, as it should be in the case of a Gibbs construction. We

remind that the Gibbs construction is the generalization of

Maxwell construction for systems with more than one con-

served charge. The quark model is much more affected by

temperature than the hadron model, which can be explained
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by the lower masses of quarks. With rising temperature the

model features a monotonic decrease of transition pressure

and (baryon) chemical potential. For more, see Sec. 6.

In the hadronic-quark SFHPST-models [25,62] the hadronic

sector is treated within CDFT while for the quark sector the

MIT bag model is employed. In the hadron sector only nu-

cleonic d.o.f. are considered; up, down and strange quarks

are considered in the quark sector. The onset of the hadron-

quark phase transition and the width of the phase coexis-

tence domain are governed by the model parameters, i.e.

strange quark mass, bag constant and strong coupling con-

stant. By increasing the temperature the phase coexistence

domain shifts to lower densities without significant modifi-

cation of width. The phase transition is implemented based

on a Glendenning construction [97]. At variance with the

Gibbs construction which implies thermal, mechanical and

chemical equilibrium of all conserved charges calculated at

the boundaries of the coexistence phase here the equilib-

rium is imposed between different phases in the phase co-

existence domain. As a consequence the pressure does no

longer stay constant in the mixed phase but varies continu-

ously with the proportion of phases in equilibrium; the con-

served charges can be shared in different concentrations in

each phase; the energy density is not a linear function of

the proportion of phases. Moreover charge neutrality is not

assumed to hold for each of the coexisting phases but for

their mixture. The advantage of the Glendenning construc-

tion over the Gibbs one consists in that external fields sen-

sitive to density, as the gravitational field, will not separate

the phases [97]. Characteristic features of SFHPST-models,

different from those of BBKF-models, will be discussed in

Sec. 6.

The SU(3) Chiral Mean Field (CMF) model [75] is an-

other example of EoS model which allows for hadrons and

quarks. For the hadronic phase, which accounts for the whole

baryonic octet, a non-linear realization of the SU(3) sigma

model with an explicit chiral symmetry breaking term is

used. The particle d.o.f. populated under various thermody-

namic conditions change from hadrons to quarks and vice-

versa through the introduction of an extra field Φ in the ef-

fective masses of baryons and quarks. Hadrons are included

as quasi-particle d.o.f. in a chemically equilibrated mixture

with quarks, which results in full miscibility of hadrons and

quarks.

The microscopic SDGTT(QMC-A) model [73] is based

on the effective relativistic mean field quark-meson-coupling

(QMC) model [72]. At variance with CDFT models, in QMC

the interaction between baryons takes place self-consistently

between valence quarks, confined in non-overlapping baryons.

The effect of the dense medium surrounding the baryons

is modeled by the dynamics of quarks inside the individ-

ual particles. The parameters of the quark bag model, repre-

senting baryons, are adjusted to reproduce the masses of the

baryon octet in free space. The meson fields are coupled to

the quarks.

The three R(DD2YDelta)-models in Table 1 are proposed

in this paper and are the first publicly available general pur-

pose EoS models accounting for the baryonic octet and ∆ -

resonances. These EoS tables have been obtained in the frame-

work of CDFT assuming that ∆s preserve their vacuum masses

and have vanishing widths. The numbers in parenthesis cor-

respond to the coupling constants of the ∆ to σ , ω and ρ-

mesonic fields, expressed as ratios with respect to couplings

of nucleons. These values span a certain range in the pa-

rameter space associated to the nucleon-∆ interaction; for a

discussion on present constraints, see Sec. 5. For the inho-

mogeneous matter at sub-saturation densities the HS(DD2)

data on COMPOSE are used. They have been obtained in the

framework of the extended Nuclear Statistical Equilibrium

(NSE) model by Hempel and Schaffner-Bielich [64]. The

transition from inhomogeneous to homogeneous matter is

done for fixed values of T and YQ by minimizing the free en-

ergy. Data in Table 1 show that models R(DD2YDelta)(1.1;1.1;1.0)

and R(DD2YDelta)(1.2;1.1;1.0) are consistent with avail-

able constraints from observation of compact stars, specif-

ically, massive NS; radii and masses inferences by NICER;

range of tidal deformability derived from GW170817. R(DD2YDelta)(1.2;1.3;1.0)

has a more modest performance when confronted with as-

trophysics data as it provides for R14 a value exceeding the

maximum value extracted from observations on PSR J0030+0451

[51,52]. Compliance with constraints from nuclear physics

experiments and ab initio calculations of nuclear matter is

warranted by the use of DD2 effective interaction [98]; com-

pliance with hyper-nuclear physics data is met by the val-

ues of U
(N)
Y on which meson coupling constants have been

tuned. Also available are tables for purely baryonic matter.

The domains of temperature, baryonic number density and

charge fraction covered by these EoS tables and the corre-

sponding numbers of mash points are provided in Table 4 in

the Appendix A. The table corresponding to (1.2,1.1,1.0)

is unique in the sense that pure baryonic matter manifests a

small ∆ -driven instability domain, see Sec. 5. This instabili-

ties are suppressed by the electron gas, which means that nu-

merical simulations of astrophysics phenomena should not

present signals typically associated with phase transitions.

Provided that the values of coupling constants comply with

experimental constraints, this collection of models can be

extended such as to include also models that present insta-

bilities.

3 Covariant density functional models for baryonic

matter

Covariant density functional or, equivalently, relativistic mean

field (RMF) models have been successfully used to describe
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infinite nuclear matter, finite nuclei and stellar matter. They

rely on the Walecka model [99], which treats nucleons as

fundamental particle d. o. f. that interact with each other

through the exchange of scalar and vector mesons. The scalar

isoscalar σ and vector isoscalar ω fields correspond to these

mesons and account for the attractive and repulsive parts of

the nuclear interaction.

With the aim of better describing an ever increasing amount

of data the original model was further developed by account-

ing for other mesons, e.g. the vector-isovector ρ , scalar-isovector

δ and, if strange baryons are considered, also hidden-strangeness

scalar-isoscalar σ∗ and vector-isoscalar φ mesons. Models

with mixed interaction terms and density dependent cou-

pling constants have been proposed as well. For a review,

see [100].

As the data generated for this paper and discussed in Sec.

4, 5 and partially 6, have been obtained in the framework of

density dependent models in the following we shall review

equations pertaining to this class of models. For the sake of

brevity we shall limit ourselves to σ , ω , ρ , φ mesonic fields.

These are the only mesons considered in Sec. 4, 5 as well as

the new general purpose EoS with hyperons and ∆s that we

present here and made available on the COMPOSE database.

We nevertheless mention that density dependent RMF mod-

els which account for δ and/or σ∗ mesons exist as well.

Examples in this sense are offered by [101,102] and [90,

41] for the scalar-isovector δ and hidden-strangeness scalar-

isoscalar σ∗ mesons, respectively. The scalar-isovector δ

meson gives rise to attraction in the isovector channel, while

the vector-isovector ρ meson is responsible for repulsion;

improves the neutron-proton effective mass splitting with

respect to predictions of relativistic Brueckner Hartree-Fock

calculations. The hidden-strangeness scalar-isoscalar σ∗ me-

son regulates, together with the vector-isoscalar φ meson,

the YY interaction. The scalar-isovector δ meson mostly af-

fects the high-density behavior of the EoS while the scalar

σ∗ field is dominant at low densities. The role of the δ -

meson in stellar matter was addressed in [103], where differ-

ent hadronic contents, temperature profiles and lepton frac-

tions have been considered. According to these authors, who

employed a non-linear RMF model, inclusion of δ makes

the EoS of cold and β -equilibrated nucleonic matter stiffer

while the opposite effect is obtained for hyperonic matter;

smaller modifications are obtained for protoneutron stars with

trapped neutrinos. We expect RMF models with density de-

pendent couplings to agree with above cited results only for

cold and β -equilibrated matter.

At finite temperature, T , the scalar and number densities

of a baryon i are given by

ns
i =

2Ji + 1

2π2

∫ ∞

o

k2m∗
i

Ei(k)
[ fFD(Ei(k)− µ∗

i )+ fFD(Ei(k)+ µ∗
i )]dk ,

(1)

ni =
2Ji + 1

2π2

∫ ∞

o
k2 [ fFD(Ei(k)− µ∗

i )− fFD(Ei(k)+ µ∗
i )]dk ,

(2)

where k, Ei(k) =

√

k2 +m
∗,2
i , m∗

i and µ∗
i respectively stand

for the wave number, kinetic part of the single particle en-

ergy, Dirac effective mass and effective chemical potential

and fFD (ε) = 1/ [1+ exp(ε/T )] represents the Fermi-Dirac

distribution function; (2Ji + 1) represents the spin degener-

acy factor of the i baryon. Dirac effective mass and effective

chemical potential are linked to bare mass and chemical po-

tential by

m∗
i = mi +ΣS;i , (3)

µ∗
i = µi −ΣV ;i −ΣR . (4)

with the scalar ΣS;i and vector ΣV ;i self-energies and rear-

rangement term ΣR expressed by

ΣS;i = −gσ iσ̄ , (5)

ΣV ;i = gωiω̄ + gρ it3iρ̄ + gφ iφ̄ , (6)

ΣR = ∑
j

(

∂gω j

∂n j

ω̄n j + t3 j

∂gρ j

∂n j

ρ̄n j +
∂gφ j

∂n j

φ̄n j −
∂gσ j

∂n j

σ̄ns
j

)

.

(7)

t3i represents the third component of isospin of baryon i

with the convention that t3p = 1/2. As non-linear interaction

terms are disregarded, the mean-field expectation values of

meson fields are given by

m2
σ σ̄ = ∑

i

gσ in
s
i , (8a)

m2
ω ω̄ = ∑

i

gωini, (8b)

m2
φ φ̄ = ∑

i

gφ ini, (8c)

m2
ρ ρ̄ = ∑

i

gρ it3ini, (8d)

where mm with m = σ ,ω ,ρ ,φ , stays for the meson masses.

Baryonic energy density and pressure can be cast as sums

between a kinetic and an interaction term,

ebaryon = ekin + emeson , (9)

pbaryon = pkin + pmeson + prearrang . (10)

In eq. (10) an additional ”rearrangement” term exists,

prearrang = nBΣR , (11)

due to the couplings’ density-dependence.
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The kinetic terms in eqs. (9) and (10) account for kinetic

contributions of every species,

ekin = ∑
i

2Ji + 1

2π2

∫ ∞

0
dkk2Ei(k)

· [ fFD (Ei(k)− µ∗
i )+ fFD (Ei(k)+ µ∗

i )] ,

(12)

pkin =
1

3
∑

i

2Ji + 1

2π2

∫ ∞

0

dkk4

Ei(k)

· [ fFD (Ei(k)− µ∗
i )+ fFD (Ei(k)+ µ∗

i )] .

(13)

Interaction terms exclusively depend on average values

of mesonic fields

emeson =
m2

σ

2
σ̄2 +

m2
ω

2
ω̄2 +

m2
φ

2
φ̄2 +

m2
ρ

2
ρ̄2 , (14)

pmeson = −
m2

σ

2
σ̄2 +

m2
ω

2
ω̄2 +

m2
φ

2
φ̄2 +

m2
ρ

2
ρ̄2 . (15)

The entropy density of baryonic matter writes

sbaryon = −∑
i

2Ji + 1

2π2

∫ ∞

0
dkk2

·

{

[

fFD (Ei(k)− µ∗
i ) ln fFD (Ei(k)− µ∗

i )

+ f̄FD (Ei(k)− µ∗
i ) ln f̄FD (Ei(k)− µ∗

i )
]

+(µ∗
i →−µ∗

i )

}

.(16)

Together with other thermodynamic quantities it verifies the

thermodynamic identity

ebaryon = T sbaryon − p+∑
i

µini . (17)

Matter composition is determined, at arbitrary thermo-

dynamic conditions, by conservation of mass and charge,

nB = ∑
i

ni, (18)

nQ = ∑
i

qini, (19)

along with chemical equilibrium. For the case of hyperon

and ∆ -admixed nucler matter chemical equilibrium condi-

tions write,

µn = µΛ = µΞ 0 = µΣ0 = µ∆ 0 = µB, (20)

µΣ− = µΞ− = µ∆− = µB − µQ, (21)

µp = µΣ+ = µ∆+ = µB + µQ, (22)

µ∆++ = µB + 2µQ, (23)

where µB and µQ stand for baryon and charge chemical po-

tentials. Note that β -equilibrium is not assumed. Non-conservation

of strangeness assumes µS = 0.

Finally the interaction potential of particle j in k-particle

matter is given by,

U
(k)
j = m∗

j −m j + µ j − µ∗
j , (24)

= ΣS; j +ΣV ; j +ΣR. (25)

As customarily in the literature throughout this paper

couplings of heavy baryons to mesonic fields will be ex-

pressed as ratios to the corresponding couplings of nucle-

ons. We shall also assume that the density dependencies of

couplings of heavy baryons to mesonic fields are identical

to the ones of nucleons.

4 Heavy Baryons at finite-T : the cases of Λ - and

∆ -admixed nuclear matter

In the following we shall analyze the T - and nB-dependence

of various thermodynamic and microscopic quantities along

with matter composition. The study will be performed for

temperatures in the range 0.5 ≤ T ≤ 40 MeV, neutron rich

matter with YQ = 0.3 and two values of baryonic particle

number density, nB = 0.4 fm−3 and 0.6 fm−3. The role of

strange baryons and nucleonic resonances will be highlighted

by confronting results of Λ - and ∆ -admixed nuclear mat-

ter to results of purely nucleonic matter (N). For brevity

in some circumstances only the characteristics of dominant

species will be illustrated. The employed nucleonic interac-

tion is DD2 [79].

The nB and T -dependence of neutron, proton, Λ and ∆s

relative abundances is depicted in Fig. 1. Abundances of ex-

otic species strongly depend on thermodynamic conditions

and as a rule of thumb increase with T . At low (high) den-

sities the abundances of Λ and ∆−, which is the dominant

member of the J = 3/2 quadruplet, show significant (neg-

ligible) dependence on T . Mass conservation and chemical

equilibrium condition µn = µΛ make that nucleation of Λ

entails a certain diminish of neutron particle number densi-

ties, while no modification is seen in what regards Xp. The

situation of ∆ -admixed nuclear matter is more complex. The

onset of ∆− reduces Xn and enhances Xp. The first effect

comes from mass conservation, while the latter is due to

charge conservation and opposite charges of the dominant

charged species, p and ∆−. For the simple situations con-

sidered here one notices that abundances of exotic particles

also increase with nB.

The nB and T -dependence of mesonic fields is addressed

in Fig. 2. The following remarks are in order:

(a) N-matter: Being defined in terms of number densi-

ties of different particle degrees of freedom the average val-

ues of vector isoscalar ω and vector isovector ρ mesonic

fields do not depend on temperature. The decrease of σ̄ with

T is due to the fact that, for any species i, the maximum con-

tribution to the integrals in eq. (8a) is given by the k-values

close to the solution of

√

k2
i +m∗2

i = µ∗
i and that neutron

and proton effective chemical potentials decrease with T ,

see Fig. 4.

(b) NΛ -matter: As already discussed, high T -values fa-

vor the production of Λs at the cost of neutrons, which ex-
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Fig. 1 T -dependence of relative particle abundances. Results corresponding to NΛ and N∆ -matter are confronted with those of nuclear matter (N)

with YQ = 0.3 at nB = 0.4 fm−3 and 0.6 fm−3.
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Fig. 2 T -dependence of mesonic fields. Results corresponding to N,

NΛ and N∆ -matter with YQ = 0.3 at nB = 0.4 fm−3 and 0.6 fm−3.

plains that |φ̄ | augments with T and |ρ̄ | diminishes with T .

The latter feature suggests that, for fixed YQ, hot matter is

more isospin symmetric than cold matter, in agreement with

Fig. 1. Similarly to the case of σ̄(T ) in N-matter and for the

same reason σ̄ and ω̄ decrease with T .

(c) N∆ -matter: Similarly to Λs, also the production of

∆s is favored by high temperatures and densities. Under

the considered conditions, ∆− is by far the most abundant

species as its chemical potential, µ∆− = µB−µQ, with µQ <

0 is the largest. As X∆ ≪XΛ , the average values of all mesonic

fields in N∆ matter differ less with respect to their values in

pure nucleonic matter than it was the case with NΛ . Quali-

tative differences of σ̄(T ) and ω̄(T ) in N∆ with respect to

NΛ stem from opposite modifications of Xn and Xp, with the

latter prevailing over the first.

σ̄ and ω̄ augment with density as both scalar and vec-

tor number densities do so; the nB-decrease of gρB explains

the nB-decrease of |ρ̄|, the negative values being due to the

fact that the matter is neutron rich. As the φ meson couples

only to hyperons, φ̄ 6= 0 only in (NΛ) matter. Its absolute

value increases with nB as high densities favor production

of strange particles.
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Fig. 3 Vector self energies of neutrons and protons, eq. (6), as function

of T in nuclear matter (N) as well as NΛ and N∆ -matter with YQ = 0.3

at nB = 0.4 fm−3 and 0.6 fm−3.

The T -dependence of vector self-energies, eq. (6), at con-

stant density is represented in Fig. 3; only the behavior of

dominant species is illustrated. One notes that −ΣV
n,p strictly

follow the T -evolution of dominant mesonic field ω , see Fig.

2. The strongest T -dependence is obtained for NΛ matter at

the lowest considered density, where chemical composition

changes steeply.

The T -evolution of neutron and proton chemical poten-

tials and effective chemical potentials is illustrated in Figs.

4 and, respectively, 5. With the exception of relatively abun-

dant particles whose abundances augment with T , as is the

case of protons in N∆ -matter at nB = 0.4 fm−3, (effective)

chemical potentials diminish with temperature. For neutrons,

which represent the dominant species, a strong correlation

exists between abundances and effective chemical poten-

tial. As in all cases considered here matter is neutron rich,

µn > µp.

Eq. (3) states that the T - and nB-dependence of the Dirac

effective mass of any baryon is governed by the correspond-

ing dependencies of σ̄ . m∗
n/p

(T,nB) are illustrated in Fig. 6.

Fig. 2 shows that ∆ -admixed matter singles out by σ̄ in-
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Fig. 4 Neutron and proton chemical potentials as function of T in

nuclear matter (N) as well as NΛ and N∆ -matter with YQ = 0.3 at

nB = 0.4 fm−3 and 0.6 fm−3.
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Fig. 5 The same as in Fig. 4 for neutron and proton effective chemical

potentials, eq.(4).
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Fig. 6 T -dependence of nucleon Dirac effective mass, eq.(3), for the

cases considered in Fig. 1.

creasing both with temperature and density. As such, con-

trary to what happens in nucleonic matter and Λ -admixed

nuclear matter, in ∆ -admixed nuclear matter the Dirac effec-

tive mass of nucleons decreases with density and, under spe-

cific thermodynamic conditions, also with temperature. The

validity limit of the model is reached when nucleon effective

Dirac masses vanish. For a parameter study of the maximum

baryonic densities reachable in N∆ -matter, see Sec. 5.

Contributions of different terms in eqs. (9) and (10) are

illustrated in Figs. 7 and, respectively, 8 as function of T

for different values of baryonic density and matter composi-

tions.

In some cases, neutron and proton kinetic energy den-

sities and pressures increase with T . These situations cor-

respond to contributions of high momentum states in eqs.

(12) and (13) that underscore the T -reduction of effective

chemical potentials. For NΛ -matter at nB = 0.4 fm−3 and

N∆ -matter the kinetic contribution of neutrons manifests an

opposite behavior. These situations correspond to the cases

where µ∗
n (T ) shows a steep decrease, see Fig. 5. Quite re-

markably, with the exception of protons in NΛ matter at

nB = 0.6 fm−3, the qualitative patterns of ekin;n/p(T ) and

pkin;n/p(T ) as well as the relative arrangement of curves cor-

responding to different mixtures and/or baryonic densities is

the same.

The T -dependence of pmeson shows a complex behavior:

at high densities where mesonic fields show small variation

with T , a tiny increase with T is obtained; for N- and N∆ -

matter with nB = 0.4 fm−3, pmeson increases with T ; in the

first (second) case this is mainly due to the decrease (in-

crease) with T of σ̄ (ω̄), see Fig. 2; for NΛ matter with

nB = 0.4 fm−3, pmeson has a non-monotonic behavior due to

the interplay between σ̄ and ω̄, both decreasing with T .

Similarly to pmeson at nB = 0.6 fm−3 and for the same

reasons also emeson at nB = 0.6 fm−3 shows a weak sensi-

tivity to T . In what regards the behavior at nB = 0.4 fm−3,

one notes that emeson(T ) increases (decreases) in N∆ (N and

NΛ ) matter. Fig. 2 shows that this is the direct consequence

of T -dependence of dominant σ̄ and ω̄ fields.

For fixed densities, the T -dependence of the rearrange-

ment pressure depends on the T -evolution of average mesonic

fields. Little (strong) T -dependence of these fields at high

(low) densities, see Fig. 2, explain the behavior shown in

the right panel.

For the thermodynamic conditions under consideration

here meson terms overshoot all other terms in ebaryon and

pbaryon. Out of the different terms in eq. (10) the highest T -

dependence is shown by pmeson. This means that, to a large

extend, pbaryon(T ) will reflect the T -dependence of pmeson.

The confirmation is provided by the right panel in Fig. 9. For

nB = 0.4 fm−3 p
(NΛ)
baryon(T ) has a U-shape, while in all other

cases pbaryon increases with T . The left panels in Fig. 9 show

that, in spite of the complex T -dependence of various terms

entering eq. (9), ebaryon increases with T .
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Fig. 7 T -dependence of different terms in eq. (9). Results corresponding to N-, NΛ - and N∆ -matter with YQ = 0.3 at nB = 0.4 fm−3 and 0.6 fm−3.
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Fig. 8 The same as in Fig. 7 for different terms in eq. (10).
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Fig. 9 T -dependence of energy density and pressure. Results corre-

sponding to N-, NΛ - and ∆N-matter with YQ = 0.3 at nB = 0.4 fm−3

and 0.6 fm−3.

5 Thermodynamic stability of ∆ -admixed nuclear

matter: the case of T = 0

Within QCD the Delta-resonance is explained as a spin-

isospin excitation of the nucleon into a (J, I) = (3/2,3/2)

configuration. Its strong coupling with the continuum of pion-

nucleon p-wave scattering states explains its rapid decay in

vacuum, within a half-life of about t1/2 ≈ 10−23 s. Due to

the Pauli blocking, the ∆s are nevertheless considered to be

stabilized when embedded in a medium.

The fact that, contrary to other baryons, ∆ -resonances

are excited in various types of reactions [104], can in prin-

ciple be exploited to constrain the interaction potential with

nucleons. The data are nevertheless scarce such that the con-

sequences of the onset of ∆s in neutron stars are typically

evaluated by allowing to the coupling constants of ∆ to var-

ious mesonic fields to span wide ranges [105,106]. Herein

the same modus operandi will be adopted.

Refs. [107,108] show that, if no other exotic degree of

freedom is considered, nucleation of ∆s reduces the maxi-

mum mass of NS by up to ≈ 0.5M⊙ and radii of interme-

diate mass NS by up to ≈ 2 km. Both effects are due to

the pressure decrease that accompanies the onset of any ex-

tra particle degree of freedom. The reduction of maximum

mass reflects the reduction of pressure at baryonic densities

equal to the values of the maximum mass configurations.

The reduction of radii of intermediate mass NS reflects the

evolution of pressure at the power 1/4 at lower densities,

typically nsat . nB . 2nsat [109]. If also hyperons are ac-

counted for the only notable effect is the reduction of NS
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Fig. 10 Single-particle potential of ∆ isobars in saturated symmetric

nuclear matter, U
(N)
∆ (nsat ), for xρ∆ = 1. The symbols correspond to the

following sets of (xσ∆ ,xω∆ ): (1.1,1.1), (1.2, 1.1), (1.2, 1.3) for which

U
(N)
∆ =−83 MeV, -124 MeV and -57 MeV.

radii [105,106,110,111,112,38]. The explanation resides in

that, due to their attractive potential, ∆s start nucleating at

lower densities than the hyperons. The magnitude of these

modifications nevertheless depends on the underlying nu-

cleon effective interaction, strength of ∆N potential and ∆s

effective mass.

Most recently Ref. [44] has highlighted a series of other

modifications. The first consists in the fact that, if the ∆N in-

teraction potential is attractive enough, ∆ -admixed nuclear

matter becomes thermodynamically instable. These instabil-

ities persist at finite temperatures and out of the β -equilibrium

condition, which might in principle impact astrophysical sce-

narios like CCSN, collapse into a BH and BNS mergers [28,

29]. The second finding regards the shift of the nucleonic

dUrca threshold to low densities, with obvious impact on the

thermal evolution of isolated and accreting NS. This modifi-

cation arises because ∆−, which is the first ∆ to be populated

at β -equilibrium, partially supresses the neutralizing elec-

tron gas which, in turn, regulates the relative abundances of

neutrons and protons. Though also these modifications de-

pend on the strength of the ∆ effective interaction they man-

ifest over domains of the parameter space compatible with

present astrophysical constraints.

In this section we shall investigate the following aspects:

i) the dependence of the ∆ -potential in nuclear matter and

ii) the maximum value of baryonic particle number density

on ∆ couplings to mesonic fields, iii) thermodynamic in-

stabilities of cold N∆ and N∆e matter. For ii) and iii) the

limiting values YQ = 0.01 and 0.5 will be considered. As in

Ref. [44] hyperons and muons are disregarded for simplicity.

As [105,106,110,111,112] we shall allow the strength func-

tions to cover wide domains of values, 0.90 ≤ xσ∆ ≤ 1.50,

−0.20 ≤ xσ∆ − xω∆ ≤ 0.20. For brevity xρ∆ = 1. For nucle-

ons the DD2 [79] effective interaction is employed; note that

this interaction is different than the one used in [44].
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Fig. 11 Maximum reachable value of nB (in fm−3) in cold ∆ -admixed

nuclear matter with YQ = 0.01 (top) and YQ = 0.5 (bottom), determined

by vanishing nucleon Dirac effective mass.
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Fig. 13 Top: Minimum value of the curvature matrix as function of

nB in cold ∆ -admixed nuclear matter; results corresponding to pure

baryonic matter (baryonic matter plus electrons) are illustrated with

red (blue) lines. Bottom: Relative particle abundances as function of

nB. Left (right) panels correspond to YQ = 0.01 (YQ = 0.5). The values

of coupling constants are mentioned on the figure.

5.1 U
(N)
∆ potentials

The well depth of the ∆ -potential in nuclear matter writes 2

U
(N)
∆ =−gσ∆ σ̄ + gω∆ ω̄ + gρ∆ t3ρ̄ +ΣR, (26)

where t3 is the third component of the isospin, with the con-

vention t3∆++ = 3/2. [Herein the baryonic particle number

density dependence of the potential, coupling constants, re-

arrangement term and mesonic fields has been omitted.] Eq.

(26) shows that large values of gσ∆ and low values of gω∆

entail more attractive potentials. It also shows that in neu-

tron rich matter, where ρ̄ < 0, the potential felt by posi-

tively charged isobars is larger in absolute values than the

one felt by negative isobars. In symmetric nuclear matter,

where ρ̄ = 0, all isobars experience the same potential.

Experimental data from pion-nucleus scattering and pion

photo-production, electron scattering on nuclei and electro-

magnetic excitation of the ∆ -baryons, compiled by [105,

106], have been translated into a ∆ -potential at rest in nu-

clear matter slightly more attractive than the one of nucle-

ons, −30 MeV+U
(N)
N .U

(N)
∆ .U

(N)
N . Recent analysis of in-

clusive quasi-elastic electron scattering data on nuclear tar-

gets [113] led to U
(N)
∆ ≈ 1.5U

(N)
N , which corresponds to the

maximum attraction boundary cited above. Comparison be-

tween experimental pion production data in energetic heavy

ion collisions and results of a quantum molecular transport

model have been exploited in order to extract, in addition

to the isoscalar ∆ potential, also the isovector component

[114]. The results reveal correlations of these two compo-

2 Eq. (26) corrects eq. (1) in [44], where the rearrangement term

has been omitted. The calculations in [44] have been nevertheless per-

formed with the correct expression.

nents with the value of Landau effective mass of ∆ and slope

of the symmetry energy.

Fig. 10 illustrates the range of values spanned by U
(N)
∆ in

saturated symmetric nuclear matter. It comes out that U
(N)
∆ (nsat)

is degenerate with respect to these two coupling constants

and for all considered combinations (xσ∆ ,xω∆ ) the poten-

tial is attractive. The values taken by U
(N)
∆ (nsat) when the

coupling constants take the values employed by the three

new general purpose EoS models proposed in this paper, see

Sec. 2, are signaled by symbols. For (1.1,1.1,1.0)U
(N)
∆ falls

in the domain −30 MeV+U
(N)
N .U

(N)
∆ . U

(N)
N [105,106],

while more (less) attraction is obtained for (1.2,1.1,1.0)

[(1.2,1.3,1.0)].

5.2 Maximum baryonic particle number density

Refs. [115,116] showed that, for wide domains of the pa-

rameter set, the maximum mass of ∆ -admixed NS is much

lower than the one corresponding to nucleonic NS built upon

the same effective nucleonic interaction. [44] showed that

this does not stem from the softening of the P(e) EoS upon

nucleation of ∆− but from the inability to reach baryon den-

sities high enough to sustain massive NS, due vanishing nu-

cleon Dirac effective masses. For the ∆ -induced modifica-

tions of m∗
N , see Sec. 4. EoS models falling in this situation

will obviously not meet the lower bound on NS maximum

mass [47] and should be ruled out.

Maximum values of nB allowed by different combina-

tions of (xσ∆ ,xω∆ ) but smaller than (the arbitrarily chosen

value) 1.4 fm−3 are depicted in Fig. 11. The panels corre-

sponding to YQ = 0.5 and 0.01 are very similar, as expected

due to the weak sensitivity of the σ̄ to the isospin asymme-

try. The color levels show that high enough values of nB;max

may be reached for any value of xσ∆ provided that xω∆ is

tuned accordingly. Some of the thus selected sets of param-

eters will though not agree with constraints on U
(N)
∆ , see Sec.

5.1.

5.3 Thermodynamic (in)stabilities

Sufficiently attractive interaction potentials are known to lead

to thermodynamic instabilities. The best documented exam-

ple in nuclear physics corresponds to sub-saturated nuclear

matter where a liquid-gas like phase transition is predicted

by a large variety of models, including phenomenological

non-relativistic [117,118,119] and relativistic [120,121] mean

field models and microscopic approaches [122,123]. This

phase transition is nevertheless not expected to play a role

in NS or core-collapse supernovae as it is suppressed by

the neutralizing electron gas. According to [124,125,126,
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127] strangeness-driven instabilities may manifest in supra-

saturated matter and, contrary to the case discussed above,

are not significantly altered by electrons such that they might

be explored along the β -equilibrium path as well as out of β -

equilibrium in the neutrino transparent matter. In lack of suf-

ficient knowledge of effective baryon interactions in strangeness

S = 1 and 2 channels this possibility nevertheless remains

speculative. Ref. [116,44] proved that CDFT models allow

for ∆ -driven instabilities in NS matter. These instabilities

might occur for strength parameters in accord with available

data and extend over a narrow density domain at densities

slightly exceeding nsat .

Spinodal instabilities manifest as convexity anomalies

of the thermodynamic potential and are mathematically sig-

naled by negative values of the curvature matrix Ci, j = ∂ µi/∂n j,

where µ and n stand for the chemical potential and number

density of the two conserved charges i, j = B,Q.

We extend here the investigation performed in [44] to

matter with fixed charged fraction. Properties of purely bary-

onic matter and mixture of baryons and electrons with YQ =

Ye are confronted in Fig. 12. The cases YQ = 0.01 and 0.5

are considered. ∆ -driven instabilities exist for both systems;

the parameter sets which allow for them are more numerous

for YQ = 0.01 than for YQ = 0.5. This first result is counter-

intuitive as the domain of thermodynamic instabilities in di-

lute nuclear matter shrinks as YQ diminishes. It can never-

theless be understood considering that production of ∆s, in

particular ∆−, is favored by small YQ-values. Indeed, Fig.

13 shows that the ∆ onset occurs at nB ≈ 0.2 fm−3 (nB ≈

0.42 fm−3) for YQ = 0.01 (YQ = 0.5). Moreover at large den-

sities, ∆s are relatively more important in matter with low

YQ-values. Fig. 12 also shows that the neutralizing electron

gas has almost no consequence at YQ = 0.5 while at YQ =

0.01 it suppresses the instabilities for 0.05 . xσ∆ − xω∆ .

0.1. Having in mind the behavior of dilute nuclear matter

also this result is surprising. It can nevertheless be explained

considering that the surface of the thermodynamic potential

is altered more by the early and strong production of ∆s in

matter with low YQ, see bottom panels of Fig. 13. Finally the

density domains affected by instabilities are wider in matter

with low YQ.

We note that, when the contribution of the electron gas

is accounted for, none of the models of Y∆ -admixed mat-

ter introduced in this paper manifests instabilities. At vari-

ance with this pure baryonic matter is stable [unstable] for

(1.1,1.1,1.0) and (1.2,1.1,1.0) [(1.2,1.3,1.0)].

6 Finite temperature behavior

In this section we shall analyze thermal properties of a bunch

of selected models accounting for various particle d.o.f. The

behavior of baryonic matter and/or stellar matter, which means

with lepton and photon gases contributions included, will be

considered. Properties of pure baryonic matter are inferred

from the corresponding tables on COMPOSE database or,

when these are not available, by subtracting from the values

corresponding to stellar matter the contribution of lepton and

photon gases.

For each quantity we shall start by commenting the be-

havior of purely nucleonic matter seen in Paper I.

6.1 Energy density and pressure

Thermal effects on thermodynamic state variables like en-

ergy density and pressure are conveniently highlighted by

considering the difference between the finite temperature

and the zero temperature quantity

Xth = X(nB,Ye,T )−X(nB,Ye,0) . (27)

In Paper I we have shown that in the limit of vanishing

density the baryonic thermal energy density eth and pres-

sure pth approach zero and have no EoS-dependence, which

means that whenever the interactions are weak the system

recovers the ideal gas behavior; beyond this limit a strong

EoS-dependence exists; at nB & 1 fm−3 the dispersion be-

tween non-relativistic (relativistic) models is large (small);

the relative significance of thermal effects is more impor-

tant at low densities than at high densities; pressure is more

sensitive to T than energy; non-relativistic and relativistic

models manifest different patters of the nB-dependence of

thermal energy density and pressure. The latter feature is at-

tributable to the different expressions of single particle ener-

gies in the two classes of models together with the different

density dependencies of the effective masses they depend

on. In agreement with previous findings in [128,129] Pa-

per I showed that in non-relativistic models eth depends on

the Landau effective mass while pth depends on both Lan-

dau effective mass and its density dependence. In relativistic

models the correlation between eth and pth and Dirac ef-

fective mass appears in that models with similar (different)

density dependencies of this quantity produce similar (dif-

ferent) thermal effects. This feature is visible also in Figs.

14 and 15, where thermal effects in HS(DD2) are similar to

those in STOS(TM1) and different from those in SFHo.

Figs. 14 and 15 further analyze the role of exotic particle

d.o.f., hyperons, ∆ -resonances, π , K− and quarks, on bary-

onic thermal energy density eth(nB) and pressure pth(nB)

at various thermodynamic conditions. Predictions of mod-

els allowing for exotica are confronted with those of purely

nucleonic counterparts.

Fig. 14 shows that, similarly to what happens for purely

nucleonic matter, also in matter which accounts for extra

particle d.o.f. eth augments with nB and T . Nucleation of ex-

otic particles makes eth increase with respect to its value in

nucleonic matter and the larger the number of particle d.o.f.
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Fig. 14 Baryon (quark) contribution to the thermal energy density eth, eq. (27), as function of baryon number density for (Ye = 0.3, T=5 MeV)

(top), (Ye = 0.3, T =20 MeV) (middle) and (Ye = 0.1, T=50 MeV) (bottom). The results are depicted for various EoS models. The indices 1, 2 and

3 of R(DD2YDelta) models refer to the following sets of couplings of ∆ to σ , ω and ρ mesonic fields: (1.1, 1.1, 1.0), (1.2, 1.1, 1.0), (1.2, 1.3, 1.0).

the more significant this increase is. Indeed, for whatever T

and nB, eth is larger for R(DD2YDelta) than for OMHN(DD2Y),

which in turn is larger than for BHB(DD2L), which in turn is

larger than for HS(DD2); predictions of eth by MBB(DD2K)

and HS(DD2); IOTSY(TM1Y30pi), IOTSY(TM1Y30), STOS(TM1L)

and STOS(TM1); SFHPST(TM1b139) and STOS(TM1) ob-

viously comply to the same rule. The steep (smooth) in-

crease of exotic particle abundances at low (high) tempera-

ture results in an abrupt (smooth) variation of eth(nB). Con-

frontation of predictions of MBB(DD2K) [69] with those of

HS(DD2) [64] shows that significant effects related to K−

are obtained only at temperatures of the order of several tens

MeV. Confrontation of predictions of IOTSY(TM1Y30pi)

and IOTSY(TM1Y30) [61] shows that even at high tempera-

tures the pions play little role. Within BBKF(DD2-SF)1.8 [77]

eth in quark matter is very high and, in the mixed phase,

increases linearly with nB; the fact that the temperature af-

fects more the quark matter than its hadron counterpart is

due to the low mass of quarks. In BBKF(DD2-SF) mod-

els [77] pure hadron and quark phases in coexistence have

equal values of T , P, µB and YQ (instead of µQ). The lat-

ter feature explains that along trajectories of constant-YQ

quantities calculated in the coexistence phase as linear com-

binations of values at the borders, as it is the case of eth,

manifest linear behaviors. In what regards the width and lo-

calization of the phase coexistence domain, no significant

T -dependence is observed. Relying on a Glendenning con-

struction [97] SFHPST models [62] manifest other features

than those previously seen for BBKF(DD2-SF) models [77].

In the mixed phase eth is not a linear function of nB; straight-

forward identification of density domains populated by dif-

ferent phases is not possible; the curves corresponding to

SFHPST models resemble qualitatively the curves of mod-

els with heavy baryons, which feature no phase transition.

Results of BBKF(DD2-SF)1.8 and SFHPST are similar only

in the very high values of eth obtained at T = 50 MeV. We

also note that the model with small value of the bag con-
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Fig. 15 Same as fig. 14 for the baryon (quark) contribution to the thermal pressure.

stant, which allows for an early transition to quark matter,

manifests also larger thermal contributions.

We have seen in Fig. 9 that under specific thermody-

namic conditions p
(NΛ)
baryon and p

(N∆ )
baryon decrease with T , which

translates into negative values for the baryonic component

of pth. Figs. 15 confirms that nucleation of exotic species

results in a strong reduction of the baryonic component of

pth and that under specific conditions this quantity becomes

negative. Competition with increasing values of baryonic

chemical potential, which favor higher pth-values, explains

the strongly fluctuating behavior of this quantity over the

considered density domain for all EoS models which ac-

count for heavy baryons and K−. The quark phase in BBKF(DD2-

SF)1.8 [77] is characterized also by large values of pth, in

addition to the large values of eth discussed earlier and, with

the exception of a narrow domain neighboring the hadron-

quark coexistence, pth increases with nB. Equality of tem-

perature, pressure and YQ between pure hadron and quark

phases, assumed by the (approximate) Gibbs construction,

explains that in the coexistence domain pth;baryon(nB) curves

at constant-T feature a plateau. The narrow peak at the bor-

der between phase coexistence and quark phase is likely a

numerical artifact. No plateau is present in the mixed phase

domain of SFHPST-models. This is due to the fact that me-

chanical equilibrium is imposed not among pure phases at

the boundaries of the phase coexistence region but between

different phases in the coexistence domain. The evolution

with nB is smooth but not necessarily monotonic. As for

eth, models with small bag constants lead to large thermal

effects on pth. Overall pth manifests strong dependence on

EoS, temperature and baryonic density. The only situation

in which a particle is seen to play a little role corresponds

to pions at temperatures of the order of a few tens MeV or

lower.

6.2 Thermal index

The strong EoS- and density dependence of eth and pth seen

in Paper I spurred us to further investigate the reliability

of the so-called Γth-law, customarily employed in numerical
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simulations [130,131,9,132,24] in order to supplement cold

EoS with finite temperature contributions. The behavior of

the Γ -factor defined as

Γth = 1+
pth

eth

, (28)

was analyzed separately for baryonic and stellar matter. In

each case values of realistic EoS models have been com-

pared with limiting values of idealized systems as well as

with the domain of values, 1.5 ≤ Γth ≤ 2, employed in sim-

ulations. The conclusions of Paper I dealing with nucleonic

models can be summarized as follows: i) at high tempera-

tures and low densities, where the ideal gas behavior is re-

covered, Γth;baryon → 5/3, where 5/3 is the classical limit

for a dilute gas, ii) relativistic models provide for high nB-

values, Γth;baryon ≈ 4/3, where 4/3 corresponds to ultra-relativistic

gases, iii) at high densities predictions of relativistic and

non-relativistic models differ qualitatively and quantitatively,

iv) over wide but EoS-dependent domains of (nB,T ), Γth;tot >
2 or Γth;tot < 1.5.

The behavior of the Γth factor for stellar matter is in-

vestigated in Fig. 16. Predictions corresponding to differ-

ent EoS models and various thermodynamic conditions are

considered. As in Paper I, we obtain a strong EoS-, T - and

nB-dependence of Γth;tot . The minima in pth(nB), see Fig.

15, lead to one or several minima in Γth;tot(nB); the negative

values of pth lead, for the lowest considered temperature,

to negative values of Γth;tot . The hadron-quark coexistence

region of BBKF(DD2-SF)1.8 singles out by Γth-values sig-

nificantly smaller than those obtained in pure hadron and

quark phases. The SFHPST-models show rather smooth but

non-monotonic Γth;tot(nB) curves.

The upper value Γth = 2 used in simulations is exceeded

only over narrow density domains and only by some of the

models allowing for ∆ , K− and quarks; at variance with this

all models predict Γth < 1.5 over broad ranges of densities,

where 1.5 is the lower limit assumed in simulations. The

departure from 1.5≤Γth is more significant for exotic matter

than it was for nucleonic matter.

6.3 Chemical potentials

The impact of composition changes on baryon and charge

chemical potentials is addressed in Figs. 17 and 18. Fig. 17

confirms what we have seen in Fig. 4 (left panel) for the sim-

pler cases of NΛ and N∆ matter. Namely that exotic parti-

cles are created at the cost of neutrons, which make µB = µn

decrease. At low temperatures, predictions of OMHN(DD2Y)

are identical to those of BHB(DD2Lphi) and differ from

those of BHB(DD2L); this suggests that the repulsion medi-

ated by the exchange of φ mesons dominates over modifica-

tions induced by Σs and Ξs. Predictions of other hyperonic

models based on the same nucleonic EoS model are very

similar (slightly different) at low (high) T . At both low and

high temperatures the three models corresponding to NY ∆ -

matter provide almost the same µB(nB) in spite of notable

differences in chemical composition. The equality of baryon

chemical potentials and YQ-values in the hadron and quark

phases imposed by the approximate Gibbs construction in

BBKF(D2-SF)1.8 explains the plateau in the curves belong-

ing to this model; by increasing T this plateau gets wider

and shifts to lower densities; the information thus extracted

from µB(nB) at constant T corrects the one previously ex-

tracted from the less thermodynamically relevant eth and pth

as function of nB at constant T , see Figs. 14 and 15. No par-

ticular structure suggestive for phase coexistence manifests

in the curves of SFHPST-models.

The partial replacement of neutrons by exotic particles

also makes |µQ| decrease, see Fig. 18. The most dramatic

modifications are obtained for models with large-L values.

As with µB(nB), at T = 5 MeV the predictions of OMHN(DD2Y)

coincide with those of BHB(DD2Lphi) and differ from those

of BHB(DD2L). At T = 50 MeV and YQ = 0.1 the largest

departure from the predictions of nucleonic models is ob-

tained for the following models: OMHN(DD2Y), the three

R(DD2YD)-models; IOTSY(TM1Y), IOTSY(TM1Ypi); MBB(DD2K);

the two SFHPST-models. For the first listed models the ex-

planation relies in the presence of negatively charged ex-

otic species. For SFHPST(TM1) the explanation relies in the

negatively charged strange quark. The fact that in BBKF(D2-

SF)1.8 the phase construction is performed at constant YQ

explains why µQ is not constant in the hadron-quark coexis-

tence region. The similar charge fractions of the coexisting

phases [77] nevertheless makes that the slope of µQ(nB) is

small. As for µB(nB), µQ(nB) of SFHPS-models feature no

plateau.

We also note that in warm Y -, Y ∆ - and K−-admixed mat-

ter with densities exceeding a certain value µQ > 0, which

means that nn < np. Over two density domains also SFH-

PST(TM1B139) predicts that for T = 50 MeV and YQ = 0.1

µQ & 0; whenever this is the case the number of up quarks

exceeds the one of down quarks.

Before leaving this section let us note that, for nucle-

onic models, EoS stiffness and density dependence of the

symmetry energy impact the high density values of baryon

and charge chemical potentials. Indeed, the highest (small-

est) value of µB corresponds to DD2 (TM1), which provides

the stiffest (softest) model. Similarly, for isospin asymmet-

ric nuclear matter DD2 (TM1), with a low (high) L-value,

provides small (large) values of |µQ|.

6.4 Entropy, specific heats, adiabatic index, speed of sound

Further insight into the impact of exotic particle d.o.f. on

thermodynamic quantities is offered in Fig. 19. It shows

the baryonic entropy per baryon for (T =5 MeV, Ye = 0.3)
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Fig. 16 Γth, eq.(28), as function of baryon number density at (T =5 MeV, Ye = 0.3), (T =20 MeV, Ye = 0.3), (T =50 MeV, Ye = 0.1). Results

corresponding to stellar matter (contributions of lepton and photon gases are included). Dashed horizontal lines mark the values Γth = 1.5 and 2.

and (T =50 MeV, Ye = 0.1). As already seen and commented

at length in Paper I, at fixed T in models with nucleonic

d.o.f. S/A decreases with nB. The same holds true for mod-

els with heavy baryons and/or K−, π at high temperatures.

At fixed T and nB, S/A increases with the number of parti-

cle species. The steep increase in the abundance of newly

populated species, as it happens with heavy baryons and

K− at low T , results in bumps of S/A(nB). As it was the

case with eth(nB) pions do not alter S/A(nB) when added

to hyperons within IOTSY with U
(N)
Σ = 30 MeV. The non-

monotonic S/A(nB) in BBKF(DD2-SF)1.8 results from the

first order transition between the hadron and quark phases,

the latter being characterized by much larger values of S/A.

Curves belonging to SFHPST-models are qualitatively sim-

ilar to those produced by models with heavy baryons. The

dispersion between the different curves increases with T as

so does the dispersion between chemical compositions. At

high-T models accounting for quarks deviate the most from

the predictions of the nucleonic counterparts.

The specific heat at constant volume is defined as

CV = T
∂ (S/A)

∂T
|V,{Ni} . (29)

Fig. 20 illustrates the evolution of CV as function of baryon

number density for different thermodynamic conditions. As

easy to anticipate based of the definition, eq. (29), CV (nB)

replicates the behavior of S/A(nB). Under specific thermo-

dynamic conditions models which employ for the sub-saturation

density domain the extended NSE calculations in [64] show

discontinuities over nsat/2 . nB . nsat . These are numerical

artifacts of the way in which the transition from clusterized

to homogeneous matter was dealt with and have no physical

ground.

The behavior of the adiabatic index, defined as

ΓS =
∂ lnP

∂ lnnB

|S =
CP

CV

nB

P

∂P

∂nB

|T , (30)

is illustrated in Fig. 21 for stellar matter, i.e. with the contri-

butions of leptons and photons included. The predictions by
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Fig. 17 Baryon chemical potential as function of baryon number density at (T =5 MeV, Ye = 0.3) and (T =50 MeV, Ye = 0.1). The key legend is as

in Fig. 14.
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Fig. 18 The same as in Fig. 17 for charge chemical potential.
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Fig. 19 Baryon (quark) contribution to the entropy per baryon as function of baryon number density for (T =5 MeV, Ye = 0.3) and (T =50 MeV,

Ye = 0.1).

various EoS models at different thermodynamic conditions

are considered. ΓS gives an indication about the stiffness of

the EoS in all processes occuring at constant entropy.

With the exception of the transition density from cluster-

ized to homogeneous matter ΓS(nB) of nucleonic EoS mod-

els is a smooth function. As discussed in Paper I, nucleonic

models manifest a strong dependence of ΓS on EoS-model

and nB. Fig. 21 shows that at low (high) T , where abun-

dances of heavy baryons and K− increase steeply (slowly)

with baryonic density, EoS models which account for these

particles provide ΓS(nB) with sudden (smooth) changes of

slope. The EoS softening produced by hyperons, ∆s and K−

leads to Γ exotic
S <Γ nucleonic

S . Predictions of IOTSY(TM1Y30)

and IOTSY(TM1Y30pi) are identical or, for the highest T ,

very similar to those of STOS(TM1L). Also similar are the

predictions of the three models that account for Y ∆ intro-

duced in this work. This suggests that modifications in heat

capacities, see Fig. 20, are canceled out by modifications

in (∂ lnP/∂ lnnB) |T . EoS-models with transitions to quark

matter show different features depending on how the transi-

tion was dealt with. In the hadron-quark coexistence BBKF-

models present a plateau. It stems from the mechanical equi-

librium between phases in the Gibbs construction. The high

peak at densities slightly exceeding the high density border

of phase coexistence is due to the stiff behavior of P(e)|T .

At temperatures of the order of a few tens MeV or lower,

ΓS(nB) predicted by SFHPST-models resembles the one of

models with heavy baryons and K−. At temperatures of the

order of several tens MeV, ΓS(nB) of SFHPST(TM1B139)

has a high peak at nB ≈ 1− 2nsat . Quite remarkably, at the

highest densities the scattering between different models is

limited.

A key quantity in dynamical numerical simulations is

the speed of sound vS. In units of c, the speed of light, it is

given by

v2
S =

dP

de
|S,A,Ye = ΓS

P

e+P
. (31)

Fig. 22 illustrates its behavior as function of baryon num-

ber density within the different EoS models. Different ther-

modynamic conditions, indicated in the figures, are consid-

ered. The three nucleonic models show a strong increase of

vS with nB and limited sensitivities to the other thermody-

namic variables, T and YQ. The behavior of vS(nB) in DD2

and TM1 differs qualitatively from the one in SFHo: while

in DD2 and TM1 the increase gets attenuated at n ≈ 4nsat ,

no such effect is seen for SFHo. This situation is attributable

to the mixed coupling terms in the latter model. At high

densities DD2 provides for the speed of sound a value al-

most twice larger than the one provided by the softer TM1

model. The CDFT formulation prevents violation of causal-

ity. In all circumstances models allowing for hyperons, ∆s,

π and K− provide smaller vS(nB)-values than their nucle-

onic counterparts. As it was the case with previously consid-

ered quantities, sudden modifications in abundances of ex-

otic species are translated into sudden modifications of the
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Fig. 20 Specific heat at constant volume, CV , as function of baryon number density for baryon (quark) matter for (T=5 MeV, Ye = 0.3), (T =20

MeV, Ye = 0.3) and (T=50 MeV, Ye = 0.1).

speed of sound. The T -dependence of vS remains small as

in the considered cases hyperons, ∆s, π and K− are sub-

dominant. As for ΓS to which vS is related, chemical equi-

librium among hadron and quark phases in BBKF-models

leads to vanishing values of the speed of sound. Moreover,

in the pure quark phase, BBKF predicts that vS decreases

with nB. The only other case in Fig. 22 where such a be-

havior is obtained corresponds to SFHPST(TM1B139) and

SFHPST(TM1B145) at the highest considered temperature.

Detailed investigation in [29] probes that the same holds

true if, instead of constant-T curves, one considers constant

S/A-curves. We nevertheless stress that also the nucleonic

EoS SRO(SkAPR) [3] provides for the squared speed of

sound decreasing evolution with nB [45]; this means that

one should not a priori consider such a behavior as a signa-

ture of quark matter. Predictions of IOTSY(TM1Y30) and

IOTSY(TM1Y30pi) are identical or very close to those of

STOS(TM1L). A very small dispersion is obtained also among

the predictions of the three models with hyperons and ∆s.

7 Conclusions

Within CDFT we have constructed three general purpose

EoS models with hyperons and ∆ -resonances ready to use

in astrophysical simulations and made them available on the

COMPOSE repository (https://compose.obspm.fr/); to

our knowledge these are the first publicly available 3D EoS

databases which account for the ∆ -quadruplet. The domains

of temperature, 0.1 MeV ≤ T ≤ 100 MeV, baryonic particle

number density, 10−12 fm−3 ≤ nB ≤ 1.1 fm−3 and charge

fraction 0.01 ≤ YQ ≤ 0.6 for which data are provided make

them suitable for studies of CCSN and BNS. Also avail-

able are databases corresponding to purely baryonic mat-

ter, which may be used for heavy ion collision studies. Our

models have been built such as to comply with experimental

data from nuclear and hyper-nuclear physics; ab initio calcu-

lations of neutron matter; astrophysical observations of cold

compact stars and - at the same time - partially account for

uncertainties related to the population of ∆s.

https://compose.obspm.fr/
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Fig. 21 ΓS, eq. (30), as function of baryon number density for (T =5 MeV, Ye = 0.3), (T=20 MeV, Ye = 0.3) and (T=50 MeV, Ye = 0.1). Results

corresponding to stellar matter, as predicted by various EoS models.

As previously discussed in [44], for certain combina-

tions of coupling constants of the ∆ to mesonic fields, the

nucleation of ∆s may result in thermodynamic instabilities

or limit the validity domain of the model by preventing the

baryonic number density to exceed values of the order of

2− 3nsat . The latter issue arises because the Dirac effective

mass of nucleons vanishes. The present work complements

the study performed in [44], and which focuses on cold β -

equilibrated matter and persistence of ∆ -driven instabilities

at finite-T , by considering cold ∆ -admixed nuclear matter

with extreme values of charge fraction YQ = 0.01 and 0.5.

Present results show that the parameter space which allows

for instabilities gets wider as YQ diminishes and that, for

matter with YQ = 0.5, purely baryonic and stellar matter ex-

hibit instabilities for the same values of (xσ∆ ,xω∆ ). Both

findings are in contrast with the phenomenology of dilute

nuclear matter and understandable considering the ∆ ’s abun-

dances.

We have then reviewed the general purpose EoS mod-

els with exotic d.o.f. presently available on COMPOSE. The

information provided for each model includes the nucleonic

effective interaction together with the values of the nuclear

matter parameters; the exotic d.o.f.; for CDFT models, infor-

mation on various mesonic fields and values of the hyperon

and ∆ well depth potentials in symmetric saturated matter

on which some meson coupling constants have been tuned;

properties of cold β -equilibrated NS and compliance with

constraints from compact star observations.

The role of hyperons, ∆s, pions, kaons and quarks as

well as the consequences of the way in which the hadron-

quark phase transition was dealt with have been investigated

by analyzing the thermal properties for a number of models;

wide ranges of baryonic number density nsat . nB ≤ 1 fm−3,
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Fig. 22 Speed of sound squared, eq. (31), as function of baryon number density in stellar matter for various EoS models. The considered thermo-

dynamic conditions are: (T=5 MeV, Ye = 0.3), (T =20 MeV, Ye = 0.3) and (T =50 MeV, Ye = 0.1).

temperature 5 MeV ≤ T ≤ 50 MeV have been considered

for charge franctions YQ = 0.1 and 0.3. In agreement with

previous studies we show that extra d.o.f. modify the values

of baryon and charge chemical potentials and the modifi-

cation depends upon the employed nucleonic effective in-

teraction; for fixed values of T , YQ and nB the entropy per

baryon increases with the number of species; the behavior of

CV (nB) replicates the one of S/A(nB); EoS softening upon

nucleation of exotica results in decreased values of the speed

of sound; quark matter is characterized by v2
S decreasing

with nB. Other results concern the thermal energy density

and pressure and the thermal index. Specifically we show

that exotic d.o.f. result in thermal energy densities enhanced

with respect to what is obtained in purely nucleonic mat-

ter; a strongly oscillatory behavior of the thermal pressure

and thermal index and, under specific conditions, negative

values of pth and Γth;tot . The latter feature suggests that the

use of the Γ -law for supplementing cold EoS with thermal

components is even less advisable for exotic matter than for

nucleonic matter. Last but not least we have shown that the

way in which the transition from hadronic to quark matter

is dealt with impacts on a series of quantities like pth, Γth,

µB, ΓS, v2
S. BBKF-models show - in the phase coexistence

domain - plateaus for all the above listed quantities while no

such behavior is obtained in the case of SFHPST-models.
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Table 4 Domains of temperature, baryonic number density and charge

fraction covered by the six R(DD2YDelta) EoS tables proposed in this
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T nB YQ

[MeV] [fm−3]

Number of points 76 302 60

Minimum 0.1 10−12 0.01

Maximum 100 1.1 0.60
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See Table 4.
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