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A review is given of various theoretical approaches for the equation of state (EoS) of dense matter,
relevant for the description of core-collapse supernovae, compact stars, and compact star mergers.
The emphasis is put on models that are applicable to all of these scenarios. Such EoS models have to
cover large ranges in baryon number density, temperature, and isospin asymmetry. The characteristics
of matter change dramatically within these ranges, from a mixture of nucleons, nuclei, and electrons
to uniform, strongly interacting matter containing nucleons, and possibly other particles such as
hyperons or quarks. As the development of an EoS requires joint efforts from many directions,
different theoretical approaches are considered and relevant experimental and observational
constraints which provide insights for future research are discussed. Finally, results from applications
of the discussed EoS models are summarized.

DOI: 10.1103/RevModPhys.89.015007

CONTENTS

I. Introduction 2
II. General Remarks on the EoS 3

A. Basic thermodynamic considerations 3
B. Specific requirements for astrophysical EoSs 3

1. Equilibrium conditions 3
2. Charge neutrality and inhomogeneity effects 4
3. Range of thermodynamic variables 4
4. Particle degrees of freedom 6

III. Formal Approaches to the Description of Dense Matter 6
A. Basic few-body interactions 7

1. Experimental data 7
2. Phenomenological forces 8

a. Meson-exchange models 8
b. Potential models 8

3. Interactions from chiral effective field theory
and lattice QCD 9

4. Renormalization group methods and evolved
potentials 9

B. Many-body methods for homogeneous matter 9
1. Ab initio methods 10

a. Self-consistent Green’s function 10
b. Brueckner-Hartree-Fock 11
c. Methods derived from the variational

principle 12
d. Quantum Monte Carlo methods 13
e. Chiral effective field theory 13
f. Lattice methods 13
g. Perturbative QCD 14
h. Dyson-Schwinger approach 14

2. Phenomenological approaches 14
a. Hadronic matter 15
b. Quark matter 18

C. Clustered and nonuniform matter 19
1. Nuclear statistical equilibrium 19

a. Nuclear binding energies 20
b. Excited states 20
c. Coulomb interaction 20
d. Medium modifications of heavy nuclei 20
e. Cluster dissolution 20

2. Single nucleus approximation 21

*micaela.oertel@obspm.fr
†matthias.hempel@unibas.ch
‡thomas.klaehn@ift.uni.wroc.pl
§s.typel@gsi.de

REVIEWS OF MODERN PHYSICS, VOLUME 89, JANUARY–MARCH 2017

0034-6861=2017=89(1)=015007(68) 015007-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/RevModPhys.89.015007
http://dx.doi.org/10.1103/RevModPhys.89.015007
http://dx.doi.org/10.1103/RevModPhys.89.015007
http://dx.doi.org/10.1103/RevModPhys.89.015007


3. Virial expansion 21
4. Quantum statistical approach 21
5. Generalized relativistic density functional 22
6. Nucleons-in-cell calculations 22

D. Phase transitions 23
1. Thermodynamic description of phase transitions 23
2. Coulomb effects 24

IV. Constraints on the EoS 25
A. Terrestrial experiments 26

1. Systematics from nuclear masses and excitations 26
2. Nuclear resonances 26

a. Giant monopole resonance 26
b. Giant dipole resonance 27
c. Electric dipole polarizability 27

3. Neutron skin thicknesses 27
4. Heavy-ion collisions 28

B. Neutron matter calculations 30
C. Astrophysical observations 31

1. Neutron star masses and radii 31
2. Neutron star cooling and rotation 33

D. Summary of constraints on the symmetry energy 33
V. Modeling the EoS 34

A. Neutron star EoS 34
1. Neutron star crust EoSs and unified neutron

star EoSs 35
2. Composition of the neutron star core 37

B. EoS of uniform matter at finite temperature 37
C. EoS of clustered matter at finite temperatures 38
D. General purpose equations of state 40

1. Nucleons and nuclei as degrees of freedom 40
a. H&W 40
b. LS 42
c. STOS 42
d. FYSS 42
e. HS 43
f. SFHo and SFHx 43
g. SHT(NL3), SHO(FSU), and SHO(FSU2.1) 43

2. Including additional degrees of freedom 43
3. Compatibility with experimental and

observational constraints 46
VI. Applications in Astrophysics 48

A. Binaries and binary mergers 48
B. Core-collapse supernovæ 49

1. Dynamics 49
2. PNSs, neutrino-driven winds, and nucleosynthesis 51
3. Black hole formation 52

VII. Summary and Conclusions 53
Acknowledgments 54
Appendix: Resources 54

1. EoS databases 54
2. Open source simulation software 54

References 55

I. INTRODUCTION

Matter under extreme conditions can be found at various
places in the Universe. Extremely high densities exist in
neutron stars (NSs) (Glendenning, 1997; Weber, 2005;
Haensel, Potekhin, and Yakovlev, 2007; Potekhin, 2010;
Lattimer, 2012). Densities above nuclear saturation density
and high temperatures are reached when the core of a massive
star collapses. The resulting core-collapse supernova (CCSN)

explosion (Mezzacappa, 2005; Kotake, Sato, and Takahashi,
2006; Janka et al., 2007; Ott, 2009; Janka, 2012a; Burrows,
2013) leads to the formation of a protoneutron star (PNS)
(Prakash et al., 1997; Pons et al., 1999) and finally to a NS or
a black hole (BH). Similar densities and temperatures, but
higher isospin asymmetries (viz., a higher excess of neutrons
over protons), are involved in the merging of NSs in close
binary systems, NS-NS, and NS-BH (Shibata and Taniguchi,
2011; Faber and Rasio, 2012; Rosswog, 2015). The dynamical
evolution of such violent events and the structure of the
emerging compact stars are determined among others by the
equation of state (EoS) of matter. In addition, the EoS impacts
the conditions for nucleosynthesis and the emerging neutrino
spectra. Hence, the EoS is an essential ingredient in many
astrophysical simulations.1 Many efforts are made to gain a
comprehensive understanding of properties of the involved
matter, which in several aspects are dramatically different
from those in terrestrial experiments.
During the last decades numerous theoretical investiga-

tions, laboratory experiments, as well as astronomical obser-
vations have been conducted in order to constrain the
thermodynamic properties and chemical composition of
stellar matter for conditions relevant to the description of
compact stars, CCSNe, and NS mergers; see, e.g., Klähn et al.
(2006), Lattimer and Prakash (2007), and Lattimer and Lim
(2013). There is an intrinsic connection between the macro-
scopic structure and evolution of such astrophysical objects
and the underlying fundamental interactions between the
constituent particles at the microscopic level. This makes
the study of the aforementioned systems very rewarding as
they challenge our understanding of nature on both scales.
The aim of this paper is to review existing approaches for the
description of dense matter that can yield EoSs relevant for
compact star astrophysics from both purely theoretical and
phenomenological perspectives. There is a large number of
different approaches. In many cases the properties of matter
can be provided only for particular thermodynamic condi-
tions, not always sufficient to describe simultaneously all the
astrophysical systems we address. Hence, the main emphasis
of this work is placed on the discussion of approaches to the
EoS that are readily available for use in astrophysical
simulations. Such EoSs that cover the full thermodynamic
parameter range of temperature, density, and isospin asym-
metry relevant for CCSNe, NSs, and compact binary mergers
we call “general purpose EoSs.”
Within this review we will not consider the EoS for white

dwarfs since, although being compact stars in astronomical
terminology, the underlying microphysics is quite different.
Because of the complexity of the topic we will also not discuss
pairing and related effects of superfluidity and superconduc-
tivity; see, e.g., Lombardo and Schulze (2001), Alford et al.

(2008), Chamel and Haensel (2008), and Page et al. (2014) for
corresponding reviews.

1Within this review we employ the general term “astrophysical
simulations” or “astrophysical applications” synonymously with
“astrophysical simulations of CCSNe, (proto)NSs, and compact
binary mergers involving NSs.”
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In Sec. II some basic thermodynamic considerations,
definitions, and requirements for an EoS in astrophysical
applications are discussed. In order to get an idea about the
challenge of constructing such an EoS, it is useful to state the
relevant degrees of freedom and the ranges of the thermo-
dynamic variables that have to be covered.
It is not an easy task to obtain a reliable description of dense

matter that covers the full range of thermodynamic variables.
In Sec. III formal approaches to the description of dense
matter are discussed. The main uncertainties arise from two
sources as follows:

(1) the, at least partly, poor knowledge of the inter-
actions, and

(2) the treatment of the many-body problem for strongly
interacting particles.

Basic considerations about interactions are presented in
Sec. III.A. In Secs. III.B and III.C we outline currently
available techniques that address the many-body problem at
finite densities and temperatures for homogeneous and inho-
mogeneous matter. We briefly emphasize their respective
advantages and current limitations. The description of inho-
mogeneous matter is particularly important for CCSNe. It is
conceptually and computationally very involved and up to
now it has not been possible to apply sophisticated ab initio

many-body methods on a grand scale. Finally, Sec. III.D
discusses specific features that appear in the treatment of
phase transitions.
The inherent uncertainties of any EoS model require a

careful analysis of and comparison with available experimen-
tal and observational data. Therefore, we give an overview of
constraints of the EoS from terrestrial experiments, theoretical
considerations, and astrophysical observations in Sec. IV.
Section V presents an overview of EoS models for

astrophysical applications. Since EoSs for cold compact stars
have been discussed extensively in the literature, only a
summary of available models and their main features is given.
The main emphasis is put on currently existing general
purpose EoS.
Section VI summarizes the impact of the EoS on the

astrophysics of compact stellar objects, e.g., on (proto)NSs,
binary mergers, CCSNe, and the formation of BHs. The main
aim of this section is to show how different parts of the EoS
and the associated uncertainties are related to potential astro-
physical observations. These considerations might be useful
to identify open questions which inspire further work for
improving EoS models.
The Appendix lists freely available resources, databases,

and software, which are related to the EoS and its application
in the astrophysics of compact stellar objects.
Throughout this paper we use units where kB ¼ ℏ ¼ c ¼ 1.

II. GENERAL REMARKS ON THE EoS

A. Basic thermodynamic considerations

In its most general form the expression “equation of state”
is used for any relation between thermodynamic state varia-
bles. Depending on the context, often we use it more
specifically for the set of thermodynamic equations that fully

specifies the state of matter under a given set of physical
conditions.
EoSs are typically employed in astrophysical models that

use a hydrodynamic description of the macroscopic system. In
this case, it is assumed that matter can be considered as a fluid,
and explicit effects from the gravitational field do not have to
be included in the thermodynamic description. The construc-
tion of an EoS supposes that the local system under consid-
eration is in thermodynamic equilibrium. This usually means
that intensive thermodynamic variables such as temperature,
pressure, or chemical potentials are well defined and that the
conditions of thermal equilibrium (equivalent to a constant
temperature throughout the chosen domain), mechanical
equilibrium (constant pressure), and chemical equilibrium
(constant chemical potentials) hold. Therefore, uniformity
of all independent intensive variables has to be demanded. In
order to obtain a thermodynamically consistent approach, it is
most convenient to start from a thermodynamic potential,
chosen according to the set of natural variables used, and to
derive all relevant quantities by standard thermodynamic
relations; see, e.g., Landau and Lifshitz (1980) or the
CompOSE manual (Klähn, Oertel, and Typel, 2013; Typel,
Oertel, and Klähn, 2015). An example is the Helmholtz free
energy FðT; fNig; VÞ [used, e.g., by Lattimer and Swesty
(1991)], depending on the natural variables temperature T, the
set of particle numbersNi (i ¼ 1;…; Npart), and the volume V.
It attains a minimum in the ground state of the system for
given values of the thermodynamic variables. In the thermo-
dynamic limit, the actual value of V is irrelevant, and all
extensive variables follow the same scaling. Therefore one can
work with ratios of extensive variable such as the particle
number densities ni ¼ Ni=V that behave as intensive varia-
bles. In general, the different particle species i are not inert but
can convert to other species by reactions. If they are in
equilibrium the state of the system is characterized by a
number Ncons ≤ Npart of independent conserved charges.
Thus, in general, the individual particle densities ni are not
independent, but connected by conditions of chemical equi-
librium that can be expressed with the help of the particle
chemical potentials μi ¼ ∂F=∂Ni. Sometimes a theoretical
description that starts from the grand canonical potential
ΩðT; fμig; VÞ ¼ F −

P

iμiNi is more convenient.

B. Specific requirements for astrophysical EoSs

1. Equilibrium conditions

An EoS can be applied only if the system is in thermo-
dynamic equilibrium. In astrophysical simulations, this con-
cerns, in particular, the chemical equilibrium since thermal
and mechanical equilibrium are in general quickly achieved
with T and p as the associated intensive variables. Then, the
use of an EoS in chemical equilibrium is justified only if
the time scales of the corresponding reactions are much
shorter than the time scales of the system’s hydrodynamic
evolution.
Chemical equilibrium among different nuclear species is

not achieved, if an ensemble of nuclei, nucleons, and electrons
is considered at densities and temperatures as reached in main
sequence stars, in the outer regions of a CCSN or in explosive
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nucleosynthesis. Hence the time evolution of the composition
has to be followed with a reaction network depending on the
reaction cross sections of the participating particle species.
Typically it is assumed that a temperature on the order of
0.5 MeVand above is sufficient to reach the so-called nuclear
statistical equilibrium (NSE) (Iliadis, 2007).
A typical set of conserved charges of the system are the

total baryon number NB, the total (electric) charge number
NQ, the total electronic lepton number NLðeÞ, and the total
strangeness number NS. The quantities Ni are thereby defined
as net particle numbers. Correspondingly, for every particle
the chemical potential is given by

μi ¼ BiμB þQiμQ þ L
ðeÞ
i μLe

þ SiμS ð1Þ

with the baryon (Bi), charge (Qi), electronic lepton (L
ðeÞ
i ), and

strangeness number (Si) of the individual particle. Hence, the
specification of the baryon chemical potential μB, the charge
chemical potential μQ, the electronic lepton chemical potential
μLe

, and the strangeness chemical potential μS is sufficient to
obtain the chemical potential of every constituent. In particu-
lar, in NSE, the chemical potential of each nucleus a with
neutron number Na and proton number Za is given by

μa ¼ ðNa þ ZaÞμB þ ZaμQ ≡ Naμn þ Zaμp; ð2Þ

where μn (μp) is the chemical potential of neutrons (protons).
Conditions on (electric) charge neutrality and weak equilib-
rium can further reduce the number of independent particle
numbers or chemical potentials.
Weak interactions, for instance the electron-capture reaction

pþ e− → nþ νe, cannot be considered in equilibrium in
general, since the relevant time scales can exceed the
dynamical time scale of the astrophysical object of interest.
In particular, in CCSNe, except at the highest densities
roughly above nB ¼ NB=V ¼ 10−3 fm−3, no weak equilib-
rium is obtained. In addition, neutrinos are not necessarily in
equilibrium, neither thermal nor chemical. Usually they are
not considered within the EoS, but treated via a transport
approach. The neutrino transport equations, together with the
employed weak interaction rates, are then coupled via energy,
momentum, and lepton number conservation to the hydro-
dynamic evolution of the system and to the EoS. They
determine the electron number densities, which remain a
degree of freedom of the EoS. Concerning strangeness
changing weak interactions, in the temperature and density
range where strange particles have non-negligible abundan-
ces, the time scales estimated for the relevant processes are of
the order of 10−6 s or below; see, e.g., Brown et al. (1992).
Therefore, in general strangeness changing weak equilibrium
is assumed, i.e., μS ¼ 0. Hence, strangeness is not a conserved
charge and does not represent an independent thermodynamic
variable.
The situation is different for the highest densities reached

in CCSNe, i.e., in hot (proto)NSs. At the prevailing high
temperatures and densities, neutrinos are trapped and equi-
librium with respect to weak reactions is achieved. They can
be treated as part of the EoS, parametrized by the neutrino
fraction Yνe

¼ nνe=nB or the lepton fraction YLe
¼ Yνe

þ Ye

with the electron fraction Ye ¼ ne=nB. At a later cooling stage
neutrinos become untrapped, i.e., their mean free path
becomes longer than the system size and β equilibrium
without neutrinos is established. This condition can be
expressed by setting the electronic lepton chemical potential
μLe

to zero in Eq. (1) as for cold NSs. Together with charge
neutrality it implies that ne or Ye are fixed by nB and are no
longer free variables of the EoS.
Assuming lepton flavor conversion via neutrino oscillations

to be negligible, the heavy flavor lepton numbers are con-
served independently of the electronic lepton number. For the
moment no simulation has been performed that includes
heavy charged leptons explicitly. The influence of heavy
flavor leptons is expected to be small due to their high rest
masses. Nevertheless, in EoSs of cold NSs muons are usually
included.

2. Charge neutrality and inhomogeneity effects

In all astrophysical scenarios considered in this review, the
system can be regarded as infinitely large on the length scales
of the microscopic model. The thermodynamic limit is
reached and electric charge neutrality is required to avoid
instabilities due to the occurrence of strong electric fields.
In its simplest form, charge neutrality can be formulated

as a local condition nQ ¼
P

iQini ¼ 0. Thus nQ is not an
independent thermodynamic degree of freedom and it is
convenient to introduce the hadronic charge density
nq ¼

P

i
0Qini, where the primed sum runs over all hadrons

(and/or quarks, if present). If electrons are the only leptonic
component, this implies nq ¼ ne.
In the case of inhomogeneous matter, the charge distribu-

tion can be imbalanced locally. The resulting competition
between nuclear surface and Coulomb energies causes the
formation of clusters or more complicated structures such as
“pasta phases” (Ravenhall, Pethick, and Wilson, 1983;
Hashimoto, Seki, and Yamada, 1984; Williams and Koonin,
1985). Charge neutrality is maintained only globally. In a
simple approximation, this occurrence of finite-size structures
with low and high baryon number densities can be treated as a
coexistence of phases, however, surface and Coulomb effects
are neglected in this case (see Sec. III.D for details).

3. Range of thermodynamic variables

The most general case we are interested in is an EoS
depending on the temperature T, total baryon number density
nB, and the total hadronic charge densitynq or a set of equivalent
thermodynamic variables. Instead of nq, the corresponding
fraction Yq ¼ nq=nB may be used. The baryon number density
nB is sometimes replaced by the mass density ϱ ¼ mBnB with
the mass unit mB, which is often taken to be either the atomic
mass unitmu or the neutronmassmn. As an order of magnitude
estimate, a baryon number density of 0.1 fm−3 corresponds to a
mass density of ϱ ≈ 1.66 × 1014 g=cm3.
The observations of compact stars with masses of 2M⊙

(Demorest et al., 2010; Antoniadis et al., 2013; Fonseca et al.,
2016) imply that the maximum baryon number density in NSs
can approach approximately 10 times the nuclear saturation
density nsat ≈ 0.16 fm−3 (Lattimer and Prakash, 2011). The
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densities in CCSNe and PNSs are generally lower. An
exception is the case of so-called “failed” CCSNe leading
to BH formation (see Sec. VI.B.3). During the final collapse to
a BH, densities well above 10nsat can be reached before the
formation of an event horizon (Sumiyoshi, Yamada, and
Suzuki, 2007; O’Connor and Ott, 2011; Hempel et al.,
2012; Peres, Oertel, and Novak, 2013). However, these
extremely high densities occur only for less than a milli-
second. The free-fall-like collapse to a BH is largely domi-
nated by gravity and the EoS is not expected to influence its
dynamics.
For the gross structure of NSs, the state of matter below

10−11 fm−3 is practically irrelevant, as it makes up only the
few outermost centimeters of the star. In CCSNe, and to some
extent also in NS mergers, the situation is different. Here low-
density matter plays an important role. In both cases one is
interested in the ejecta. Their densities decrease continuously
during their expansion. Typically, a simple ideal gas EoS is
used for the description of matter under such conditions;
however, full thermodynamic equilibrium (see Sec. II.B.1)
cannot always be assumed. Instead a network of time-
dependent nuclear reactions has to be considered. For
CCSNe, the ongoing burning processes, which contribute
to the final explosion energies (Yamamoto et al., 2013; Perego
et al., 2015), occur in low-density matter. To follow the
evolution of a CCSNe for several seconds, it is unavoidable to
include a description of low-density matter out of NSE. From
a practical point of view, the connection of such a region to a
tabulated EoS in the higher-density and temperature regime
can be quite intricate.
The temperature of a typical NS older than a few minutes is

small (below 1 MeV) on nuclear energy scales (Pons et al.,
1999; Suwa, 2014) and can be considered as zero in most
applications. However, these objects are born in CCSNe
which can be extremely hot events. The same holds for
NS-NS and NS-BH mergers. Typical temperatures in CCSNe
and PNS are in the range from a fraction to a few tens of MeV.
This can be inferred from Fig. 1 which shows the temperatures
and densities reached during a CCSN simulation for the 15M⊙

progenitor of Woosley and Weaver (1995) within the first
second after bounce. It is a typical example for the core
collapse of an intermediate-mass progenitor which is expected
to lead to an explosion. The temperatures obtained correspond
to entropies per baryon in the range from 1 to 5 at the stage of
collapse and up to 20 in the shock-heated matter. For other
progenitors that are also expected to lead to explosions, the
range of temperatures is similar. Scenarios with BH formation
set the upper limits for density and temperature which a
general purpose EoS has to cover. The temperature in such an
event can rise above 100 MeV; see, e.g., O’Connor and Ott
(2011). Therefore the temperature domain to be covered by a
general purpose EoS is 0 MeV≲ T ≲ 150 MeV.
The color coding in Fig. 1 illustrates the electron fractions

Ye reached during the early evolution of a CCSN. The core of
the supernova progenitor has almost an equal number of
electrons, protons, and neutrons, i.e., Ye ≈ 0.5. During the
collapse, electron-capture reactions lead to a strong neutro-
nization of matter, decreasing Ye. The presence of trapped
neutrinos, which acquire a finite chemical potential, limits the

lowest electron fractions Ye which are reached in the core
(Fischer et al., 2011). In its later evolution, the cooling PNS
approaches β equilibrium with neutrinos freely leaving the
system. In the cold, final equilibrium state of a NS, the lowest
electron fractions are found to be very close to zero. In some
parts of the supernova ejecta Ye can rise to values above 0.5
corresponding to a proton-rich environment. Consequently,
the range of a general purpose EoS to be covered is
0 < Ye ≲ 0.6.
The conditions in NS mergers are quite diverse. In

general they depend on the masses of the merging NSs
and the EoS and also on the magnetic fields and NS spins.
Typical temperatures in the core of a postmerger remnant
NS are in the range from 20 to 60 MeV (Bauswein, Janka,
and Oechslin, 2010). These temperatures can be well
exceeded in the contact layers in the early stage of the
merger, where extremely high temperatures up to 150 MeV
can occur locally (Bauswein, Janka, and Oechslin, 2010;
Rosswog, Piran, and Nakar, 2013). The highest densities in
the hot and rotating remnant NS are typically between 2nsat
and 6nsat (Hotokezaka, Kiuchi et al., 2013). In case the
remnant collapses to a BH, similar arguments as for failed
SNe apply: during the collapse much higher densities and
correspondingly higher temperatures are reached, but are
probably not important dynamically.
The dynamic ejecta of NS mergers originate from the crust

and outer core of the merging NSs. Initially, this material has
very low Ye in the range from 0.0 to 0.2 (Rosswog, Piran, and
Nakar, 2013; Sekiguchi et al., 2015). Depending on the
temperatures reached, the degeneracy of electrons is lifted
and Ye increases to higher values. In the subsequent evolution,
neutrino absorptions also influence Ye, resulting in final
values in the range of roughly 0.1 to 0.4 (Wanajo et al.,
2014; Sekiguchi et al., 2015). See also Foucart et al. (2016)
for a comparison of the thermodynamic conditions for differ-
ent EoS. Figure 2 shows the thermodynamic conditions
reached in the remnant in the aftermath of a neutron star
merger. For the later ejecta that appear in the form of a
neutrino-driven wind, extremely high entropies per baryon

FIG. 1. Temperatures and densities reached during a CCSN
simulation within 1 s post bounce. The color coding shows the
electron fraction Ye. From T. Fischer.
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above 50 are found (located mostly in the polar regions),
whereas most of the matter has entropies below 7, and the
entropy tends to decrease with increasing density (Perego
et al., 2014; Sekiguchi et al., 2015).
To conclude, we summarize in Table I the overall ranges

that have to be covered by a general purpose EoS to describe
NS mergers, CCSNe, and cold NSs.

4. Particle degrees of freedom

Within these ranges of the thermodynamic variables given,
the composition of matter changes dramatically. In cold NSs,
heavy nuclei are present in the inner and outer crusts (Chamel
and Haensel, 2008). The surface layer of the outer crust is
made of 56Fe ions immersed in a sea of electrons. With
increasing density, the nuclei become more massive and
neutron rich, reaching nuclei of the neutron drip line at the
boundary to the inner crust; cf. Sec. V.A.1 for details.
At low densities and finite temperatures, a plasma is

expected with a mixture of nuclei, nucleons, and electrons.
In the shock-heated matter of CCSNe, light nuclear clusters,
such as α particles, deuterons, or tritons, are found to be
the dominant baryonic particle degrees of freedom besides
nucleons (Sumiyoshi and Röpke, 2008). At densities just
below nuclear saturation or sufficiently high temperatures,
nuclei dissolve and one is left with strongly interacting matter
composed of nucleons and electrons. At high densities and/or

temperatures, additional particle species are expected to occur
(Glendenning, 1997; Weber, 2005), such as nuclear resonan-
ces, e.g., Δ baryons (Drago et al., 2014), or mesons, e.g.,
pions. Also strange degrees of freedom such as hyperons
(Glendenning, 1982; Chatterjee and Vidaña, 2016) or kaons
can be present. There is the possibility that the mesons form
condensates at low temperatures (Glendenning, 1997). Even a
transition to deconfined quark matter (QM) is possible at high
densities and temperatures. The occurrence of antiparticles is
relevant at high temperatures, in particular, for light particle
species. Besides electrons, muons are relevant leptonic
degrees of freedom, and so are electron-, muon-, and tau-
flavor neutrinos and antineutrinos. Neutrinos are not neces-
sarily in equilibrium with matter (see Sec. II.B.1). At finite
temperatures, thermal photons complete the composition.
While leptons and photons can be mostly treated as free
gases, this does not hold for hadrons or quarks. Their
contribution to the EoS is mainly governed by the strong
interaction deeply inside the nonperturbative regime.

III. FORMAL APPROACHES TO THE DESCRIPTION OF

DENSE MATTER

The theoretical description of strongly interacting matter
requires methods which capture the essential thermodynamic
properties of the many-body system. The challenges are
multifaceted. First, the relevant degrees of freedom have to
be identified. Approaches for nuclear matter that are based
on nucleons are the predominant choice and may suffice in
many cases. It will be necessary to consider other degrees of
freedom for certain thermodynamic conditions, e.g., nuclei
at low temperatures and densities and hyperons or even
quarks at high temperatures and densities. Furthermore,
large isospin asymmetries of the system can shift the
dominating degrees of freedom to more exotic particles.
Second, the interactions between the constituents have to be

FIG. 2. 2D mass histograms for (left panel) mass density ρ and electron fraction Ye or (right panel) entropy per baryon s, of a NS
merger remnant at a time of 85.4 ms after the first contact. The color coding is a measure of the amount of matter experiencing the
specific thermodynamical conditions. Adapted from Perego et al., 2014.

TABLE I. Approximate ranges of temperature, baryon number
density, and electron fraction a general purpose EoS has to cover to
be able to describe cold NSs, NSs in binary mergers, and CCSNe.

Quantity Range

Temperature 0 MeV ≤ T < 150 MeV
Baryon number density 10−11 fm−3 < nB < 10 fm−3

Electron fraction 0 < Ye < 0.6
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specified. This is a nontrivial task due to the very complex
nature of the strong interaction. In addition, the representa-
tion depends on the chosen degrees of freedom. In principle,
one wants to describe matter directly within the well-
founded theory of QCD. However, there are no ab initio

QCD calculations of dense matter available at the thermo-
dynamic conditions that are characteristic for compact stars
or CCSNe. Even a derivation of the “true” interaction
between nucleons or other strongly interacting hadrons from
QCD remains a very complex task despite intensive efforts.
Hence, calculations have to rely on model interactions,
which are partially constrained by laboratory measurements.
Modern theoretical approaches aim at a derivation of input
interactions that are systematically improvable with con-
trolled uncertainties.
In the next step, an appropriate method is applied to find the

actual state of the system incorporating few- and many-body
correlations. In the case of a phase transition, additional
thermodynamical considerations have to be applied (see
Sec. III.D).
The choice of the degrees of freedom, the choice of the

interaction, and the selection of the many-body method are not
independent and many different approaches exist. Here we
divide them into two categories:

(1) Ab initio many-body methods start from “realistic”
few-body interactions (mainly two- and three-nucleon
forces), i.e., interactions that are fitted to observables
in nucleon-nucleon scattering in vacuum and proper-
ties of bound few-nucleon systems. The many-body
problem is then treated using different techniques, e.g.,
Green’s function methods, (Dirac)-Brueckner-Hartree-
Fock calculations, coupled cluster, variational, and
Monte Carlo methods; see Sec. III.B.1. Some of these
many-body methods are limited by technical prob-
lems, such as the Monte Carlo methods; others
introduce approximations, such as, for example,
Brueckner-type approaches, that consider only a sub-
class of all possible diagrams.

(2) Phenomenological approaches use effective inter-
actions that often have a more simple structure than
realistic interactions used in ab initio approaches.
They depend on a small number of parameters,
usually of the order of 10 to 15, which are fitted,
in the ideal case, to different properties of several
nuclei all over the chart of nuclei and nuclear matter
properties. Typical representatives of these effective
interactions are the Skyrme and Gogny forces in
nonrelativistic calculations and meson-exchange
forces in relativistic mean-field (RMF) models; see
Sec. III.B.2. Nowadays, these phenomenological
approaches are interpreted in terms of energy density
functional (EDF) theory. Applying simple many-
body methods, mostly on the mean-field (MF) level,
results already in a rather precise description of
nuclei and nuclear matter. The extrapolation to exotic
conditions has to be considered with caution; never-
theless, phenomenological approaches are the most
widely used methods to construct EoSs for astro-
physical applications.

A. Basic few-body interactions

Basic few-body interactions are the starting point of
any calculation of dense matter with ab initio many-body
methods. The two-body interaction is largely dominant, but
interactions beyond the two-body level become important in
matter at high densities. For example, it is well known that the
nuclear three-body force is essential to reproduce the satu-
ration properties of nuclear matter. Forces among four or more
nucleons are difficult to construct and can be neglected in
many circumstances. Realistic two- and three-body forces
between nucleons and hyperons, as discussed in this section,
should not be confused with effective temperature and
density-dependent interactions used in phenomenological
models (see Sec. III.B.2). A more detailed survey of modern
theories for nuclear forces can be found in the review of
Epelbaum, Hammer, and Meissner (2009).
Historically, Yukawa (1955) proposed the first model of the

NN interaction based on the exchange of a massive particle,
the pion. His model successfully explained the range of the
nuclear interaction. Since then, many phenomenological
models have been developed either based on Yukawa’s idea
of meson exchange or by constructing potentials with appro-
priate operator structure. With the advent of QCD as the
theory of the strong interaction in the 1970s, phenomeno-
logical quark models became very fashionable, describing
baryons as quark clusters. They, however, suffer from the
missing confinement and connection with QCD. Only
recently, with chiral effective field theories (χEFTs) and with
lattice gauge theory, considerable progress has been achieved
to link baryonic few-body forces to QCD.

1. Experimental data

Any theoretical model for baryonic forces can be tested by
comparing predictions to experimental data. This concerns
scattering and the structure of light nuclei and hypernuclei. In
the nuclear sector, many thousands of high-precision data
points are available. A complete partial wave analysis of
nucleon-nucleon (NN) scattering data can be performed; see
Stoks et al. (1993), Arndt, Strakovsky, and Workman (1994),
Arndt et al. (2007), and Navarro Pérez, Amaro, and Ruiz
Arriola (2013) and the corresponding online databases.
Deuteron properties, among others its binding energy and
electric quadrupole moment, are an important input for
NN forces. Owing to the large amount of data, today’s
NN interactions, phenomenological or based on effective
field theories, have reached a very high degree of precision.
The binding energies of other light nuclei and nucleon-

deuteron scattering data cannot be described satisfactorily on
the basis of a two-nucleon interaction and provide thus
valuable information on the nuclear three-body force; see
Kalantar-Nayestanaki et al. (2012) for a review. Recently,
properties of very neutron-rich nuclei have attracted attention
since they provide additional constraints on the three-body
force; see, e.g., Wienholtz et al. (2013).
For the hyperonic sector data are scarce; see Gal,

Hungerford, and Millener (2016) for a detailed review of
strangeness in nuclear physics. Hyperon-nucleon (YN) scat-
tering experiments are difficult to perform because hyperons
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have very short lifetimes of the order of 10−10 s. Data on
hyperon-hyperon (YY) scattering are not available. In the
fitting procedure for the parameters of hyperonic two-body
forces, in general only 35 data points from the 1960s
(Engelmann et al., 1966; Alexander et al., 1968; Sechi-
Zorn et al., 1968; Eisele et al., 1971) for low-energy total
cross sections in reactions involving Λ and Σ hyperons are
included. First low-energy data on Ξ−p elastic and Ξ−p →
ΛΛ scattering have been obtained at KEK (Ahn et al., 2006).
In addition to scattering experiments, hypernuclear spec-

troscopy can provide valuable information. Since the first
events recorded by Danysz and Pniewski (1953a, 1953b),
many hypernuclei have been produced. These are mainly
single-Λ hypernuclei; see, e.g., the reviews by Hashimoto and
Tamura (2006) and Gal, Hungerford, and Millener (2016).
Some events with double-Λ hypernuclei have been detected;
see Aoki et al. (1991) and Nakazawa (2010). The absence of
Σ-bound states, except for an s-wave Σ bound state in 4

Σ
He

(Nagae et al., 1998), indicates a repulsive ΣN interaction (Bart
et al., 1999; Saha et al., 2004; Kohno et al., 2006). Only a few
events for Ξ hypernuclei have been observed up to now (Aoki
et al., 1995; Fukuda et al., 1998; Khaustov et al., 2000).
Considerable experimental efforts are underway to improve
hypernuclear data; see, e.g., Agnello et al. (2012) and
Sugimura et al. (2014). Three-body forces are not yet well
explored for hyperons; see, however, the recent work by
Lonardoni, Gandolfi, and Pederiva (2013). Hyperonic single-
particle potentials in symmetric nuclear matter are often used
to determine the effective hyperon-nucleon interactions in
phenomenological models; see, e.g., the discussions by Ellis,
Kapusta, and Olive (1991), Glendenning and Moszkowski
(1991), Schaffner et al. (1994), Balberg and Gal (1997),
Glendenning (1997), Vidaña et al. (2001), and Oertel, Fantina,
and Novak (2012).

2. Phenomenological forces

Approaches to obtain phenomenological forces can be
divided into two main categories: models based on meson
exchange and potential models.

a. Meson-exchange models

Meson-exchange models follow the original idea of
Yukawa in which the NN interaction is mediated by meson
exchange. Additional mesons have been added to capture the
complex dependence of the nuclear interaction on spin,
isospin, and spatial coordinates. Some models have been
extended to include strange mesons in order to describe the
YN and in some cases the YY interaction. The general idea is
that the pion, as the lightest particle, describes the long-range
attractive part of the interaction and that scalar mesons are
responsible for the intermediate-range attraction whereas
vector mesons govern the short-range repulsive contribution.
The so-called σ meson in the scalar-isoscalar channel often
represents the midrange attraction; however, its status as a
particle is very ambiguous. Many models use instead corre-
lated and uncorrelated two-pion exchange to describe the
intermediate range NN interaction; see, e.g., Machleidt and Li
(1994) and Donoghue (2006) for discussions. The various
models differ mainly in the mesonic content, the treatment of

two-meson exchange, and approximations made in order to
obtain practically applicable potentials from the basic ampli-
tudes, for instance, the form factors used at the meson-baryon
interaction vertices. From a phenomenological point of view,
the latter are introduced to account for the substructure of
baryons. They serve as regulators in solving the scattering
equation in order to avoid any divergent contributions.
Next we mention some well-known models that satisfac-

torily describe NN scattering data and the deuteron. The
classical versions of the Nijmegen interaction for the NN
system (Nagels, Rijken, and de Swart, 1977, 1978) are based
on the one-meson-exchange picture. They were extended to
include YN and YY interactions (Maessen, Rijken, and de
Swart, 1989; Rijken, Stoks, and Yamamoto, 1999) as well as
additional one- and two-meson exchanges (Rijken, 2006;
Rijken and Yamamoto, 2006; Nagels, Rijken, and
Yamamoto, 2014). The Paris NN potential (Cottingham et al.,
1973; Lacombe et al., 1980) uses an ad hoc parametrization at
very short distances arguing that the meson-exchange picture
is no longer valid there due to the substructure of nucleons.
The Bonn potential (Machleidt, Holinde, and Elster, 1987;
Machleidt, 2001) for the NN interaction is given in relativistic
form in momentum space to avoid the local approximation of
nonrelativistic models, as, e.g., in the Nijmegen potentials.
The Jülich group has extended the Bonn model to the
YN interaction (Holzenkamp, Holinde, and Speth, 1989;
Haidenbauer and Meissner, 2005).

b. Potential models

In addition to the well-established long-range one-pion
exchange, potential models adopt a sum of local operators,
where the essential ones are central, tensor, and spin-orbit
terms. The parameters are fitted to deuteron properties and
NN-scattering data. The Urbana (Lagaris and Pandharipande,
1981) and Argonne potentials (Wiringa, Smith, and
Ainsworth, 1984; Wiringa, Stoks, and Schiavilla, 1995) are
examples of such high-quality potential models. The latest
version of the Argonne potential (Wiringa, Stoks, and
Schiavilla, 1995), called v18, not only contains isoscalar
operators but includes an electromagnetic part and isovector
operators such that the charge dependence of the NN force is
successfully described. Also, some models with Λ hyperons
are available, but they are much less sophisticated due to the
small amount of hyperonic data; see, e.g., Bodmer, Usmani,
and Carlson (1984).
Considering only two-nucleon interactions, it is well known

that light nuclei, in particular, the triton 3H, are underbound
and the saturation density of nuclear matter is overestimated.
This shows the importance of many-body forces to correctly
describe nuclear systems. A major contribution to the three-
nucleon force is the two-step pion exchange between two
nucleons via a third nucleon that can be excited, e.g., to a
Δ baryon (Fujita and Miyazawa, 1957). This feature is
incorporated for instance in the Tucson-Melbourne model
(Coon and Glöckle, 1981; Friar, Huber, and van Kolck, 1999;
Coon and Han, 2001). Such an interaction is attractive
and helps to solve the underbinding problem in light
nuclei, whereas it worsens nuclear matter saturation proper-
ties. Therefore the Urbana group proposed a series of
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phenomenological three-nucleon forces, adding to the attrac-
tive two-pion exchange contribution a parametrized repulsive
part (Carlson, Pandharipande, and Wiringa, 1983; Pudliner
et al., 1995; Pieper et al., 2001; Pieper, 2008). The latter
interaction is adjusted to the properties of light nuclei. The
problem of such a procedure is that the three-body force is not
independent of the two-body force employed in the fits. More
recently, consistent two- and three-nucleon forces have been
derived within χEFT; see the next section.

3. Interactions from chiral effective field theory and lattice QCD

Since the seminal papers by Weinberg (1990, 1991) many
efforts have been devoted to the derivation of nuclear forces
from a χEFT. Within a chiral theory pions emerge naturally as
the relevant degrees of freedom at low energies to describe the
interaction of nucleons since they appear as Goldstone bosons
of the theory if the chiral symmetry of QCD is spontaneously
broken. The systematic framework of effective field theories
allows one to establish a classification of different contribu-
tions to the interaction and to make the link with QCD. The
starting point is the most general effective chiral Lagrangian
that respects the required symmetries. It is expanded in powers

of a small quantity p ∼ ðmπ=Λχ ; j~kj=ΛχÞ, where mπ denotes

the pion mass, ~k is a (soft) external momentum, and Λχ ∼

1 GeV specifies the scale of chiral symmetry breaking. In
addition to dynamical pion contributions, nucleonic contact
operators appear at each order. They contain the unresolved
short-range physics. Their strength is controlled by so-called
low-energy constants (LECs) that are fitted to experimental
data. Pionless effective theories are applicable at very low
energies; see Bedaque and van Kolck (2002) for a review.
Although the details of the power counting scheme are not

yet completely settled [see, e.g., Pavón Valderrama and
Phillips (2015) and references therein], chiral nuclear forces
work out well. In particular, before the advent of nuclear
interactions from χEFTs, no consistent model of three-body
and higher many-body nuclear forces existed. In addition to
the incorporation of symmetries from QCD, the advantage of
χEFT approaches is the possibility to extend the interactions
in a consistent way to three- and many-nucleon systems.
Comprehensive reviews can be found in Epelbaum, Hammer,
and Meissner (2009) and Machleidt and Entem (2011). For
recent high-quality chiral potentials, see Navarro Pérez,
Amaro, and Arriola (2015) and Piarulli et al. (2015), which
includesΔ resonances. The χEFT approach has been extended
to include strangeness and interactions of the full baryon
octet; see Polinder, Haidenbauer, and Meißner (2006) and
Haidenbauer et al. (2007, and 2013). In this case, not all LECs
can be determined by experiment due to the lack of relevant
data in the hyperonic sector. Instead they have partly been
fixed by flavor SUð3Þ symmetry.
Another promising possibility to relate nuclear forces to

QCD is lattice QCD. In principle, it is a tool to calculate
hadron properties directly from the QCD Lagrangian with
Monte Carlo methods on a discretized Euclidian spacetime. It
is, however, extremely expensive in the numerical application
even with sophisticated state-of-the-art algorithms on high
performance computers. For the moment, simulations can be

carried out only with large quark masses and the extrapolation
to physical masses is difficult. In addition, the lattice spacing
has to be fine enough and the volume large enough to avoid
computational artifacts. Recent substantial efforts (Beane
et al., 2011; Aoki et al., 2012) give hope for future high-
precision predictions. This could be interesting, in particular,
for channels where only few experimental data are available,
e.g., the hyperon-nucleon interaction; see, e.g., Beane et al.

(2007, 2012) and Inoue et al. (2010).

4. Renormalization group methods and evolved potentials

The strongly repulsive core of two-body baryonic inter-
actions renders multibaryon systems nonperturbative. Thus
correlations become extremely important but are difficult to
treat with many-body methods. The repulsive core, although a
distinct feature of baryonic forces, is not directly affecting
low-energy observables. With renormalization group (RG)
techniques, the high-momentum part of the interaction related
to the repulsive core can be “integrated out” via a continuous
change in resolution by applying suitable unitary transforma-
tions. In this way, the high-momentum part decouples from
the low-momentum part and three- and many-body forces
emerge automatically from a pure two-body force. During the
evolution, all generated interactions are “phase-shift equiv-
alent” and low-momentum observables are preserved. Thus
the description of scattering data remains as precise as for the
original interaction. The obtained RG-evolved potentials are
much more perturbative than nonevolved ones and therefore
simplify the baryonic many-body problem. In connection with
many-body perturbation theory (MBPT), i.e., a perturbative
expansion around the Hartree-Fock (HF) solution, RG-
evolved interactions became a great success for nuclear
systems; see Bogner, Furnstahl, and Schwenk (2010) and
Furnstahl and Hebeler (2013) for recent reviews on the
subject.
Even though all high-precision “bare” nuclear forces are

rather different, almost unique RG-evolved potentials emerge
at low momenta (Schwenk, 2005), often denoted as V low-k.
Schaefer et al. (2006) and Wagner et al. (2006) applied the
same techniques to nucleon-hyperon interactions. It turned out
that the resulting low-momentum interactions are different
from each other because the bare potentials are much less
constrained. Hence, it is not surprising that there is a large
spread in the results if they are applied to dense matter with
hyperons (Đapo, Schaefer, and Wambach, 2008, and 2010).
This shows the lack of relevant experimental data concerning
the hyperon-nucleon and hyperon-hyperon interactions.

B. Many-body methods for homogeneous matter

The first step in studying strongly interacting matter is often
the investigation of homogeneous matter at vanishing temper-
ature where almost all methods discussed later can be applied.
Even if the basic few-body interactions were exactly known,
the theoretical modeling is not a trivial task since any naive
perturbative expansion is likely to fail.
The most simple method to treat the many-body problem

beyond the perturbative level is the HF approximation; see
Sec. III.B.2 and Fetter and Walecka (1971), Ring and Schuck
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(1980), and Greiner and Maruhn (1996) for more details. The
idea is that each particle moves in a single-particle potential,
the “mean field,” generated by the average interaction with
all other particles. In practice, the many-body wave function
is approximated as an antisymmetrized product of single-
particle wave functions, which are determined self-
consistently. Although generally successful in atomic physics
and in chemistry, in a nuclear system a HF calculation starting
from conventional two-body interactions fails to reproduce
known properties of nuclear matter. In addition, the results are
sensitive to the modeling of the short-range repulsive core of
the two-body interaction which is not fixed uniquely by
scattering data. This can be understood since the HF approxi-
mation neglects any short-range correlations between the
particles which arise from their mutual interaction.
Two ways out of this problem are currently applied: either

correlations are explicitly included within the many-body
approach or, instead of realistic few-body interactions, an
effective, usually medium dependent, interaction is used
within a HF approach.
In Sec. III.B.1, we discuss different theoretical ab initio

frameworks to include correlations in a strongly interacting
many-body system. Interesting attempts to compare in a
quantitative way different ab initio many-body methods can
be found, e.g., in Baldo and Maieron (2004), Bombaci et al.
(2005), and Baldo et al. (2012). Section III.B.2 is devoted to
models with different types of phenomenological effective
interactions. Apart from the textbooks, there exist many
excellent reviews on the different standard many-body meth-
ods; see, e.g., Müther and Polls (2000), Baldo and Burgio
(2012), and Carlson et al. (2015). Therefore we do not aim to
give a comprehensive and complete overview, but present only
the general ideas.

1. Ab initio methods

a. Self-consistent Green’s function

The idea of the self-consistent Green’s function (SCGF)
method is that the system’s energy can be calculated con-
veniently from the single-particle Green’s function G. It
describes the propagation of a single-particle state ψ from
time t and position ~x to t0 and ~x0 as

ψðt0; ~x0Þ ¼

Z

d4xGðt0; ~x0; t; ~xÞψðt; ~xÞ: ð3Þ

The level of approximation in the SCGF method is controlled
by the approximations made in order to determine the single-
particle Green’s function. A thorough definition can be found
in any textbook on quantum theory at finite density and
temperature; see, e.g., Fetter and Walecka (1971). For a
noninteracting homogeneous system at zero temperature the
Green’s function can be written in momentum space as2

G0ð~k;ωÞ ¼
θðj~kj − kFÞ

ω − E0ð~kÞ þ iη
þ

θðkF − j~kjÞ

ω − E0ð~kÞ − iη
; ð4Þ

where kF denotes the Fermi momentum and E0ð~kÞ ¼ ~k
2
=ð2mÞ

denotes the noninteracting single-particle energy of a particle
with mass m. Any indices related to further quantum numbers
of the particle are suppressed for clarity. The first term on the
right-hand side (rhs) of Eq. (4) describes the propagation of a
state outside the Fermi sea, a particle, and the second term a
state inside the Fermi sea. Since per definition all states in the
Fermi sea are filled, it can propagate inside the Fermi sea only
as a hole, i.e., a particle removed from the Fermi sea.
The energy density of the system can be straightforwardly

calculated from the trace of the single-particle Green’s
function. For the noninteracting system the well-known
expression for an ideal Fermi gas is obtained. Of course, a
dense baryonic system cannot be described as a Fermi gas of
noninteracting particles. Thus the full interacting single-
particle Green’s function G has to be determined. A calcu-
lation from a perturbative series in the interaction potential is
not viable in view of the strong baryonic interaction. At this
point self-consistency is introduced in the form of Dyson’s
equation, which schematically can be written as

G ¼ G0 þ G0
ΣG ð5Þ

with the one-particle irreducible3 self-energy Σ which itself is
determined by the interaction.
Retaining the lowest-order diagrams in the interaction, the

HF approximation can be derived with the SCGF formalism.
Formally this means that in the HF approximation the
N-particle Green’s functions are (antisymmetrized) products
of single-particle Green’s functions. When going beyond the
HF approximation, the dominant effect should be multiple
scattering processes with two participating baryons. Under
this assumption the so-called “ladder approximation” is
obtained. The name originates from a diagrammatic repre-
sentation of this approximation for the single-particle Green’s
function depicted in Fig. 3. In practice, the complete two-
particle T matrix is introduced, describing an effective two-
particle interaction upon summing up all “ladders”; see Fig. 3.
Note that the ladder approximation includes the two contri-
butions leading to the HF approximation. The equation for the
T matrix can be written as

h12jTj34i ¼ h12jVj34i þ
X

nn0

h12jVjnn0iGnGn0hnn
0jTj34i;

ð6Þ

where V represents the bare two-body interaction and a
summation over intermediate states has to be performed.
In the intermediate states of the T matrix there can be no

propagation of a particle and a hole state. In the ladder
2For simplicity we assume nonrelativistic kinematics. A relativ-

istic treatment does not change the general reasoning. We further
consider the zero temperature limit. Finite temperature is easily
included in the formalism; see, e.g., Fetter and Walecka (1971) and
Frick (2004).

3One-particle irreducible means that the diagrams cannot be
disconnected by cutting a fermion line. It is obvious that the self-
consistent resummation via Dyson’s equation automatically gener-
ates all reducible terms.
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approximation the self-consistent Green’s function method
thus sums up particle-particle and hole-hole ladders to all
orders. Physically the ladder diagrams take into account
multiple scattering of particles and holes and can therefore,
in contrast to the HF approximation, describe the effect that
the strong short-range repulsion disfavors states when two
particles come very close to each other. Reviews on the
applications of the method to nuclear problems can be found
in Müther and Polls (2000) and Dickhoff and Barbieri (2004).
The results for the EoS improve substantially in comparison to
the HF approximation.
The choice of the contributions included in the summation

(ladder, ring, parquet) has been more or less intuitive and was
justified by the results. It is not clear how the method can be
systematically extended in order to improve the results
achieving self-consistency and avoiding double counting.
So far three-nucleon forces were not included in the ladder
approximation although their importance in nuclear systems
is well known. A method to include them in the SCGF
formalism was developed recently by Carbone et al. (2013).
Another point is that low-temperature nuclear (and bar-

yonic) matter is unstable with respect to the formation of a
superfluid or superconducting state. This is the well-known
Cooper instability (Cooper, 1956): a fermionic many-body
system with an attractive interaction tends to form pairs at the
Fermi surface. The instability shows up as a pole in the
T matrix when the temperature falls below the critical
temperature Tc for the transition to the superfluid or super-
conducting state; see, e.g., Thouless (1960), Schmidt, Röpke,
and Schulz (1990), Alm et al. (1993), and Stein et al. (1995).
Formally, the approach can be extended to include the
possibility of superfluidity and superconductivity by intro-
ducing anomalous Green’s functions describing pair forma-
tion. However, practical SCGF calculations in the ladder
approximation are numerically already very demanding since
the full energy dependence of the intermediate states has to be
accounted for. Therefore actual calculations are often per-
formed at temperatures above Tc and extrapolated to zero
temperature; see, e.g., Frick (2004).

b. Brueckner-Hartree-Fock

The Brueckner-Hartree-Fock (BHF) approximation is a
widely used microscopic many-body method developed by
Brueckner, Bethe, and others in the 1950s. Numerically it is
less involved than the SCGF discussed previously. In a general
framework it can be derived from the Brueckner-Bethe-
Goldstone hole-line expansion, truncated at the two-hole-line

level for the evaluation of the ground-state energy. A “hole
line” has to be considered as the propagation of a hole. This
series can be roughly understood as an expansion in density
(Fetter and Walecka, 1971). At low densities the contributions
with an increasing number of hole lines should be suppressed,
thus ensuring good convergence. It is generally assumed that
the n-hole-line contributions contain the dominant part of the
n-body correlations. Detailed and pedagogical introductions
can be found in Day (1967), Fetter and Walecka (1971), and
Baldo and Burgio (2001, 2012).
The BHF method can be obtained from the SCGF approach

in the ladder approximation after some simplifications. The
first one is to neglect the hole-hole contributions. The second
one is to approximate the full self-energy of the intermediate
states by a quasiparticle approximation. The equation for the
T matrix, Eq. (6), then becomes an equation for the Brueckner
Gmatrix by replacing T with G, except that the product of the
two single-particle Green’s functions in the intermediate states
is approximated by

GnGn0 →
Pðn; n0Þ

ω − En − En0 þ iη
; ð7Þ

where the Pauli operator P is nonzero only if both states lie
outside the Fermi sea, i.e., they correspond to two particle
states. Note that the denominator does not contain the full self-
energy. In the quasiparticle approximation it has the form of
the noninteracting system.
The single-particle energies E are determined self-

consistently from the G matrix in the following way (written
in momentum space):

Eð~kÞ ¼
~k
2

2m
þ Uð~kÞ; ð8Þ

Uð~kÞ ¼
X

j ~k0j<kF

hkk0jG(Eð~kÞ þ Eð ~k0Þ)jkk0iA; ð9Þ

where the subscript A indicates that the matrix element has to
be antisymmetrized.
The BHF method is not fully self-consistent. There remains

some freedom in determining the single-particle energy Eð~kÞ;
see Baldo and Burgio (2001) for a discussion. It was shown by
Baldo et al. (2001) that with a proper choice the three-hole line
corrections to the energy are small, indicating good conver-
gence of the series. The main problem is that the BHF method
violates the Hugenholtz–van Hove theorem (Hugenholtz and
van Hove, 1958) and, hence, is thermodynamically incon-
sistent. This theorem states that the single-particle energy at the
Fermi surface should equal the chemical potential. Numerically
the differences are of the order of 10–20 MeV at saturation
density (Bożek and Czerski, 2001).
In the BHF approximation, the description of nuclear matter

is improved substantially as compared with the HF calcu-
lations. However, the saturation properties are not satisfac-
torily reproduced with only two-body forces. It is generally
believed that three-body forces are needed. In nonrelativistic
BHF calculations they can be explicitly included; see, e.g.,
Lejeune, Lombardo, and Zuo (2000) and Zuo et al. (2002a,

FIG. 3. Feynman diagrams illustrating the lowest-order contri-
butions to the self-energy in Dyson’s equation (5) for the single-
particle Green’s function in the ladder approximation (without
exchange contributions). Solid lines represent fermion propaga-
tors and wavy lines an interaction.
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2002b). So far, there is no general consensus on how to
improve BHF calculations systematically such that uncertain-
ties are under control.
It is possible to extend the nonrelativistic BHF formalism in

order to treat baryons in a special relativistic way. This Dirac-
Brueckner-Hartree-Fock (DBHF) approach (Brockmann and
Machleidt, 1984; Horowitz and Serot, 1987; Ter Haar and
Malfliet, 1987; Brockmann and Machleidt, 1990;
Sammarruca, 2010) is computationally more involved than
nonrelativistic BHF calculations and some ambiguities exist
concerning the representation of the in-medium G matrix in
terms of Lorentz invariants; see, e.g., the discussion by Gross-
Boelting, Fuchs, and Faessler (1999). However, the main
advantage is that an additional repulsion at high densities is
obtained since part of the three-body interaction is automati-
cally generated (Brown, 1987). Relativistic DBHF approaches
also avoid the problem of nonrelativistic BHF calculations
which can result in a superluminal speed of sound at the high
central densities of massive NSs.

c. Methods derived from the variational principle

The Ritz-Raleigh variational principle is the basis for
variational approaches to the many-body problem. It ensures
that the trial ground-state energy

Etrial ¼
hΨtrialjHjΨtriali

hΨtrialjΨtriali
; ð10Þ

calculated from the system’s HamiltonianH with a trial many-
body wave function Ψtrial, gives an upper bound for the true
ground-state energy of the system. Correlations can be
embodied in the trial wave function, given for the A-baryon
system by

Ψtrialð1;…; AÞ ¼ Fð1;…; AÞΦMFð1;…; AÞ: ð11Þ

The operator F is intended to transform the uncorrelated wave
function ΦMFð1;…; AÞ to the correlated one. ΦMF is an
antisymmetrized product (a Slater determinant) of single-
particle wave functions. In practice, an ansatz is chosen for the
trial wave function and its parameters are varied in order to
minimize Etrial. Once the trial wave function is determined,
expectation values of other operators can be evaluated.
The idea of the variational method is very simple and

appealing. The difficulty resides, however, in the details,
namely, the numerical evaluation of the different expectation
values. The first point is the choice of the interaction
Hamiltonian. As it stands, the method is conceived for treating
a local nonrelativistic potential.4 Thus, some of the realistic
potentials discussed in Sec. III.A, in particular, those involv-
ing energy-dependent meson exchange, cannot be used within
this approach. There are, however, potentials which have been
designed specifically for variational methods. The most
prominent example is the series of Argonne NN forces (see
Sec. III.A.2.b). Most variational calculations include a three-
body force in the nuclear Hamiltonian. Together with the

Argonne forces, the Urbana three-body forces are usually
applied. Further, Gezerlis et al. (2013, 2014) developed a local
version of nuclear interactions for quantum Monte Carlo
calculations from χEFT which in principle is applicable.
The central task is to find a suitable ansatz for the

correlation operator F. At sufficiently low densities, two-
body correlations should be dominant in nuclear systems. This
assumption represents, for instance, the basis for the ladder
approximation discussed in Sec. III.B.1.a. Within the varia-
tional methods this assumption leads to an ansatz for the
two-body correlation operator F2 which contains essentially
the same operational structure as the two-body interaction
(Fantoni and Fabrocini, 1998; Müther and Polls, 2000;
Carlson et al., 2015). Thus, it is written as a sum of two-
body operators, incorporating the nuclear spin-isospin
dependence, multiplied by radial correlation functions
fðmÞðrÞ:

F2ði; jÞ ¼
X

m

fðmÞðrijÞO
ðmÞði; jÞ: ð12Þ

The fðmÞðrÞ are then determined by minimizing Etrial. In
practice, this is done employing different techniques.
In the nuclear context, Fermi-hypernetted-chain (Fantoni

and Rosati, 1975; Pandharipande and Wiringa, 1979) calcu-
lations have proven to be efficient. We note that up to now it is
impossible to include the complete operator structure of the
most sophisticated Argonne potentials in the correlation
operators F. The spin-orbit correlation, in particular, cannot
be treated on the same footing, since it cannot be chained.
In coupled cluster theory, which is based on ideas of

Coester (1958) and Coester and Kümmel (1960), the corre-
lation operator F is represented in an exponential form F ¼

expðT̂Þ with the cluster operator

T̂ ¼
X

A

m¼1

T̂m ð13Þ

that is a sum ofm-particlem-hole excitation operators T̂m. The
method, which is nonvariational in practice, is utilized with
great success in quantum chemistry (Bartlett and Musial,
2007) and nuclear structure calculations (Hagen et al., 2007,
2010, 2012). Early applications to nuclear matter can be found
in Kümmel, Lührmann, and Zabolitzky (1978) and Day and
Zabolitzky (1981). Nowadays, optimized chiral nucleon-
nucleon interactions are implemented (Baardsen et al.,
2013; Hagen et al., 2014).
The variational ground-state energy represents only an

upper bound on the exact ground-state energy, and the
deviation depends on the choice of the trial wave function.
The method of correlated basis functions (CBF) allows one to
improve on the variational ground state (Fantoni and
Fabrocini, 1998). The idea is to add up second-order pertur-
bative corrections to the ground-state energy calculated with
correlated basis functions. The latter are determined by the
variational calculation from model basis functions. Taking
only ΦMF as a model basis function, the usual variational
calculation would be recovered. Within CBF, other basis

4SeeWalhout et al. (1996) for an attempt to generalize this method
to relativistic systems within the path integral formalism.

M. Oertel et al.: Equations of state for supernovae and compact …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015007-12



functions are added, containing already some particle-hole
excitations on the initial wave function ΦMF.
Another widely used method in nuclear physics to evaluate

expectation values is the variational Monte Carlo approach;
see the reviews by Guardiola (1998) and Carlson et al. (2015).
Sophisticated calculations with this technique have been
performed for light nuclei, including two-body correlations,
such as given in Eq. (12), and triplet correlations; see, e.g.,
Wiringa et al. (2014). Since the computational effort increases
very rapidly with the number of nucleons, the EoS of
homogeneous nuclear matter, however, is extremely difficult
to obtain.

d. Quantum Monte Carlo methods

Advancing computer technology has allowed for rapid
progress in the application of Monte Carlo methods to nuclear
systems in recent years. In addition to the variational
Monte Carlo approach discussed in the previous section,
the ground-state wave function and energy can be determined
by evolving the many-body Schrödinger equation in imagi-
nary time. Monte Carlo sampling is thereby used to evaluate
the paths. In nuclear physics these methods suffer, however,
from the fermion sign problem and different approximations
are employed; for comprehensive reviews, see Guardiola
(1998), Carlson, Gandolfi, and Gezerlis (2012), and
Carlson et al. (2015).
The Green’s function Monte Carlo (GFMC) method

(Carlson, 1987, 1988) gives accurate results for light nuclei,
but due to the nuclear spin and isospin degrees of freedom,
computing time increases exponentially with the number of
particles. Up to now, the largest systems treated are 12C and a
system of 16 neutrons. The auxiliary field quantum
Monte Carlo (AFQMC) approach (Schmidt and Fantoni,
1999) introduces auxiliary fields by Hubbard-Stratonovich
transformations to sample the spin-isospin states. This effi-
cient sampling allows for treating larger systems, with more
than 100 nucleons. Finite-size effects are expected to be small
and AFQMC calculations have been applied in the last years
to homogeneous matter, in particular, neutron matter, but also
to symmetric matter and nuclear matter with hyperons (see
Sec. IV.B).
In spite of the recent progress, it is still not possible to

perform GFMC and AFQMC calculations with the full
Argonne v18 potential since some of the terms, again related
to the spin-orbit structure, induce very large statistical errors.
Simplified potentials have been developed (Pudliner et al.,
1997; Wiringa and Pieper, 2002) containing less operators
with readjusted parameters. Besides these two-body inter-
actions, the Urbana three-body potentials are used. Recently, a
local chiral potential was developed (Gezerlis et al., 2013)
which is well suited for quantum Monte Carlo techniques.

e. Chiral effective field theory

χEFT is very successful in describing nuclear forces and
has allowed one to establish a link between the underlying
theory of QCD and nuclear physics (see Sec. III.A.3). Except
for very light nuclei, where direct numerical solutions of the
Schrödinger equation are possible, these chiral forces are
generally employed within standard many-body techniques to

address heavier nuclei or homogeneous nuclear matter. In
recent years some effort has been devoted to an alternative
approach for homogeneous matter, namely, extending the
idea of chiral perturbation theory directly to nuclear matter
calculations, i.e., developing an effective field theory (EFT)
for nuclear matter. Similar to nuclear forces in vacuum, pions
and nucleons are treated as explicit degrees of freedom and
short-range dynamics is comprised in local contact terms. The
advantage of such an EFT is that it establishes a power
counting which allows one to select at a given order the
relevant ones among the infinite number of contributions and
that one can determine an associated uncertainty, which is not
possible in many other methods. The main difficulty resides in
defining a well-adapted power counting scheme.
For nuclear matter, the nuclear Fermi momentum kF enters

as an additional scale. It is considered as small, of the same
order as the pion mass. At saturation density it is given as
kF ≈ 263 MeV, which is indeed smaller than a typical had-
ronic scale. Based on this assumption, different power counting
schemes have been developed.On the one hand, in theworks of
Kaiser, Fritsch, and Weise (2002, 2003, 2005), the vacuum
chiral power counting has been applied directly to nuclear
matter. On the other hand, Meißner, Oller, and Wirzba (2002),
Oller, Lacour, and Meißner (2010), and Lacour, Oller, and
Meißner (2011) argue that a propagating nucleon in the
medium cannot always be counted in the standard way as

1=j~kjwith j~kj being a typical nucleon three-momentum, but that
there are “nonstandard” situations where it is to be counted as
an inverse nucleon kinetic energy. In practice, within this
nonstandard counting, certain classes of two-nucleon diagrams
have to be resummed. Another difference is that these works
include local nucleon-nucleon interactions fixed by free
nucleon-nucleon scattering in addition to nucleon interactions
mediated by pion exchange (Oller, Lacour, andMeißner, 2010;
Lacour, Oller, and Meißner, 2011).

f. Lattice methods

The ab initio approach to solve QCD numerically becomes
extremely complicated at finite densities. The fermion deter-
minant in the medium turns complex valued due to the
appearance of the chemical potential. Consequently the
integrals, which are evaluated in lattice QCD with
Monte Carlo methods, have no longer positive weights.
Different approaches to avoid this fermion sign problem have
been suggested, e.g., reweighting techniques (Fodor and Katz,
2002), the introduction of complex chemical potentials
(de Forcrand and Philipsen, 2002), or Taylor expansion
schemes (Allton et al., 2002). A crucial parameter in all of
these approaches is μB=T, which for these analyses is typically
of magnitude 1 or less. However, this value is significantly
larger in the applications we are interested in, in particular, for
NSs. Accordingly, no consistent cold matter or supernova EoS
has been provided by lattice QCD so far.
In recent years lattice methods have been applied directly to

nuclear systems; see Lee (2009) for a review. In the so-called
“nuclear lattice effective field theory” (NLEFT), nucleons are
treated as pointlike particles residing on the lattice sites. For
the interactions, EFT nuclear forces are employed consisting
of nucleon contact terms and potentially pion exchanges.
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These are represented on the lattice as insertions on the
nucleon world lines. Because of the approximate SUð4Þ spin-
isospin symmetry of nuclear forces, NLEFT suffers much less
from the sign problem than lattice QCD. These methods have
been applied successfully to light and medium mass nuclei
(Epelbaum et al., 2014; Lähde et al., 2014), and to dilute
neutron matter up to roughly one-tenth of nuclear matter
saturation density (Lee, 2009). For the moment, however,
there are no computations of denser systems. Lattice methods
are used in the context of quantum Monte Carlo simulations,
too (Wlazłowski et al., 2014).

g. Perturbative QCD

QCD is asymptotically free, viz., the coupling constant
decreases logarithmically with the energy (Gross andWilczek,
1973; Politzer, 1974) and therefore, it is addressable by
perturbative methods if the coupling constant turns small
enough. This has been exploited to describe the thermody-
namics of dense deconfined quark matter at finite temperature
(Freedman and McLerran, 1977a, 1977b, 1977c). Recent
efforts aimed to account for all second-order effects in an
expansion of the thermodynamic pressure of deconfined QCD
(Kurkela, Romatschke, and Vuorinen, 2010). This procedure
gives valuable insights into the high-density limit of QCD and
therefore provides an important constraint for the asymptotic
behavior of the EoS at baryonic chemical potentials of several
GeV (Kurkela et al., 2014). However, results from matching
the EoS obtained within this approach directly to a nuclear
matter EoS as suggested by Kurkela, Romatschke, and
Vuorinen (2010) do not provide a conclusive answer as in
this domain nonperturbative features cannot be neglected.

h. Dyson-Schwinger approach

The Dyson-Schwinger (DS) formalism is a nonperturbative
approach to analyze QCD. It starts from a generating func-
tional (the partition function of QCD). From there, coupled
integral equations, the DS equations, are derived for the n-
point Schwinger functions of the theory. Formally, this
approach is similar to that of self-consistent Green’s functions
we discussed in Sec. III.B.1.a, but now based on the QCD
Lagrangian. A further successful proving ground for this
approach is QED. As in any many-body theory, every QCD
Schwinger function couples to further Schwinger functions of
higher order. This implies an infinite hierarchy of DS
equations which can be solved practically only by introducing
truncation schemes. There is no strict prescription how to
truncate without erasing inherent properties (e.g., symmetries)
of the original theory. The truncation scheme defines a specific
model which then can be compared to experimental data and
subsequently used to predict observables. The theoretical
framework for vacuum and in-medium studies and numerous
applications have been reviewed in detail in Roberts and
Schmidt (2000), Alkofer and von Smekal (2001), and Roberts
(2012). Despite the number of successful vacuum studies at
zero and finite temperature it has been used only rather
recently to compute EoSs of dense homogeneous quark matter
in the deconfined phase (Chen et al., 2008, 2011, 2015; Klähn
et al., 2010). Prominent topics are superconducting phases;
see, e.g., Nickel, Wambach, and Alkofer (2006) and Alford

et al. (2008), and the role of strange quarks (Nickel, Alkofer,
and Wambach, 2006; Müller, Buballa, and Wambach, 2013).
Further DS studies investigate the critical line in the QCD
phase diagram; see, e.g., Fischer, Luecker, and Mueller
(2011), Qin et al. (2011), Bashir et al. (2012), and
Gutierrez et al. (2014). Although the DS approach promises
insights from a QCD-based framework, no EoS has been
obtained to date that covers the whole parameter space
required to perform CCSN simulations. However, Klähn
and Fischer (2015) showed that both the Nambu–Jona-
Lasinio (NJL) model and the thermodynamic bag model
(see Sec. III.B.2.b) can be understood as solutions of in-
medium DS equations in rainbow approximation assuming a
contact interaction for the gluon propagator.

2. Phenomenological approaches

Phenomenological approaches to describe dense matter are
characterized by the use of effective interparticle interactions
instead of realistic forces. They usually have a rather simple
functional form in order to allow them to be used in several
applications, i.e., not only uniform matter but in many cases
also finite nuclei. However, their structure can be guided by
symmetry principles, power counting arguments or insights
from ab initio approaches. Effective Hamiltonians can be
derived from more fundamental forces using the formalism of
density-matrix expansions (Negele and Vautherin, 1972;
Dobaczewski, Carlsson, and Kortelainen, 2010; Stoitsov et al.,
2010). In general, the actual parameters of the interactions are
not directly calculated from underlying fundamental theories
but they are determined empirically by fitting to (pseudo-)
observables that are calculated in certain approximations of
many-body theory. The interaction and the considered model
space are not independent. Systematic extensions of the
empirical approaches are not straightforward and usually
require a refit of the model parameters.
Most empirical descriptions of dense matter rely on the MF

approximation or use the closely related language of energy
density functionals. Originally, the mean-field approximation
corresponded to the Hartree approximation of the many-body
state, i.e., a simple product of single-particle wave functions,
but the term is often used to denote the HF approximation, too.
The constituents are considered as quasiparticles with modi-
fied properties, e.g., effective masses that are different from
their rest masses in the vacuum. Quantities such as the energy
density or the pressure of the system can be expressed as
functionals of the single-particle densities and an EDF is
derived. It can be used as a starting point for the development
of more refined EDFs that take into account features such as
exchange and correlation effects going beyond the mean-field
approximation. It is well known from the basic theorems in
density functional theory (Hohenberg and Kohn, 1964; Kohn
and Sham, 1965; Dreizler and Gross, 1990; Kohn, 1999;
Fiolhais, Nogueira, and Marques, 2003) that an EDF exists
which yields the exact energy of the system’s ground state but
its explicit form is not known. With suitable extensions of
mean-field EDFs guided by empirical information one can try
to come close to the exact EDF of the system, even if the
interaction itself is not completely known.
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A further set of phenomenological EoSs can be charac-
terized as purely parametric models which by themselves are
not based on a description of the interaction of particles.
Instead, a parametrized functional, typically of the energy
density, is either assumed or fitted to microscopically moti-
vated EoSs. These models are useful to analyze astrophysical
data. Examples are single and piecewise polytrope fits for
nuclear matter (Read et al., 2009) and a linear fit for quark
matter (Zdunik, 2000; Alford, Han, and Prakash, 2013).

a. Hadronic matter

Self-consistent MF models are well developed. They are
successful in describing the properties of systems composed
of nucleons and were first used for bulk nuclear matter.
Nowadays they are mainly applied in the description of finite
nuclei; see, e.g., the review by Bender, Heenen, and Reinhard
(2003). The approaches can be divided into two main classes:
nonrelativistic and relativistic models. The main distinctions
between them are the specific form of the interaction and the
resulting dispersion relation of the quasiparticles.
Nonrelativistic approaches generally start from a

Hamiltonian

Ĥ ¼ T̂ þ V̂ ð14Þ

for the many-body system that contains the usual kinetic
contribution

T̂ ¼
X

i

p̂2
i

2mi

ð15Þ

and a potential term V̂ that varies from model to model.
Usually it is given as a sum

V̂ ¼
X

i<j

V̂ij þ
X

i<j<k

V̂ijk ð16Þ

of two-body (V̂ij) and three-body (V̂ijk) interactions. The
latter are required in order to reproduce the empirical
saturation properties of nuclear matter. The energy of the
system is calculated under certain assumptions for the form of
the many-body wave function, usually within the HF approxi-
mation. Pairing effects can be considered in the Hartree-Fock–
Bogoliubov approximation. However, the original model
interaction V̂ cannot always be used in the pairing channel
and a suitable pairing interaction has to be specified sepa-
rately. Nonrelativistic approaches are in danger failing in the
description of dense matter at high densities, e.g., the EoS can
become superluminal.
Relativistic models are commonly formulated in a field-

theoretical language by defining a Lagrangian density L that
serves as the starting point in order to derive the field
equations of the interacting particles. They constitute a set
of coupled equations that have to be solved self-consistently.
Expressions for the energy density and pressure are obtained
from the energy-momentum tensor.
The foremost application of MF models is the description of

finite atomic nuclei but nuclear matter properties are easily

obtained once the parameters of the effective model inter-
action are determined. Depending on the selection of observ-
ables and preferences in the fitting of the effective interaction,
different parametrizations are obtained. For the most common
MF approaches, several hundred parameter sets are available
in the literature. In the following, the most-used MF models,
distinguished by the choice of the interaction, are considered.

• Mean-field models with Skyrme-type interactions: An
effective zero-range interaction for HF calculations was
introduced by Skyrme (1956, 1959). After the pioneering
calculations of nuclei by Vautherin and Brink (1970,
1972), Brack and Quentin (1974b), and Beiner et al.

(1975), it became very popular and found widespread
use; see, e.g., the review article by Stone and Reinhard
(2007). The basic form of the Skyrme interaction
between nucleons 1 and 2 can be written as

V̂
ðSkyrmeÞ
12

¼ t0ð1þ x0P̂σÞδðr12Þ

þ 1

2
ð1þ x1P̂σÞ½ðk̂

†Þ2δðr12Þ þ δðr12Þk̂
2�

þ t2ð1þ x2P̂σÞk̂
† · δðr12Þk̂

þ 1

6
t3ð1þ x3P̂σÞδðr12Þn

α
BðR12Þ

þ iW0ðσ̂1 þ σ̂2Þ · k̂
†δðr12Þk̂ ð17Þ

with parameters ti, xi, α, and W0. In Eq. (17) Pσ ¼

ð1þ σ̂1 · σ̂2Þ=2 denotes the spin-exchange operator, k̂ ¼
ð∇1 −∇2Þ=ð2iÞ is the relative momentum, and nB is the
total nucleon density. The relative coordinate and center-
of-mass coordinate are defined by r12 ¼ r1 − r2 and
R12 ¼ ðr1 þ r2Þ=2, respectively. The contribution with
factor t3 is a generalization that originates from an
explicit three-body term

V̂123 ¼ t3δðr1 − r2Þδðr2 − r3Þ ð18Þ

in the original Skyrme interaction and was converted to a
density-dependent two-body interaction. The parameter
α controls the strength of the repulsion. The original
three-body interaction (18) corresponds to α ¼ 2. The
contribution with the factor W0 generates the spin-orbit
interaction in systems that are not spin saturated. For the
description of nuclei, contributions from the Coulomb
interaction have to be considered in addition. The
potential (17) can be seen as an expansion in powers
of the relative momentum k. Since it stops at second
order, the interaction cannot be applied reliably in cases
where the momenta of the nucleons reach high values,
e.g., in nuclear matter at densities substantially above
saturation.

Evaluating the energy density from the Hamiltonian in
HF approximation yields an EDF that depends on a
number of single-particle densities and their spatial
derivatives. Since the interaction is of zero range,
exchange contributions are easily obtained and only
local densities appear in the EDF. Besides the usual
single-particle number densities ni, the kinetic-energy
densities τi, the currents ji, the spin-orbit densities Ji, the
spin densities σi, etc. are relevant; see, e.g., Bender,
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Heenen, and Reinhard (2003) for details. In applications
to nuclear matter, currents, spin densities, and spatial
derivatives of all single-particle densities vanish. The
energy density becomes a more-or-less simple functional
in fractional powers of the number densities (Dutra et al.,
2012). Obviously, an extrapolation to high densities can
lead to divergences. Several extensions of the standard
Skyrme functional have been proposed; see, e.g.,
Lesinski et al. (2007), Bender et al. (2009), Margueron
et al. (2009, 2010, 2012), Margueron and Sagawa
(2009), Chamel et al. (2011), Dutra et al. (2012),
Hellemans, Heenen, and Bender (2012), and Davesne
et al. (2015). We note that not every Skyrme-type EDF
can be derived from simple two- and three-body poten-
tials in a MF approximation. A number of well-calibrated
parametrizations were proposed recently (Chabanat et al.,
1997, 1998; Agrawal, Shlomo, and Au, 2005; Stone,
2005; Goriely, Chamel, and Pearson, 2009a, 2009b,
2013a, 2013b; Kortelainen et al., 2010, 2012, 2014;
Washiyama et al., 2012). They predict many properties
of nuclei close to experimental values with rather small
deviations. The performance of 240 Skyrme parametri-
zations under nuclear matter constraints was studied by
Rikovska Stone et al. (2003) and Dutra et al. (2012).
Only a few satisfy all criteria that were selected. Some
Skyrme forces show instabilities (Chamel and Goriely,
2010; Kortelainen and Lesinski, 2010; Hellemans et al.,
2013; Navarro and Polls, 2013; Pastore et al., 2014)
under particular conditions that may be cured with
appropriate modifications of the EDF.

• Mean-field models with Gogny interaction: Instead of a
zero-range force as in the Skyrme case, the use of finite-
range interactions is an established approach in MF
models. A sum of two Gaussians was suggested by Brink
and Boeker (1967) for HF calculations. A review of
phenomenological interactions in early HF models was
given by Quentin and Flocard (1978). In order to obtain
quantitatively reasonable results, a density-dependent
effective two-body interaction was added by Gogny
which leads to the present form

V̂
ðGognyÞ
12

¼
X

j¼1;2

exp

�

−
r2
12

μ2j

�

× ðWj þ BjP̂σ −HjP̂τ −MjP̂σP̂τÞ

þ t3ð1þ x0P̂σÞδðr12Þn
α
BðR12Þ

þ iWlsðσ̂1 þ σ̂2Þ · k̂
†δðr12Þk̂ ð19Þ

with parameters μj, Wj, Bj, Hj, Mj, t3, α, and Wls, and
the isospin-exchange operator Pτ ¼ ð1þ τ̂1 · τ̂2Þ=2
(Dechargé and Gogny, 1980). The density-dependent
and the spin-orbit contributions have the form of the
corresponding terms in the Skyrme interaction, although
with a different notation of the parameters. Because of
the finite-range part in the Gogny interaction, it is
technically more involved to consider the exchange
contributions to the energy density. On the other hand,
divergences of a zero-range interaction are avoided in
calculations involving pairing channels. Because of the

more involved numerical calculations, there are only few
parametrizations of the Gogny interaction that are used in
practice (Goriely, Hilaire, and Koning, 2008). A collec-
tion of these parameter sets with a comparison to
predictions of nuclear matter properties can be found
in Sellahewa and Rios (2014).

• Relativistic mean-field and Hartree-Fock models: In
relativistic approaches to nuclear matter and finite nuclei,
a field-theoretical formalism is employed where nucle-
ons are represented by Dirac four spinors ψ i and the
nucleon-nucleon interaction is modeled by an exchange
of mesons. This description, called quantum hadrody-
namics (QHD), was originally seen as a fully field-
theoretical approach (Fetter and Walecka, 1971; Chin
and Walecka, 1974; Walecka, 1974; Serot and Walecka,
1986; Serot, 1992) and treated with the respective
formalism. Later, the view of an effective description
to be applied in rather simple approximations prevailed
since nucleons as composite objects cannot be consid-
ered as fundamental degrees of freedom. The common
starting point in QHD models is a Lagrangian

L ¼ Lnuc þ Lmes þ Lint ð20Þ

that contains contributions of nucleons i

Lnuc ¼
X

i¼n;p

ψ̄ iðγμi∂
μ −miÞψ i ð21Þ

with rest mass mi, of free mesons Lmes, and an inter-
action term Lint.

In early versions of the model only isoscalar mesons
such as the (Lorentz-)scalar σ meson and the (Lorentz-)
vector ω meson were considered in order to model the
long-range attraction and short-range repulsion of the
nuclear interaction, respectively, in symmetric nuclear
matter. Isovector mesons were added for the description
of neutron-proton asymmetric systems. In most models,
the vector isovector ρ meson is considered, but an
isospin-dependent splitting of the neutron and proton
Dirac effective masses is obtained only when a scalar
isovector δ meson is included. In contrast, the Landau
effective masses are different in asymmetric matter even
without a δ meson. Pseudoscalar mesons, such as the
pion, or pseudovector mesons are relevant in models that
treat exchange effects explicitly (Lalazissis et al., 2009).
The mesons in the QHD approach share the same
quantum numbers with their counterparts observed in
experiments; however, they have to be seen as effective
fields in the model that serve to capture the essential
features of the strong interaction in the medium. With the
standard choice of mesons, the contribution of free
mesons to the Lagrangian (20) reads

Lmes ¼
1

2
ð∂μσ∂

μσ −m2
σσ

2Þ

þ 1

2
ð∂μ

~δ · ∂μ~δ −m2

δ
~δ · ~δÞ

− 1

4
GμνG

μν þ 1

2
m2

ωωμω
μ

− 1

4
~Hμν · ~H

μν
þ 1

2
m2

ρ~ρμ · ~ρμ ð22Þ
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with the usual field tensors of the vector mesons Gμν ¼

∂μων − ∂νωμ and ~Hμν ¼ ∂μ~ρν − ∂ν~ρμ. In most ap-
proaches, it is assumed that mesons couple minimally to
nucleons leading to an interaction contribution of the form

Lint ¼ −
X

i¼n;p

ψ̄ i½γμðgωω
μ þ ~τ · gρρμÞ

þgσσ þ gδ~τ · ~δ�ψ i; ð23Þ

where gi (i ¼ ω, σ, ρ, δ) denote the empirical coupling
constants. Their values are obtained by fitting to properties
of nuclear matter or finite nuclei. The coupling to scalar
mesons modifies the Dirac effective mass m�

i of the
nucleons. It is essential in order to obtain a realistic
spin-orbit splitting in nuclei. From the Lagrangian (20)
the field equations for nucleons and mesons are derived.
They have to be solved self-consistently, usually in the
RMF approximation, where meson fields are treated as
classical fields and negative-energy states of the nucleons
are neglected (no-sea approximation). Scalar and vector
densities of nucleons appear as source terms for the
mesons. Finally, a covariant energy density functional is
obtained.

The basic version of QHD as discussed previously can
qualitatively describe the feature of saturation in nuclear
matter. It results from a competition of attractive scalar and
repulsive vector self-energies Si and Vi in the relativistic
dispersion relation

Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ ðm�
i Þ

2

q

þ Vi ð24Þ

for a nucleon iwithmomentump andDirac effective mass
m�

i ¼ mi − Si. With increasing density of the medium, the
scalar potential Si rises more slowly than the vector
potential Vi. The EoS becomes very stiff; nevertheless,
the speed of sound does not exceed the speed of light. A
quantitative description of nuclear matter and nuclei
requires the extension of the simple Lagrangian density
(20) in order to simulate a medium-dependent effective
interaction. Several options have been explored in the
literature.

In early extensions of the model, nonlinear (NL) self-
interactions of the mesons were considered by adding a
contribution of the form

Lnl ¼ −
A

3
σ3 −

B

4
σ4 þ

C

4
ðωμω

μÞ2 ð25Þ

to Eq. (20). Cubic and quartic terms of the σ meson were
introduced by Boguta and Bodmer (1977) and satisfactory
results were obtained; see, e.g., Reinhard et al. (1986) and
Rufa et al. (1988). The addition of the quartic ω term by
Sugahara and Toki (1994)wasmotivated by comparison of
the scalar and vector potentials with DBHF. Later, self-
couplings of isoscalar and isovector mesons were used to
modify the isospin dependence of the EoS (Müller and
Serot, 1996; Furnstahl, Serot, and Tang, 1997; Todd-Rutel
and Piekarewicz, 2005).

Instead of adding explicit new terms to the Lagrangian
density (20), the coupling constants gi in Eq. (23) can be

replaced by functionals Γi of the nucleon fields. It is found
that effective density-dependent (DD) nucleon-meson
couplings can be extracted from the medium-dependent
DBHF nucleon self-energies. Usually, a dependence of the
couplings Γi on the vector density5 nv ¼

ffiffiffiffiffiffiffiffi

jμj
μ

p

is
assumed, which is defined in a covariant way with the
nucleon current jμ. In the rest frame of a nucleus or nuclear
matter,nv is identical to the baryon number density nB. The
density dependence of the couplings leads to so-called
“rearrangement” contributions to the vector self-energies
(Fuchs, Lenske, and Wolter, 1995). This is essential in
order to obtain a thermodynamic consistent model. The
functional formfor the density dependenceof the couplings
with rational and exponential functionswas suggested by a
comparison to DBHF results in an early parametrization of
the DD-RMF model that was fitted to binding energies of
nuclei (Typel and Wolter, 1999). This approach was
followed by several others (Nikšić et al., 2002, 2005;
Long et al., 2004; Typel, 2005, 2010; Roca-Maza, Viñas
et al., 2011). Alternative functions were considered by
Gögelein et al. (2008). The density dependence of the
meson-nucleon couplings was also directly derived from
the nucleon self-energies (Hofmann, Keil, and Lenske,
2001a, 2001b; Gögelein et al., 2008), where the momen-
tum dependence of the self-energies was mapped to an
effective density dependence.

Details on applications of the NL and DD-RMF
models can be found in Reinhard et al. (1986), Rufa et al.
(1988), Reinhard (1989), Ring (1996), Serot and Walecka
(1997), Bender, Heenen, and Reinhard (2003), Furnstahl
(2004), Vretenar et al. (2005), and Nikšić, Vretenar,
and Ring (2011). The models are employed without
explicitly taking the antisymmetrization of the many-body
wave function into account. The finite range of the effective
interaction mediated by the meson exchange requires
extra computational efforts in order to handle fully anti-
symmetrized many-body states similar to nonrelativistic
Gogny HF calculations. In addition, an entirely new
parameter set for the couplings has to be determined.
Nevertheless, relativistic Hartree-Fock or Hartree-Fock–
Bogoliubov models were implemented (Long, Van Giai,
and Meng, 2006; Meng et al., 2006; Long et al., 2007,
2010).

Treating the basic scalar-vector models as relativistic
local quantum field theories, it was found that two-loop
corrections lead to large contributions. It was concluded
that the loop expansion does not converge and that the
composite nature of the nucleons has to be respected by
introducing nonlocal interactions as represented by form
factors; see, e.g., Prakash, Ellis, and Kapusta (1992) and
references therein.

Somegeneralizationsof theRMFmodel extend the form
of the nucleon-meson interaction from minimal couplings
to couplings of the meson fields to derivatives of the
nucleon fields. An early version is the model by Zimanyi
andMoszkowski (1990), where scalar derivative couplings
were introduced that could be transformed to particular

5Note that despite the name, the vector density is a Lorentz scalar.
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nonlinear couplings of nucleons to the σ meson. General
first-order derivative couplings were considered by Typel,
von Chossy, and Wolter (2003) and Typel (2005). The
approach was extended to derivatives of arbitrary high
order by Gaitanos, Kaskulov, and Mosel (2009) and
Gaitanos and Kaskulov (2012, 2013) in the nonlinear
derivative (NLD) coupling model and studied in various
versions (Chen, 2012, 2014; Antić and Typel, 2015;
Gaitanos and Kaskulov, 2015). The main feature of the
NLD approach is the dependence of the nucleon self-
energies not only on the density but also on the energy or
momentum as in DBHF calculations. As a consequence,
themomentumdependence of the nucleon optical potential
in nuclear matter, which is extracted from the fitting of
proton-nucleus scattering data in Dirac phenomenology
(Hama et al., 1990; Cooper et al., 1993), can be reproduced
up to nucleon energies of about 1 GeV.

The explicit appearance of meson fields in the Lagran-
gian density of RMF approaches is suppressed in so-
called relativistic point-coupling (PC) models (Nikolaus,
Hoch, and Madland, 1992; Rusnak and Furnstahl, 1997;
Bürvenich et al., 2002; Zhao et al., 2010). Here four-
nucleon contact terms, including powers and derivatives
thereof, appear with free prefactors that need to be
determined. They can be seen as the result of expressing
solutions of the meson field equations in the QHD
approach as functions of the relativistic source densities
and their spatial derivatives. This resembles the nonrela-
tivistic SkyrmeHF approach. A systematic expansion ofL
in various densities, currents, and their derivatives is
possible by using power counting arguments from princi-
ples of effective field theory (Furnstahl, 2002). The form
and parameters of the PC approach can also be constrained
by in-medium χEFT (Finelli et al., 2003, 2004, 2006).

Nuclear matter characteristics of 263 RMF parametri-
zations were compared recently by Dutra et al. (2014).
Similar to the case of SkyrmeHFmodels, only a very small
number is consistent with all nuclear matter constraints
considered in that publication.

• Quark-meson coupling model: An approach closely
related to the previously discussed relativistic descrip-
tions of matter and nuclei is the quark-meson coupling
(QMC) model (Downum et al., 2006; Rikovska-Stone
et al., 2007; Thomas et al., 2013; Whittenbury et al.,
2014). It explicitly considers nucleons as bound states of
quarks which couple to mesons in the surrounding
medium. This leads to a polarization of the nucleon
and the resulting mass shift is calculated self-
consistently. It can be expressed as a polynomial in
the σ meson field similar to NL-RMF models. Properties
of matter are calculated in the HF approximation,
including pions in addition to the standard scalar and
vector mesons. With a small number of parameters,
results of similar quality as in (non)relativistic mean-
field models or EDFs are obtained.

• Other approaches to the nuclear energy density func-
tional: Besides the models discussed previously that
dominate the applications to the EoS, a number of
independent alternative approaches were developed in
the past. Instead of nonrelativistic effective interactions

of the Skyrme or Gogny type, other forms were inves-
tigated, e.g., a density-dependent separable monopole
interaction (Rikovska Stone et al., 2002) or three-range
Yukawa (M3Y) type interactions (Nakada, 2003). The
phenomenologically inspired approach of Fayans
(1998), Fayans et al. (2000), and Fayans and Zawischa
(2001) exploits the quasiparticle concept of Migdal’s
theory of finite Fermi systems. The Barcelona-Catania-
Paris (-Madrid) (BCP or BCPM) EDFs (Baldo et al.,
2004, 2013; Baldo, Schuck, and Viñas, 2008) are
constructed by interpolating between parametrizations
of BHF results, obtained with realistic nucleon-nucleon
potentials, for the EoS of symmetric nuclear matter and
neutron matter. By adding appropriate surface and spin-
orbit contributions, an excellent description of finite
nuclei is obtained with only a small number of
parameters.

b. Quark matter

A proper QCD-based description of strongly interacting
matter, in particular, in the vicinity of the predicted deconfine-
ment phase transition, is desirable but currently not available
since the theory is challenging to solve at finite chemical
potentials. With a few exceptions, the prevailing approach for
the hadron-quark transition region is to describe both phases
separately and to interpolate in between in terms of a phase
transition construction (see Sec. III.D). Therefore, QM in the
following has to be understood as deconfined quark matter. In
this phase one can think of quarks as actual particles or
quasiparticles with no particularly complicated behavior or
confinement properties. Then it is not surprising that typical
approaches to describe quark matter show many similarities to
RMF models for nuclear matter. To model quark matter
correctly it is important though to understand and to account
for the confinement mechanism in order to eventually under-
stand the phase diagram of strongly interacting matter in the
language of QCD. Therefore we briefly review corresponding
developments as far as they concern the EoS of dense matter.

• Thermodynamic bag model: The simplest, but still
widely applied model for QM is a limiting case of the
MIT bag model (Chodos et al., 1974), which was
originally developed to describe hadrons as quark bound
states of finite size. Confinement in this model is
accomplished by endowing the finite region with a
constant energy per unit volume B. A special case is
a highly excited hadron in which quarks would then
behave as an ideal gas. The latter idea was followed to
describe a system of homogeneous, deconfined quark
matter (Farhi and Jaffe, 1984). The EoS is that of an ideal
Fermi gas of three quark flavors, where the bag constant
B is added to the total energy density and subtracted
from the pressure in order to maintain thermodynamic
consistency. B can be understood as the pressure differ-
ence of confined and deconfined quarks in vacuum. The
value of B can be determined from more sophisticated
models (Cahill and Roberts, 1985). The bag constant
arises not solely due to deconfinement but rather from
the breaking of chiral symmetry. Consequently it is
density dependent (Buballa and Oertel, 1999) as well as
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flavor dependent (Buballa, 2005). Already in perturba-
tive QCD the thermodynamic bag models treatment of
quarks as free noninteracting fermions does not hold and
requires corrections (Freedman and McLerran, 1977c;
Fraga, Pisarski, and Schaffner-Bielich, 2001), which can
be generalized to a simple power series expansion of
the pressure in the quark chemical potential (Alford
et al., 2005). Similarly, a phenomenologically motivated
expansion considers diquark contributions to the pres-
sure (Alford and Reddy, 2003). Recently, an extension
of the thermodynamic bag model was suggested
which accounts for the breaking of chiral symmetry
and the influence of vector interactions (Klähn and
Fischer, 2015).

• Nambu–Jona-Lasinio–type models and extensions: One
of the prominent features of QCD is the dynamical
breaking of chiral symmetry as the mechanism that
generates most of the hadron masses. The idea that
the nucleon mass can be understood as the self-energy of
a fermion in analogy to the energy gap of a super-
conductor has been developed at a time where the notion
of quarks did not even exist (Nambu and Jona-Lasinio,
1961a, 1961b). The NJL model is based on a Lagrangian
for a fermion field with a quartic, chirally symmetric
local interaction of the form

L ¼ ψ̄ðγμi∂
μ −mÞψ þ Gfðψ̄ψÞ2 þ ðψ̄iγ5~τψÞ

2g; ð26Þ

where ψ is understood as a quark fermion spinor,m is the
bare quark mass, G is a coupling constant, and ~τ are the
isospin matrices. The similarity to RMF models is
evident. A Fierz transformation of the interaction gives
access to all possible quark-antiquark interaction chan-
nels. These techniques have been explained in detail by
Klevansky (1992) and Buballa (2005) for vacuum and in-
medium applications. The coupling G can be understood
as a particular choice of a generalized form factor
for nonlocal current-current interactions (Schmidt,
Blaschke, and Kalinovsky, 1994; Bowler and Birse,
1995). An important feature of the approach is that
the quartic terms—as a hallmark of NJL-type models—
can be shown to bosonize into baryon, meson, and
diquark contributions to the partition function and hence
to the thermodynamic potential (Kleinert, 1976; Roberts,
Cahill, and Praschifka, 1988; Cahill, Praschifka, and
Burden, 1989; Hatsuda and Kunihiro, 1994). This
bosonization property is exploited to develop an under-
standing of hadrons as quark bound states in the medium
(Bentz and Thomas, 2001; Wang, Wang, and Rischke,
2011; Blaschke et al., 2014). The original NJL model’s
success rests on its ability to describe the breaking of
chiral symmetry. It fails to describe the infrared behavior
of QCD which addresses confinement. It has therefore
been suggested to extend the model by an imaginary
chemical potential expressed in terms of the Polyakov
loop as a possible order parameter of deconfinement
(Fukushima, 2004; Ratti, Thaler, and Weise, 2006). A
modification of the Polyakov loop potential in these
PNJL models due to a finite quark chemical potential μ

was introduced by Dexheimer and Schramm (2010).
Further extensions result from variations of the previous
models, e.g., nonlocal PNJL models without (Blaschke
et al., 2008) and with (Contrera, Grunfeld, and Blaschke,
2014) μ-dependent Polyakov loop potential. The PNJL
model is used to study the QCD phase diagram at finite
temperatures and densities (Fukushima, 2008). A further
approach to account for confinement in NJL-type models
suggests to introduce an infrared cutoff to remove
unphysical quark-antiquark thresholds (Ebert, Feldmann,
and Reinhardt, 1996). The similarity of the NJL model to
the RMF approach for nuclear matter suggests that in
analogy to the nonlinear Walecka model higher-order
coupling channels, i.e., multiquark or quark-meson
interactions, will affect, in particular, the high-density
behavior of the EoS (Benic et al., 2015; Zacchi, Stiele,
and Schaffner-Bielich, 2015).

C. Clustered and nonuniform matter

At subsaturation densities and not too high temperatures,
nucleonic matter is no longer uniform since it becomes
unstable with respect to variations in the particle densities.
There are various criteria to identify the onset of instabilities,
in both static and dynamic approaches; see Sec. III.D for
details. Spatial structures can develop on different length
scales. In stellar matter, nucleons can form nuclei or clusters of
different sizes and shapes due to the interplay between the
short-range nuclear interaction and the long-range electro-
magnetic interaction. If the size of the clusters is small as
compared to their mean free path, the matter can still be
described as a homogeneous system, however with cluster
degrees of freedom in addition to nucleons and leptons. At
higher densities, e.g., in the so-called pasta phases in the inner
crust of NSs, the density variations have to be treated
explicitly. In low-density cold matter, nuclei arrange them-
selves in a lattice and a crystal structure develops, e.g., in the
outer crust of NSs, and a new length scale emerges. The
appearance of cluster structures in matter can be treated in
various approximations that differ mainly with respect to the
choice of the basic degrees of freedom and to the description
of interactions.

1. Nuclear statistical equilibrium

Themost basic approach to describe clusteredmatter is given
by NSE models, which are sometimes just called “statistical
models.” They are characterized by assuming a statistical
ensemble of different nuclear species and nucleons in thermo-
dynamic equilibrium. In particular, the chemical potentials of
nuclei are not independent. They are given by Eq. (2). NSE
models are not only used in simulations of CCSNe but also for
nucleosynthesis calculations and in the context of thermonu-
clear supernovae; see, e.g., Seitenzahl et al. (2009).
In its simplest form, the ideal NSE, a mixture of

noninteracting ideal gases assuming Maxwell-Boltzmann
statistics is utilized. In chemistry, this description is known
as “mass-action law.” In the ideal NSE approach the abun-
dance ratio of nuclei is determined by a Saha equation, which
originally was used to describe the population of ionization
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states in atoms. Instead of classical Maxwell-Boltzmann
statistics, the correct quantum statistics of the particles can
also be implemented. Often the corresponding Fermi-Dirac
distribution is adopted only for nucleons.
Standard NSE models do not take into account the effects

of the strong interaction between the constituents explicitly,
e.g., correlations in nucleon-nucleon scattering states are
neglected. However, in some models the interactions in the
nucleonic component are incorporated by employing a mean-
field description of homogeneous matter; see Sec. III.B.2.a.
A large variety of NSE based models can be found in the

literature, employing various extensions and different levels of
sophistication. Here we summarize only the most important
aspects which are typically discussed in the context of these
models. For some selected models we give further details
in Sec. V.

a. Nuclear binding energies

Realistic EoSs in the NSEmodel description require nuclear
binding energies as basic input. Different approaches are used:
On the one hand, values from theoretical models are employed.
These can be simple mass formulas such as liquid-drop-like
parametrizations or more detailed nuclear structure calcula-
tions; see, e.g.,Myers and Swiatecki (1990, 1994),Möller et al.
(1995), Lalazissis, Raman, and Ring (1999), Geng, Toki, and
Meng (2005), and Koura et al. (2005). On the other hand,
experimentallymeasured binding energies (Audi,Wapstra, and
Thibault, 2003; Wang et al., 2012) are used directly. However,
an extension of these mass tables from experiments is required
with the help of theoretical approaches since exotic nuclei that
are not yet studied experimentally can be encountered. Shell
effects in the structure of nuclei have a significant impact on the
distribution at low temperatures as illustrated in Sec. V.C.
Binding energies of nuclei inside matter are modified as
compared with their vacuum values. These medium effects
are often introduced in NSE models in phenomenological
approximations (see Sec. III.C.1.d).

b. Excited states

It is straightforward to include excited states of nuclei in an
explicit way if their excitation energies are known exper-
imentally. However, especially at high excitation energies and
for very heavy or exotic nuclei, the experimental information
on the levels and their properties is not complete. In this
case, theoretical level densities or internal partition functions
can be used (Fái and Randrup, 1982; Engelbrecht and
Engelbrecht, 1991; Iljinov et al., 1992; Blinnikov et al.,
2011). Alternatively, a temperature dependence of the binding
energies is introduced (Botvina and Mishustin, 2010). The
works of Rauscher and Thielemann (2000, 2001), and
Rauscher (2003) provide nuclear partition functions in tabular
form for temperatures up to 24 MeV and a wide range of
nuclear masses. These calculations are based on both exper-
imental data and a backshifted Fermi-gas model. More
recently, similar tables were provided by Goriely, Hilaire,
and Koning (2008). Problems with divergences of the original
Fermi-gas model (Bethe, 1936) at low excitation energy can
be solved (Grossjean and Feldmeier, 1985). However, the
general reliability of the employed densities of state formulas

can be questioned. For an investigation of effects of excited
states on the supernova EoS and the stellar collapse, see, e.g.,
Mazurek, Lattimer, and Brown (1979), Nadyozhin and Yudin
(2004), and Liu, Zhang, and Luo (2007).

c. Coulomb interaction

In matter with the condition of electric charge neutrality, the
Coulomb interaction among nucleons and nuclei is screened
due to the background of electrons and possibly muons. Some
NSE models neglect this Coulomb screening. Others include it
by using only the one-body Wigner-Seitz approximation
(Lattimer et al., 1985). However, there are very detailed
calculations available that were obtained from the study of
single-component and even multicomponent plasmas at differ-
ent temperatures; see, e.g., Chabrier and Potekhin (1998),
Chugunov and DeWitt (2009), Potekhin et al. (2009, 2013),
and Potekhin, Chabrier, and Rogers (2009) and Sec. III.D.2
for more details. Typically the results are provided in the form
of fitting formulas. The simulations have reached a high
numerical precision and deviations from the linear mixing rule
for binary plasmas were found to be small (DeWitt, Slattery,
and Chabrier, 1996). For a discussion of different approx-
imations of Coulomb interactions in supernova EoS and the
application of some of the aforementioned models, see, e.g.,
Nadyozhin and Yudin (2005) and Blinnikov et al. (2011).

d. Medium modifications of heavy nuclei

Some statistical models employ explicit medium corrections
of the binding energies of heavy nuclei. These can be due to
temperature or due to the presence of unbound nucleons. In
both cases, the surface and bulk properties of nuclei are
modified as compared to the vacuum at zero temperature.
One aspect is a temperature dependence of the symmetry
energy (Dean, Langanke, and Sampaio, 2002; Agrawal et al.,
2014) and of effective nucleon masses (Donati et al., 1994;
Fantina et al., 2012). Obviously, such temperature effects are
related to excited states and internal partition functions but the
problem is approached from a different perspective. Effects of
the unbound nucleons on nuclei are often extracted from
nucleons-in-cell calculations (see Sec. III.C.6). For instance,
Papakonstantinou et al. (2013) and Aymard, Gulminelli, and
Margueron (2014) calculated the binding energy shifts for
Skyrme interactions in the local-density approximation and in
the extended Thomas-Fermi (TF) approximation, respectively.
Itwas pointed out that the definition of the binding energy shifts
has to be consistentwith the definition of clusterswhere one has
to distinguish coordinate-space and energy-space clusters.

e. Cluster dissolution

The application of the standard NSE is limited to rather low
densities. This model cannot describe the dissolution of nuclei
with increasing densities, the Mott effect, which is mainly
driven by the Pauli principle (Röpke, Münchow, and Schulz,
1982; Röpke et al., 1983). When the nuclear saturation density
is approached, a transition to uniform nucleonic matter is often
enforced with the help of the excluded-volume mechanism,
which represents a classical, phenomenological approach to
describe the dissolution of nuclei at high densities in a
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geometrical picture. Different variants of excluded-volume
effects can be found in the literature. In the simplest case, the
total volume of the thermodynamic system is replaced by the
so-called free volume that is the total volume reduced by
the volume occupied by the particles of finite size (Rischke
et al., 1991). This approach is well known from the EoS of a
van der Waals gas. General expressions for excluded-volume
effects can be found in Yudin (2010, 2011) and Typel (2016).
More detailed models solve for the exact canonical partition
function, taking into account finite volumes of the particles
and/or assuming a certain geometry of the particles. An
important example is the hard-sphere model (Carnahan and
Starling, 1969; Mulero, 2008). Note that the excluded-volume
mechanism is also commonly used in the context of relativistic
heavy-ion collisions (HICs) to describe the freeze-out of
particles and their yields in a hadron resonance gas model
(Gorenstein, Petrov, and Zinovjev, 1981; Andronic et al.,
2012). A problem of the excluded-volume approach is the
occurrence of a superluminal speed of sound at high densities
and hence the EoS becomes acausal (Rischke et al., 1991;
Venugopalan and Prakash, 1992).

2. Single nucleus approximation

Instead of considering the distribution of all nuclei, the
chemical composition is sometimes simplified by assuming a
representative single heavy nucleus, unbound nucleons, and
possibly α particles and other light nuclei in the description.
Burrows and Lattimer (1984) showed that this so-called single
nucleus approximation (SNA) has only a small impact on
thermodynamic quantities. However, there can be significant
differences between the average mass and charge number of
heavy nuclei in a full NSE model and the corresponding
values of the representative nucleus employing the SNA
(Souza et al., 2009) (see also Sec. V.C). Furthermore, the
conclusions of Burrows and Lattimer (1984) are not appli-
cable if the composition is dominated by light nuclei. In this
case it is not possible to consider a “representative light
nucleus” due to the small number of nuclei involved and the
large variability of their binding energies (Hempel et al., 2012,
2015). We point out that considering a statistical ensemble of
all nuclei, i.e., going beyond the SNA, is particularly relevant
for the determination of electron-capture rates during core
collapse (see Sec. VI.B.1).

3. Virial expansion

Correlations between the constituents of a low-density gas
of particles at finite temperature can be considered in the virial
equation of state (VEoS). It provides corrections to the NSE
approach to clustered matter. The original formulation goes
back to Beth and Uhlenbeck (1936, 1937) and uses a
description based on the grand canonical ensemble. The
VEoS relies on a series expansion of the grand canonical
potential
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in powers of the particle fugacities zi ¼ exp ½ðμi −miÞ=T�,
where μi is the chemical potential of particle species i
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denote the thermal wavelengths and bi are the degeneracy
factors of the single particles. The virial coefficients bij, bijk,
etc. are simple functions of the temperature. They contain
information on the two-, three-, etc., many-body correlations
in the system. In particular, the second virial coefficients
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with appropriate degeneracy factors gðijÞl;k and g
ðijÞ
l . Note that

the separation of bound state (first term) and scattering
contributions (second term) is not unique, since a partial
integration of the energy integral (28) leads to equivalent
expressions with a different partitioning. Because experimen-
tal information can be used directly in the evaluation, a model-
independent approach is obtained. Quantum statistical (QS)
effects can be incorporated easily. For contributions beyond
second order see, e.g., Pais and Uhlenbeck (1959), Dashen,
Ma, and Bernstein (1969), Bedaque and Rupak (2003), and
Liu, Hu, and Drummond (2009). The VEoS is only applicable
for small fugacities zi ≪ 1 or equivalently niλ

3

i ≪ 1 with the
particle number density ni. These thermodynamic conditions
are found, e.g., in the neutrino sphere of supernovae. In
present applications of the VEoS to stellar matter only
correlations on the level of the second virial coefficient due
to the strong interaction are considered.

4. Quantum statistical approach

As mentioned, the transition from inhomogeneous to uni-
form matter cannot be easily described within the NSE
approach nor within the VEoS. For that purpose, NSE models
are extended phenomenologically by adding a classical
excluded-volume correction (see Sec. III.C.1.e). A systematic
description of correlations and, in particular, the Mott effect in
an interacting many-body system is given by the QS approach
(Röpke, Münchow, and Schulz, 1982; Röpke et al., 1983).
In general, many-body methods can provide spectral

functions that contain all information on correlations.
Prominent peaks in a spectral function can be identified with
the corresponding quasiparticles, e.g., deuterons in nucleonic
matter. As an approximation, quasiparticles with shifted
energies can be introduced in the practical calculation of an
EoS. These energies depend on the nucleon densities, the
temperature, and the momentum of the quasiparticle in the
medium. They include effects of Pauli blocking and can be
parametrized with more or less sophistication (Röpke, 2009,
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2011; Typel et al., 2010). The energy shifts enter in the
determination of the particle densities and finally in the EoS.
Going beyond the simple quasiparticle approximation for

the spectral function in the QS approach leads to a form of the
grand canonical potential that closely resembles the corre-
sponding expression of the VEoS. This generalized Beth-
Uhlenbeck approach was formulated and studied in detail with
realistic two-nucleon potentials (Schmidt, Röpke, and Schulz,
1990; Stein, Morawetz, and Röpke, 1997). In this case, the
EoS can be formulated with a modified expression for
the second virial coefficient. The quasiparticle energies in
the bound state contribution are affected by the in-medium
energy shifts and the phase shifts in the scattering contribution
have to be calculated from the in-medium T matrix for two-
body scattering.

5. Generalized relativistic density functional

The modification of cluster binding energies in the medium,
which is a basic feature of the QS approach, can be
implemented in quasiparticle models. The generalized rela-
tivistic density functional (gRDF) approach (Typel et al.,
2010, 2014; Typel, 2013) is such a model. It is an extension of
a RMF model with density-dependent nucleon-meson
couplings that is constrained by fits to properties of finite
nuclei. In the gRDF model, nucleons and clusters are included
as explicit degrees of freedom. Two-nucleon scattering
correlations are described by effective resonances in the
continuum with parameters that are adjusted in order to
reproduce the model-independent virial EoS at low densities
(Voskresenskaya and Typel, 2012). All particles couple to the
meson fields with appropriately scaled strengths resulting in
density-dependent scalar and vector self-energies. In addition,
mass shifts of composite particles are implemented in a
parametrized form, which are derived from the QS approach,
in order to account for Pauli blocking from the nucleons in the
medium. A further change of the cluster binding energies is
caused by the screening of the Coulomb field due to the
electronic environment in stellar matter. The density depend-
ence of the binding energy shifts and meson-nucleon
couplings leads to rearrangement contributions in the vector
self-energy and thermodynamic quantities, which guarantee a
thermodynamically consistent approach. The model interpo-
lates between the correct low-density limit given by the virial
EoS and the suprasaturation case of purely nucleonic
matter. Medium-dependent mass shifts of light clusters were
also incorporated in other models that study pasta phases in
compact star matter (Avancini et al., 2012; Pais, Chiacchiera,
and Providência, 2015).

6. Nucleons-in-cell calculations

In all models that were previously described, matter is
treated as a uniform system of interacting particles. They are
assumed to be pointlike or to have a finite volume. The
formation of inhomogeneous structures in subsaturation
matter at low temperatures can be studied in calculations
where a nonuniform distribution of nucleons inside a cell of
given shape and size is considered. Here quantal and classical
methods can be distinguished. In stellar matter, electrons are
usually not treated explicitly but considered as a uniform

background gas. The methods are mostly applied to study the
formation of clusters or pasta phases in the crust of neutron
stars, the corresponding phase transitions, and the effects of
the Coulomb interaction (see Sec. III.D). Beyond static
properties for an EoS, the dynamical response, e.g., in
neutrino scattering, or hydrodynamic quantities such as
viscosities and conductivities can also be studied.
In the classical molecular dynamics (CMD) approach

(Dorso, Molinelli, and Lopez, 2011; Horowitz et al., 2011;
Dorso, Giménez Molinelli, Nichols, and Lopez, 2012;
Piekarewicz and Toledo Sanchez, 2012; Schneider et al.,
2013; Giménez Molinelli et al., 2014; Giménez Molinelli
and Dorso, 2015), a certain number of nucleons is placed
inside a box of given volume to reproduce a fixed density. The
velocities of the particles are chosen to represent a Maxwellian
distribution at given temperature. The particles interact via a
two-body potential where the Coulomb contribution is essen-
tial. The time evolution of the system is followed by solving a
set of classical coupled equations of motion, which is possible
even for a rather large number of particles. In quantum
molecular dynamics (QMD) models (Maruyama et al.,
1998; Kido et al., 2000; Watanabe et al., 2002a, 2002b,
2003a, 2004, 2009; Matsuzaki, 2006; Watanabe, 2007;
Sonoda et al., 2008; Maruyama, Watanabe, and Chiba,
2012), particles are not treated as pointlike objects as in
CMD calculations but as wave packets of Gaussian shape. The
motion of the centroid of the wave package is classically
followed. Quantum statistical effects, such as antisymmetri-
zation or shell effects, are not accounted for in molecular
dynamics (MD) simulations. The Pauli exclusion principle
can be incorporated approximately with appropriately
designed contributions to the potentials. Central questions
of MD calculations are the fragment recognition (Dorso and
Randrup, 1993; Strachan and Dorso, 1997), the chemical
composition (Horowitz, Berry, and Brown, 2007; Horowitz
and Berry, 2009; Dorso, Giménez Molinelli, López, and
Ramirez-Homs, 2012; Caplan et al., 2014), the appearance
of different, sometimes complicated, shapes in the density
distribution and their topological characterization (Watanabe
et al., 2003b; Dorso, Giménez Molinelli, and López, 2012;
Alcain, Giménez Molinelli, Nichols, and Dorso, 2014;
Schneider et al., 2014; Horowitz et al., 2015), and phase
transitions (Watanabe et al., 2005; Alcain, Giménez Molinelli,
and Dorso, 2014). Structure functions and quantities related to
the dynamical response can be extracted as well (Horowitz
et al., 2004, 2005; Horowitz, Perez-Garcia, and Piekarewicz,
2004; Caballero et al., 2008; Horowitz and Berry,
2008, 2009).
A description of matter inside a cell based on particle

density distributions instead of localized classical particles is a
widely adopted approach for inhomogeneous systems. A
number of different methods is available. They differ in the
physical input, the approximations, and the numerical com-
plexity. Many approaches that model the formation of large
nuclei surrounded by a gas of nucleons employ the Wigner-
Seitz approximation where the size of the cell is determined by
the neutrality condition, i.e., the total charge of baryonic
matter inside the volume considered is compensated by the
electronic charge. At low densities, a spherical cell, which is
centered around individual nuclei, is usually assumed. When
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other geometries, mostly rectangular shapes, are considered,
it is common to presume a periodic density distribution
in space.
The (compressible) liquid-drop model (LDM) belongs to

the class of microscopic-macroscopic approaches where the
energy of matter inside the cell is parametrized with
several individual contributions such as bulk, surface, etc.
(Baym, Bethe, and Pethick, 1971; Lattimer, 1981; Lamb et al.,
1983; Ravenhall, Pethick, and Wilson, 1983; Lattimer et al.,
1985; Lattimer and Swesty, 1991; Lorenz, Ravenhall, and
Pethick, 1993; Watanabe, Iida, and Sato, 2000; Douchin and
Haensel, 2001; Oyamatsu and Iida, 2007; Nakazato,
Oyamatsu, and Yamada, 2009; Furusawa et al., 2011;
Nakazato, Iida, and Oyamatsu, 2011; Furusawa, Sumiyoshi
et al., 2013). They depend on the size of the heavy nucleus and
the density of the surrounding gas of nucleons. The detailed
structure of the expressions can be guided by energy density
functionals, often nonrelativistic Skyrme parametrizations.
Because of its convenience in the numerical application,
the LDM is one of the earliest approaches to model inhomo-
geneous stellar matter.
Other widely employed methods are the TF approximation

or extensions thereof. Here the density distribution of fer-
mions in the cell is determined using a given EDF for
nucleonic matter. In the most simple form, a local-density
approximation of nuclear matter is obtained, but corrections
related to surface effects and the finite range of interactions,
can be incorporated in the calculation. The shape of the
density distributions can be given by a simple functional form
with few parameters or can be determined fully self-consis-
tently. Technically, the free energy of the cell is minimized
variationally and the chemical potentials of the nucleons are
obtained for fixed particle numbers. Both nonrelativistic and
relativistic (Sumiyoshi, Oyamatsu, and Toki, 1995; Cheng,
Yao, and Dai, 1997; Shen et al., 1998a, 2011; Avancini et al.,
2008, 2009; Avancini, Barros et al., 2010; Avancini,
Chiacchiera et al., 2010; Okamoto et al., 2012; Zhang and
Shen, 2014) models are available. The main disadvantage of
the TF approach is that shell effects are not included. They can
be incorporated with the Strutinski method (Brack, Jennings,
and Chu, 1976; Brack, Guet, and Hakansson, 1985; Onsi
et al., 2008; Pearson et al., 2012, 2015) but this correction to
the TF approach is not widely used for astrophysical EoS. The
formation of inhomogeneous matter inside cells of various
shapes is also studied by using the density functional theory
(DFT) formalism in relativistic approaches (Maruyama et al.,
2005; Gögelein and Müther, 2007), where shell effects are
included but only in the mean-field approximation without
explicit particle exchange.
The next level of complexity is reached in HF calculations,

which take the antisymmetrization of the nuclear many-
body wave function within the cell fully into account. This
approach is most frequently utilized with nonrelativistic
potentials such as the zero-range Skyrme interaction, e.g.,
in the pioneering works of Ravenhall, Bennett, and Pethick
(1972), Negele and Vautherin (1973), Bonche and Vautherin
(1981, 1982), and Bonche, Levit, and Vautherin (1985). Shell
effects were found to disappear quickly with increasing
temperature at 2–3 MeV and nucleon pairing effects are
relevant only below approximately 1 MeV (Brack and

Quentin, 1974a, 1974b). The evolution of the density dis-
tribution inside the cells and consequences for the EoS are
investigated in several works; see, e.g., Sil et al. (2002),
Magierski, Bulgac, and Heenen (2003), Gögelein and Müther
(2007), Gusakov, Kantor, and Haensel (2009a), Newton and
Stone (2009), Pais and Stone (2012), Papakonstantinou et al.

(2013), and Pais, Newton, and Stone (2014). Also time-
dependent HF calculations were employed, both in the
standard formalism (Schuetrumpf et al., 2013a, 2013b,
2015) and in an extended approach using dynamical wavelets
for single-particle wave functions (Sebille, Figerou, and de la
Mota, 2009; Sebille, de la Mota, and Figerou, 2011). A correct
treatment of antisymmetrization beyond the individual cell
volume was developed recently (Vantournhout, Jachowicz,
and Ryckebusch, 2011; Vantournhout et al., 2011;
Vantournhout and Feldmeier, 2012).

D. Phase transitions

Theoretical models for the EoS are mostly concerned with
calculations of single phases where a thermodynamic poten-
tial is extremized locally for its set of natural state variables
(see Sec. II.A). In the case of thermodynamic instabilities, the
equilibrium state of the system is obtained from a global
minimization or maximization of the appropriate thermody-
namic potential allowing for a phase transition with coexist-
ence of different phases, i.e., macroscopic regions in space
with different values of the various densities but identical
intensive variables (Landau and Lifshitz, 1980).
Examples of phase transitions in the present context are the

liquid-gas phase transition in nuclear matter (Barranco and
Buchler, 1980; Müller and Serot, 1995; Gulminelli et al.,
2003; Hempel et al., 2013), the hadron-quark transition,
which is expected to occur at very large baryon number
densities and/or temperatures (Collins and Perry, 1975;
Prakash, Cooke, and Lattimer, 1995; Steiner, Prakash, and
Lattimer, 2000; Mishustin et al., 2002; Bhattacharyya,
Mishustin, and Greiner, 2010; Hempel et al., 2013;
Yasutake et al., 2013), and the gas–liquid-solid phase tran-
sition, which is relevant in the formation of the crystalline
crust during the cooling of PNSs (Chamel and Haensel, 2008).
A phase transition could also be caused by the appearance of
new particle species such as hyperons in dense hadronic
matter (Schaffner-Bielich and Gal, 2000; Schaffner-Bielich
et al., 2002; Gulminelli, Raduta, and Oertel, 2012; Gulminelli
et al., 2013).

1. Thermodynamic description of phase transitions

In the following, FðT; fNig; VÞ is chosen as the thermo-
dynamic potential for the discussion. The free energy
describes the equilibrium thermodynamics of a system
if it is a convex function of the extensive variables, i.e.,
fNig and V, and a concave function of the temperature T.
Then the conjugate intensive variables, the chemical potentials
μi ¼ ∂F=∂NijT;fNj≠ig;V

, and the pressure p ¼ −∂F=∂VjT;fNig

are constant throughout the volume V. The free energy of a
particular theoretical model is locally convex in the subspace
of extensive variables if all eigenvalues of the stability matrix
M with entries
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Mij ¼
∂2F

∂Qi∂Qj

�

�

�

�

T;Qk;k≠i;k≠j

ð30Þ

are positive. Here Qi, Qj, and Qk are variables from the set of
the conserved charges fNig or the volume V. If at least one
eigenvalue of M is zero or negative, this point in the space of
variables is metastable or unstable, respectively. All unstable
points are enclosed by the so-called spinodal in the space of
conserved charge numbers NB, NQ, etc. Besides this thermo-
dynamic criterion there are other dynamical approaches to
identify the instability region, e.g., collective excitations with
random phase approximation calculations, the Vlasov equa-
tion formalism, or Fermi liquid theory (Pethick and Ravenhall,
1988; Heiselberg, Pethick, and Ravenhall, 1993; Margueron,
Navarro, and Blottiau, 2004; Brito et al., 2006; Providência,
Brito, Avancini et al., 2006; Providência, Brito, Santos et al.,
2006; Ducoin, Margueron, and Chomaz, 2008; Ducoin
et al., 2008).
The spinodal is enclosed by the binodal that connects all

points with identical temperature, chemical potentials, and
pressure. Points inside the binodal belong to the phase
coexistence region. Here the free energy for given conserved
total charge numbers can be lowered as compared to the
locally calculated value by considering the coexistence of
two phases p ¼ I, II with different volumes Vp such that
VI þ VII ¼ V. The particle numbers Np

i in the individual
phases are in general different but all chemical potential are
identical μIi ¼ μIIi in the two phases as well as the other
intensive variables (PI ¼ PII, TI ¼ TII). This is called the
Gibbs condition for thermodynamic equilibrium. Points in
coexistence always lie on a binodal. Hence, it is sufficient to
know the thermodynamic potential on this line or surface to
construct the system properties for thermodynamic conditions
inside the binodal.
If there is only a single conserved charge, it is easily

checked whether the free energy of a particular theoretical
model is a convex function of the only conserved charge for
given T and V. If not, the binodal degenerates to two separate
points and the well-known Maxwell construction of phase
transitions with isotherms in the pressure-density diagram is
obtained. By changing the temperature of the system, the two
distinct points in coexistence can collapse into a single point
that defines the critical point and the corresponding critical
temperature and critical pressure. If this topology applies, it is
possible to move from one phase to the other around the
critical point without crossing the binodal in the temperature-
density plane. In some cases, e.g., for the quark-hadron phase
transition, there is often no consistent model for the complete
range of the thermodynamic variables and two different
models are used. Then a transition from one phase to the
other without crossing a phase separation line is not possible
(Hempel et al., 2013).
In the case of more than one conserved charge the complete

set of Gibbs conditions applies and the topology of the
binodals and spinodals becomes more complex (Barranco
and Buchler, 1980; Glendenning, 1992; Müller and Serot,
1995; Iosilevskiy, 2010; Hempel et al., 2013). New features
appear: In the higher dimensional parameter space, the critical
point turns into a critical line or critical hypersurface and

several topological end points can be defined. However, it is
always possible to map the Gibbs construction with several
independent charge numbers to a technically more simple
Maxwell construction (Ducoin, Chomaz, and Gulminelli,
2006; Typel et al., 2014). This is achieved by applying
Legendre transformations to the free energy F that replace
all conserved charge numbers except one with the correspond-
ing chemical potentials. Thereby a modified thermodynamic
potential is found that depends only on a single-particle
number as in the standard Maxwell case.

2. Coulomb effects

In models of the EoS for NSs and CCSNe the equilibrium
with respect to the strong as well as the electromagnetic
interaction between all constituents has to be considered.
As a consequence, the phase structure of dense matter is
substantially affected by the interplay of these short- and long-
range forces in competition with entropy. In addition, the
specific condition of charge neutrality applies. At not too
high temperatures the appearance of clusters and crystal-
line structures is expected (see also Sec. III.C). Closely
connected to both features is the possible occurrence of
pasta phases.
If macroscopic phases coexist, different assumptions for the

treatment of charge neutrality can be made. Either one requires
local charge neutrality, i.e., each phase is charge neutral, or
the system is charge neutral as a whole and the phases are
allowed to carry a net charge. We note that the assumption of
charged phases but global charge neutrality contradicts the
assumption of the thermodynamic limit, if interpreted strictly,
as the Coulomb energy would diverge for such a system.
Nevertheless, it is considered as a reasonable simplification in
many situations; see Martin and Urban (2015) for a discussion
regarding the inner NS crust. Depending on the choice for
realizing the charge neutrality condition, the chemical equi-
librium conditions for phase coexistence (Hempel, Pagliara,
and Schaffner-Bielich, 2009) lead to different qualitative
properties of the phase transition (Glendenning, 1992;
Iosilevskiy, 2010; Hempel et al., 2013), in particular, to the
feature of Coulomb frustration (Gulminelli et al., 2003;
Chomaz et al., 2007; Napolitani et al., 2007; Hasnaoui and
Piekarewicz, 2013).
In more advanced approaches, surface effects and the finite-

range of interactions are explicitly taken into account. A
crucial ingredient is the surface tension between phases.
Typically, for high surface tensions, the phases tend to
approach a configuration that resembles the case of local
charge neutrality (Heiselberg, Pethick, and Staubo, 1993;
Maruyama et al., 2008; Yasutake et al., 2013). For very low
surface tensions, however, the configuration can be similar to
the case of global charge neutrality without finite-size effects.
The liquid-gas phase transition in nuclear matter predicts

the coexistence of high-density and low-density phases of
macroscopic size below a critical temperature. If Coulomb
effects are included, electrons have to be added to compensate
the positive proton charge. Phase transitions with macro-
scopic, charge-neutral phases in coexistence would create
large electric fields at the interfaces that the system tries to
avoid (Voskresensky, Yasuhira, and Tatsumi, 2003). This can
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be seen in the analysis of instabilities where density fluctua-
tions of certain wavelengths are preferred. Clusters of finite
size emerge that are surrounded by a low-density gas of
nucleons. The density of the electrons throughout the system
is nearly constant due to the large incompressibility of such a
high-density Fermi liquid. Often a constant electron density is
assumed, with some exceptions; see, e.g., Maruyama et al.

(2005), Endo et al. (2006), and Yasutake, Maruyama, and
Tatsumi (2011). The formation of clusters in uniform nuclear
matter is well studied in several models that consider the
distribution of nucleons and electrons in a cell of given
geometry (see Sec. III.C.6). Usually, the Wigner-Seitz
approximation is applied. At low temperatures and rather
low densities, a single cluster in a spherical cell is the preferred
geometry (Lamb et al., 1978; Douchin and Haensel, 2000).
With increasing density it becomes more advantageous to
develop structures of cylindrical or planar geometry and a
sequence of pasta phases is found; see, e.g., Watanabe and Iida
(2003) and Gupta and Arumugam (2013) and references given
in Secs. III.C.6 and V.A.1. This was observed in early models
for cells with different symmetry with simple energy density
functionals (Hashimoto, Seki, and Yamada, 1984; Oyamatsu,
Hashimoto, and Yamada, 1984; Williams and Koonin, 1985;
Oyamatsu, 1993). In principle, every change from one
geometry to another represents a phase transition of its
own. More refined calculations with less restrictions to the
spatial distributions of the densities found that transitions from
clustered matter at low densities to uniform matter at high
densities exhibit weaker discontinuities, i.e., the phase tran-
sitions are much less pronounced (Newton and Stone, 2009;
Pais, Newton, and Stone, 2014). A nearly complete quenching
of the traditional liquid-gas phase transition can occur
(Gulminelli et al., 2003).
When stellar matter is cooled down at a given density, the

size of clusters grows as observed, e.g., in spherical Wigner-
Seitz cell calculations. At very low densities, the average
distance between the clusters is large and the short-range
strong interaction can practically be neglected. Coulomb and
thermal energies drive the thermodynamic behavior of the
system that can be seen as a plasma of ions and electrons. At
very low temperatures a phase transition from the gas phase to
a crystalline phase is expected (Salpeter, 1961; Baym, Pethick,
and Sutherland, 1971). The ratio of the strengths of the
Coulomb interaction and of the thermal energy is measured by
the parameter

Γi ¼
Z5=3
i e2

aeT
ð31Þ

with the charge Zi of the cluster and the electronic length scale

ae ¼

�

3ne
4π

�

1=3

ð32Þ

depending on the electron density ne. When the temperature
approaches zero, Γi diverges. Fully ionized electron-ion
plasmas have been studied in detail (Brush, Sahlin, and
Teller, 1966; Hansen, 1973; Pollock and Hansen, 1973;
Farouki and Hamaguchi, 1993; Chabrier and Potekhin,
1998; Potekhin and Chabrier, 2000, 2010; Chabrier,

Douchin, and Potekhin, 2002; Daligault, 2006; Cooper and
Bildsten, 2008; Potekhin et al., 2009; Potekhin, Chabrier, and
Rogers, 2009). From classical Monte Carlo simulations (see
Sec. III.C.6) of a one-component plasma (OCP) it is known
that the phase transition from the gas to the crystal phase
occurs at Γi ≈ 175. The exact value will depend on the details
of the theoretical model. In particular, the often employed
Wigner-Seitz approximation is insufficient to capture the
correlations that are induced by the Coulomb interaction
and determine the location of the phase transition. For a
mixture of different ionic species, corrections to the OCP
result apply (Ogata et al., 1993; Chabrier and Potekhin, 1998;
Nadyozhin and Yudin, 2005; Chugunov and DeWitt, 2009).
For Γi → 0 the Debye screening limit in a plasma is obtained.
For Γi → ∞ a body-centered cubic (bcc) lattice of ions
immersed in a uniform sea of electrons is found as the ground
state (Baym, Bethe, and Pethick, 1971; Baym, Pethick, and
Sutherland, 1971). At finite temperatures lattice vibrations
contribute to the thermodynamic potential of the system
(Baiko, Potekhin, and Yakovlev, 2001). With increasing
temperature these thermal excitations will lead to the melting
of the crystal.
An amorphous structure instead of a crystal as a ground

state at zero temperature seems to be unlikely but the actual
ion lattice type could be very sensitive to detailed conditions
(Ichimaru, Iyetomi, and Mitake, 1983; Magierski and Heenen,
2002). However, Jog and Smith (1982) found that a phase
composed of interpenetrating cubic lattices of different nuclei
can be preferred in certain density regions.

IV. CONSTRAINTS ON THE EoS

Models for the EoS can be constrained by different
observables, which originate mainly from three different
sources as follows: (1) laboratory measurements of nuclear
properties and reactions, (2) theoretical ab initio calculations,
and (3) observations in astronomy. These constraints can test
different regions in the space of thermodynamic variables.
They are, in the best case, independent of each other and
different aspects of an EoS model can be checked; see, e.g.,
Klähn et al. (2006), Lattimer and Prakash (2007), Tsang et al.
(2012), Lattimer and Lim (2013), Li and Han (2013),
Horowitz et al. (2014), Lattimer and Steiner (2014), and
Stone, Stone, and Moszkowski (2014) for discussions.
Although we discuss a fair amount of constraints, keep in
mind that these are usually limited to very restricted domains
in the phase diagram (e.g., saturation properties are properties
of symmetric matter, NSs are cold and do not explicitly probe
the EoS at given density, etc.). Therefore, theoretical models
are required to interpolate between or even extrapolate
away from these constrained regions. While it is desirable
that these models by themselves do not add further uncer-
tainties one has to be cautiously aware that this is not
necessarily the case.
Properties of nuclear matter are usually characterized by a

number of parameters that are related to the leading contri-
butions in an expansion of the energy per nucleon

EðnB; δÞ ¼ E0ðnBÞ þ EsymðnBÞδ
2 þOðδ4Þ ð33Þ
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in the isospin asymmetry δ ¼ 1 − 2Yq. Both the energy per
nucleon of symmetric matter

E0ðnBÞ ¼ mnuc − Bsat þ
1

2
Kx2 þ 1

6
Qx3 þ � � � ð34Þ

and the symmetry energy

EsymðnBÞ ¼ J þ Lxþ 1

2
Ksymx

2 þ � � � ð35Þ

can be expanded close to nuclear saturation in the deviation
x ¼ ðnB − nsatÞ=3nsat of the baryon density nB from the
saturation density nsat. Equations (34) and (35) define the
binding energy at saturation Bsat, the incompressibility K,
the skewness Q, the symmetry energy at saturation J, the
symmetry energy slope parameter L, and the symmetry
incompressibility Ksym. In general, nuclear matter parameters
are strongly correlated among each other as well as to
properties of nuclei and neutron stars; see, e.g., Klüpfel et al.
(2009), Kortelainen et al. (2010), Lattimer and Lim (2013),
and Lattimer and Steiner (2014). In recent years, many studies
focused on obtaining constraints for the symmetry energy
Esym and its density dependence; see, e.g., the contributions to
the topical issue by Li et al. (2014). The most important
constraints on the nuclear matter parameters and the EoS are
discussed in more detail in the following sections.

A. Terrestrial experiments

1. Systematics from nuclear masses and excitations

The most basic and least ambiguous constraints for the EoS
come from properties of nuclei, most notably nuclear masses
(Audi, Wapstra, and Thibault, 2003; Wang et al., 2012) and
density distributions (De Vries, De Jager, and De Vries, 1987;
Angeli and Marinova, 2013). An extrapolation to infinite
mass numbers yields the corresponding nuclear matter param-
eters. Besides the saturation point at saturation density of
nsat ≈ 0.15–0.16 fm−3, and the corresponding value of the
binding energy of Bsat ≈ 16 MeV, accurate constraints on the
symmetry energy Esym and its density dependence are
obtained. There exists a linear correlation between the
symmetry energy at saturation J and the slope parameter L
(Lattimer and Lim, 2013; Lattimer and Steiner, 2014). This
correlation is very robust and validated in various theoretical
approaches; see, e.g., Kortelainen et al. (2010), Fattoyev and
Piekarewicz (2011), and Nazarewicz et al. (2014).
The aforementioned correlation is based on ground-state

binding energies. Instead of ground-state binding energies,
Danielewicz and Lee (2014) considered excitation energies to
isobaric analog states and charge invariance to derive con-
straints for the symmetry energy. In a comprehensive analysis,
Skyrme HF calculations were used to derive an acceptable
region for Esym at densities from 0.04 to 0.16 fm−3. They also
extracted a constraint for J and L which significantly overlaps
with the constraint from nuclear masses. At baryon densities
nB ∼ 0.105 fm−3, the constraint of Danielewicz and Lee
(2014) is the tightest, with an excellent accuracy of
�1.2 MeV. For higher densities the constraint rapidly dete-
riorates, for lower densities it gets slightly worse. This
“bottleneck” region was previously noted by Brown (2000),

Trippa, Colò, and Vigezzi (2008), and Roca-Maza, Brenna
et al. (2013). Nuclear energy density functionals with different
values of J and L that are fitted to binding energies of nuclei
often show a crossing of their symmetry energies and/or their
neutron matter EoS in this region. The corresponding density
can be interpreted as an average value of the densities in finite
nuclei. Danielewicz and Lee (2014) combined their analysis
of isobaric analog states with measurements of skin thick-
nesses to arrive at tighter constraints of J ¼ 30.2–33.7 MeV
and L ¼ 35–70 MeV.
Obviously, constraints on the symmetry energy become

tighter, if the experimental knowledge about binding energies
is extended to very asymmetric nuclei. Many of the current
high-precision mass measurements have been made possible
by Penning-trap mass spectrometers or mass spectrometry
with storage rings in combination with radioactive beams
(Wolf et al., 2013). Binding energies of nuclei are also crucial
for nucleosynthesis calculations and the location of the drip
lines (Erler et al., 2012). They can also be used directly in the
EoS of the outer crust of cold NSs; see, e.g., Baym, Pethick,
and Sutherland (1971), Kreim et al. (2013), and Wolf et al.
(2013), and Sec. V.A.1.

2. Nuclear resonances

Nuclear resonances in the form of collective excitations of
finite nuclei contain important information about the isoscalar
and isovector properties of the nucleon-nucleon interaction.
For example, Paar et al. (2014) performed a global statistical
analysis of experimental results for different collective exci-
tations with emphasis on correlations between different
observables. In addition to nuclear masses and charge radii,
they considered the anti-analog giant dipole resonance, the
isovector giant quadrupole resonance, the dipole polarizability
of 208Pb, and the pygmy dipole resonance transition strength
in 68Ni. Employing a certain class of relativistic nuclear EDFs
leads to tight constraints for J ¼ 32.5� 0.5 MeV and L ¼
49.9� 4.7 MeV and the crust-core transition density in NSs.
Interestingly, the former values are fully compatible with
the final results of Lattimer and Lim (2013) with J ¼
29.0–32.7 MeV and L ¼ 40.5–61.9 MeV and Lattimer and
Steiner (2014) with L ¼ 44–66 MeV.

a. Giant monopole resonance

Constraints for the nuclear incompressibility K can be
deduced from fitting results of theoretical models to exper-
imental data on the isoscalar giant monopole resonance
(ISGMR), also called the breathing mode. However, it is
perceived in the literature that the extraction of K from
ISGMR data is not unambiguous as it relates to the density
dependence of the symmetry energy in the models
(Piekarewicz, 2004; Shlomo, Kolomietz, and Colò, 2006;
Sharma, 2009). For example, RMF models often obtain larger
values for K in the range of 250–270 MeV (Piekarewicz,
2004) than nonrelativistic models.
Recently, Khan and Margueron (2013) reanalyzed the

problem of model dependencies. They showed that the data
actually constrain the density-dependent incompressibility
around the crossing density of 0.1 fm−3, by using both
relativistic and nonrelativistic EDFs. Therefore constraints
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on K depend also on the skewness parameter Q of the
functional used to analyze the data. The situation is similar
for the extraction of the symmetry energy from nuclear masses
(cf. Sec. IV.A.1).
A very comprehensive list of theoretical calculations of K

from the literature was given by Stone, Stone, and
Moszkowski (2014). In the same article, a reanalysis of the
ISGMR was performed, based on a liquid-drop approach to
the description of the vibrating nucleus. Interestingly, it was
found that K lies in the range of 250–315 MeV, which is
significantly higher than the generally accepted values of K ¼
248� 8 MeV (Piekarewicz, 2004) or K ¼ 240� 20 MeV
(Shlomo, Kolomietz, and Colò, 2006). They achieved con-
sistency with the latter values provided the ratio of the surface
to volume contributions Ksurf=Kvol in a leptodermous expan-
sion is close to −1, as predicted by a majority of mean-field
models. However, in their analysis it seems that the exper-
imental data favor a ratio different from −1. The high values of
K are thus related to a different surface contribution to the
ISGMR compared with other works employing mean-field
models. Note that Stone, Stone, and Moszkowski (2014) were
able to explain the ISGMR of tin isotopes, which was found
by Piekarewicz (2010) to be a startling problem of nuclear
structure.

b. Giant dipole resonance

The nuclear isovector giant dipole resonance (IVGDR)
can be used to constrain the symmetry energy. From
measured centroid energies for a liquid droplet model one
obtains a correlation between the volume and surface part
of the symmetry energy of finite nuclei (Lipparini and
Stringari, 1989; Lattimer and Lim, 2013), which can be
transformed into a correlation between L and J. Trippa,
Colò, and Vigezzi (2008) found that the IVGDR gives the
tightest constraints on Esym around nB ¼ 0.1 fm−3 with
23.3 MeV < Esymð0.1 fm−3Þ < 24.9 MeV, by analyzing the
IVGDR by a variety of Skyrme models. Lattimer and Lim
(2013) used different functional forms of Esym to extract the
correlation between L and J. Their results show a significant
overlap with other constraints; see Fig. 1 in Lattimer and
Steiner (2014).
The pygmy dipole resonance (PDR) at excitation energies

much below the IVGDR is also sensitive to the symmetry
energy (Klimkiewicz et al., 2007; Carbone et al., 2010).
Reinhard and Nazarewicz (2010) and Daoutidis and Goriely
(2011) argued that it is not possible to extract constraints on J
and L from PDR strengths because their correlation with the
symmetry energy is too weak. This was studied in more detail
by Reinhard and Nazarewicz (2013) who found that the
correlation between the accumulated low-energy strength and
the symmetry energy “dramatically depends on the energy
cutoff” used. Furthermore, they came to the conclusion that
the low-energy dipole excitations cannot be interpreted in
terms of a collective PDR mode.

c. Electric dipole polarizability

Tamii et al. (2011) reported a precise measurement
of the electric dipole response of 208Pb from proton inelastic

scattering. The extracted electric dipole polarizability
αD is correlated to the neutron skin thickness (Lipparini and
Stringari, 1989; Reinhard and Nazarewicz, 2010; Piekarewicz
et al., 2012), which in turn is correlated with L (see
Sec. IV.A.3). Using this two-step process, Lattimer and
Lim (2013) obtained an anticorrelation between L and J,
with significant overlap with other constraints.
Recently Roca-Maza, Centelles et al. (2013) found that the

product αDJ is much better correlated with the neutron skin
thickness of 208Pb and L than the polarizability αD itself.
After reanalyzing the experimental results of Tamii et al.

(2011), Roca-Maza, Centelles et al. (2013) obtained a
linear correlation between J and L. Adopting a value of J ¼
31 � 2 MeV, this resulted in L ¼ 43� ð6Þexpt � ð8Þtheor �

ð12Þest MeV, where “expt” denotes experimental, and “theor”
theoretical uncertainties, while “est” originates from the uncer-
tainty in J. Tamii, von Neumann-Cosel, and Poltoratska (2014)
obtained a linear correlation between J andL. They pointed out
that the difference to the anticorrelation found by Lattimer and
Lim (2013) results from how they analyzed the data. Lattimer
and Steiner (2014) revised the results of Lattimer and Lim
(2013), taking the improved correlation of Roca-Maza,
Centelles et al. (2013) into account. Roca-Maza et al. (2015)
confirmed the correlation with additional data on other nuclei,
slightly enlarging the interval for J and L.
Zhang and Chen (2015) analyzed the data from Tamii et al.

(2011) in yet another way. Instead of constraining nuclear
matter properties at normal nuclear density, they showed that
αD of 208Pb puts stringent constraints on the symmetry energy,
or almost equivalently the pure neutron matter EoS, at
subsaturation densities significantly below nsat. Their final
results for the subsaturation EoS are consistent with the
experimental constraints of Tsang et al. (2009) and
Danielewicz and Lee (2014). In addition, they obtained
agreement with various theoretical works for the neutron
matter EoS, which are included in Fig. 6. The recent study of
Hashimoto et al. (2015) determined the dipole polarizability
of 120Sn, which is strongly correlated with that of 208Pb,
experimentally from proton inelastic scattering.

3. Neutron skin thicknesses

The density distributions of nucleons and their root-mean-
square (rms) radii

ffiffiffiffiffiffiffiffi

hr2i i
p

change rather smoothly for nuclei in
the valley of stability when the mass number increases.
However, the proton and neutron radii are not in general
equal. Neutron-rich nuclei develop a neutron skin with

thickness Δrnp ¼
ffiffiffiffiffiffiffiffi

hr2ni
p

−

ffiffiffiffiffiffiffiffiffi

hr2pi
q

. The charge distributions

and charge radii of many nuclei are well known experimen-
tally, e.g., from elastic electron scattering or isotope shift
measurements; see Angeli et al. (2009) and Angeli and
Marinova (2013) and references therein. In contrast, neutron
radii of nuclei and thus neutron skin thicknesses are much less
precisely determined.
For the measurement of neutron radii of nuclei, experiments

with particles that probe the neutron distribution with the help
of the strong or weak interaction have to be utilized. Typical
examples are proton scattering experiments (Ray, 1979; Ray
and Hodgson, 1979; Klos et al., 2007; Terashima et al., 2008;
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Zenihiro et al., 2010), isovector giant dipole excitations
by inelastic α-particle scattering (Krasznahorkay et al.,
1994), ð3He; tÞ charge exchange reactions (Krasznahorkay
et al., 1999), the excitation of pygmy dipole resonances
(Klimkiewicz et al., 2007), or the study of antiprotonic atoms
(Trzcinska et al., 2001; Jastrzebski et al., 2004; Brown et al.,
2007). Parity violation in elastic electron scattering is used in
the lead radius experiment PREX at Jefferson Lab (Horowitz
et al., 2001, 2012; Abrahamyan et al., 2012). In this type of
approach the weak form factor of the nucleus is measured and
it is primarily determined by the neutron density distribution.
Unfortunately, the deduced neutron skin thickness of 0.302�
0.175ðexpÞ � 0.026ðmodelÞ � 0.005ðstrangeÞ fm carries a
large uncertainty. It is expected to diminish in future exper-
imental runs. A noticeably smaller value of Δrnp ¼ 0.15�
0.03ðstatÞþ0.01

−0.03 ðsysÞ fm was recently reported from experi-
ments of coherent pion photoproduction at the MAMI electron
facility (Tarbert et al., 2014).
Brown (2000) found a strong correlation of the neutron skin

thickness of 208Pb with the derivative dEðnB; δÞ=dnBjnB¼n0;δ¼1

of the neutron matter EoS at a density n0 ¼ 0.1 fm−3 in
nonrelativistic HF calculations with 18 different parametriza-
tions of the Skyrme interaction. These observations triggered
many theoretical and experimental studies to explore the
relation of isospin-dependent properties of nuclei to the
EoS, in particular, the density dependence of the nuclear
symmetry energy EsymðnÞ. An extension of the Skyrme HF
calculations in similar studies of RMF models (Typel and
Brown, 2001), general density functionals in the context of
EFT (Furnstahl, 2002) or the droplet model (Warda et al.,
2009) showed the same correlation, which can also be
expressed as a correlation between Δrnp and the slope
parameter L. More recent representations of the Δrnp-L
and similar correlations of isospin-dependent properties can
be found in Centelles et al. (2009), Chen et al. (2010), Roca-
Maza, Centelles et al. (2011), Gaidarov et al. (2012, 2014),
Tsang et al. (2012), and Viñas et al. (2014a, 2014b). The
consequences for the properties of NSs, such as radius or
proton fraction, were studied by Horowitz and Piekarewicz
(2001a, 2001b, 2002), Steiner et al. (2005), Todd-Rutel and
Piekarewicz (2005), and Avancini et al. (2007a, 2007b,
2007c). The origin of the Δrnp-L correlation, its bulk, and
surface contributions in nuclei and the relation to Landau-
Migdal parameters have been discussed by Dieperink et al.

(2003), Centelles et al. (2010), and Warda et al. (2010). The
neutron skin thickness provides a correlation between L and J
as well and shows a decreasing of L with increasing J, in
contrast to other correlations of that type (Lattimer and Lim,
2013). The present data of the Δrnp-L correlation are derived
only from mean-field calculations of nuclear structure.
However, the neutron skin thickness could be modified by
nucleon-nucleon correlations and clustering at the surface of
the nucleus (Typel, 2014).

4. Heavy-ion collisions

The EoS of warm or hot, strongly interacting matter can be
constrained in laboratory experiments with HICs. Depending
on the beam energy, the impact parameter, the choice of

observables, and the combination of projectile and target
nuclei, very different conditions can be explored. In the early
phase of almost central collisions of about 1 GeV, high
densities of up to 4 times the nuclear saturation density
and temperatures of about 40–50 MeV can be reached for a
very short time (Blättel, Koch, and Mosel, 1993; Fuchs et al.,
1997). In the later stages of a collision, more peripheral or less
energetic reactions, properties of dilute matter at temperatures
below the critical temperature of the liquid-gas phase transition
(15–20 MeV) and subsaturation densities can be studied.
We will not consider here ultrarelativistic HICs probing matter
at very low baryon density and high temperatures. Since the
physics of HICs is a large field on its own, we mention only
the most important aspects relevant to this review.
There are fundamental differences between matter in HICs

and in compact stars. Temperatures and densities can be
similar to those in CCSNe, but matter in HICs is usually more
isospin symmetric (cf. Sec. II.B.3). Furthermore, the fireball in
a HIC has a finite size with a fixed number of nucleons that are
not necessarily in thermal equilibrium. This limits, for
example, the maximum mass number of nuclear clusters
formed under these conditions. Matter in compact stars,
which can be treated in the thermodynamic limit, has to be
charge neutral, whereas there is a net charge in HICs fixed
by the initial charge of the two colliding nuclei. In HICs
Coulomb interactions are typically neglected because of the
high kinetic energies. Characteristic time scales in HICs are
of the order of a few fm=c and do not allow for equilibrium
with respect to weak interactions. On the contrary, in
catalyzed NSs full equilibrium is reached. In compact stars,
weak equilibrium with respect to strangeness changing
reactions is usually assumed, whereas the net strangeness
in HICs is zero. These differences have to be taken into
account when comparing astrophysical EoSs with con-
straints from HICs.
The analysis of HICs requires the comparison of measured

data to rather complex theoretical simulations since a dynami-
cal process has to be followed. These models are based on
different approaches that aim to solve the relevant transport
equations. On the one hand, a set of Boltzmann-type equations
for the single quasiparticle distribution functions is consid-
ered; see, e.g., Danielewicz (1984a, 1984b). They can be
derived consistently as an approximation of the nonequili-
brium Kadanoff-Baym theory including collision and some-
times fluctuation terms (Bertsch and Das Gupta, 1988; Buss
et al., 2012). On the other hand, simulations with molecular
dynamics models in classical approximations, possibly
including antisymmetrization effects, are also employed
(Aichelin, 1991; Ono et al., 1992; Hartnack et al., 1998).
One major challenge is to predict the distribution of observed
particles and fragments reliably. In these models the EoS does
not directly enter but the interactions between all particles
which participate in the collision, as well as in-medium cross
sections of the relevant reactions, which are usually para-
metrized in a convenient form (Li and Chen, 2005). One
important aspect is the momentum dependence of the inter-
action because particle momenta attain much larger values in
HICs than in nuclei (Chen et al., 2014; Xu, Chen, and Li,
2015). Hydrodynamic descriptions (Welke et al., 1988; Gale
et al., 1990; Huovinen and Ruuskanen, 2006; Gale, Jeon, and
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Schenke, 2013), which can make direct use of an EoS, are
more appropriate for studying the evolution of the high-
density phase of a collision, in particular, in (ultra)relativistic
HICs. However, one has to change to a different approach at
later times when the system expands, the density drops, and
fragments are formed.
There are several observables in HICs that are sensitive to

particular features of in-medium interactions that determine
the EoS at suprasaturation densities (Fuchs and Wolter, 2006).
Not only nucleons but also mesons, such as pions or kaons, as
well as light nuclei, e.g., 2H, 3H, 3He, and 4He [see, e.g.,
Chajecki et al. (2014)], are valuable messengers for the
properties of the medium at high and low densities,
respectively.
The collective flow of nucleons exhibits a distinct azimuthal

distribution (Welke et al., 1988), which can be characterized
with coefficients in a Fourier analysis. The transverse flow in
peripheral reactions seems to be mainly sensitive to the
momentum dependence of the mean field. The elliptic flow,
in contrast, depends strongly on the maximum compression
that is reached and it is correlated with the stiffness of the EoS.
The analysis of laboratory experiments in comparison with
simulations indicates that the incompressibility of symmetric
nuclear matter cannot be too high (Welke et al., 1988;
Danielewicz, Lacey, and Lynch, 2002; Reisdorf et al.,
2012; Le Fèvre et al., 2016) (see Sec. V.D.3 and Fig. 16).
The collision region with the highest densities is best

studied with particles that are produced only there and interact
weakly with the medium after their formation. Although being
a rare probe due to their subthreshold production (Hartnack
et al., 2012), kaons seem to be a good choice. Their
observation in HICs points toward a rather low incompress-
ibility K with values below 250 MeV (Fuchs et al., 2001;
Sturm et al., 2001; Hartnack, Oeschler, and Aichelin, 2006).
Consequences of these constraints from HICs on compact star
properties were explored by Sagert, Tolos et al. (2012). For a
discussion of the interplay between HICs and astrophysical
data see, e.g., Aichelin and Schaffner-Bielich (2009).
In recent years, HIC experiments for constraining the EoS

mainly focused on the isospin dynamics (Li, 2002; Baran
et al., 2005; Li, Chen, and Ko, 2008; Di Toro et al., 2009;
Wolter et al., 2009; Tsang et al., 2012; Cozma et al., 2013;
Ademard et al., 2014; De Filippo and Pagano, 2014; Kohley
and Yennello, 2014) in order to explore the properties of
isospin asymmetric matter in more detail. Yield ratios of
particle pairs with the same mass but different isospin, such as
n=p, πþ=π− (Xiao et al., 2014), or fragments 3H=3He (Yong
et al., 2009) have been intensively investigated. The consid-
eration of single or double ratios has the advantage that
systematic experimental uncertainties are reduced and the
sensitivity is increased. A possibility to amplify isospin-
dependent effects is the comparison of collisions with differ-
ent combinations of projectiles and targets with more or less
neutron excess. For example, the isospin diffusion in the neck
region of peripheral and midcentral collisions of 112Sn=124Sn
nuclei is sensitive to the symmetry potential (Tsang et al.,
2009, 2012).
The density dependence of the symmetry energy at mod-

erate to high densities was studied with the help of n=p ratios

and their elliptic flow difference (Cozma, 2011; Russotto
et al., 2011, 2013, 2014) as well as πþ=π− ratios (Reisdorf
et al., 2007). The analysis of the latter results within transport
model simulations suggests a decrease of the symmetry
energy at high densities, which is in conflict with most
EoS models (Xiao et al., 2009; Xie et al., 2013). Also, the
puzzling results for the effective mass splittings of nucleons in
intermediate HICs (Zhang et al., 2014; Coupland et al., 2016)
still need a satisfactory explanation (Kong et al., 2015). Only
more accurate measurements will allow one to set tighter
bounds on the symmetry energy at high densities.
Multifragmentation reactions probe conditions very similar

to matter in CCSNe as illustrated in Fig. 4, where typical
conditions for CCSNe and multifragmentation reactions are
indicated; see the caption for details. In these reactions, a
thermalized system of nuclear matter is formed that is
characterized by subnuclear densities and temperatures of
3–8 MeV. The deexcitation of the system occurs via nuclear
multifragmentation, i.e., breakup into many excited fragments
and nucleons. For the theoretical description of such reactions,
for instance the statistical multifragmentation model (SMM) is
used that is presented in more detail in Sec. V.C. Statistical
models accurately describe many characteristics of the nuclear
fragments observed in the experiments: cluster multiplicities,
charge and isotope distributions, various correlations, and

FIG. 4. Nuclear phase diagram in the temperature–baryon
density plane. Solid and dash-dotted blue lines indicate bounda-
ries of the liquid-gas coexistence region for symmetric and
asymmetric matter calculated with TM1 interactions (Sugahara
and Toki, 1994). The shaded area corresponds to typical con-
ditions for nuclear multifragmentation reactions (Botvina and
Mishustin, 2010). The dashed black lines are isentropic trajecto-
ries characterized by constant entropy per baryon, s ¼ 1, 2, 4, and
6 calculated with the statistical model for supernova matter
(SMSM) (Botvina and Mishustin, 2010). The dotted red lines
show results of a CCSN simulation from Sumiyoshi et al. (2005)
just before bounce (BB), at core bounce (CB), and postbounce
(PB). From Buyukcizmeci et al., 2013.
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other observables; see, e.g., Gross (1990), Bondorf et al.

(1995), and Botvina and Mishustin (2010).
The observation of light nuclei, which are emitted in

Fermi-energy HICs, allows one to determine the density
and temperature of warm dilute matter from experiments
(Kowalski et al., 2007; Natowitz et al., 2010; Wada et al.,
2012). The derived symmetry energies of the clustered matter
indicate an increase as compared to those obtained in model
calculations of uniform matter that is assumed to be composed
solely of nucleons. The thermodynamic conditions are similar
to those in the neutrinosphere of CCSNe (Horowitz et al.,
2014). From the observed yields of nucleons and clusters, it
was possible to extract the in-medium binding energies and
Mott points of light clusters (Hagel et al., 2012) with the help
of chemical equilibrium constants (Qin et al., 2012). Hempel
et al. (2015) refined the study of Qin et al. (2012), taking
into account the differences between matter in HIC and
CCSNe. Results for the equilibrium constant of the α particle
are presented in Fig. 5. A comparison of many EoSs for
warm dilute matter shows that simple NSE descriptions are
not sufficient to reproduce experimental data (Hempel
et al., 2015).

B. Neutron matter calculations

The simple isospin structure of pure neutron matter sim-
plifies the nuclear interaction Hamiltonian, such that ab initio

calculations can be carried out more easily than in the case of
general asymmetric nuclear matter. Calculations using the
different many-body techniques introduced in Sec. III.B with
well-calibrated interactions are available for a large range in

densities; see, e.g., the review by Gandolfi, Gezerlis, and
Carlson (2015) and references therein. They can serve as
important constraints for the EoS models, discussed in Sec. V,
although their results are not directly applicable to astro-
physical objects.
At very low densities, neutron matter is dominated by s-

wave interactions with a large scattering length a ¼ −18.5 fm,
indicating that the two-neutron system is almost bound.
Neutron matter at these densities is close to the unitary limit,
explored experimentally for cold fermionic atoms (Ho and
Mueller, 2004; Ho and Zahariev, 2004).
At intermediate densities, up to roughly nuclear matter

saturation density, and at higher densities, relevant for NSs,
many different calculations from ab initio methods exist. We
mention some calculations, without claiming completeness
for the list below. Seminal results are the variational calcu-
lations by Friedman and Pandharipande (1981) and Akmal,
Pandharipande, and Ravenhall (1998) using the Urbana and
Argonne nuclear two- and three-body forces. BHF calcula-
tions have been reported for instance by Baldo, Bombaci, and
Burgio (1997) and Zhou et al. (2004), and DBHF results by
van Dalen, Fuchs, and Faessler (2004), Krastev and
Sammarruca (2006), and Sammarruca et al. (2012). Rios,
Polls, and Vidaña (2009) compared SCGF calculations for
thermodynamic properties of hot neutron matter with the
corresponding BHF calculations. Carbone (2014) obtained
SCGF results including an effective three-nucleon force for
finite temperature and extrapolated them to vanishing temper-
ature. Horowitz and Schwenk (2006b, 2006c) applied the
virial expansion to dilute neutron matter at nonzero temper-
ature. An early application of the virial expansion was the
description of a neutron gas in supernovae by Buchler and
Coon (1977) using the soft-core Reid potential. QMC calcu-
lations for zero temperature neutron matter using different
versions of the Argonne and Urbana nuclear potentials have
been presented by Carlson et al. (2003), Gandolfi et al.

(2009), Wlazłowski and Magierski (2011), and Gandolfi,
Carlson, and Reddy (2012). Recent QMC (Gezerlis et al.,
2013, 2014; Roggero, Mukherjee, and Pederiva, 2014;
Wlazłowski et al., 2014) and coupled cluster (Baardsen et al.,
2013; Hagen et al., 2014) calculations employ chiral poten-
tials. Neutron matter is particularly interesting for chiral
forces, since only a few LECs accompanying the contact
terms are involved up to next-to-next-to-next-to leading order
(N3LO) including three- and four-nucleon forces. In addition,
at least up to roughly saturation density, the MBPT results
with RG evolved and unevolved chiral forces are in very good
agreement, showing that neutron matter in this range behaves
perturbatively to a very good approximation; see, e.g., Tolos,
Friman, and Schwenk (2008) and Krüger et al. (2013).
Comparison with QMC calculations corroborates the pertur-
bative nature of neutron matter at these densities (Gezerlis
et al., 2014). Calculations of neutron matter with chiral forces
can be found in Hebeler and Schwenk (2010, 2014), Krüger
et al. (2013), and Tews et al. (2013). In-medium χEFT
following different power counting schemes was applied to
neutron matter at zero and nonzero temperature by Lacour,
Oller, and Meißner (2011), Fiorilla, Kaiser, and Weise (2012),
and Drischler, Soma, and Schwenk (2014).
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FIG. 5. Equilibrium constants of α particles extracted from HIC
experiments (black diamonds) in comparison with those of
various theoretical models, which are all adapted for the con-
ditions in HICs, as far as possible. The gray band is the
experimental uncertainty in the temperature determination. The
black line shows the equilibrium constant of the ideal gas model.
From Hempel et al., 2015.

M. Oertel et al.: Equations of state for supernovae and compact …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015007-30



In Fig. 6 we show the energy per baryon of pure neutron
matter as a function of baryon number density as obtained in a
few of the different approaches cited previously. The yellow
region corresponds to the AFQMC calculations of Gandolfi
et al. (2009) and Gandolfi, Carlson, and Reddy (2012) with the
Argonne two-body potential. The width of the band indicates
uncertainties related to the different phenomenological three-
body forces. The AFQMC results of Wlazłowski et al. (2014)
with chiral forces (green lines and symbols) including only
two-nucleon interactions (2NF) and those including a three-
nucleon force (2NFþ 3NF) are in good agreement with the
former ones. The variational results of Friedman and
Pandharipande (1981) gave lower values than Akmal,
Pandharipande, and Ravenhall (1998) and lie at the lower
boundary of the AFQMC calculations. The width of MBPT
results by Hebeler et al. (2013) shows mainly uncertainties in
the three-nucleon forces employed. The constraint derived by
Krüger et al. (2013) at saturation density comparing different
chiral forces and cutoff schemes within a MBPT calculation is
shown as a vertical error bar. Figure 6 also displays the χEFT
results by Fiorilla, Kaiser, and Weise (2012) and BHF calcu-
lations from Vidaña et al. (2010). The latter use Argonne plus
phenomenological three-body potentials.
We address two points concerning these different results.

First, three-nucleon forces (and potentiallymore, depending on
the resolution scale and density) are important in neutronmatter
and add substantial repulsion at and above saturation density.
This is seen, for example, by comparing QMC calculations
with andwithout three-nucleon forces. Second, all results, with
phenomenological or chiral forces, applying different many-
body techniques, are in reasonable agreement up to saturation
density. This shows that the ab initio many-body calculations
represent a reliable constraint on the EoS of neutron matter up
to nuclear densities (see Sec. V.D.3 and Fig. 16).
The situation is different for calculations of symmetric

nuclear matter. They have been a cornerstone for many-body
methods for decades. However, the empirical saturation point
is difficult to obtain. In addition, symmetric matter is unstable
with respect to cluster formation at densities below saturation
which is strongly temperature dependent and leads to an

increase of the binding energy. Therefore theoretical many-
body calculations of symmetric matter are not as reliable as for
neutron matter and cannot serve as a constraint on the EoS at
present. Instead phenomenological models are adjusted to the
empirical properties of symmetric matter.

C. Astrophysical observations

1. Neutron star masses and radii

Presently, the main astrophysical constraint stems from the
measurements of two very massive NSs in NS-white dwarf
systems which have been reported with unprecedented high
precision. For the first binary system, the determination is
based on Shapiro delay, a general relativistic effect (Demorest
et al., 2010). It yields a mass of 1.928� 0.017M⊙ (Fonseca
et al., 2016). In the second case a well-known structure model
for thewhite dwarf is combinedwith the analysis of orbital data
to obtain a mass of 2.01� 0.04M⊙ for the NS (Antoniadis
et al., 2013). There are indications of evenmoremassiveNSs in
black widow and redback systems (van Kerkwijk, Breton, and
Kulkarni, 2011; Romani et al., 2012; Kaplan et al., 2013). In
these cases, the pulsar is accompanied by a low-mass
companion of a few 0.001M⊙ (black widows) or near
0.2M⊙ (redbacks), which is bloated and strongly irradiated
by the pulsar. However, the analysis of these systems is much
more model dependent than for NS-white dwarf systems. In
particular, the companion’s light curve has to be modeled
inducing large uncertainties in the mass determination.
Although the most probable mass for the NS indicates a very
massive object, the results do not yet reach the same reliability
as the mass determinations of Antoniadis et al. (2013) and
Fonseca et al. (2016). This also holds for theNS in the eclipsing
x-ray binary Vela X-1, where a high mass of 2.12� 0.16M⊙

has been reported by Falanga et al. (2015).
Smaller NS masses have been measured in various binary

systems; see Lattimer (2012) for a recent compilation. In some
cases masses have been derived very precisely from the orbital
parameters of the system without much model dependence in
the analysis. Particularly precise measurements have been
performed for several binary NS systems giving masses close
to the canonical value of 1.4M⊙.
At the other end, the lowest NS masses could be interesting

for constraining the EoS via their formation history.
Originally, Podsiadlowski et al. (2005) suggested to consider
pulsar B in the double pulsar system J0737-3039, with a very
low and precisely measured mass of 1.2489� 0.0007M⊙. If it
originates from the collapse of a progenitor star with
O-Ne-Mg core and the loss of matter during the formation
of the NS is negligible, the baryon number, or equivalently the
corresponding baryon mass MB for the NS, is strongly
constrained from the properties of the white dwarf progenitor.
Its mass was determined to be 1.366M⊙ ≤ MB ≤ 1.375M⊙

(Podsiadlowski et al., 2005), assuming a stationary non-
rotating object. Kitaura, Janka, and Hillebrandt (2006)
concluded on a slightly smaller but similar mass of MB ¼
1.36� 0.002M⊙ from simulations of an electron-capture
supernova. A similar system J1756-2251 was recently
observed with a slightly lower gravitational mass of 1.230�
0.007M⊙ for the pulsar with the lower mass (Ferdman et al.,
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2014). The constraint on the EoS arising from the relation
between gravitational and baryon mass of these low-mass NSs
depends strongly on assumptions. First, there is no complete
consensus about the formation history of these systems and
the origin from a O-Ne-Mg electron-capture supernova is not
confirmed (Tauris et al., 2013). Second, already a possible
baryon loss of 1% during the formation of the compact star
broadens the corresponding baryon mass region by increasing
it by roughly a factor of 2. This effect is included in the
constraints derived by Kitaura, Janka, and Hillebrandt (2006)
but only for two particular EoSs.
The ultimate constraint on the EoS is a determination of

radius and mass of the same object; see, e.g., Özel and Psaltis
(2009), Read et al. (2009), Özel, Baym, and Güver (2010),
and Steiner, Lattimer, and Brown (2013). Recently, Sotani
et al. (2014) discussed how for low-mass NSs this could be
translated into a constraint for a particular combination of K
and L. Currently, radius observations are much more model
dependent than mass measurements, largely because radius
measurements are much more indirect. Possible sources of
systematic error include the composition of the atmosphere,
the strength of the magnetic field, the distance to the source,
interstellar extinction, residual accretion in binaries, bright-
ness variations over the surface, and the effects of rotation in
sources with unknown spin frequencies; see Miller (2013) and
Potekhin (2014) for details. The importance of uncertainties in
determining the radius depends on the type of the object
observed. Currently radii are extracted from four different
types of sources as follows:

(1) Isolated neutron stars (INSs). For INSs it is extremely
difficult to determine the distance, the magnetic field,
and the composition of the atmosphere inducing
altogether very large uncertainties on the radius
determinations from these sources; see, e.g., the
discussion by Potekhin (2014).

(2) Quiescent x-ray transients (QXTs) in low-mass x-ray
binaries. The thermal emission from the surface of the
NS can be observed in the quiescent phase, i.e., when
the accretion of matter from the companion is absent
or at least strongly reduced. They are promising
sources for radii determinations, since the magnetic
field of QXTs is low due to the accretion of matter. In
addition, the atmosphere is likely to be composed of
light elements (H or possible He) and if they are
situated in globular clusters, the distance is well
known. Recent radius determinations from QXTs
are shown in Fig. 7 as SL13 (Steiner, Lattimer, and
Brown, 2013), GS13 and GS13m (Guillot et al.,
2013), and GR14 (Guillot and Rutledge, 2014).
Although promising sources, the results are still
subject to many uncertainties. For instance, there
has been recent discussion about the NS’s atmospheric
composition in quiescent low-mass x-ray binaries
(qLMXBs) in the globular cluster NG 6397. Guillot
et al. (2013) and Guillot and Rutledge (2014) favored
an unmagnetized hydrogen atmosphere and obtained a
small radius of R1.4 ¼ 9.4� 1.2 km (90% confidence
level) for a 1.4M⊙ NS (Guillot and Rutledge, 2014).
Heinke et al. (2014) argued that a helium atmosphere

is more probable which leads to approximately 2 km
larger radii. GS13m therefore shows the result of
Guillot et al. (2013) upon excluding the qLMXB in
NGC 6397.

(3) Bursting NSs (BNSs). From these objects very power-
ful photospheric radius expansion bursts are observed.
Similar to QXTs, they have low magnetic fields and a
light element atmosphere and, if situated in globular
clusters, the distance can be well determined. The
main uncertainties arise here from the modeling of the
photospheric burst and no consensus has yet been
reached; see, e.g., Galloway and Lampe (2012), Özel,
Gould, and Güver (2012), Güver and Özel (2013),
Steiner, Lattimer, and Brown (2013), and Poutanen
et al. (2014). Recent radius determinations from BNSs
are shown in Fig. 7; PN14 from Poutanen et al. (2014),
GO13 from Güver and Özel (2013), and SL13 from
Steiner, Lattimer, and Brown (2013).

(4) For rotation-powered millisecond pulsars radii can be
determined from the shape of the x-ray pulses. They are
interesting, in particular, if the mass is known from
radio observations. The result of Verbiest et al. (2008)
andBogdanov (2013) for J0437-4715 is shown inFig. 7
(B13). Although with large uncertainties, the possible
mass-radius region of neutron star XTE J1807-294 has
been derived by Leahy, Morsink, and Chou (2011).

QXTs as well as BNSs are likely to rotate at a frequency of a
few hundred of Hz, inducing a non-negligible rotational
deformation that complicates the analysis of the x-ray spectra.
The latter effect is expected to affect the radii by roughly 10%
(Poutanen et al., 2014; Bauböck et al., 2015). Özel et al.
(2016) included this rotational correction in a combined
analysis of observed QXTs and BNSs. This common analysis
of 12 sources statistically reduces the error on the final result
for the radius obtained R1.5 ¼ 10.1–11.1 km.
In conclusion, present radius determinations are subject to

many assumptions and uncertainties; see also the discussion
by Potekhin (2014) and Fortin et al. (2015). Currently, they
cannot provide as stringent constraints as some of the mass
measurements. However, much observational efforts are

FIG. 7. Summary of recent NS radius estimations from obser-
vations for a star with the canonical mass of 1.4M⊙. Shown are
2σ error bars. For details see Table 2 of Fortin et al. (2015) and
the text. From M. Fortin.
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directed to NS radius measurements. Future high-precision
x-ray astronomy, such as proposed by the projects NICER,
ATHENAþ or LOFT, and the gravitational wave signal of NS
mergers expected for the near future (see Sec. VI.A) would
help substantially to constrain radii and consequently the EoS
of NS matter.
Another interesting possibility to determine a relation

between mass and radius of a NS would be the observation
of the gravitational redshift at the NS surface. Cottam, Paerels,
and Mendez (2002) deduced a value of z ¼ 0.35 from narrow
absorption lines in the spectra of x-ray bursts from EXO 0748-
676. However, this observation could not be confirmed later
(Cottam et al., 2008). In addition, the rotation frequency of the
source was measured to be of the order of 400–500 Hz.
Therefore, one expects not narrow but wider lines. As a
consequence Lin et al. (2010) concluded that these spectral
lines do not actually originate from the surface. However, a
more recent study by the same group suggests that line profiles
from rotating NSs might actually be narrower than initially
predicted (Bauböck, Psaltis, and Özel, 2013).

2. Neutron star cooling and rotation

While computing mass and radius of a NS requires only a
known relation between total pressure and total energy density
[see Eq. (36)], the cooling of NSs depends on a detailed
description of the interior composition which determines the
heat transport and amount of neutrino emission. The occur-
rence of superfluid states barely influences the structure of a
NS but has great impact on cooling. First, pair breaking and
formation are important neutrino emission channels. At a later
stage, for temperatures below the corresponding critical
temperature, the related pairing gaps suppress the emission
of neutrinos and reduce the heat capacity and thermal
conductivity (Blaschke, Grigorian, and Voskresensky, 2004;
Yakovlev and Pethick, 2004; Page, Geppert, and Weber,
2006). NS cooling and the description of superfluid phases
have been reviewed by Weber (1999), Yakovlev and Pethick
(2004), and Potekhin, Pons, and Page (2015). Although
cooling calculations face many difficulties due to a large
number of not precisely known quantities, the direct cooling
observation of the young, only about 330 yr old NS in
Cassiopeia A (Heinke and Ho, 2010) over a period of 10 yr
promises to give direct insight into its composition (Page
et al., 2011; Shternin et al., 2011; Blaschke et al., 2012;
Sedrakian, 2013). A recent analysis of Chandra observations
suggests that the initially reported fast cooling has to be
considered with caution due to involved statistical uncertain-
ties (Posselt et al., 2013) and possible instrumental problems
(Elshamouty et al., 2013). Nevertheless, the theoretical work
has demonstrated the strong impact precise cooling observa-
tions can have.
Neutron star rotation rates can be determined precisely from

pulsar observations. Theoretically, slowly rotating stars can be
described in the Hartle and Thorne (1968) approximation; see,
e.g., Weber (1999). Numerically precise solutions (Nozawa
et al., 1998) can be obtained up to the mass shedding limit, the
Kepler frequency; see Friedman and Stergioulas (2013). The
value of the Kepler frequency depends on the EoS and an
observed frequency above the Kepler limit for a given EoS

would clearly exclude the underlying model. Currently
observed rotation rates (Hessels et al., 2006; Kaaret et al.,
2007) with a maximum of 716 Hz do not put relevant
constraints on the EoS (Haensel et al., 2009), but this could
change if more rapidly rotating stars are observed in the future.
Other astrophysical observations can be used to derive EoS
constraints, e.g., quasiperiodic oscillations in soft-gamma-ray
repeaters (Steiner and Watts, 2009; Sotani et al., 2012).
However, the modeling of these events is complicated and
often relies on additional model assumptions.

D. Summary of constraints on the symmetry energy

Besides the constraints discussed, further constraints on the
symmetry energy at saturation and on the slope parameter
have been collected in the literature in Tsang et al. (2012),
Lattimer and Lim (2013), Li and Han (2013), and Lattimer
and Steiner (2014). Extending these data collections, the
compilations in Fig. 8 depict the probability distributions
of J and L values, respectively. For simplicity, the probability
distributions are assumed to be of Gaussian form with an area
normalized to 1. They are centered at the obtained values for J
and L with widths that are given by the errors of the individual
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studies. Dashed vertical lines are used if no uncertainty is
available. Allowed ranges with upper or lower bounds are
indicated by arrows. In general, nuclear matter parameters
such as J and L and their errors are correlated in models that
are used in the analysis of experimental and observational

data. Since these correlations are rarely specified in the
literature (Lattimer and Lim, 2013), we treat J and L as
independent quantities. The origin of the constraints is
encoded in Fig. 8 by colors; see Table II. Averaging over
this selection of results (excluding upper and lower bounds)
we find J ¼ 31.7� 3.2 MeV and L ¼ 58.7� 28.1 MeVwith
an error for L that is considerably larger than that for J.

V. MODELING THE EoS

In this section, we describe models for the EoS, i.e.,
particular realizations of the formal approaches introduced
in Sec. III. It is evident that the requirements on the EoS are
different depending on the astrophysical situation to which
they are applied (see Sec. II.B). We place emphasis on the
general purpose EoSs that cover the full thermodynamic
parameter range in T, nB, and Yq. An overview of the
currently available ones is presented in Sec. V.D. The reason
for this is twofold. First, there is a plethora of different EoSs
available in the literature applicable in a particular context,
especially for cold β-equilibrated NSs. To list all available
models, including variations of free parameters such as
coupling constants in the phenomenological models, would
be fruitless. Second, excellent reviews already exist; see, e.g.,
Lattimer and Prakash (2007), Baldo and Burgio (2012), and
Lattimer (2012). We therefore discuss only some selected
aspects of EoSs of cold β-equilibrated neutron stars (see
Sec. V.A) and of EoSs describing homogeneous matter at
finite temperatures suitable for describing hydrostatic PNSs
(see Sec. V.B). Section V.C gives a few representative
examples of EoSs that describe clusterization and nuclear
statistical ensembles at finite temperatures but that are
restricted to subsaturation densities.
Almost exclusively, phenomenological models have been

used up to now in the context of astrophysical applications due
to the computational complexity in the description of clustered
matter. This concerns the NS crust discussed in Sec. V.A.1, the
NSE-type EoSs in Sec. V.C, and, in particular, the general
purpose EoSs discussed in Sec. V.D. The most advanced
descriptions of densematter are found for particular conditions.
In fact, the ab initio approaches discussed in Sec. III, if not
restricted to pure neutron matter, have been applied only to
homogeneous nuclear matter at various neutron-to-proton
ratios with an interpolation to obtain the β-equilibrated NS
EoS. Some ab initio calculations exist at finite temperature as
some of the methods, for instance, SCGF, are easier to treat at
nonzero temperature, but the composition is fixed andmatter is
homogeneous (see Sec. V.B for some examples). It is desirable
that in the future reliable approaches will be developed to
describe strongly interacting matter for all relevant conditions
needed in compact star astrophysics. A first step is that the
information obtained from ab initio neutron matter calcula-
tions, experiments, and NS observations is fully exploited to
constrain the general purpose models.

A. Neutron star EoS

The physics of NSs has been discussed in detail in several
works (Baym and Pethick, 1975, 1979; Glendenning, 1997;
Heiselberg and Pandharipande, 2000; Lattimer and Prakash,

TABLE II. Sources of the data for the symmetry energies at
saturation J and slope parameters L used in Fig. 8, including the
color code.

Type of constraint References

Systematic of nuclear
masses (solid green lines)

Myers and Swiatecki (1996),
Danielewicz (2003),
Mukhopadhyay and Basu
(2007),
Klüpfel et al. (2009),
Kortelainen et al. (2010),
Liu et al. (2010),
Möller et al. (2012),
Lattimer and Lim (2013),
Wang, Ou, and Liu (2013),
and Viñas et al. (2014b)

Neutron skin data and other
nuclear structure
information
(solid blue lines)

Centelles et al. (2009),
Warda et al. (2009),
Chen et al. (2010)
Chen (2011), Agrawal, De,
and Samaddar (2012),
Dong et al. (2012), Zhang
and Chen (2013), Wang and Li
(2013), Danielewicz and Lee
(2014), and Viñas et al.
(2014b)

Nuclear resonances
(solid red lines)

Klimkiewicz et al. (2007),
Carbone et al. (2010), Roca-
Maza, Brenna et al. (2013),
Colo, Garg, and Sagawa
(2014), and Paar et al. (2014)

Dipole polarizability of nuclei
(solid black lines)

Roca-Maza, Centelles et al.
(2013) and Tamii, von
Neumann-Cosel, and
Poltoratska (2014)

α and β decay of nuclei
(solid orange lines)

Dong et al. (2013) and Dong,
Zuo, and Gu (2013)

Global nucleon optical
potentials (dashed blue
lines)

Xu, Li, and Chen (2010)

Heavy-ion collisions
(dashed orange lines)

Tsang et al. (2004, 2009), Chen,
Ko, and Li (2005a, 2005b), Li
and Chen (2005), Shetty,
Yennello, and Souliotis (2007),
Sun et al. (2010), and Kohley
et al. (2010)

Theoretical calculations
(dashed green lines)

Erler, Klüpfel, and Reinhard
(2010), Gandolfi, Carlson, and
Reddy (2012), Fiorilla, Kaiser,
and Weise (2012), Erler et al.
(2013), Hebeler et al. (2013),
Krüger et al. (2013), and
Nazarewicz et al. (2014)

Properties of neutron stars
(dashed red lines)

Newton and Li (2009), Steiner,
Lattimer, and Brown (2010,
2013), Gearheart et al. (2011),
Steiner and Gandolfi (2012),
Wen, Newton, and Li (2012),
Vidaña (2012), Sotani et al.
(2013a, 2013b), and Lattimer
and Lim (2013)
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2001, 2004, 2007, 2011; Sedrakian, 2007; Chamel and
Haensel, 2008; Potekhin, 2010). NS matter is charge neutral
and can be considered as cold (T ¼ 0) and in general in
β equilibrium. The EoS thus depends only on one state
variable, which can be conveniently chosen. For example,
this can be the baryon number density. The EoS entirely
determines global properties of stationary NSs, such as masses
and radii. For nonrotating stars with negligible magnetic
field, they are found by solving the following Tolman-
Oppenheimer-Volkoff (TOV) equations (Oppenheimer and
Volkoff, 1939; Tolman, 1939):

dPðrÞ

dr
¼ −G

½ϵðrÞ þ PðrÞ�½MðrÞ þ 4πr3PðrÞ�

r2½1 − 2GMðrÞ=r�
;

dMðrÞ

dr
¼ 4πϵðrÞr2;

ð36Þ

relating the gravitational mass of the starM inside a radius r to
pressure P and energy density ϵ. The EoS in terms of P and ϵ

closes the system of equations. Despite the assumptions of
zero temperature and β equilibrium, the calculation of the NS
EoS is not a trivial task, particularly if microscopic methods
are applied; see, e.g., Baldo, Bombaci, and Burgio (1997),
Vidaña et al. (2010), Schulze and Rijken (2011), and Baldo
and Burgio (2012). The domain of validity of some ab initio

methods is restricted to rather low densities not exceeding
nuclear saturation density substantially. The size of higher-
order contributions in systematic expansions, such as χEFT
approaches, increases with density, and the composition of
matter at suprasaturation densities is rather uncertain (see
Sec. V.A.2). In order to cover the whole density range required
to describe NSs, microscopic EoSs can be extended at high
densities with generic parametrizations, such as piecewise
polytropes. Thereby the uncertainty of the NS mass-radius
relation and the dependence on the model parameters can be
explored (Hebeler et al., 2013).

1. Neutron star crust EoSs and unified neutron star EoSs

For mass densities below about 104 g=cm3, an atmosphere
of partially ionized atoms and electrons forms the outer part of
a NS with an EoS given by Feynman, Metropolis, and Teller
(1949), Rotondo et al. (2011), and de Carvalho et al. (2014).
At higher densities, the spatial region that is made up of
inhomogeneous nucleonic matter and electrons not bound to
nuclei in β equilibrium is called the crust. It can be divided
into an outer crust with a plasma of nuclei and electrons as
degrees of freedom and an inner crust where also unbound
neutrons exist. Figure 9 gives a graphical representation of the
state of matter in the crust. The results shown employ the EoS
of Ruester, Hempel, and Schaffner-Bielich (2006) for the
outer crust, where experimentally measured binding energies
have been used in combination with nuclear structure calcu-
lations with the SLy4 EDF. For the EoS of the inner crust and
the core, the results of Douchin and Haensel (2001) are taken,
which are based on Thomas-Fermi calculations using the same
SLy4 EDF. To obtain the radial structure of the assumed NS
with a mass of 1.44M⊙, the TOVequations (36) were solved.
The outer crust is composed of completely ionized nuclei in

a sea of electrons of almost constant density due to the large
incompressibility of the highly degenerate electron fluid. In
the standard picture, only a single nuclear species exists at a
given density. These nuclei form a bcc lattice of ions as
demonstrated in classical one-component plasma simulations
(see Sec. III.C.6). The individual nuclei at their lattice sites can
be identified as the blue dots in Fig. 9. At densities of about
107 g=cm3 and below, a crystal of 56Fe nuclei is expected to
form. With increasing density the lattice constant decreases
and the electron chemical potential rises substantially. It
becomes energetically favorable to squeeze electrons into
the nuclei, converting protons to neutrons. A sequence of bcc
lattices with more and more neutron-rich ions on the lattice
sites appears the deeper one penetrates into the NS. Each
change from one to the next nuclear species is connected to a
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phase transition with a jump in the density (cf. Sec. III.D.2).
The series of nuclei in the outer crust is determined by their
masses and is influenced strongly by shell effects. With the
recent progress to measure masses of very neutron-rich nuclei
experimentally with high precision, the order of ions in the
outer crust from 56Fe via 62Ni, 64Ni, 66Ni, 86Kr, 84Se, and 82Ge
could be established with increasing depth (Kreim et al., 2013;
Wolf et al., 2013). For higher densities, the nuclear masses
from theoretical models, e.g., liquid-drop or EDF type, have
been used to determine the chemical composition of the outer
crust. Since the early works of Salpeter (1961) and Baym,
Pethick, and Sutherland (1971) the theoretical description of
the outer crust is well settled and the main changes result from
improvements in the theoretical description of exotic nuclei
not studied experimentally so far (Haensel, Zdunik, and
Dobaczewski, 1989; Haensel and Zdunik, 1990; Haensel
and Pichon, 1994; Ruester, Hempel, and Schaffner-Bielich,
2006; Pearson, Goriely, and Chamel, 2011; Roca-Maza et al.,
2012; Wolf et al., 2013).
At a mass density of approximately 1011 g=cm3 the neutron

drip density is reached, i.e., the neutron chemical potential
becomes too high for nuclei at the lattice sites to bind
additional neutrons. In Fig. 9, the contribution of these
unbound neutrons, indicated by the blue color, becomes
visible only at sufficiently high densities. These unbound
neutrons can propagate more or less freely through the lattice,
although their interaction with the lattice could modify the
crystalline structure (Kobyakov and Pethick, 2014). A proper
treatment of the periodic crystal structure and its effect on
neutron and electron properties requires a description using
band structure models as in solid state physics (Pethick and
Thorsson, 1997; Chamel, 2005). Since the temperature is very
low, effects of neutron pairing could be important. This is less
relevant for the basic thermodynamic properties of the crust
matter itself but it has to be considered for dynamic processes
and thermal properties, in particular, neutron star cooling. In
view of neutron superfluidity, the so-called entrainment effect
has to be taken into account in hydrodynamic descriptions of
the NS’s inner crust and core. In this case the momentum of
one fluid is not aligned with its particle current, but depends
on the particle currents of all other fluids (Carter, Chamel, and
Haensel, 2005a, 2005b, 2006; Chamel, 2005; Gusakov and
Haensel, 2005; Chamel and Haensel, 2006; Gusakov, Kantor,
and Haensel, 2009b).
The exact location of the neutron drip density is sensitive to

details of the theoretical model, in particular, to the isospin
dependence of the effective interaction due to the very large
neutron excess encountered in the crust; see, e.g., Douchin and
Haensel (2000, 2001), Steiner (2008), and Ducoin et al.

(2011). The properties of nuclei also change inside matter at
high densities, mostly in the inner crust of the NS when they
are surrounded by a gas of neutrons and the electric field is
screened by the electrons.
Several studies have been devoted to the description

of nuclei in a dense medium and the effects on the EoS;
see, e.g., Baym, Bethe, and Pethick (1971), Barkat, Buchler,
and Ingber (1972), Ravenhall, Bennett, and Pethick (1972),
Negele and Vautherin (1973), Lamb et al. (1978), Cheng, Yao,
and Dai (1997), Baiko and Haensel (1999), Douchin and

Haensel (2001), Matsuzaki (2006), Ducoin et al. (2008),
Papakonstantinou et al. (2013), Aymard, Gulminelli, and
Margueron (2014), and Raduta, Aymard, and Gulminelli
(2014). In most cases, the Wigner-Seitz approximation in
spherical cells surrounding a single nucleus is employed (see
Sec. III.C.6). With increasing depth inside the crust, nuclei
approach each other and the action of the short-range nuclear
interaction beyond the size of an individual nucleus has to be
considered. First, a strong deformation of nuclei and a change
in the shell structure is observed in model calculations
(Oyamatsu, 1993, 1994; Douchin, Haensel, and Meyer,
2000), such that they finally touch and the sequence of
classical pasta phases is found (Buchler and Barkat, 1971;
Ravenhall, Pethick, andWilson, 1983; Watanabe et al., 2003b,
2009; Maruyama et al., 2005; Avancini et al., 2009; Newton
and Stone, 2009). The picture of the classical pasta phases
with their specific geometries and phase transitions changes if
more general shapes are allowed in full three-dimensional
calculations with less restrictions on the symmetries
(Watanabe et al., 2005; Nakazato, Oyamatsu, and Yamada,
2009; Okamoto et al., 2012; Schneider et al., 2014;
Schuetrumpf et al., 2015). The extension of the inner crust,
the types of pasta phases, and the transition density to uniform
matter depends crucially on the density dependence of the
symmetry energy (Pethick, Ravenhall, and Lorenz, 1995;
Oyamatsu and Iida, 2007; Roca-Maza and Piekarewicz, 2008;
Kubis, Porebska, and Alvarez-Castillo, 2010; Grill,
Providência, and Avancini, 2012; Grill et al., 2014). The
pasta phase could be relevant for the neutrino transport in the
PNS and the subsequent cooling of the NS. For example,
Horowitz et al. (2015) showed that the pasta phase can reduce
the electrical and the thermal conductivities. The reduced
electrical conductivity might be related to the observed upper
limit of x-ray pulsar spin periods (Pons, Viganò, and
Rea, 2013).
The crust has a subdominant effect on global properties of

NSs such as mass or radius. Therefore, a crust EoS is matched
often to an EoS of uniform matter from an independent model
calculation. Considerable effort is required in developing an
EoS which describes matter from the surface to the center of
the NS in a unified manner, i.e., on the basis of the same
interaction model, including a description of inhomogeneous
matter in the crust. This is important for detailed predictions
of NS radii and for dynamical properties. Only few such
unified NS EoSs exist; see, e.g., Douchin and Haensel (2001),
Fantina et al. (2013), Miyatsu, Yamamuro, and Nakazato
(2013), Baldo et al. (2014), Gulminelli and Raduta (2015),
and Sharma et al. (2015). Unified NS EoSs can also be
obtained from the general purpose EoS discussed in Sec. V.D
by applying zero (or negligibly small) temperature and
β-equilibrium conditions. However, the aforementioned
dedicated unified NS EoS models often give a more detailed
description of nonuniform NS matter. A comparison of these
classes of models is useful to investigate limitations of general
purpose EoSs regarding their description of nuclei in dense
and cold matter.
In contrast to a conventional star in a hadronic model, the

EoS is very different for strange stars (Alcock, Farhi, and
Olinto, 1986; Haensel, Zdunik, and Schaeffer, 1986), and the
structure of the crust is still a matter of debate (Alford et al.,
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2006; Jaikumar, Reddy, and Steiner, 2006; Oertel and
Urban, 2008).

2. Composition of the neutron star core

The composition of matter at suprasaturation densities
reached in the NS core is uncertain and, in particular, particles
other than nucleons and electrons are expected to appear. In
the literature muons, pions, kaons and their condensates,
hyperons, nuclear resonances, and quarks have been consid-
ered (Glendenning, 1997). There is even the possibility of
absolutely stable strange quark matter (Farhi and Jaffe, 1984;
Witten, 1984) and pure strange stars (Alcock, Farhi, and
Olinto, 1986; Haensel, Zdunik, and Schaeffer, 1986); see also
Itoh (1970). In this context, the recent discovery of two NSs
with masses of about 2M⊙ (Demorest et al., 2010; Antoniadis
et al., 2013; Fonseca et al., 2016) has triggered intensive
discussions, since without an interaction, any additional
degree of freedom softens the EoS simply by lowering the
Fermi energies of the particles present. As a consequence, a
lower maximum mass is obtained and many older models
containing additional particles are in contradiction with the
NS mass constraint.
Phenomenological quark models can easily be supple-

mented with the necessary repulsion at high densities. As
an example, for the NJL model Lagrangian of Eq. (27) this can
be achieved by adding a vector interaction term of the form

LV ¼ GVðψ̄γ
μψÞðψ̄γμψÞ: ð37Þ

Maximum NS masses above 2M⊙ can then be obtained; see,
e.g., Alford et al. (2007), Klähn et al. (2007), Weissenborn
et al. (2011), Zdunik and Haensel (2013), and Buballa et al.

(2014). Masuda, Hatsuda, and Takatsuka (2013) proposed that
the transition from hadronic to quark matter might be a
crossover potentially leading to an increase of the maximum
mass. However, this scenario requires an ad hoc interpolation
scheme to connect the hadronic and the quark phase (Kojo
et al., 2015). The same scenario was recently applied in the
context of PNSs by Masuda, Hatsuda, and Takatsuka (2016).
Hyperonic degrees of freedom are more difficult to recon-

cile with a 2M⊙ NS. Most models that include hyperons
predict that they appear at nB ∼ ð2 − 3Þnsat but lead at the
same time to maximum NS masses of ∼1.4M⊙, well below
the highest observed ones. Sometimes this is called the
“hyperon puzzle” in the literature (Lonardoni et al., 2015).
A similar effect is observed with nuclear resonances (Drago
et al., 2014) and meson condensates. It is thus obvious that
additional repulsion is needed to stiffen the high-density EoS.
Different solutions have been proposed to overcome this

problem. The first one is that a transition to quark matter
appears at sufficiently low densities such that hyperons or
other additional hadronic particles have not yet softened the
EoS too much. A two family scenario with low mass compact
hadronic stars and high mass quark stars was recently
discussed by Drago, Lavagno, and Pagliara (2014).
Another possibility is to modify the interactions at high

densities. Hyperonic interactions have been extensively stud-
ied in this respect. Since experimental data are scarce and
furnish only weak constraints on the interactions at

subsaturation densities, even less is known about the
hyperon-nucleon (YN) and hyperon-hyperon (YY) inter-
actions at the relevant densities in the core of NSs (see
Sec. III.A.1). Presently several phenomenological EoS models
exist that contain hyperons and predict maximum NS masses
in agreement with observations; see, e.g., Hofmann, Keil, and
Lenske (2001a), Rikovska-Stone et al. (2007), Bednarek et al.
(2012), Bonanno and Sedrakian (2012), Weissenborn,
Chatterjee, and Schaffner-Bielich (2012a, 2012b), Colucci
and Sedrakian (2013), Banik, Hempel, and Bandyopadhyay
(2014), Lopes and Menezes (2014), van Dalen, Colucci, and
Sedrakian (2014), Gomes et al. (2015), and Oertel et al.

(2015). The crucial point is that the interaction is adjusted to
provide the necessary repulsion.
In microscopic models the missing repulsion for hyperons

is more difficult to obtain. Naturally, one would expect it to
arise from three-body forces. But, using a microscopic model
based on the BHF approach, Vidaña et al. (2011) found that
even adding a phenomenological three-body force was not
enough to allow for the existence of stars that are massive
enough to be compatible with observations. Recent relativ-
istic DBHF calculations (Katayama and Saito, 2014), includ-
ing automatically part of the three-body forces, reproduce
hyperonic NSs with two solar masses, but with a nuclear EoS
that is either too stiff or does not give enough binding in
contradiction with known properties of symmetric nuclear
matter at saturation. On the other hand, in recent calculations
using an auxiliary field diffusion Monte Carlo method
(AFQMC) (Lonardoni, Gandolfi, and Pederiva, 2013;
Lonardoni, Pederiva, and Gandolfi, 2014; Lonardoni et al.,
2015), it was found that a sufficiently strong repulsive three-
body force, constrained by the systematics of separation
energies in a series of hypernuclei, can produce an EoS stiff
enough to satisfy the 2M⊙ constraint, even if a strong model
dependence due to the phenomenological nature of the
hyperonic two- and three-body forces is apparent. In con-
clusion, there are still many open questions regarding the role
of hyperons and other additional non-nucleonic degrees of
freedom in NSs.

B. EoS of uniform matter at finite temperature

The thermal properties of nuclear matter are an important
subject on their own and many studies are actually performed
without an astrophysical application. Examples are the ab ini-
tio calculations of neutron matter at finite temperatures, some
of which have been mentioned in Sec. IV.B, or studies of
the nuclear liquid-gas phase transition which occurs at
subsaturation densities if Coulomb and finite-size effects
are neglected. The liquid-gas phase transition is an important
aspect of the low-density nuclear matter EoS and has been
studied extensively in the literature; see, e.g., Barranco and
Buchler (1980) and Müller and Serot (1995). An example is
shown in Fig. 4. In addition to BHF (Baldo and Ferreira, 1999;
Baldo, Ferreira, and Nicotra, 2004) and DBHF (Ter Haar and
Malfliet, 1987; Huber, Weber, and Weigel, 1998) calculations
extended to finite temperature, consistent SCGF calculations
have been reported by Rios et al. (2008) and Fiorilla, Kaiser,
and Weise (2012). Wellenhofer et al. (2014) and Wellenhofer,
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Holt, and Kaiser (2015) studied the phase diagram of nuclear
matter applying in-medium χEFT.
Here we are mainly interested in EoSs relevant for astro-

physical applications. Finite-temperature effects are of par-
ticular relevance for PNSs, CCSNe, and NS mergers and can
be studied in HICs too. Although more scarce than NS EoSs,
there is a variety of works considering EoSs of homogeneous
matter at fixed entropies or temperatures and hadronic charge
fractions. Many of these EoSs have actually been developed
for studying PNSs by considering characteristic hydrostatic
configurations that represent different evolutionary stages.
The history concerning additional particles, such as hyperons,
mesons, or quarks, is almost as long as for cold neutron stars,
reaching from the discussion of quark matter formation or
meson condensates to hyperons; see Prakash et al. (1997) for
an early review and Pons et al. (2000), Pons, Miralles et al.
(2001), Bombaci et al. (2007), Menezes and Providência
(2007), Dexheimer and Schramm (2008), Yasutake and
Kashiwa (2009), Beisitzer, Stiele, and Schaffner-Bielich
(2014), and Masuda, Hatsuda, and Takatsuka (2016) for a
few examples.
Often PNSs are approximated as isentropic, i.e., having a

constant entropy per baryon s, and/or a fixed lepton or
electron fraction (YLðeÞ or Ye, respectively) with or without
trapped neutrinos. Sometimes isothermal PNS are considered
too. If the crust and envelope of the PNS are neglected, the
situation is still similar to that for cold NS: Matter is uniform
and for each parameter combination of s or T and YLðeÞ or Ye

the EoS is still one dimensional, i.e., it depends only on one
state variable, e.g., baryon number density.
Most ab initio calculations of the EoS of nuclear matter at

finite temperature concern pure neutron matter (see Sec. IV.B),
or symmetric nuclear matter, since general asymmetric nuclear
matter asks for more involved computations. Some exceptions
exist, e.g., the EoS of Togashi and Takano (2013) uses the
variational method, starting from a nuclear Hamiltonian that is
composed of the Argonne v18 and Urbana IX potentials. They
aim at providing a full general purpose EoS that can be applied
in astrophysical simulations (see Sec. V.D). However, in their
first work, they considered only uniform nuclear matter, but
for various temperatures and asymmetries. To simplify com-
putations, the frozen-correlation approximation is employed:
the self-energies and correlation matrix elements are evaluated
at zero temperature. This approximation is motivated by the
results of Baldo and Ferreira (1999). Togashi and Takano
(2013) validated it by comparing with results for fully
minimized calculations.
The frozen-correlation approximation is standard in finite-

temperature BHF calculations aimed to model the PNS EoS
too; see, e.g., Nicotra et al. (2006a, 2006b), Burgio, Schulze,
and Li (2011), and Chen et al. (2012). Effects of hyperons
and/or quarks were considered too within these works relying
on different models for the interactions. For instance, for the
quark phase Chen et al. (2012) used a model based on the
Dyson-Schwinger equations of QCD (cf. Sec. III.B.1.h),
whereas Nicotra et al. (2006b) applied the MIT bag model.
As known for BHF calculations (see Sec. V.A.2), the
maximum mass of a cold NS including additional degrees
of freedom such as hyperons or quarks lies in general well

below the canonical value of 2M⊙. Exceptions are the hybrid
NS and PNS models of Chen et al. (2012) where much higher
maximum masses in the vicinity of 2M⊙ were found.
Applying phenomenological interactions to finite-

temperature matter, an obvious question is whether the
effective couplings, determined via zero temperature proper-
ties of strongly interacting (mainly nuclear) systems, depend
on temperature. This was addressed by Fedoseew and Lenske
(2015), where the thermal properties of asymmetric nuclear
matter have been analyzed within a relativistic approach. The
parameters of a density-dependent relativistic hadron nuclear
field theory, similar to a density-dependent RMF model, have
been adjusted to reproduce DBHF results for in-medium
self-energies. In particular, it was shown that the temperature
modifications of the nucleon-meson couplings is almost
negligible. A comparison of the free energy of nuclear matter
using the Brussels Skyrme interaction with the results of
Fiorilla, Kaiser, and Weise (2012) leads to the same con-
clusion (Fantina, 2015). In Moustakidis and Panos (2009),
where a momentum-dependent finite-range term is added to a
Skyrme-type interaction, temperature-dependent couplings
are obtained but this dependence is weak up to temperatures
of 30 MeV.
Constantinou et al. (2014) thoroughly investigated the

finite-temperature properties of the bulk EoS. They employed
the potential model of Akmal, Pandharipande, and Ravenhall
(1998), which is fitted to results from variational calculations,
and compared it with the typical Skyrme EDF SKa from
Köhler (1976). The latter parametrization is also applied in
the H&W EoS (see Sec. V.D.1.a). Analytical formulas are
derived for all thermodynamic state variables and their
derivatives at finite temperatures, simplifying the use in
astrophysical applications. A similar study of the thermal
properties of the EoS but for finite-range interactions was
recently published by Constantinou et al. (2015).

C. EoS of clustered matter at finite temperatures

Complementary to investigations of bulk properties of
warm and dense uniform matter, there are many works
studying inhomogeneous warm matter within NSE based
models (see Sec. III.C.1). Most of them do not cover the
full parameter space relevant for simulations of CCSNe or
NS mergers, partly since they are designed for a particular
application, e.g., multifragmentation experiments or nucleo-
synthesis aspects. A typical problem is the omission of
interactions and/or medium modifications of nuclei. As a
result, the EoS does not provide a realistic description at high
densities. Nevertheless, these models allow one to investigate
important aspects of the EoS of clustered matter, e.g., the
chemical composition and the role of excited states.
The impact of the different model ingredients depends on
the thermodynamic conditions.
The chemical composition of matter at baryon densities

roughly below 10−3 fm−3 and a few MeV temperature is
mainly driven by the nuclear binding energies and the treat-
ment of thermal excitations. Simple mass formulas provide
binding energies for the widest possible range of nuclei that
are considered in statistical models. A liquid-drop-type mass
formula is used in the statistical model for supernova matter
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(SMSM) (Botvina and Mishustin, 2004, 2010; Buyukcizmeci,
Botvina, and Mishustin, 2014). It is based on the SMM
(Bondorf et al., 1995; Sagun et al., 2014) which has proven
successful in the analysis of fragment yields in low-energy
HICs. The parameters of the used liquid-drop mass formula,
including temperature effects, have been calibrated by the
analysis of experimental multifragmentation data. A liquid-
drop parametrization is also used in the statistical model of
Raduta and Gulminelli (2009, 2010). The NSE model of
Blinnikov et al. (2011) considered up to 20 000 nuclei, whose
binding energies are taken from the theoretical mass formula
of Koura et al. (2005). Binding energies from Myers and
Swiatecki (1990, 1994) are adopted in the work of Ishizuka,
Ohnishi, and Sumiyoshi (2003) incorporating about 9000
different nuclei. Results of the microscopic-macroscopic
finite-range droplet model (Möller et al., 1995) or the
Duflo-Zuker model (Duflo and Zuker, 1995) have been used
in Gulminelli and Raduta (2015). Tables with theoretical
masses from fully microscopic models, mainly EDFs, usually
cover a smaller range of nuclei. Experimental binding energies
(Audi, Wapstra, and Thibault, 2003; Wang et al., 2012) are
available for an even smaller number of nuclei rather close to
the valley of stability. They are used as far as available in some
NSE based models, but have to be supplemented by theoretical
masses for more exotic nuclei. The choice of different sources
can result in artificial jumps of the isotopic abundances at the
boundaries; see, e.g., Buyukcizmeci et al. (2013).
As an illustration, we compare in Fig. 10 nuclear abun-

dances for typical conditions in the collapse phase of a CCSN
for three statistical models. The different predictions mainly
reflect the extrapolation of binding energies to neutron-rich
nuclei. This depends on the choice of the mass model since the
most abundant nuclei are situated outside the region where
masses are experimentally known. A monomodal or bimodal
structure is obtained, peaked around magic numbers in
Figs. 10(b) and 10(c), demonstrating the importance of shell
effects, which are missing in models based on simple mass
formulas (Raduta and Gulminelli, 2010; Buyukcizmeci,
Botvina, and Mishustin, 2014), as in Fig. 10(a) or models
that use the Thomas-Fermi approximation for the description of
nuclei, as, e.g., in the model of Aymard, Gulminelli, and
Margueron (2014). Broad and even bimodal distributions
cannot be represented within the SNA (see Sec. III.C.2), which
is employed, e.g., in the general purpose models STOS or
LS220, discussed in Sec. V.D. Nevertheless, the predictions for
the average heavy nucleus show only a moderate deviation
compared to that of the statistical HS(DD2) model and global
thermodynamic quantities are only slightly modified (Burrows
and Lattimer, 1984). However, these differences in the
composition are relevant for electron-capture reactions during
the collapse phase and thus can influence the dynamics
of a CCSN as discussed in Sec. VI.B.1. For very neutron-
rich conditions, the range of nuclei considered in the table,
indicated by the gray regions in Fig. 10, also matters. Different
rules for determining the boundary are employed, e.g., vanish-
ing neutron separation energies or binding energies.
With increasing temperature, excited states of nuclei are

populated. These are considered explicitly in models that
use temperature-dependent degeneracy factors. Usually, level
densities of a Fermi-gas type are employed, e.g., those of
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FIG. 10. Composition of matter in the center of a CCSN 6 ms
before bounce at thermodynamic conditions taken from a
simulation of Perego et al. (2015). The color map shows
the distribution of nuclei (mass fractions) in the (a) SMSM
(Buyukcizmeci, Botvina, and Mishustin, 2014), the (b) EoS of
Gulminelli and Raduta (2015), and the (c) HS(DD2) model.
(c) The black cross indicates the average heavy nucleus. The
black diamond and triangle show the representative heavy
nucleus of STOS and LS220, respectively, calculated within
the SNA.
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Iljinov et al. (1992) in Raduta and Gulminelli (2009, 2010) or
Fái and Randrup (1982) in Ishizuka, Ohnishi, and Sumiyoshi
(2003) (see Sec. III.C.1.b). An alternative approach is to
incorporate temperature effects directly in the mass model,
e.g., in the SMSM, by introducing a temperature dependence
in the coefficients of the mass formula, in particular, in bulk
and surface contributions to the energy. Part of the differences
in Fig. 10 also result from the treatment of excited states. The
actual treatment in the model also influences the dissolution
of heavy clusters with increasing temperature and the change
of the abundance distributions. They are dominated more
strongly by light clusters at high T, which are usually handled
independently of the heavier nuclei using experimental bind-
ing energies and sometimes correct quantum statistics. At very
low densities, the finite-temperature EoS is given model
independently by the VEoS (see Sec. III.C.3). The VEoS
with light species (p, n, d, t, 3He, and α) was discussed by
Pratt, Siemens, and Usmani (1987) for conditions in HICs.
Horowitz and Schwenk (2006a) considered neutrons, protons,
and α particles as basic constituents and experimental infor-
mation on binding energies and phase shifts was used in the
calculation of the second virial coefficients. O’Connor et al.
(2007) added 3H and 3He nuclei, and even heavier species
were included by Mallik et al. (2008). A relativistic VEoS was
already given by Venugopalan and Prakash (1992) for an
interacting gas of nucleons, pions, and kaons. A general
finding, present in all models, is that deuterons, tritons, and
helions appear abundantly for typical conditions of supernova
matter in addition to α particles (Sumiyoshi and Röpke, 2008;
Heckel, Schneider, and Sedrakian, 2009; Typel et al., 2010;
Hempel et al., 2015; Pais, Chiacchiera, and Providência,
2015). The presence of light clusters can modify weak
interaction rates and therefore the dynamics of astrophysical
processes (see Sec. VI).
With increasing baryon density, above approximately

10−3 fm−3, interaction effects start to play a role and medium
effects on the binding energies have to be incorporated in the
statistical models. They modify the chemical composition in
comparison to results of pure NSE models that use vacuum
binding energies. In essentially all models, the screening of
the Coulomb potential due to the electron component is
taken into account in the Wigner-Seitz approximation (see
Sec. III.D.2). The repulsion of nuclei is often modeled by an
excluded-volume mechanism (see Sec. III.C.1.e), e.g., in
Raduta and Gulminelli (2009) and Sagun et al. (2014).
Raduta and Gulminelli (2010) solved the cluster partition
sums by using Metropolis Monte Carlo techniques which
allow one to consider configuration dependent excluded-
volume corrections. A comparison of predictions from the
geometric excluded-volume approach with those of the more
microscopically inspired approach using mass shifts (see
Sec. III.C.4) was presented by Hempel et al. (2011) concen-
trating on light nuclei. The dissolution of clusters with
increasing density cannot be described properly in basic
statistical models unless an excluded-volume mechanism or
mass shifts are considered. The treatment of the homogeneous
nucleonic matter contribution is relatively similar in most
NSE based EoS models, employing, if at all, phenomeno-
logical mean-field approaches with various interactions; see

Sec. V.D.3 for a discussion of the compatibility with present
day constraints. Interactions of unbound nucleons are not
included in the SMSM, therefore it is applicable only to dilute
matter. A comparison of different NSE-type models can be
found in Ishizuka, Ohnishi, and Sumiyoshi (2003) and
Buyukcizmeci et al. (2013) with detailed and comprehensive
analyses of the nuclear composition.

D. General purpose equations of state

In this section we describe EoSs which cover the full
thermodynamic parameter range necessary for astrophysical
simulations of CCSNe or NS mergers. Such EoSs not only
have to be available for finite temperatures and different
charge fractions, but should include a description of nonuni-
form matter at subsaturation densities, where nuclei appear,
and a description of homogeneous matter at high densities
and/or temperatures.
There exist only a few such EoSs. To give an overview, we

summarize their particle content, disregarding leptonic
degrees of freedom here and in the following, and some
key properties for cold NSs of the different models in
Table III. We indicate if the EoS is publicly available in
tabulated form or as a computer code (see Appendix A.1 for a
list of different online resources). Key nuclear matter proper-
ties of the nuclear interaction models, which are used in the
EoS models of Table III, are given in Table IV.
We remark that all of the presently available general

purpose EoSs are included in the discussion, even though
many of them are in strong disagreement with some astro-
physical, experimental, or theoretical constraints. However,
several of them are still used for reference applications. Any
“benchmarking” of EoSs depends on which constraints are
chosen from the many available in the literature, and there is
not a single model that fulfills all of them, not even the very
limited set of constraints that we consider later. A general
purpose EoS with particular deficits can be interesting because
it very much depends on the astrophysical context and the
specific application whether a constraint is relevant or not. For
example, cluster formation at low densities seems to be more
important than the neutron matter EoS for the dynamics of
CCSNe (see Sec. VI.B.1) but in NS mergers probably the
opposite is the case. Because of the limited number of general
purpose EoSs and their importance for astrophysical appli-
cations, we first give a complete overview. A critical dis-
cussion follows at the end in Sec. V.D.3.

1. Nucleons and nuclei as degrees of freedom

a. H&W

The EoS of Hillebrandt, Nomoto, and Wolff (1984) and
Hillebrandt and Wolff (1985) (H&W) is one of the first EoSs
that was suitable for CCSNe simulations and which is still in
use today (Janka, 2012a). At low densities, a NSE model
based on the work of El Eid and Hillebrandt (1980) is applied
including 470 different nuclei: in addition to neutrons,
protons, and α particles, about 450 isotopes with charge
numbers Z between 10 and 32 and neutron numbersN ranging
from stability to neutron drip as well as 20 heavier nuclei from
the Zr and Pb region are included. To account for excited
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TABLE III. Characteristic properties of the currently existing general purpose EoSs. Top part: EoSs containing nucleons and nuclei; bottom
part: EoSs including additional hadronic or quark degrees of freedom. Listed are the nuclear interaction model used, the included particle
degrees of freedom, the maximum mass Mmax of cold, spherical (nonrotating) NSs, and their radii at a fiducial gravitational mass
MG of 1.4M⊙. We included in addition the compactness Ξ ¼ GMG=R of the maximum mass configuration. Empty entries indicate that the
value was not available to the authors. In nuclear interactions labeled with *, the nucleon masses have been changed to experimental values
without a refitting of the coupling constants. This induces a marginal change of the interaction.

Model
Nuclear

interaction
Degrees of
freedom

Mmax,
(M⊙)

R1.4M⊙
,

(km) Ξ

Publicly
available References

H&W SKa n;p;α;fðAi;ZiÞg 2.21a 13.9a No El Eid and Hillebrandt (1980)
and Hillebrandt, Nomoto,
and Wolff (1984)

LS180 LS180 n; p; α; ðA; ZÞ 1.84 12.2 0.27 Yes Lattimer and Swesty (1991)
LS220 LS220 n; p; α; ðA; ZÞ 2.06 12.7 0.28 Yes Lattimer and Swesty (1991)
LS375 LS375 n; p; α; ðA; ZÞ 2.72 14.5 0.32 Yes Lattimer and Swesty (1991)
STOS TM1 n; p; α; ðA; ZÞ 2.23 14.5 0.26 Yes Shen et al. (1998a, 1998b,

2011)
FYSS TM1 n;p;d;t;h;α;fðAi;ZiÞg 2.22 14.4 0.26 No Furusawa, Sumiyoshi et al.

(2013)
HS(TM1) TM1* n;p;d;t;h;α;fðAi;ZiÞg 2.21 14.5 0.26 Yes Hempel and Schaffner-Bielich

(2010) and Hempel et al.
(2012)

HS(TMA) TMA* n;p;d;t;h;α;fðAi;ZiÞg 2.02 13.9 0.25 Yes Hempel and Schaffner-Bielich
(2010)

HS(FSU) FSUgold* n;p;d;t;h;α;fðAi;ZiÞg 1.74 12.6 0.23 Yes Hempel and Schaffner-Bielich
(2010) and Hempel et al.
(2012)

HS(NL3) NL3* n;p;d;t;h;α;fðAi;ZiÞg 2.79 14.8 0.31 Yes Hempel and Schaffner-Bielich
(2010) and Fischer, Hempel
et al. (2014)

HS(DD2) DD2 n;p;d;t;h;α;fðAi;ZiÞg 2.42 13.2 0.30 Yes Hempel and Schaffner-Bielich
(2010) and Fischer, Hempel
et al. (2014)

HS(IUFSU) IUFSU* n;p;d;t;h;α;fðAi;ZiÞg 1.95 12.7 0.25 Yes Hempel and Schaffner-Bielich
(2010) and Fischer, Hempel
et al. (2014)

SFHo SFHo n;p;d;t;h;α;fðAi;ZiÞg 2.06 11.9 0.30 Yes Steiner, Hempel, and Fischer
(2013)

SFHx SFHx n;p;d;t;h;α;fðAi;ZiÞg 2.13 12.0 0.29 Yes Steiner, Hempel, and Fischer
(2013)

SHT(NL3) NL3 n;p;α;fðAi;ZiÞg 2.78 14.9 0.31 Yes Shen, Horowitz, and Teige
(2011)

SHO(FSU) FSUgold n;p;α;fðAi;ZiÞg 1.75 12.8 0.23 Yes Shen, Horowitz, and
O’Connor (2011)

SHO(FSU2.1) FSUgold2.1 n;p;α;fðAi;ZiÞg 2.12 13.6 0.26 Yes Shen, Horowitz, and
O’Connor (2011)

LS220Λ LS220 n;p;α;ðA;ZÞ;Λ 1.91 12.4 0.29 Yes Oertel, Fantina, and Novak
(2012) and Gulminelli et al.
(2013)

LS220π LS220 n;p;α;ðA;ZÞ;π 1.95 12.2 0.29 No Oertel, Fantina, and Novak
(2012) and Peres, Oertel,
and Novak (2013)

BHBΛ DD2 n;p;d;t;h;α;fðAi;ZiÞg;Λ 1.96 13.2 0.25 Yes Banik, Hempel, and
Bandyopadhyay (2014)

BHBΛϕ DD2 n;p;d;t;h;α;fðAi;ZiÞg;Λ 2.11 13.2 0.27 Yes Banik, Hempel, and
Bandyopadhyay (2014)

STOSΛ TM1 n; p; α; ðA; ZÞ;Λ 1.90 14.4 0.23 Yes Shen et al. (2011)
STOSYA30 TM1 n; p; α; ðA; ZÞ; Y 1.59 14.6 0.17 Yes Ishizuka et al. (2008)
STOSYA30π TM1 n;p;α;ðA;ZÞ;Y;π 1.62 13.7 0.19 Yes Ishizuka et al. (2008)
STOSY0 TM1 n; p; α; ðA; ZÞ; Y 1.64 14.6 0.18 Yes Ishizuka et al. (2008)
STOSY0π TM1 n;p;α;ðA;ZÞ;Y;π 1.67 13.7 0.19 Yes Ishizuka et al. (2008)
STOSY30 TM1 n; p; α; ðA; ZÞ; Y 1.65 14.6 0.18 Yes Ishizuka et al. (2008)
STOSY30π TM1 n;p;α;ðA;ZÞ;Y;π 1.67 13.7 0.19 Yes Ishizuka et al. (2008)
STOSY90 TM1 n; p; α; ðA; ZÞ; Y 1.65 14.6 0.18 Yes Ishizuka et al. (2008)
STOSY90π TM1 n;p;α;ðA;ZÞ;Y;π 1.67 13.7 0.19 Yes Ishizuka et al. (2008)
STOSπ TM1 n; p; α; ðA; ZÞ; π 2.06 13.6 0.26 No Nakazato, Sumiyoshi, and

Yamada (2008)

(Table continued)
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states, nuclear level densities have been constructed based on
HF potentials using the grand partition function approach
(Huizenga and Moretto, 1972; Wolff, 1980). For densities
above 3 × 1012 g=cm3, the EoS is computed in the SNA (see
Sec. III.C.2), using the thermal HF method. The nuclear
interaction is of the Skyrme type using the parameter set SKa
(Köhler, 1976).

b. LS

The EoS by Lattimer and Swesty (1991) (LS) considers
nucleons, α particles, and heavy nuclei in the SNA (see
Sec. III.C.2) as degrees of freedom. The latter are described
with a medium-dependent liquid-drop model. For nucleons,
nonrelativistic Fermi-Dirac statistics is used, and a simpli-
fied momentum-independent nucleon-nucleon interaction is
employed which results in constant effective nucleon masses
equal to the applied vacuum masses. Interactions between the
gas of nucleons, α particles, and heavy nuclei are taken into
account through an excluded-volume mechanism. α particles
are treated as hard spheres of volume vα ¼ 24 fm3 forming an
ideal Boltzmann gas, neglecting excited states. As the density
increases, nuclei undergo geometrical shape deformations,
until they dissolve in favor of homogeneous nuclear matter
above approximately saturation density. The formation of
nonspherical nuclei and bubble phases is described by
modifying the Coulomb and surface energies of nuclei. The
phase transition to bulk nuclear matter is treated by a Maxwell
construction between the two phases.
The LS EoS exists for three different parametrizations of the

nucleonic interaction, which are usually denoted according to
their value of the incompressibilityK of 180, 220, and375MeV.
Nowadays the version with K ¼ 220 MeV is considered the
most relevant of the three, since it is the best compatiblewith the
various constraints on the EoS (see Sec. V.D.3).

c. STOS

The EoS by Shen et al. (1998a, 1998b, 2011) (STOS) is
another widely used general purpose EoS. It assumes the same
degrees of freedom as the LS EoS: neutrons, protons, and

α particles as well as one heavy nucleus in the SNA. For
nucleons a RMFmodel with nonlinear meson self-interactions
is used with the parametrization TM1 (Sugahara and Toki,
1994). α particles are again described as an ideal Maxwell-
Boltzmann gas with excluded-volume corrections. Excited
states of α particles are neglected. The properties of the
representative heavy nucleus are obtained from Wigner-Seitz
cell calculations within the Thomas-Fermi approximation for
parametrized density distributions of nucleons and α particles.
The translational energy and entropy contribution of heavy
nuclei is not taken into account.
Zhang and Shen (2014) investigated the accuracy of the

parametrized density distributions of STOS in comparison
with fully self-consistent Thomas-Fermi calculations. They
concluded that overall there are only small differences. In
detail it was found that the free energies of the original STOS
EoS are slightly too low compared to the self-consistent
solutions. This and other differences were related to a too
small value of the coefficient of the (surface) gradient energy
of the density distribution used in STOS for the description of
nuclei, which is not consistent with the employed TM1
interaction. In addition, Zhang and Shen (2014) studied the
effect of a possible bubble phase for the transition to uniform
nuclear matter and found that the transition can be shifted to
slightly higher densities.

d. FYSS

The EoS of Furusawa et al. (2011) and Furusawa, Sumiyoshi
et al. (2013) (FYSS) can be seen as an extension of the STOS
EoS at subsaturation densities. The same RMF parametrization
TM1 is employed for the nuclear interaction as in the STOS
EoS. A distribution of various light nuclei and heavy nuclei up
to Z ∼ 1000 is included. Heavy nuclei are not described by the
Thomas-Fermi approximation as in STOSbut by a liquid-drop-
type formulation with temperature-dependent bulk energies.
Shell effects are incorporated by extracting the difference of the
liquid-drop binding energies compared to experimental (Audi,
Wapstra, and Thibault, 2003) and theoretical values (Koura
et al., 2005). A phenomenological density dependence of the
shell effects is introduced, assuming that these vanish at nsat.

TABLE III. (Continued)

Model
Nuclear

interaction
Degrees of
freedom

Mmax,
(M⊙)

R1.4M⊙
,

(km) Ξ

Publicly
available References

STOSQ209nπ TM1 n;p;α;ðA;ZÞ;π;q 1.85 13.6 0.21 No Nakazato, Sumiyoshi, and
Yamada (2008)

STOSQ162n TM1 n; p; α; ðA; ZÞ; q 1.54 No Nakazato, Sumiyoshi, and
Yamada (2013)

STOSQ184n TM1 n; p; α; ðA; ZÞ; q 1.36 � � �b No Nakazato, Sumiyoshi, and
Yamada (2013)

STOSQ209n TM1 n; p; α; ðA; ZÞ; q 1.81 14.4 0.20 No Nakazato, Sumiyoshi, and
Yamada (2008, 2013)

STOSQ139s TM1 n; p; α; ðA; ZÞ; q 2.08 12.6 0.26 Yes Sagert et al. (2012) and
Fischer, Klähn et al. (2014)

STOSQ145s TM1 n; p; α; ðA; ZÞ; q 2.01 13.0 0.25 Yes Sagert et al. (2012)
STOSQ155s TM1 n; p; α; ðA; ZÞ; q 1.70 9.93 0.25 Yes Fischer et al. (2011)
STOSQ162s TM1 n; p; α; ðA; ZÞ; q 1.57 8.94 0.26 Yes Sagert et al. (2009)
STOSQ165s TM1 n; p; α; ðA; ZÞ; q 1.51 8.86 0.25 Yes Sagert et al. (2009)

aValues taken from Marek and Janka (2009).
bMmax below 1.4M⊙.
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For light nuclei, it incorporates the Pauli-blocking shifts of
Typel et al. (2010). Furthermore, light nuclei receive self-
energy shifts originating from the mesonic mean fields. As an
additional phenomenological interaction, excluded-volume
effects are applied for nucleons, light nuclei, and heavy nuclei.
In addition to standard spherical nuclei, a bubble phase with
low-density holes inmatter of higher density is also considered.
The FYSS EoS has been used to explore the effect of light
nuclei in CCSN simulations (Furusawa,Nagakura et al., 2013).

e. HS

The basic model of the HS EoS (Hempel and Schaffner-
Bielich, 2010) (HS) belongs to the class of extended NSE
models and describes matter as a “chemical”mixture of nuclei
and unbound nucleons in NSE. Nuclei are treated as classical
Maxwell-Boltzmann particles, nucleons with RMF models
employing different parametrizations. Several thousands
of nuclei are considered, including light ones. Binding
energies are taken either from experimental measurements
(Audi, Wapstra, and Thibault, 2003) or from various theo-
retical nuclear structure calculations (Möller et al., 1995;
Lalazissis, Raman, and Ring, 1999; Geng, Toki, and Meng,
2005). The latter are chosen such that they were calculated for
the same RMF parametrization as the one applied to nucleons
if available; otherwise, the data from Möller et al. (1995) are
used. The following medium modifications are incorporated
for nuclei: screening of the Coulomb energies by the sur-
rounding gas of electrons in the Wigner-Seitz approximation,
excited states in the form of an internal partition function
using the level density of Fái and Randrup (1982), which is
adapted from the NSE model of Ishizuka, Ohnishi, and
Sumiyoshi (2003), and excluded-volume effects. Note that
further explicit medium modifications of nuclei are not
considered in HS. Since the description of heavy nuclei is
based on experimental nuclear masses, the HS EoS includes
the correct shell effects of nuclei in vacuum. On the other
hand, the use of nuclear mass tables limits the maximum mass
and charge numbers of nuclei (Buyukcizmeci et al., 2013).
The first version Hempel and Schaffner-Bielich (2010) used

the RMF parametrization TMA (Toki et al., 1995). A few
aspects of the model have been changed in the later versions
(Hempel et al., 2012), namely, a cutoff for the highest
excitation energy of nuclei is introduced, experimental
nucleon masses are used, and only nuclei left of the neutron
drip line are considered. At present, EoS tables are available
for the following RMF parametrizations: TM1 (Sugahara and
Toki, 1994; Hempel et al., 2012), TMA (Toki et al., 1995;
Hempel and Schaffner-Bielich, 2010; Hempel et al., 2012),
FSUgold (Todd-Rutel and Piekarewicz, 2005; Hempel et al.,
2012), NL3 (Lalazissis, König, and Ring, 1997; Fischer,
Hempel et al., 2014), DD2 (Typel et al., 2010; Fischer,
Hempel et al., 2014), and IUFSU (Fattoyev et al., 2010;
Fischer, Hempel et al., 2014). We denote them by “HS(x),”
where “x” indicates the nuclear interaction employed.

f. SFHo and SFHx

Two additional EoSs based on HS were published by
Steiner, Hempel, and Fischer (2013), SFHo (“o” for optimal)
and SFHx (“x” for extreme) with new RMF parametrizations

that were fitted to some NS radius determinations. These two
EoSs result in rather compact NSs and have moderately,
respectively, very low values of the slope parameter of the
symmetry energy L (Steiner, Hempel, and Fischer, 2013;
Fischer, Hempel et al., 2014; Hempel et al., 2015).

g. SHT(NL3), SHO(FSU), and SHO(FSU2.1)

The EoSs of Shen, Horowitz, and O’Connor (2011) and
Shen, Horowitz, and Teige (2011) are based on different
underlying physical descriptions in different regimes of
density and temperature. Uniform nuclear matter at high
densities and temperatures is described by a RMF model.
At intermediate densities, the same RMF model is used within
calculations of nonuniform matter, generating a representative
heavy nucleus and unbound nucleons, but no light nuclei. At
low densities and temperatures, a special form of the VEoS is
used which includes virial coefficients up to second order
among nucleons and α particles. The VEoS is not using
Fermi-Dirac statistics for nucleons, but only incorporates
corrections for it as part of the virial coefficients. Nuclei with
mass numbers A ¼ 2 and 3 are not considered as explicit
degrees of freedom, but 8980 nuclei with mass number A ≥ 12

are included. The contribution of heavy nuclei in NSE is
modeled as a noninteracting Maxwell-Boltzmann gas without
considering excluded-volume effects. Coulomb screening is
included for heavy nuclei, but not for α particles. Note that
α particles are present only in the virial part of the EoS, which is
completely independent of the RMF interaction. The three
different prescriptions are merged to a single table by mini-
mizing the free energy. In addition, a smoothing and inter-
polation procedure is applied (Shen, Horowitz, and O’Connor,
2011; Shen, Horowitz, and Teige, 2011).
The EoSs of G. Shen et al. are available for two different

RMF interactions: NL3 (Shen, Horowitz, and Teige, 2011)
[SHT(NL3)] and FSUgold (Shen, Horowitz, and O’Connor,
2011). A density dependence of the scalar meson-nucleon
coupling was introduced below 5 × 10−3 fm−3 in case of the
NL3 interaction in order to match the energy per nucleon of a
unitary neutron gas (Shen, Horowitz, and Teige, 2010). Since
the FSUgold parametrization leads to a maximum NS mass of
only 1.7M⊙, an additional phenomenological pressure contri-
butionwas introduced for densities above 0.2 fm−3, leading to a
sufficiently high maximum mass of 2.1M⊙. This EoS was
called “FSU2.1” and we abbreviate it as SHO(FSU2.1), and the
EoSwith the unmodified FSUgold parametrization SHO(FSU).

2. Including additional degrees of freedom

An EoS covering the whole thermodynamic parameter
range relevant for CCSNe and NS mergers should be able
to correctly describe cold β-equilibrated NSs. As discussed in
Sec. V.A.2, it might turn out that only nucleonic matter is
present in cold NSs. However, this does not mean that
additional degrees of freedom could not occur in stellar
core-collapse events and NS mergers, where matter is strongly
heated in addition to being compressed to densities above
nuclear matter saturation density. The temperatures and
densities reached can become so high that a traditional
description in terms of electrons, nuclei, and nucleons is no
longer adequate. Compared with the cold NS EoS,
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temperature effects favor the appearance of additional par-
ticles such as pions and hyperons and they become abundant
in this regime. A transition to quark matter can also not be
excluded. In recent years, some models have been developed
which extended existing purely nuclear models (as discussed
in the previous section) by including pions, hyperons, or
quarks.
Let us start with the models including hyperons. Ishizuka

et al. (2008) and Oertel, Fantina, and Novak (2012) consid-
ered the whole baryon octet. The former EoS is an extension
of the STOS EoS by Shen et al. (1998a) and the latter of the
LS220 EoS (Lattimer and Swesty, 1991). Ishizuka et al.

(2008) fixed the hyperonic interactions following a standard
procedure for RMF models. For the vector couplings, sym-
metry constraints are imposed, assuming SUð6Þ flavor sym-
metry following Schaffner and Mishustin (1996) in the
isoscalar sector and isospin symmetry in the isovector one.
The remaining scalar couplings of hyperons to nucleons are
adjusted to reproduce standard values of the single-particle
hyperonic potentials in symmetric nuclear matter at saturation
density, extracted from hypernuclear data (see Sec. III.A.1).
These single-particle potentials are given by (see
Sec. III.B.2.a)

Uj ¼ Vj − Sj; ð38Þ

involving scalar and vector self-energies. Standard values for
UΛ ¼ −30 MeV and UΞ ¼ −15 MeV are assumed, whereas
the situation for UΣ is ambiguous and Ishizuka et al. (2008)
presented several versions of the EoS with UΣ ¼ −30, 0, 30,
90 MeV (“STOSYxxx,” where “xxx” indicates the value
of the potential, and a prepended “A” if it is attractive).
In the following discussion, we keep the version with
UΣ ¼ þ30 MeV. Oertel, Fantina, and Novak (2012) added
hyperons by extending the model by Balberg and Gal (1997)
to finite temperature. This model is a nonrelativistic potential
model similar to the one in Lattimer and Swesty (1991) for the
nuclear part. The hyperonic couplings are readjusted to remain
compatible with the single-particle hyperonic potentials in
nuclear matter, but, at the same time, predict maximum NS
masses in approximate agreement with the measurements of
Demorest et al. (2010).
Ishizuka et al. (2008) and Oertel, Fantina, and Novak

(2012) presented models, in which pions are also included.
The former is denoted by “STOSYπxxx.” Pions are treated as
an ideal Bose gas. Obviously, without interactions, π− will
form a Bose condensate below some critical temperature,
depending on the density, as discussed extensively (Migdal
et al., 1990; Glendenning, 1997). It is now commonly
assumed that there is an s-wave πN repulsion, preventing
pions from condensing. Ishizuka et al. (2008) showed that
indeed, adding an effective πN interaction, the domain in
temperature and density where pions condense is strongly
reduced. The main effect of pions on the EoS occurs, however,
at high temperature and the ideal gas should be a good
approximation in this regime. A simplified version including
only pions in the LS220 EoS is used by Peres, Oertel, and
Novak (2013) (“LS220π”). Nakazato, Sumiyoshi, and
Yamada (2008) extended the STOS EoS in the same
way (“STOSπ”).

Subsequently different models including only Λ hyperons
have been developed. The first one is the work by Shen et al.

(2011) (“STOSΛ”), which is very similar to the work by
Ishizuka et al. (2008), except that slightly different hyperon
interactions are employed. The motivation is that the Λ

represents, together with the Σ
− hyperon, probably the most

important hyperonic degree of freedom in hot dense super-
nova matter. Thus, including the Λ allows for discussing
general features of the effects coming from the hyperonic
degrees of freedom without the necessity of resolving the
complicated particle composition in the presence of many
different hyperons. In addition, the ΛN and ΛΛ interactions
are the best constrained from experimental data. And, since
less degrees of freedom are populated, the NS maximum mass
is less reduced from that of purely nucleonic EoSs. An
extended version of the LS220 EoS including only Λ hyperons
(“LS220Λ”) has been discussed by Gulminelli et al. (2013)
and Peres, Oertel, and Novak (2013). It has the feature that a
strangeness driven first-order phase transition occurs at the
onset of hyperons (Schaffner-Bielich and Gal, 2000;
Schaffner-Bielich et al., 2002; Gulminelli, Raduta, and
Oertel, 2012; Oertel et al., 2016) (see Sec. III.D). Banik,
Hempel, and Bandyopadhyay (2014) constructed two differ-
ent extended versions of the HS statistical model including
Λ hyperons. The density-dependent RMF parametrization
DD2 is employed and the setup for the hyperonic couplings
is similar to the one used by Ishizuka et al. (2008), i.e.,
assuming SUð6Þ symmetries for the vector couplings. The
value of the Λ single-particle potential in symmetric nuclear
matter determines the remaining scalar couplings. The basic
model is denoted as BHBΛ and the version including addi-
tional short-range repulsion in the ΛΛ channel by BHBΛϕ.
The onset density for hyperons lies between 2 and 3 times

nsat at low temperatures. As expected, upon increasing the
temperature, the density domain where hyperons appear is
enlarged, in particular, above 15–20 MeV; see Fig. 11. Note
that due to the presence of light nuclei in the BHBΛϕ EoS
(Banik, Hempel, and Bandyopadhyay, 2014), hyperons
appear at a much higher temperature in a large density domain
than in the other models. Pions become more abundant at high
temperatures too. This can also be seen from Fig. 12. In the
bottom panels, the different particle number fractions are
shown as a function of temperature for nB ¼ 0.15 [Fig. 12(e)]
and 0.3 fm−3 [Fig. 12(f)] and for Yq ¼ 0.1. The influence of
Yq on the appearance of (neutral) Λ hyperons is less important
than for charged particles. The more asymmetric the matter,
the higher is the charge chemical potential, and the higher the
abundance of charged particles. In neutron-rich matter the
charge chemical potential is negative, favoring negatively
charged particles. This is the reason why in NS matter, Σ− or
Ξ− can become enhanced with respect to Λ hyperons, even if
they have a higher mass. Thermal effects alleviate the
influence of the chemical potential (Ishizuka et al., 2008;
Oertel, Fantina, and Novak, 2012). If the baryon number
density remains constant, the overall hyperon fractions
decrease with increasing Yq (Prakash et al., 1997).
Concerning the influence on thermodynamic properties,

pressure and energy density are shown as functions of
temperature for different models in the upper and middle
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panels of Fig. 12. The STOS (Shen et al., 1998a), LS
(Lattimer and Swesty, 1991), and HS(DD2) EoSs are com-
pared with their corresponding versions including hyperons
(Ishizuka et al., 2008; Shen et al., 2011; Gulminelli et al.,
2013; Banik, Hempel, and Bandyopadhyay, 2014) and/or
pions (Ishizuka et al., 2008; Nakazato, Sumiyoshi, and
Yamada, 2008; Peres, Oertel, and Novak, 2013). As seen
from Fig. 12, the effect of the additional particles on the
thermodynamic quantities is not negligible for high density
and temperature. The main effect is a reduction of pressure
due to the additional degrees of freedom.
There exist EoSs in which the nuclear model of Shen et al.

(1998a) has been supplemented with a phase transition to
quark matter at high density and temperature too. In Nakazato,
Sumiyoshi, and Yamada (2008, 2013) and the work by Sagert

et al. (2009, 2012), Fischer et al. (2011), and Fischer, Klähn
et al. (2014) the MIT bag model (Chodos et al., 1974; Farhi
and Jaffe, 1984) is applied to the quark matter phase. The
transition from hadronic matter to quark matter is described by
a Gibbs construction in both cases (see Sec. III.D). In addition
to the nuclear interaction, the parameters of the model are the
bag constant B and the strange quark mass, and possibly the
coupling constant of strong interaction corrections. These
parameters determine the densities for the onset of the quark-
hadron phase coexistence region and the pure quark phase. It
can be observed that the onset density for the mixed phase is
noticeably lowered with decreasing charge fraction. In par-
ticular, this means that the critical density in asymmetric
CCSN or NS matter can be lower than in symmetric matter.
Furthermore, it was found that the critical density is
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FIG. 11. The lines delimit regions in temperature and baryon number density where the number density fractions of Λ hyperons exceed
10−4 for the different models. From left to right corresponds to a fixed hadronic charge fraction Yq ¼ 0.1, 0.3, and 0.5. Λ hyperons
appear at high densities and temperatures, i.e., in the upper right part of each panel.
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significantly reduced due to weak equilibrium with respect to
strangeness. A value close to nuclear saturation or even below
is thus not in contradiction with any terrestrial experiment
from HICs. This fact is exploited in the model of Sagert et al.
(2009), where the bag constant has been chosen such that the
strongly asymmetric matter in compact stars leads to almost
pure quark stars with only a thin hadronic layer. These models
are labeled as “STOSQxxxs,” where “xxx” indicates the value
of the bag constant B1=4 in MeV, and “s” stands for Sagert
et al. The models of Nakazato, Sumiyoshi, and Yamada
(2008) lie in a parameter range (B1=4 ¼ 209 MeV) where the
critical density is much higher, such that the resulting NSs
have only a small quark core. Strong interaction corrections
are not used in this model. If a thermal pion gas is included in
the hadronic phase, the transition to quark matter occurs at
considerably higher densities (Nakazato, Sumiyoshi, and
Yamada, 2008) due to the softening of the hadronic EoS
by the pions. The latter models are labeled “STOSQxxxn” for
the one with quarks and “STOSQxxxnπ” for the one with
quarks and pions. Nakazato, Sumiyoshi, and Yamada (2013)
calculated additional hybrid EoS tables for B1=4 ¼ 162 and
184 MeV. Because the corresponding maximum masses of
1.54M⊙ and 1.36M⊙ are well below the observed pulsar
masses, in the following we consider only the table with
B1=4 ¼ 209 MeV as a representative example of the hybrid
EoSs of Nakazato, Sumiyoshi, and Yamada (2008, 2013). The
thermodynamic properties are strongly influenced by the
possible existence of quark matter at high densities and
temperatures and, in particular, the phase transition can have
an important effect on the dynamics of CCSNe (see
Sec. VI.B.1).

3. Compatibility with experimental and observational constraints

In this section we compare the results of the general purpose
EoSs with several constraints that have been introduced in
Sec. IV. As can be seen from Table IV, most of the employed
interactions give reasonable properties for compressibility,
saturation density, and binding energy of symmetric matter,
except that LS180 has a compressibility at the lower end of the
allowed range and LS375 and TMA have values above the
allowed range. However, some models give symmetry ener-
gies and slopes far off the best present constraints (see
Fig. 13), i.e., the dependence of the EoS on Yq is probably
not correctly described. DD2, SFHo, IUFSU, and FSUgold
(2.1) are in the best agreement.
NS masses (see Figs. 14, 15, and Table III) probably

represent the presently most reliable observational constraint
on the compact star EoS. LS180 and the models based on
FSUgold give too low masses and HS(IUFSU) is only
marginally compatible. Note that the maximum mass depends
only very little on the treatment of the inhomogeneous part of
the EoS, such that all models with the same nuclear interaction
give essentially the same maximum mass. This is not the case
for the radii of intermediate-mass NSs, which are more
sensitive to the treatment of the crust. Here slight differences
can be observed between HS(TM1), STOS, and FYSS, which
are all based on the TM1 interaction; see Fig. 14 and Table III.
Since the H&W is not publicly available, in Fig. 14 the results
of the model by Gulminelli and Raduta (2015) are plotted.

This model is based on the same Skyrme interaction SkA.
Note that the radius of a 1.4M⊙ NS of Gulminelli and Raduta
(2015) differs by about 1 km compared to the value of H&W
as given in Table III. In Sec. IV we outlined the difficulties in
determining reliable NS radii and that presently no consensus
on the allowed range of values can be obtained. Let us
mention, however, that if small radii for 1.4M⊙ NSs of the
order 10–12 km were confirmed [as reported, e.g., by Özel
et al. (2016)], then some of the hadronic models shown here
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TABLE IV. Nuclear matter properties of the parametrizations for
the nuclear interaction used in the general purpose EoS of Table III.
Listed are the saturation density nsat, binding energy Bsat, incom-
pressibility K, skewness coefficient Q ¼ −K0, symmetry energy J,
and symmetry energy slope coefficient L at saturation density at zero
temperature.

Nuclear
interaction

nsat
(fm−3)

Bsat
(MeV)

K
(MeV)

Q
(MeV)

J
(MeV)

L
(MeV)

SKa 0.155 16.0 263 −300 32.9 74.6
LS180 0.155 16.0 180 −451 28.6a 73.8
LS220 0.155 16.0 220 −411 28.6a 73.8
LS375 0.155 16.0 375 176 28.6a 73.8
TM1 0.145 16.3 281 −285 36.9 110.8
TMA 0.147 16.0 318 −572 30.7 90.1
NL3 0.148 16.2 272 203 37.3 118.2
FSUgold 0.148 16.3 230 −524 32.6 60.5
FSUgold2.1 0.148 16.3 230 −524 32.6 60.5
IUFSU 0.155 16.4 231 −290 31.3 47.2
DD2 0.149 16.0 243 169 31.7 55.0
SFHo 0.158 16.2 245 −468 31.6 47.1
SFHx 0.160 16.2 239 −457 28.7 23.2

aThe value for the symmetry energy J is different from the
value of 29.3 MeV in Lattimer and Swesty (1991). They
computed J as the energy difference between neutron and
nuclear matter, whereas we are calculating J as the second
derivative with respect to Yq for symmetric matter at nsat; see also
Steiner, Hempel, and Fischer (2013).
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could be excluded, in particular, those based on TM1, NL3,
and LS375.
As can be seen from Fig. 15 and the data given in Table III,

the NS maximum masses of most of the extended models with
additional non-nucleonic degrees of freedom are not compat-
ible with a 2M⊙ star. BHBΛϕ, STOSπ, STOSQ139s, and
STOSQ145s are the only ones with NS maximum masses
above 1.97M⊙. As discussed, for hyperonic EoSs this is
related to the hyperonic interactions used. Recent studies for
cold NS EoSs overcome the maximum mass problem but
these models for the interaction have not yet been applied to
compute a complete EoS covering the whole range of temper-
ature, hadronic charge fraction, and baryon density. Anyway,
with increasing temperature the effect of the interactions

becomes less important and most models agree qualitatively
for the particle composition (cf. Fig. 12), whether or not
compatible with a 2M⊙ NS.
The situation becomes even more severe if additional

constraints are included in the benchmarking. In the right
panel of Fig. 16 the experimental flow constraint of
Danielewicz, Lacey, and Lynch (2002) for the pressure as a
function of baryon number density in symmetric nuclear
matter is depicted. For neutron matter (left panel), the
constraint from the χEFT calculation of Hebeler et al.

(2013) is shown (cf. Sec. IV.B). These constraints are
compared with the EoS of symmetric and neutron matter
obtained at T ¼ 0 from the different models. It is obvious that
none of the present models is perfectly compatible with the
neutron matter results from Hebeler et al. (2013) below
saturation density. However, the error band shown in the left
panel of Fig. 16 is perhaps too small (see Fig. 6), rendering
some of the models at least marginally compatible, such as
DD2, SFHo, or FSUgold. The LS180 and LS220 models are
in reasonable agreement with the constraint for nB ≳ 0.1 fm−3

but give too low pressures at lower densities. The models
SFHo and SFHx have been fitted to some NS radius
determinations giving radii around 12 km for 1.4M⊙

(Steiner, Lattimer, and Brown, 2010; Steiner, Hempel, and
Fischer, 2013). In the extreme model SFHx, it was tried to
make these as small as possible, within the employed class of
RMF interactions. This is the reason why they have very low
(SFHx) or moderate pressure (SFHo) for neutron matter
around nsat and correspondingly low and moderate values
of L. Similar observations as for neutron matter can be made
from the comparison of the flow constraint with the EoS of
symmetric nuclear matter: Many present models for the
general purpose EoS seem to give a too large pressure at
suprasaturation densities.
The neutron matter EoS is a crucial anchor point for the NS

EoS and thus also of great significance for NS mergers.
However, for CCSNe, matter is generally more symmetric and
nuclear clusters are an important contribution to the subsat-
uration EoS. In Fig. 5 , several of the general purpose EoSs
are included in a comparison with experimental data for
cluster formation (see Sec. IV.A.4). The LS220 EoS shows a
notable underproduction of α particles, and SHT(NL3)
and SHO(FSU2.1) an overproduction at high temperatures.
The other general purpose EoSs FYSS, SFHo, STOS, and
HS(DD2), are more or less in reasonable agreement with the
constraint. The current experimental data do not allow one to
make further judgements about details of the medium mod-
ifications of nuclear clusters, e.g., to distinguish classical
excluded-volume effects from quantum statistical Pauli block-
ing. For further discussion, see Hempel et al. (2015).
To conclude, there is not a single general purpose EoS that is

compatible with all constraints, even though we considered
only a few of them.However, from the purely nucleonicmodels
SFHo, HS(DD2), and SHO(FSU2.1) are at least approximately
consistent. From the EoS with additional degrees of freedom,
only BHBΛϕ, which is also based on DD2, would be
acceptable. Nevertheless these EoSs have further drawbacks
and weaknesses: in the models based on HS [SFHo, HS(DD2),
BHBΛϕ] the treatment of light nuclei is not as advanced as in

 0

 1

 2

 3

 10  12  14  16  18

M
 (

M
)

R (km)

LS180

LS220

LS375

STOS

FYSS

HS(TM1)

HS(DD2)

HS(TMA)

SFHo

SFHx

HS(FSU)

HS(IUFSU)

HS(NL3)

SHT(NL3)

SHO(FSU)

SHO(FSU2.1)

SKa

FIG. 14. Mass-radius relations of spherically symmetric NSs for
the different EoSs that cover the full thermodynamic parameter
range and include only nucleonic degrees of freedom; cf. Table III.
The two horizontal bars indicate the two recent precise NS mass
determinations, PSRJ1614-2230 (Demorest et al., 2010) (hatched
blue) and PSR J0348þ 0432 (Antoniadis et al., 2013) (yellow).
The curve labeled “SkA,” although based on the same nuclear
interaction, does not represent the H&W EoS, but the model by
Gulminelli and Raduta (2015).

 0

 1

 2

 8  10  12  14  16  18  20

M
 (

M
)

R (km)

LS220Λ

LS220π

BHBΛ

BHBΛφ

STOSΛ

STOSY30

STOSY30π

STOSπ

STOSQ139s

STOSQ145s

STOSQ155s

STOSQ162s

STOSQ165s

STOSQ209n

STOSQ209nπ

FIG. 15. Same as Fig. 14 for EoS models including additional
degrees of freedom. The onset of additional degrees of freedom is
visible as a change in the slope.

M. Oertel et al.: Equations of state for supernovae and compact …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015007-47



the quantum statistical model (see Sec. III.C.4) or generalized
relativistic density functional (see Sec. III.C.5), and it does not
include an explicit medium dependence of the nuclear binding
energies of heavy nuclei, which one could extract from
nucleons-in-cell-calculations (see Sec. III.C.6). Other EoSs
(e.g., FYSS or SHO and SHT), which are more advanced in
some of these aspects, do not fulfill constraints for the
maximum mass or L. The SHO(FSU2.1) is compatible with
the maximum mass constraint only because of an ad hoc

modification of the pressure at high densities. Furthermore, of
all possible light nuclei only the α particle is included in this
model. Detailed nucleons-in-cell calculations are used for
heavy nuclei, but only at intermediate to high densities, and
light nuclei are not taken into account in this regime at all. The
usage of different prescriptions in different regimes of T and nB
can also lead to problems in the thermodynamically consistent
construction of transitions. The state of the art in modeling the
general purpose EoS is thus not really satisfactory. There is still
need for new general purpose EoSs that employ modern EDFs
(or even beyond) with good nuclear matter properties, that
tackle the problem of additional degrees of freedom at high
densities and temperatures, and that give a detailed description
of clustering at subsaturation densities.

VI. APPLICATIONS IN ASTROPHYSICS

A. Binaries and binary mergers

Coalescing relativistic binary systems containing compact
objects, either NSs or BHs, are interesting in the context of the
EoS of dense and hot matter. They are likely to be important
sources of detectable gravitational waves (GW) by advanced
Laser Interferometer Gravitational-WaveObservatory (LIGO),
Virgo, and Kamioka Gravitational Wave Detector (KAGRA),
possibly before 2020. NS-NS and NS-BHmergers are believed
to produce short gamma-ray bursts (sGRB). In addition, they
may represent the major source for the main component of
heavy r-process elements in the Universe; see, e.g., the recent
reviews by Shibata and Taniguchi (2011), Faber and Rasio
(2012), and Rosswog (2015) and references therein. All three,
the GW signal, the sGRBs, and the r-process abundances,
contain information on the EoS.

During the late inspiral phase of both NS-NS and NS-BH
systems, NSs become tidally deformed to an extent that
depends on the underlying EoS. Numerical models suggest
that the GW frequency is very sensitive to the tidal deformation
and thus to the underlying EoS (Shibata and Taniguchi, 2011;
Faber and Rasio, 2012). However, the rate of NS-BH inspirals
is uncertain (to date no such system has been observed), and the
tidal effects from these systems are probably not visible for
next-generation detectors since they occur at too high frequen-
cies outside the range where the detectors are most sensitive
(Pannarale et al., 2011). On the contrary, after the first detection
of GW emission from a BH-BH merger (Abbott et al., 2016),
there appears to be a good chance for binary NS mergers to be
detected in the near future, and the tidal deformability has
probably a strong enough impact on theGWsignal (Read et al.,
2013). Additional information on the EoS can be obtained from
the postmerger phase, in cases where the EoS supports the
formation of a hypermassiveNS. The frequencies ofNS normal
modes after the merger are sensitive to the EoS and visible in
the GW signal; see, e.g., Sekiguchi et al. (2011), Bauswein
et al. (2012), and Takami, Rezzolla, and Baiotti (2014).
Measurements of their frequencies could tightly constrain
NS masses and radii since they are strongly correlated.
Figure 17 illustrates the correlation between the dominant
GW frequency in the postmerger phase, normalized to the total
mass of the binary system, and the radius of a cold nonrotating
NS with M ¼ 1.6M⊙. It could even be possible to give an
estimate for the NS maximum mass (Bauswein, Baumgarte,
and Janka, 2013; Bauswein, Stergioulas, and Janka, 2014;
Bauswein and Stergioulas, 2015).
Fryer et al. (2015) and Lawrence et al. (2015) proposed

another test of the EoS in binary NS mergers. Numerical
models suggest that a sGRB is produced in such a merger only
if a BH forms sufficiently fast. The fate of the core of the
remnant, and thus the BH formation time, depends on the
maximum mass supported, and thus on the EoS. Although
other factors influence the maximum mass, for instance, the
spin rate or the angular momentum distribution inside the core
(Kastaun and Galeazzi, 2015), they suggested that it is
possible to relate the existence of a sGRB to the maximum
mass of a cold nonrotating NS. Assuming NS binary mergers
to be the dominant source of a sGRB, a combined analysis of
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the observed burst rate and the total merger rate with GW
detectors would then allow for constraining the EoS. A
different model for a sGRB invokes a supramassive magnetar
as the central engine instead of a BH. Fan, Wu, and Wei
(2013) extracted the NS maximum mass within this scenario
using GRB afterglow observations, where the abrupt decline
of the x-ray plateau is interpreted as the collapse to a BH.
Compact binary mergers eject initially extremely neutron-

rich matter, and have therefore already very early been
identified as possible sources of r-process elements in the
Universe (Lattimer and Schramm, 1974). Recent calculations
show that the conditions are favorable for producing a robust
r-process abundance pattern of heavy nuclei that is close to the
solar (Rosswog, 2015). The r-process production rates, the
final abundances, and the amount of ejected material depend
on the chemical composition and the thermodynamic con-
ditions in the ejecta, and thus on the EoS; see, e.g., Bauswein,
Goriely, and Janka (2013), Wanajo et al. (2014), and
Sekiguchi et al. (2015). The radioactive decay of the freshly
produced r-process elements should produce an electromag-
netic transient, called a kilonova or macronova. Recently, a
first candidate event has been reported, associated with the
sGRB 130603B (Tanvir et al., 2013). Macronova signatures
have also been found for sGRB 060614 (Yang et al., 2015)
and sGRB 050709 (Jin et al., 2016). Assuming an almost
equal-mass NS-NS merger as a source of sGRB 130603B,
Hotokezaka, Kyutoku et al. (2013) showed that an EoS giving
R1.35 ≲ 13.5 km is preferred in order to match the inferred
relatively large values of ejecta masses and velocities. This
result, however, depends strongly on the initial mass ratio and
the type of merger. Although expected to occur much less
frequently, a compact binary merger, NS-NS or NS-BH, with
an initial mass ratio substantially different from unity naturally
produces high ejecta masses and velocities (Oechslin, Janka,
and Marek, 2007). Kawaguchi et al. (2016) analyzed sGRB
130603B within this scenario and found that a NS radius
above 11 km is favored. It might be possible to obtain reliable
information about the underlying EoS from the final

nucleosynthesis outcome with more observations and more
detailed simulations.

B. Core-collapse supernovæ

1. Dynamics

The dynamics of CCSNe results from a complex interplay
between hydrodynamics, neutrino transport, weak inter-
actions, and the EoS. The general expectation, called
Mazurek’s law, is that due to the strong feedback, a small
modification of one of the ingredients does not qualitatively
change the dynamics (Lattimer and Prakash, 2000). However,
the quantitative differences induced by different EoS can be
large enough to govern the presence or absence of an
explosion (Janka, 2012a; Suwa et al., 2013).
Since in the early phase electron pressure dominates and

later on the collapse proceeds homologously, the dynamics of
the infall epoch has only a mild direct dependence on the
baryonic part of the EoS. It is sensitive to the electron fraction
Ye and the entropy. Changes of Ye result from electron
captures (EC) on nuclei and free protons and therefore depend
on the composition, in particular, the abundances and the mass
and charge of the appearing nuclei. The mass of the inner core
at bounce Mic is roughly proportional to hY2

Le
i, the mean

fraction of trapped leptons squared (Lattimer, Burrows, and
Yahil, 1985), which is fixed and given by Ye at the moment
where neutrino trapping sets in.
Many studies, including those employing a statistical model

for the EoS, use the single nucleus approximation within the
simplified EC rates from Bruenn (1985) in order to determine
the evolution of Ye. In this simple model, the reactionQ value,
determining the phase space available for the capture reaction,
is approximated by the difference in proton and neutron
chemical potentials,

μ̂≡ −μQ ¼ μn − μp; ð39Þ

which strongly depends on the EoS. Roughly, the larger μQ
the larger the electron-capture rate. This quantity is illustrated
for different EoSs in Fig. 18. An entropy per baryon of s ¼ 1
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has been chosen, corresponding to a typical value before shock
formation and a baryon number density of nB ¼ 10−3 fm−3. It
is evident that not the saturation properties of coldmatterwithin
the EoS are relevant to determine μQ, but the treatment of
inhomogeneous matter, i.e., nuclei. For instance, the difference
between the model HS(TM1) and STOS, using the same
interaction and having the same saturation properties, is much
larger than between HS(DD2) and HS(TM1) which have very
different nuclear properties but share the same treatment of
nuclei. This was already pointed out by Lattimer and Prakash
(2000), where it was shown within a simple analytical model
that μQ was much more sensitive to surface energies than to the
bulk symmetry energy.
The EC rates also depend on entropy. Already at the stage

of the progenitor small differences in entropy arise between
the EoS employed for core collapse and the progenitor
model, in general based on a nuclear reaction network.
In addition, in the STOS EoS, the entropy contribution of
the thermal motion of heavy nuclei is missing (see
Sec. V.D.1.c), reducing the entropy and thus underestimat-
ing the deleptonization.
Another effect is that within the description of Bruenn

(1985), the EC rate strongly decreases with the neutron number
N. Since in general the distribution of nuclear abundances is
large in statistical models, the average heavy nucleus can be
very different from the single heavy nucleus in the SNA (see
Sec. III.C.2 and Fig. 10). In HS(TM1), for instance, N is in
general smaller than in STOS,where the averagemass of heavy
nuclei is overestimated (related to the Thomas-Fermi approxi-
mation and the used value for the gradient energy coefficient,
see Sec. V.D.1.c), leading to a higher EC rate in the domain
where EC on nuclei is dominant (Hempel et al., 2012).
A remark of caution is in order here. It was clearly

demonstrated that it is not sufficient to use one average heavy
nucleus in order to determine the global EC rate on nuclei,
because of shell effects on individual rates which are not
correctly reproduced within this approximation; see, e.g.,
Langanke et al. (2003) and Juodagalvis et al. (2010). Better
calculations for individual rates, attenuating, in particular, the
strong suppression of EC on neutron-rich nuclei present in the
(Bruenn, 1985) prescription, change the infall evolution and
the bounce properties too. The individual EC rates can change
by an order of magnitude from one nucleus to another which
has an important effect on the final YLe

; see, e.g., Hix et al.

(2003), Furusawa, Nagakura et al. (2013), Raduta, Gulminelli,
and Oertel (2016), and Sullivan et al. (2016). The impact on the
dynamics of a full CCSN simulation is still to be seen.
Concerning the direct impact of the EoS and the nuclear

composition, Hempel et al. (2012) performed a detailed
analysis of the different stages during the infall epoch
comparing the LS180, STOS, and HS(TM1) EoSs confirming
within a simulation some of the previously discussed effects.
At the time of bounce small differences can be observed
between the different EoSs. An important effect is that a low
central Ye is correlated with a low core mass; see, e.g.,
Sumiyoshi et al. (2005), Janka (2012a), Hempel et al. (2012),
Steiner, Hempel, and Fischer (2013), and Suwa et al. (2013).
A smaller core mass at bounce leads to a weaker shock
forming closer to the center. Naively, this would lead to a

situation less favorable for an explosion. In addition, more
mass overlays the core in this case rendering an explosion still
more difficult. However, different effects compete. For in-
stance, a stronger deleptonization leads to a higher neutrino
luminosity which in turn heats the shock more strongly.
Therefore no clear statement is possible and most studies
in spherical symmetry conclude on a minor effect of the EoS
on the overall dynamics (Sumiyoshi et al., 2005; Hempel
et al., 2012; Janka, 2012a; Steiner, Hempel, and Fischer,
2013; Suwa et al., 2013; Fischer, Hempel et al., 2014; Togashi
et al., 2014). In particular, it is difficult to relate single nuclear
matter parameters of the EoS to CCSN dynamics, unless one
compares EoSs that show very pronounced differences. The
fact that the existing general purpose EoSs often differ in
several properties, also because of correlations among differ-
ent parameters (see Sec. IV), makes systematic investigations
difficult. In addition, as illustrated, the treatment of inhomo-
geneous matter, properties of nuclei, and thermal effects are
found to be equally important as the very neutron-rich and
dense part of the EoS (Fischer, Hempel et al., 2014). This
might be different for BH formation, where the PNS maxi-
mum mass is decisive (cf. Sec. VI.B.3).
A more compact and more rapidly contracting PNS

resulting from a “softer” EoS6 generally seems to be
favorable for explosions in multidimensional simulations.
In particular, neutrinos are emitted with higher fluxes and
higher energies (Marek, Janka, and Müller, 2009). This not
only enhances neutrino cooling in 2D, but favors the
formation of more violent hydrodynamical instabilities
and stronger convection (Janka, 2012a; Suwa et al.,
2013). This is illustrated in Fig. 19, where the evolution
of the PNS radius (upper panel) and the shock radius
(lower panel) is shown for three different EoSs within a 2D
simulation by the Garching group. It is evident that in this
case the EoS decides upon the explosion.
There might be an imprint of the EoS on the neutrino and

GW signal. For instance, the faster deleptonization during the
infall epoch leads to an enhancement in the neutrino lumi-
nosity at early times. The higher neutrino fluxes and higher
energies of the emitted neutrinos from a more compact PNS
should lead to differences in the neutrino spectra too. From a
galactic supernova, these differences should indeed be observ-
able with present detectors; see Sumiyoshi et al. (2005),
Marek, Janka, and Müller (2009), and Suwa et al. (2013). A
more compact PNS leads to higher frequencies and larger
amplitudes for the emitted GW too (Marek, Janka, and Müller,
2009; Scheidegger et al., 2010). However, the EoS is not the
only varying parameter, for example, the unknown progenitor
structure or the treatment of neutrino transport can induce
modifications in the evolution of the CCSN, such that it seems
very difficult to unambiguously identify one particular effect.
Recent 1D studies of CCSNe with non-nucleonic degrees of

freedom focus on BH formation (see Sec. VI.B.3), where

6Please note that the terms “soft” and “stiff” for the EoS are not
necessarily related to the incompressibility of cold symmetric nuclear
matter or any other nuclear matter parameter due to thermal effects. It
means here simply that the overall PNS is more compressible for a
soft EoS.
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sufficiently high temperatures and densities are reached so that
these degrees of freedom are expected to have a notable effect on
the dynamics. An exceptional case for regular supernova
explosions, i.e., without BH formation, could be the onset of
non-nucleonic degrees of freedom via a strong first-order phase
transition occurring close to saturationdensity.Aspointed out by
Gentile et al. (1993) and confirmed by Sagert et al. (2009) with
detailed Boltzmann neutrino transport, in spherically symmetric
simulations a second shock can be formed as a direct conse-
quence of a phase transition to quark matter. This second shock
was found to be strong enough to unbind the outer layers once it
mergeswith the standing accretion shock (Sagert et al., 2009). In
this way, a CCSN explosion is triggered due to the phase
transition to quark matter. Furthermore, the passage of the
second shock leads to a second neutrino burst that is dominated
by electron antineutrinos,measurablewith present-day detectors
(Dasgupta et al., 2010).
However, the NS maximum masses of the EoSs applied by

Sagert et al. (2009) (STOSQ162s, STOSQ165s) are well
below 2M⊙, and thus ruled out by NS observations. In the
subsequent works exploring this scenario [see, e.g., Sagert
et al. (2010), Fischer et al. (2011, 2012), Nakazato,
Sumiyoshi, and Yamada (2013), and Fischer, Hempel et al.
(2014)], explosions could not be obtained if the maximum
mass of the employed EoS is sufficiently high. It is clear that
the required stiffening in the quark phase to reach 2M⊙

typically does not allow for a strong first-order phase
transition that seems to be necessary in this scenario to trigger

explosions. This can be related to the so-called masquerade
problem (Alford et al., 2005), known for the mass-radius
relation of NSs where quark matter could behave very similar
to hadronic matter. On the other hand, it has not been shown
yet that a SN explosion induced by a phase transition is ruled
out by the latest pulsar mass measurements.
Overall, there are still many uncertainties and open ques-

tions about the CCSN explosion mechanism, such as the
dependency on the progenitor, effects of magnetic fields and
rotation, numerical convergence, the strength and scale of
intrinsic multidimensional hydrodynamic effects (turbulence,
convection, SASI, etc.), or an accurate treatment of neutrino
interactions and their transport (Mezzacappa, 2005; Kotake,
Sato, and Takahashi, 2006; Janka et al., 2007; Ott, 2009;
Janka, 2012a; Burrows, 2013). The EoS is one of them. Its
role is not yet fully understood, partly due to the high
complexity of the system and the interplay of all the afore-
mentioned aspects.

2. PNSs, neutrino-driven winds, and nucleosynthesis

A neutrino-driven wind (NDW) is the emission of a low-
density, high entropy baryonic gas from the surface of a newly
born PNS in a CCSN. It is driven by energy deposition of
neutrinos emitted from deeper layers and sets in after the
launch of the SN explosion. It remains active in the first
seconds up to minutes. The NDW is of great importance for
the nucleosynthesis of heavy elements, as it has been
considered as one of the most promising sites for the r process;
see, e.g., the review by Arcones and Thielemann (2013).
However, previous sophisticated long-term simulations of
CCSNe (Fischer et al., 2010; Hüdepohl et al., 2010) have
shown that the matter emitted in the NDW is generally proton
rich, allowing only for the so-called νp process (Fröhlich
et al., 2006; Fröhlich, Martínez-Pinedo et al., 2006; Arcones,
Janka, and Scheck, 2007; Roberts, Woosley, and Hoffman,
2010; Arcones and Thielemann, 2013), which is not able to
produce the most heavy nuclei.
Martínez et al. (2012), Roberts, Reddy, and Shen (2012),

and Roberts (2012) realized that these long-term simulations
of the PNS deleptonization phase and the NDW neglected the
effect of nuclear interactions in the charged-current (CC)
interaction rates of neutrinos with unbound nucleons. As
outlined in Sec. III.B.2, the nucleon single-particle energies
within mean-field models can be written as the sum of a
kinetic part which has the form of a free gas, depending on an
effective mass, and an interaction potential Vi,

Ei ¼ Ekinðm�
i Þ þ Vi: ð40Þ

The difference of neutron and proton energies, which deter-
mines the energy available for (anti)neutrinos from CC
reactions, depends on ΔV ¼ Vp − Vn. In asymmetric matter
within the hot PNS, ΔV can be as large as 50 MeV. It does not
affect neutral current reactions, unless ΔV carries an addi-
tional energy dependence and one has an inelastic reaction.
The simulations of Martínez-Pinedo et al. (2012), Roberts,

Reddy, and Shen (2012), and Roberts (2012) found that
including Vi correctly modifies the evolution of neutrino
spectra and the deleptonization of the PNS. ΔV induces an
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FIG. 19. The top panel shows the evolution of the PNS’s radius
for a two-dimensional CCSN simulation employing the LS180,
the H&W, and the STOS EoSs. The bottom panel shows the
evolution of the shock radius. From Janka, 2012b.
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increase of the antineutrino energies and a decrease of the
neutrino energies. This leads to slightly neutron-rich con-
ditions in the NDW. BecauseΔV is related to the potential part
of the symmetry energy (Hempel et al., 2015), (anti)neutrino
spectra and the conditions in the NDW are sensitive to the
isospin dependence of the EoS.
Although the correct treatment of mean-field effects in the

CC reactions favors less proton-rich conditions in the NDW
than previously determined, the values of 0.46 < Ye < 0.5
obtained in the simulations7 of Roberts, Reddy, and Shen
(2012) and Martínez-Pinedo, Fischer, and Hüther (2014) with
different EoSs are still not low enough for a robust r-process
nucleosynthesis. Similar conclusions have been obtained
within the QCD phase transition scenario (see Sec. VI.B.1),
where again a slightly proton-rich NDW is produced, leading
to a weak r process (Nishimura et al., 2012). However, there
are still many open questions, e.g., the employed approx-
imations in the neutrino transport and reaction rates, a possible
progenitor dependence, or the role of light nuclei in the
envelope of PNSs.
For instance, Arcones et al. (2008) found that the envelope

composition is dominated by nucleons, deuterons, tritons,
and α particles, in agreement with other works; see, e.g.,
Sumiyoshi and Röpke (2008), Hempel et al. (2012), and
Fischer, Hempel et al. (2014). Arcones et al. (2008) showed
that light nuclei other than the α particle (mainly deuterons
and tritons) lead to a small reduction of the average energy of
the emitted electron neutrinos.
The long-term deleptonization and cooling of the PNS

(Prakash et al., 1997; Pons, Steiner et al., 2001) contains
further interesting aspects related to the EoS. Within the
delayed BH formation scenario, the loss of thermal energy
and, in particular, the deleptonization destabilizes the PNS
(cf. Sec. VI.B.3). For an exploding CCSN, convection in the
subsequently contracting and cooling PNS is very sensitive to
the EoS, as in the early postbounce phase. Since convection
depends strongly on the variation of pressure with lepton
fraction YLe

at constant nB, the EoS dependence is mainly
characterized by the symmetry energy (Roberts et al., 2012).
They showed that the symmetry energy leaves an imprint in
the neutrino count rates of present-day neutrino detectors for a
galactic CCSN.
In the simulation of Suwa (2014) the long-term evolution of

the PNS was followed in a self-consistent manner starting
from its birth in the CCSN up to ∼70 s. It is the first time that
such a simulation entered the regime of conditions where the
formation of the crust is expected.

3. Black hole formation

In a stellar core-collapse event a NS is formed if the
exploding star successfully unbinds the ejected material after
bounce. In a so-called failed CCSN, the outcome may equally
be a stellar mass BH if the expanding shock is not able to
break through the infalling material and accretion pushes the

PNS over its mass limit on the time scale of seconds.
Alternatively, there can be a delayed BH formation process,
where either the cooling PNS becomes unstable or the fall
back of ejecta causes the collapse to a BH in the minutes
following the bounce. Numerical studies of BH formation in
core collapse have a long history; see, e.g., O’Connor and Ott
(2011) and references therein.
All scenarios have in common that the formation of an

apparent horizon is accompanied by a significant drop in
neutrino luminosity since most of the neutrino emitting
material is swallowed up by the BH. The GW signal could
be interesting too in this context, being sensitive to oscillations
in the hot PNS (Cerdá-Durán et al., 2013) and thus to the
EoS. Pons, Steiner et al. (2001) and Nakazato et al. (2010)
demonstrated that for a galactic event the time between
bounce and BH formation tBH is possibly observable from
the neutrino signal in the Super-Kamiokande detector.
However, the evolution of the core collapse and tBH crucially
depends also on the progenitor structure. O’Connor and Ott
(2013) showed that it might be possible to get information
about the compactness of the core of the progenitor star from
the neutrino spectra and luminosities, which would allow one
to disentangle the effects of the progenitor and of the EoS to
some extent. In addition, rotation can strongly change not only
the time until BH formation, but also the neutrino signal itself
(Sekiguchi and Shibata, 2011). In particular, neutrino emis-
sion continues on a reduced level well after BH formation
from the newly formed accretion disk, rendering the inter-
pretation of the neutrino signal less obvious.
The EoS, as well, strongly influences the time until BH

formation, since it determines the maximum mass supported
by the hot PNS. There are two different physical mechanisms
leading to the final gravitational instability: either the collapse
is accretion induced or due to deleptonization and/or cooling.
In the latter case, it is not necessarily the reduced thermal

pressure which destabilizes the cooling PNS, but deleptoni-
zation. In the hot PNS, due to the presence of trapped
neutrinos, matter is very lepton rich and Ye can be as high
as 0.4 (Prakash et al., 1997; Pons et al., 1999). This leads to a
suppression of additional degrees of freedom containing
strangeness (Prakash, Cooke, and Lattimer, 1995), such as
hyperons, a kaon condensed phase, and/or a delayed phase
transition to quark matter (see also Sec. V.D). Consequently,
metastable PNSs could exist, whose maximum mass is above
that of cold, β-equilibrated NS (Prakash et al., 1997). During
the deleptonization of the hot PNS, the fraction of hyperons or
quarks increases, eventually inducing a loss of stability and a
collapse to a BH; see, e.g., Keil and Janka (1995), Baumgarte
et al. (1996), and Pons, Steiner et al. (2001).
For an accretion-induced collapse in a failed CCSN, tBH is

too short for considerable deleptonization. Here the PNS
cannot support the additionally accreted mass. The sensitivity
of tBH to the EoS has been demonstrated in many studies; see,
e.g., Sumiyoshi, Yamada, and Suzuki (2007), Fischer et al.
(2009), O’Connor and Ott (2011), and Suwa et al. (2013).
However, there is no straightforward relation between any
property of a given EoS, for instance, the maximum mass of a
cold β-equilibrated NS, and the PNS mass at the onset of BH
collapse. The reason is that BH formation is a dynamical
process, and the temperature, density, and Ye distribution in

7Note that the Ye values are different compared with the values
reported by Roberts, Reddy, and Shen (2012), due to a previous
computational error which was later corrected (Roberts, presentation
at the MICRA workshop in Trento, 2013).
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the hot PNS depends on many factors and is, in particular,
very different from that of a cold and β-equilibrated NS.
Hempel et al. (2012) and Steiner, Hempel, and Fischer (2013)
proposed an interesting ansatz: employing an extensive set of
nuclear EoSs in simulations with a 40M⊙ solar metallicity
(Woosley and Weaver, 1995) progenitor, it was shown that for
the given setup, tBH can be correlated with the maximum mass
of a β-equilibrated isentropic PNS at s ¼ 4. However, the
evolution of a CCSN does not depend only on the EoS, but on
many other factors (as discussed previously) which makes it
difficult to unambiguously relate tBH to the EoS.
Failed CCSNe have larger accretion rates than their

exploding counterparts, such that higher temperatures and
densities are reached within the PNS. As discussed in
Sec. V.D, this could lead to a sustained production of addi-
tional degrees of freedom such as quarks or hyperons.
Subsequently, the EoS is softened, supporting less mass
and reducing tBH compared with a purely nuclear EoS; see,
e.g., Ishizuka et al. (2008), Sumiyoshi et al. (2009), Nakazato,
Sumiyoshi, and Yamada (2010), Nakazato et al. (2012),
Peres, Oertel, and Novak (2013), and Char, Banik, and
Bandyopadhyay (2015). Since these non-nucleonic degrees
of freedom appear only deep inside the PNS, apart from tBH no
considerable difference in the neutrino signal is to be expected
with respect to a purely nuclear EoS, except if the appearance
of additional particles is accompanied by a phase transition
(Nakazato, Sumiyoshi, and Yamada, 2010; Peres, Oertel, and
Novak, 2013).
Thus, although it is a promising field, there is still work

needed before we can conclude from the neutrino signal on the
EoS. We emphasize again that such difficulties are rather
typical for observables of CCSNe (cf. Sec. VI.B.1).

VII. SUMMARY AND CONCLUSIONS

Describing properties of matter in compact stars, their
formation and merger processes is a very challenging task.
The wide range of densities, temperatures, and charge
fractions to be covered includes extreme values out of reach
in terrestrial experiments. Therefore, one has to rely on
theoretical modeling. However, dense hadronic and quark
matter is difficult to describe since the many-body problem
with strongly interacting particles has to be solved. In this
review, we discussed theoretical and phenomenological
approaches to address these difficulties.
In addition, we reviewed constraints on the EoS that have

been obtained from experiments, astrophysical observations,
and ab initio calculations. Let us mention here some particu-
larly important constraints. First, the recent observation of two
NSs with precisely and reliably determined masses of about
2M⊙ has triggered intensive discussions on the composition
of matter in the central part of NSs. These results put strong
constraints on the high-density, low-temperature part of the
EoS. Second, considerable progress has been made in recent
years concerning theoretical ab initio calculations of pure
neutron matter up to roughly saturation density, thus con-
straining the neutron-rich part of the EoS in this density
regime. Third, laboratory experiments are beginning to con-
verge to a common prediction for the symmetry energy and its
slope around the saturation density.

There exist plenty of EoSs for cold NSs. To a lesser extent
this still holds for EoSs for homogeneous hot matter in PNSs.
In this review, the emphasis has been put on EoSs that cover
the entire range of thermodynamic variables, which is relevant
for simulations of CCSNe and compact binary mergers. They
are much more rare, although in recent years much effort has
been devoted to the development of new models, focusing on
two aspects. First, the treatment of cluster formation and
inhomogeneous matter at low densities and temperatures has
been considerably improved. It was realized that light nuclei,
which were previously ignored, can be important. Subsequent
CCSN simulations have shown that differences in the cluster
description induce differences in the dynamical evolution
which are as important as those arising from different nuclear
interaction models. Second, improved interactions and addi-
tional particles have been considered for the high density and
temperature part, such as hyperons, mesons, and quarks.
These non-nucleonic degrees of freedom influence, in par-
ticular, black hole formation, and NS-NS and NS-BHmergers.
Despite all efforts, there is much room for improvement.

The cluster treatment is often based on a purely phenomeno-
logical description with several approximations and simplifi-
cations (see Sec. III.C). The interaction models employed
cannot be considered definite. For instance, no presently
existing model is consistent with all available constraints.
However, it is clear that some of the constraints have to be
regarded with care. Not all of them have the same reliability as
the 2M⊙ NSmass measurements; see the discussion in Sec. IV.
The quality of constraints is expected to improve in the

future. For example, the current efforts to determine NS radii
with an unprecedented 5% precision by projects such as
ATHENAþ, NICER, LOFT, and others promise rich infor-
mation regarding the inner NS structure. GW astronomy has
the potential to give new and completely independent insight
into compact stars and their underlying EoS. New laboratory
experiments and experimental facilities such as RIKEN,
FRIB, FAIR, or NICA will provide new constraints for high
density matter. We emphasize that all available general
purpose EoSs are based on phenomenological approaches
due to the computational and conceptual complexity of more
microscopic methods. In the future, the increase in computa-
tional power is likely to allow the latter to provide EoSs
suitable for astrophysical simulations too.
To conclude this review, let us mention, without claiming to

be exhaustive, some important questions, which have to be
addressed to develop a more realistic EoS. Because of the
large range of variables covered in simulations, very different
domains are encountered.

• Can we obtain a reliable description of all basic baryonic
few-body interactions?

• How and under which conditions do non-nucleonic
degrees of freedom appear?

• When does nuclear matter deconfine?
• Can we develop a QCD-based framework that covers the
relevant range of variables?

• How do we better treat spatially inhomogeneous matter
and cluster formation?

• How do we describe phase transitions consistently?
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Answers to any of these problems will result in better
models for the astrophysical EoS and will help to understand
various fundamental phenomena such as the composition and
dynamics of NSs, the explosion mechanism of CCSNe, the
threshold to BH formation, the nature of gamma-ray bursts, or
the origin of heavy elements and the related galactical
chemical evolution. In turn, these astrophysical insights are
potentially relevant for the analysis of relativistic HICs and
possibly for the search of QCD phase transitions.
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APPENDIX: RESOURCES

1. EoS databases

Here we present a list of publicly available EoS databases.
Many authors provide their EoSs online, among them many of
those presented in Sec. V.D.

• Lattimer and Swesty (1991)
http://www.astro.sunysb.edu/dswesty/lseos.html
The original LS EoSs are available in the form of a

computer program. Several authors have generated
tabulated versions from it that can be found in the other
databases. The various tables can differ in the range of
thermodynamic variables covered and the details of the
underlying calculation.

http://www.astro.sunysb.edu/lattimer/EOS/main.html
Four unpublished general purpose EoSs are tabulated

at this web site, where, according to their names, three of
them are based on the Skyrme interactions SKI’, SKa,
and SKM*, and the fourth has an incompressibility of
370 MeV.

• Sumiyoshi (1998)
http://user.numazu‑ct.ac.jp/~sumi/eos/index.html
[Hosts data of Ishizuka et al. (2008) as well].

• Shen and Horowitz (2010)
http://cecelia.physics.indiana.edu/gang_shen_eos/

• Hempel (2011)
http://phys‑merger.physik.unibas.ch/~hempel/

eos.html

The resources listed provide data in the full space of
temperature, density, and asymmetry. A Web site that offers
EoS tables for NS matter is as follows:

• Potekhin and Haensel (2013)
http://www.ioffe.ru/astro/NSG/nseoslist.html

Different groups maintain online EoS collections with
additional features. Here we provide the links with a small
synopsis as found at the corresponding Web sites:

• STELLARCOLLAPSE.ORG
O’Connor and Ott (2008)
http://www.stellarcollapse.org
“..., a website aimed at providing resources supporting

research in stellar collapse, core-collapse supernovae,
neutron stars, and gamma-ray bursts.”

STELLARCOLLAPSE.ORG provides not only tabulated
EoS data but hosts valuable resources, information,
and freely available open source code for stellar
collapse and related phenomena. The available open
source codes are listed in Sec.2 of the Appendix.

• COMPOSE

Klähn, Oertel, and Typel (2013) and Typel, Oertel,
and Klähn (2015)

http://compose.obspm.fr
“The online service COMPOSE provides data tables for

different state-of-the-art equations of state (EoSs) ready
for further usage in astrophysical applications, nuclear
physics and beyond.”

COMPOSE has been developed by us with support
of the ESF-funded network CompStar, and the succes-
sive COST Action MP1304, NewCompStar. The com-
munity behind these research networks consists of
EoS developers and users. A driving idea behind
COMPOSE is not only to host a wide range of EoS data
but to provide it in a flexible, multiple purpose, and
reusable data format applicable for NS and CCSN EoSs.
The LORENE library (Gourgoulhon et al., 2016) is
COMPOSE compatible.

• EOSDB

Ishizuka et al. (2015)
http://aspht1.ph.noda.tus.ac.jp/eos/index.html
“Our aim is to summarize and share the current

information on nuclear EoS which is available today
from theoretical/experimental/observational studies of
nuclei and dense matter.”

EOSDB offers the possibility to search, compare, and
graphically represent nuclear matter EoSs and related
quantities online.

2. Open source simulation software

EoSs are a crucial input to many astrophysical simulations.
We present a list of publicly available codes treating problems
related to this review.

• LORENE

Gourgoulhon et al. (2016)
http://www.lorene.obspm.fr
“... a set of C++ classes to solve various problems

arising in numerical relativity, and more generally in
computational astrophysics.”
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• RNS

Stergioulas (1996)
http://www.gravity.phys.uwm.edu/rns/
“... constructs models of rapidly rotating, relativistic,

compact stars using tabulated equations of state which
are supplied by the user.”

• STELLARCOLLAPSE.ORG
O’Connor and Ott (2008)
http://www.stellarcollapse.org
offers several codes:

(1) GR1D:
spherically symmetric code for stellar collapse to
neutron stars and black holes.

(2) GR1DV2:
spherically symmetric neutrino radiation
hydrodynamics.

(3) SNEC:
the SuperNova explosion code

(4) CCSNMULTIVAR:
multivariate regression analysis of gravitational waves
from rotating core collapse.

• AGILE-IDSA
Liebendörfer (2011)
https://physik.unibas.ch/~liebend/download
“... provides tools to run a rudimentary and approxi-

mate model of a core-collapse supernova with neutrino
transport in spherical symmetry through the phases
of stellar collapse, bounce, and early postbounce
evolution.”
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