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I NTRODUCT iON

The theory of equations with delay has been considerab'ly developed

during the past 30 years. The first book dedicated to this subject has

been pub'lished by A. D. Myshkis IlB0], 'in l95l , and has been subsequent'ly

translated into German (.|955) and English (.l966). A second Russian

edit'ion, that came out in 1972, contains a good deai of references and

points out interesting features of the theory of linear equations wjth

delayed argument, including also examples of equations with unbounded

de'lay

The general theory of equations with delay, as well as several

basic topics in this field (stability, oscillations), have constituted

successively the aim (totally or partially) of the following monographs:

L. E. E1'sgo1'ts [68], N. N. Krasovski [.|37], E. Pinney Il98],

R. Bellman and K. Cooke [.l0], A. Halanay [89], L. E. El'sgo'l'ts [69]

S. B. Norkin [.|90], N.M. Oguztoreli [.l96], V. Lakshmikantham and

S. Leela [.|45], Yu A. Mitropolskii and D. I. Martynyuk [263], J. K.

Hale [96], L. E. E1 'sgo'l 'ts and S. B. Norkin [70], R. D. Driver [65].

The second edition of Hale's book [96] contains the most comp'lete

description of the subject, though it does not cover entire'ly several

aspects discussed in some of the above quoted monographs.

*Research supported by U.S. Arrny Research Grant #DAAG29-77-G0A62.



It should be also mentioned that, in the past few years, several

survey papers have been devoted to the theory of equations with delay:

Lezf, [t8t], [182], 1242J, 1264f.

In spite of the fact that most of the above quoted sources

contain results and references related to the theory of equaiions with

unbounded de1ay, the coverage of this topic, in monographs and survey

papers, seems to be much behind its rea'l status in the literature. This

situation might be the result of the fact that the interest in this

class of functional equat'ion has shown a dramatic increase only in the

past few years. Indeed, over sixty percent of the papers included in

the list of references are from the 
.|970's. 

Moreovero the main achieve-

ments, in both general theory and 'investigation of various special

cl as ses that occuri n appl i cati ons , are undoubtedly those obtai ned

during the recent years. At least seven dissertat'ions have been dedicated,

in the past few years. to the theory of equat'ions with unbounded delay

(see [23], [56], ['l56], [157], [215], [216], [269]).

The aim of the authors of this survey is to provide an account

of the basic results and problems of the theory of equations with

unbounded delay.

Though we do not aim at a thorough presentation of the topic,

including its history, we think a few remarks on the early stage of this

theory may be welcome. There is no doubt, we must pay tribute to

V. Voltema (see [228], 12291 and [230], where funther references can

be found for the period up to 1930) as the founder of equations in which

the unbounded delays occur. Moreovero he is to be credited for the

fit"st app'lications in such fields as population dynamics and mechanics
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of continua (materjals with memory) [228]. 0f course, the development

of functional analysis at that time did not stimulate the construction

of a general theory for equations with unbounded delay (not even for

those with bounded delay). Volterra himself found it necessary to

"cut" the de1ay, in order to make the top'ic more accessible to the

i nvest'igat'ion (see [228] ) . In the peri od '|930-1950 , only a few papers

have been concerned with equations involv'ing unbounded deiays, or wjth

so-cal I ed "Vol terra equati ons " ('in more common term'ino]ogy , these are

functional equations involving causal operators: x(t) = V(t,x(t)) ).

In particular, the right hand side V could be an integral operator of

Volterra type. The paper by N. A. Tychonoft 12231, though isolated

in time, could serve as an illustration of the impact that Volterra's

ideas had on the applied research. The name of Lotka should be also

associated with applied reSearch areas that rely on the concept of

equationswith delay, the case of the unbounded delay being implicitly

i nvol ved.

If the progress in the theory of equations with delay is hardly

noticeable in thb period .|930-.1950, 
the progress in Functiona'l Analysis

and related areas (harmonic analysis, dynamical systems, various classes

of function spaces and operators, semigroups) has been ovenvhelming.

First, the theory of equat'ions with bounded delay has taken advantage in

bu'ilding up its structures. Hale's monograph [96] provides the best

illustration in thjs respect, but examples of the use of functjonal

anaiytic methods in jnvestigating delay equations can be also found in

several of the above quoted monographs, and papers included in the

references.
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Howevero the number of papers not effectively connected to unbounded

delays is relatively small.

b) Not to include papers that have been already quoted in the

prev'iously mentioned monographs, unless they are directly involved in

this presentation. :

c) To include papers in which the stress is on the applications,

but only to the extent we need to illustrate the interconnections

between the theory of equations with unbounded delay, and various

applied areas. [,'le made no attempt to give a complete ljst of references,

as far as app'licatjons of equations with unbounded delay are concerned.

d) Papers dealjng with stochastic equations involving unbounded

deiay, or part'ial differential equations of the same kind, have not

been, generally, included in the list.
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l. DESCRIpTT0N 0F EQUATI0NS l,,JITH UI'IBOUNDED DELAY

The functional-differential equat'ions with unbounded delay can be

written as

i1t1 = f(t,xr),

where xa(u) = x(t+u), -- < u < 0. If x takes values in a real Banach

space B, then for each fixed t, S + f(t,O) is a map from a certain

function space S =S ((-*,Q],8) into B. l^le agree that S((--,0],B) denotes

a function space whose elements are defined on (-*,0], and take values in

B. In most cases discussed in the literature dedicated to this subject,

the space B is of fjnite dimension. However, certain papers deal with

the genenal case when B is infinite dimensional (see, for instance,

[23], [28], [Zoe]).

The Cauchy problem related to (l) can be stated as follows:

given 0 s S and tO e R, find a function x : (-*, t0 * 6) * g, 6 > 0,

such that

X+ = 0,
"0

and (l) is verified on (t0, t0 + 6).

It becomes clear from the above formu'lation that two basic elements

are involved in the definition of an equation with unbounded delay. First,

the function space from which we select the initial data 4,, occurring in

(2), and second, the operator (or, more accurately, the family of

operators f(t,.)) defined on that space and occurring'in the right hand

side of (l ).

(2)
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Unfortunately, both mathematical concepts mentioned above are not

all simple, and many peculiarit'ies occur when dropping the assumption

boundedness for the delay.

Let us discuss first the space of initial functions, the so-called

"phase-space" associated to the equation (l). Its elements are functions

taking values in a Banach space, even in an Euclidean space, but their

domain of definitions is a noncompact set R = (-*,0]. One can aiso say

that the set of defin'ition has infinite measure, if one thinks to the

ordinary Lebesgue measure. The structure of such function spaces is,

generally, more jntricate than the one of function spaces whose elements

are defined on a compact set (see, for iiiustration, [38], [66], [.|67]).

For instance, the compactness crjteria are more involved in the case of

function spaces with elements defined on noncompact sets. The separability

property is another example of property that usual'ly holds true in the

cases of function spaces consisting of elements defined on compact sets,

while'it does not in most cases of function sDaces whose elements are

defi ned on noncompact sets.

Perhaps, more dramatic is the difference between the various

operators acting on spaces beionging to the above mentioned classes. To

'illustrate only one feature, let us remind (see [96]) ttrat the general

form of linear autonomous equations with bounded delay, and continuous

right hand side, is

0

i(t) = j tan(s)lx(t+s) + r(t),
-1.

{?\

where n(s) is a

on [-r,0]. it

matrix whose entries are funct'ions with bounded variation

is assumed that B = Rr. If one tries to find such a form
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I
'in the case of equations with unbounded delay, then the following situation

may occur. Assume that S = s((-*,0],Rn) is the space of all continuous

maps from R- into Rn, with the topology of uniform convergence on any

compact set of R. Th'is space js not a Banach space, but its topology

is a natural one. The general form of a linear continuous map from S

into Rn 'is precisely

0

L(o) = / [an(s)]o(s),
-r

with r > 0 depending on L, and n(s) a matrix whose entries are real

funct'ion with bounded variation on [-r,0]. In other words, if one looks

for the general form of the linear autonomous equat'ion, with continuous

right hand side, then one finds equations like (3). The result is some-

what astonish'ing, because the unbounded de'lay is "cut" down to a bounded

one. 0f course, the continuity requirement on the right hand side of

the equation is too strong here, and considerab'ly reduces the class of

equat'ions with such a property.

Let us remark that similar features are present when S is the

space of all localiy integrab'le maps from R_ into Rn, with the topology

given by the family of semi-norms

x-> n = l r 21 3, ...

Therefore, a special attention should be paid when choosing the

phase-space and the operators occurring'in the equation, in order not

to lose the most sal'ient features of the theory of equations with

0

f
-n

lx(s)lds,
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unbounded delay. Actually, the latest developments show that the phase-

space should be chosen not as rich as it appears in the examples described

above (see [9], [28], [3.l], [32], [34], [39], [41], [43], [46], [75],

Ie3], Ie4], Ie7], [99], ttO+1, [157], It58], [173], [209]), white the

operator involved does not have to be necessariiy continuous (see l14g7,

suppl. ref.).

If one looks for the general form of the linear equation, with

continuous right hand s'ide, but not necessarily autonomous, then one finds

0

i(t) = J [a.n(t,s)]x(t+s) + r(t),
-r(t) r

with convenient condit'ions on n (we again assume that 5 is the space of

all continuous maps from R- into Rn, with the topology of un'iform conver-

gence on any compact set of, R_). Since the function r"(t) could be

unbounded, it is reasonable in such a case to consider (5) as an equation

with unbounded delay. Equations like (5), and related ones, have been

extens jve'ly invest'igated by A. D. Myshkis in his monograph [.l80], and

by several of his followers (see reference items under names: v. B.

Kolmanovskii, E. Kozakiewicz, K. M. Malov, N. p. Mironov, v. F. Subbotin,

A. M. Zve r1<i n [2a0] ) .

Nonlinear equatjons involving 'integral operators of the form

indicated in the right hand side of (5), or even with the'integral limits

-- dfld 0, have been also investigated by many authors: V. E. Benes,

L. B. Bisjarina, J. Blaz, c. corduneanu [37], A. Haimovici, A. Kamont and

M. Kwapisz, M. Kis'ieliewicz, J. Kudrewicz, M. J. Le'itman and V. J. Mizel ,

J. J. Levjn and J. A. Nohel, R. c. Maccamy, R. K. Mi11er, yu. I. Neimark,
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(6)

V. R. Nosov, N.0guztoreli, M. Picone, A. G. Ramm, V1. Rasvan, I. |.l.

Sandberg, G. Seifert, V. R. Vinokurov, V. Volterra [230], K. Zima (see

ljst of references). Usually, the equation under investigation is

supposed to be in the integral form, for instance,

t
x(t; = f(t, x(t), I k(t,s, x(s)ds)

or another sjmilar form. In most of the cases, the convolutjon kernel

'is considered: k(t,s,x) = k(t-s)S(t,x(s)).

It is worthwhjle to point out that the equations of the form (6),

or thejr counterparts involving also the derivative, have been the first

equations wjth unbounded delay to be invest'igated (see V. Volterra [230]).

An interesting feature, they come out in a very natural manner if one searches

for the limiting behavior o.f solutions to Voltema equations with finite

I imits (see R. l(. Mi'l1er [1727 or C. Corduneanu [38]) .

Besides functjonal differential equat'ions of the form (1 ), and

integral equations of the form (6) or related to it, we must include in

the class of equations with unbounded delay another family of functional

equations (see N. V. Azbelev [4], N" v. Azbelev and L. F. Rakhmatulina [5],

Yu. A. Gershman and A. D. Myshkis [78], G. A. Kamenskii and A. D. Myshkis

[ll4], A. D. Myshkis [let]).A very recent survey paper on this topic has

been published by N.v. Azbelev and L. F. Rakhmatulina (see suppl. list
of references). These authors deal, in fact, with boundary value problems

for functional d'ifferential equations of the form x'(t) = (Ax)(t),

a < t< b, X=6forte [a,b]. TheoperatorAdepends or 0, and in

particular on the values O assumes in the half-axis t < a. Keeping 4
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fixed for t > b, or taking the limit case b = *-, we obtain a functional

differential equation on [a,b], with "initial" data on (-*,a]. Let us

remark that this is not a local Cauchy problem for the equation

x'(t) = (Ax)(t). Itis rather an existence problem "jn the 1arge," for

a famiiy of equations depend'ing upon a functional parameter,g. Actual1y,

the equat'ion should be written as x'(t) = (A*x)(t), t > d, X(a+) = O(a).

Since q belongs usually to a space with rather intricate topolog'ica1

structure, and the existence is required "in the 1arge," the difficu'lty

of the problem is cons'iderable (even in the specia'l case formulated

above). Moreover, the d'ifficulty is increased by the fact that the

dependence of the operator (in the right hand s'ide of the equation)

upon 0 does not seem usually to be of a simp'le nature.

To illustrate another feature of the equations with unbounded

de'lay, let us consider the,case

x(t) = G(t, k(t,s,x(s)ds), t e R.

If one associates to (7 ) tfre i ni ti al condition (2), i .e. ,

x(t) = O(t), t . t.,, t,.r e RtU' U

then (7) becomes for t > tO

to

x(t) = G(t,

t
I

-@

(7)

(B)

-@

.f-
t

I
+
Ln

oF, in another form:

k(t,s,0(s)ds + k(t,s,x(s)ds),
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(7') x(t) = G(t, k(t,s,x(s)ds), t t t0.
t

I
to

In other words, if one prescribes the values of x(t) on (--,t0], then

x(t) can be determjned on t, t0 by solving a Volterra equation with

finite limits (or, in equivalent terms, with bounded de'lay). 0f course,

one can object that 4 does not verify (7) for t. t0. But this'is true

also jn the case of equations of the form (1), with init-ial cond'it'ion (2).

It does not seem to be any ground to reject the legitimacy of the Cauchy

problem for non-differential functional equations as (7). Since t
tn

involves / " k(t,s,0(s))ds, i.e., dn operator on a function space whose

elements are de'fjned on noncompact sets, it is reasonable to regard such

problems as pertaining to the theory of equations with unbounded de'lay.

Before conclud'ing this section, let us mention the example of an

equation of the form

x'(t) = 
^(t)x(t)

K(t,s)x(s)ds + f (t),

studjed by L. P. Bisjarina[.|7]. It occurs, according to the author, in

the nuclear-reactor kjnetics. Under appropriate hypotheses, the uniqueness

of solution is guaranteed by the "initial" condition x(--) = x0, a

feature that does not seem to be very common.

Summing up the discussion above, we must point out that the theory

of equations with unbounded delay heavi'ly reiies on the properties of

function spaces, whose elements are defined on noncompact sets, and on

the properties of operators acting on such spaces. As seen above,

+
L

+il1(e)
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due to the'intricate structure of such spaces and operators, various

odd'ities can occur when start"ing to build up a theory of equat'ions with

unbounded de1ay.
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2. EXISTENCE, UNIQUINESS, CONTINUATION AND

CONTINUOUS DEPENDENCE OF SOLUTIONS

The basic problems mentioned in the title of this section have

been discussed in most of the papers included in the list of references,

under various assumptions and formulations. '

For instance, the linear equations of the form (5) have been con-

sidered in A. D. Myshk'is' monograph [180], and thoroughly investigated

as far as existence, uniqueness, and continuous dependence are concerned.

The existence has a 91oba1 character and the initial data are subject

-i:o a m'inimum of restrictions.

Nonlinear equat'ions, directly generai'izing those cons'idered b.y

Myshkis, have been studied by J. Blaz [18], [.l9], A. Kamont and M. Kwapisz

[ll5], M. Kisieliewicz [l2l]. carath6odory type conditions have been

al so exami ned.

Most of the efforts of Pittsburgh's school, in sett'ing up an

adequate theory of existence, unjqueness and continuous dependence of

solutions for equations with infinite delay, have been summarized in

B. D. Coleman's paper [28]. See also [34], and for recent discussion

12491. Let us elaborate now on these contributions.

llJe shal I consi der the functi onal d"ifferenti al equat'ion (l ) , under

initial condition (2). But since O stands in (2) for a class of (measurab'le)

equivalent maps, it js not possible to determine the value of O at any

point of R-. As suggested by M. C. Delfour and-S. K. Mitter in [58],

for a real meaning of such a condjtiono in conjunction to the functional-

differential equation (l), one should prescribe the jnitial value of the
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solution at t = t0. In other words, (2) should be replaced by

x+ = o, x(t.,+) = xo , B.tov
(z',)

0f course, if O be'longs to a space of continuous functions at t = 0,

it is reasonable to take x0 = <i(0). The function space of initial

functlons O will consist of those classes of equivalent maps (Bocl'rner)

from (-*,0) into the Banach space B, which are strongly Bochner measurable,

and such that

(10)
0

/ lo(t) lPr.(s)ds < *@r

where p > 1 is given, I l. denotes the norm in B, while k: (--,0) * (0'-)

is an influence function. In other words, k is locally summable on (-*,0)

and for each o > 0 one has

(ll) K(o) = s5^ ^"^ k(s-o) < *, H(o) = ess k(s+o)

,Jt-_]Hi ti=# a *, H(o) = ::i;,::! ttj,. -.

If one denotes by S the product space B,. L[(R-,B), i.e.,0 e f[ iff lt

sat'isfies (.l0), then a convenient norm in S is given by

ll(*0,0)llp = l*0lp * /0 lo(s)lpt<(s)os.

The requirements (ll) on the weight function k are motivated mainly by

appiicat'ion needs (mechanics of continua). They might be strengthened

or relaxed, in accordance to the specific problem under investigat'ion

(see [28], [31], f32f, [34], [254]).

(12)
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'is such that

(t r1

t6

an open set in L[, and T > 0, then assume f : [0,T] x G + B

0

lf(t,O) - f(t,{,)l . L {/ lO-'t,lpt ortl/p

holds locally in [0,T] x G. Moreover, assume f(t,O), that depends only

on t and the equivalence class of 0,'is integrable on [0,T] for each 4.

Under these assumptions, the Cauchy problem ('l), (2') has a unique 0ocal)

solution, defined on an interval [a0, ,0 + 6], with 0: t0 . t0 + 6 < T.

Contjnuous dependence of solutions, with respect to initial data, is also

assured under above assumptions.

In [254], T. L. Herdman and J. A. Burns consider the equation

(14) i(t) = F(t,x(t),xr),

with x, F e Rn, under in'itial condition (2').

replaced by the weaker one

The condition (.|3) is now

/1r\
\ t3l

J
+u0

lF(s,x(s)xa) - F(s,y(s),yr)lds .

t
rr(t)U* lx(s)-y(s)lpL(r)asil/p, t. [to,t0 + T],

where rr(t) > 0 is a locally bounded measurable function on [tO,t.+T],

T > 0, and x, y belong to L[t{-*,t'*f),g), are continuous on [tO,t.+T],

and ll(x(t),xr)ll, ll(v(t),vt)ll < r, t ' [to,t'*T] (see formu'ta (tz)

for the definition of ll.ll). In (15), one takes k(s) = I for s > 0.
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Local existence and unjqueness hold true, and continuous dependence follows

from the same assumptions. More specifically, if the perturbed equat'ion,

associated to ("|4) is considered,

(16 ) *(t) = F(t,x(t),x*) + h(t),

then the (unique) solution depends continuously ('in the supremum norm) on

n
x", O and h. The phase-space the authors deal w'ith is the product

B ",-[(R-,8). Moreover, the case when F is defined only on a dense

subset, in the last two arguments, is investigated. It "is 'interesting

to be pointed out that condit'ion (.|5) does not necessarily impiy continuity
nn

of the map (x',0) * F(t,x",O). The necessity to deal with discontinuous

funct'ions in the right hand side of the equation is not imposed, in this

case, by the requirements of a theory covering the so-called systems with

distributed parameters. It might occur in such a simple case like that of

the equation

(17)
0

i1t; = 
-j 

o(s)x(t+s)ds,

w'ith integrable k(s) on R_. For a detailed discussiono see 12491, where
0

a k(s) is tndicated, wjth the property that the mapping 0 -" lJ(t)O(s)ds
cannot be continuous on any f[, O > 1, no matter how we t.ake the influence

function k(s) (see conditions (ll)).

Another funct'ion space that has been used by many authorsn in

connection with equat'ions with unbounded delay, can be defined as follows.

Assume B is a Banach space and ztP, p > 1, represents the set of classes
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of equivalent

measurable on

maps from (-*,0] 'into B, such that they

(--,0] and continuous on [-r,0], r > 0,

are

and

s trong 1 y

(t B)
-r

_sup _ lo(s)lp * / lo(s)lpr<(s)ds . +*
sel-r,01 -@

trp spaces have been defined by B.D. coleman and V. J. Mjzer [33], and

used by J. K. Hale [94], D. Brewer [23], T. Naito [tB5], [tB6]. The

quantity in the left hand side of (.|8) is the norm of 0, dt the power p,

in rP.

Local existence and uniqueness, for equation ('l), under condition

(2'), can be obta'ined for a variety of phase spaces provided adequate

conditions are imposed on the right hand side f(t,o). As remarked in

sec. 2, the phase space must be a subspace (not necessarily closed) of

the locaily convex space Lto.(R-,8), with topology stronger than that

of L.,oc(R -,8). such spaces have been thoroughly invest'igated in the

well known monograph of ,J. L. Massera and J. J. Schaffer tl67]. For

further development of the theory, see [l3l] and lzazl, where the idea

of a weight function is emphasjzed.

Unfortunately, the theory of operators (functionals) on such spaces

is not yet developed to the same extent. Moreover, it presents such

inconveniences as the one mentioned above, in connection to the equation

(17).

Because of the large variety of phase spaces that could be con-

sidered in bui'ld'ing up a theory of equations with unbounded de1ay, it
became desjrable to approach the problem axiomatically. in other words,

to list certain axioms for the phase space and the right hand side of (l),
such that any particular space and f(t,o) verifying these axioms,
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Let S be a linear space whose elements are mappings from (--,0]

jnto Rn, prov'ided with a semi-norm | - l. Two elements of S are considered

identical if and only if they coincide at each point of (-*,0]. If

S0.S is the subspace of those S that satisfy l0l = 0, then the

quotient space S* = S/S0 is a normed linear space (not necessarily a

Banach space).

For any B e [0,-) and 6 e S, let OB denote the restriction of 6 to

the interval (--,-B]. Denote further by SB the linear space of these

restrjcted mappings from (--,-g] into Rn, and define the semi-norm

| . lu o,

l,t,l. = inf {l+l; O , S, 0B = q,}.
l.r

It is then obvious that ldl^ = lOBl^,0 e S, is a semi-norm on S., 'tJ 'F

The basic axioms can now be stated as follows:

(Ar) For any 0 e S, and any mapping x from (--,T] into Rn,

0 < T < *o such that xO = 6 and x is continuous on [0,T), we

have x, e S for t e [0,T), and t + xt is continuous.

(Az) There exists a continuous function K(g) > 0,

B e [0,-) , such that

lol . K(s) 
,.il6,olll*(t)ll 

+ lolu'

for any 4 r S, and I e [0,-1 .
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tn (Ar), ll.ll stands for the Euc'lidean norm in Rn.

Let us denote now by rB th. linear operator from S into SB,

B e [0,*), defined by the formula

(tFO)(o) = O(g+e), o e (-*,-Bl.

Th'is formula makes sense on behalf of (A., ).

(Ag) There ex'ists a continuous function M(e) ;' 0n g e [0,*) , such

that

rrBOl .M(s)lOl, 0e S.

B

(A+) There exists K1 > 0, w'ith the property

llo(olll .Kllol, oeS.

Axioms (A1) " (Ao) are formulated in terms of the elements of S.

It is not difficult to see that they can be also expressed in terms of the
*

elements of S (i.e.o the classes of equivalence'in S, according to the

relatiofl g 'v rl 'iff lo-,t,1 = 0). For instance, axiom (A4) shows that

O(0) =,t,(0) if lO-,t,1 = 0, d feature stressing the fact that thjs ax.iom

deals, actua1ly, with classes of equ'ivalent functions.

Let a be an open set in R x s, and assume f : e * Rh is a continuous

map. If (t0,0) e n, then x: (--,t'+T)*Rn with 0 < T < -, 'is said to be a

solution of equation (l), under initial condition (2), if x* = O and x(t)
"0
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'is continuously differentiable and satisfies (l) for t t (t0,t'+T). One

denotes by x(t;t0,0) tfre above solut'ion. 0f course, x(t;t0,0) needs not

to be un'ique. xa(t.O,O) has an obv'ious meaning.

Axioms (A.,) and (Ar) guarantee the existence of a solution of the

functional-djfferential equat'ion (l), under initial conditjon (2), provided

we assume the continu'ity of the map f. Under slightly different forms, the

exjstence statement appears in [99], L257f, [265], and [268].

Under axioms (n",) " (A+) , and assum'ing

(te) llf(t,o) -f(t,g)l l.n(t) l0-01 on 0,

where n(t) js a continuous function, there exists a nonnegative continuous

function l'l(t,tg), t a tO, such that

(20) lxr(to,o) - *t(t0,.!)l : n(t,to) lo - ul ,

for all t > tO that belong to the common interval of existence of

xr(t',0) and xr(t',,l,). This result is due to K. Sawano [268]. A

particular case is given in [99].

From (20) one derives easily the uniqueness (at the right) of the

solution through (t0,0). The same formula (20) shows the contjnuous

dependence of the solution with respect to 0.

If axioms (At) ' (AO) hold trueo and x(t;t,rl') exists up to to + T and

is unique in a neighborhood of (t.r0), then for any e > S, there exists

o(.)>0suchthat

lxr(r,u,) - *t(t0,0)l . ., t e [max (t,tg), t0 + T],
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as soon as

l' - tol, l,r, - Ol . o(.), (',u) e Q.

The above result, concerning continuous dependence of solutions

with respect toinitial data, has been proved by K.Sawano [268]. Another

vers'ion i s due to Y. Hi no [l 04] . See al so [99] .

Various forms are known for the cont'inuation theorem (see [99] and

[268]). A noncontinuable solution will leave any compact set Kcf],

start'ing at a certain moment t*.

Strengthening somewhat the axjoms (A.,) r (A4), J. K. Hale and

J. Kato [99] have proved the 91oba1 existence of the solutjon (i.e.,

on [tO,-)). Moreover, cond.itions for the precompactness of a traiectory

{xr; t :. tO} are descrjbed. Under such conditions, the o-ljmit set of a

bounded solutjon, corresponding to completely continuous f, is nonempty,

compact, connected and invariant. In other words, it meets the qua'lities

encountered in classical dynamical systems theory.

It is also interestjng to point out that the well-known Kneser's

property (regarding the bunch of solutions starting at a given (tO,O))

holds true under ax'ioms (At), (AZ), and continuity and boundedness of f.

See T. Kaminogo [257] tfrat uses this property in connection with boundary

value prob'lems for (1).

K. Schumacher [209] built up his theory starting with a system of

axioms that allows to cover the so-called Caratheodory conditions. The

phase space is not necessarily a normed space, but is always Hausdorff

separable. Several part'icular function spaces, including the "histories"
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or "memory spaces" are careful'ly described jn connection to the proposed

axioms. Interesting remarks are also made in regard to the early stage

of development of this theory, with references to B. D. Coleman and

V. J. Mizel [3]]-[33], J. K. Hale and C. Imaz [98], J. L. Gonzales [80],

J. K. Hale [93], Y. H'ino [102]-[.l04], G. Ladas and V. Lakshm,ikantham L142J,

Ex'istence, uniqueness and continuous dependence for functional-

differential equations with unbounded delay have been discussed by

R. Driver [62], [63], [64] in the ear'ly 60's. One finds a'lso basic

references to Soviet literature on the subject. In particular, the role

of differential inequalities is emphasized in obtaining estimates for

the solutions. For more details, see V. Lakshmikantham [.|42]-[.|44] and

the monograph [.l45].

Functional differentjal inequalities have been investigated and

applied in finding estimates for the solutions of functional-differential

equations by many authors (see [89], [.|46], Il78]-[lB0]). The case of

inequalities w'ith unbounded delay has been considered by K.Zima [240],

and E . Kozaki ewi cz I I 34] , Il 36] , [259] .

Problems related to the existence of a maximar sorution, and

inequaf ities under monotonicity assumptions, are discussed by J. Blaz

and K. Zima 1221.

Initial value problems for equations of the form

{ 21\ i(t) = f(t,x[h(r)]) t e [a,b],

or

(21 ') i(t) = f(r,xIh(t)], iIg(t)]) t e Ia,b),
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where t - h(t), t - g(t) > 0 are considered by N. V. Azbelev and L. F.

Rakhmatulina in [5] and [244]. Further references are provided jn [zaa].

More general equations, of the form

(22) i(t) = f(t,Tx, Si),

with T and S some operators convenient'ly chosen, are also discussed

in [zaa]. Under appropriate hypotheses, the Cauchy problem related to

such equations can be reduced to the solution of an integra'l equat'ion of

Volterra type.

The interest for Volterra operators and equations, including the

case of unbounded de1ay, has been growing steadily in the past two decades.

The existence, uniqueness and convergence of successive approximations

for vector equations of the form

X

(23) y(x)=vo(x)+/ f(x,t,y(t) )dt

have been investigated by A. Erdelyi in [7.|]. M. Pjcone [197] considered

sjmilar problems in the linear case, investigating also the dependence

of solution with respect to initjal data (see formula (B)). J. A. Nohel

Il89] alluded to the signifjcance of Volterra equations (involving

general operators), and L. 1,rl. Neustadt [lBB] gives a theory for such

operators and equations, with applications to control problems.

The equations with Volterra operators have been also investigated

by C.V. Coffman and J. J. Schaffer 126J,1277. They consider the

linear case and develop a theory w'ith very weak restrictions on the

initial data.
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Another approach to the theory of initial value problems for

equations with hereditary structure has been given by G.S. Jones [ll0].
He represents the funct'ional-differential equation in the form

(24) i(t) = f(t,x(o*(x(t))), x, Ro

or(e) c (-*,t] being defined as follows: o : R x Rh - CI = the set of

all closed subsets of R, and ar(q) = cll(t,E), with t e xa(e).

The exjstence and uniqueness for functional-differentjal equations,

with state dependent delay, have been also examined by E. l,Jinston [236] -

[238]. The case of an unbounded delay is not exciuded.

The uniqueness probiem for functional-differential equations with

unbounded delay has been considered in [208] and [2.l9].

Equations of the form

(25) x'(t) = I f[t,x(t-s)]dsr(t,s) + s(t),
nU

or

(zol i(t) = f(t,G(t,x)),

wjth G(t,x) an operator subject to adequate conditionsn have been

investigated by A. Bielecki and M. Maksym [.|5], J. Blaz [.|9f,7. Kamont

and M. Kwapisz [ll5], M. Kisielevricz [iet1,11227,1124), and B. Rzepecki

[206]. Continuous dependence with respect to parameters is also investi-

gated. One derives existence and uniqueness theorems in various function
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spaces, with rather general assumptions on the data. It would be useful

to compare such results with those mentioned above, in the axiomatic

framework.

A. D. Myshkis and Z. B. Tsalyuk Il83] investigate the continuabiiity

of solutions. See also [lBl] for examples of equations with: unbounded

deiay, such that some solutions are noncontinuable.

V. F. Subbotin f220] establishes Kneser's type results for certain

classes of equations with unbounded de1ay. See also T. Kaminogo 12571.

B. I. Ananev [3] gives existence results for djfferential inclusjons

of the form

(27) x(t) e R(t,xa(.)),

where xr(e) = x(t+61, -h(t).< 6 < 0, with h(t) t 0 a continuous function.

For equations with inclusion and unbounded delay, M. G. Crandall,

S. 0. Londen and J. A. llohel [97] have recently obtained (global)

existence results. Their ilaper emphasizes the fact that the function

spaces whose elements are defined on a half-axiso and operators acting

on such spaces, constitute the basic tools jn the investigation of

equations with unbounded de1ay.

V. Lakshmikantham and collab. [14i] dealt with delay equat'ions

on closed subsets of a Banach spaceo assuming the de'lay is bounded. It

would be interesting to approach the same problems (exjstence, uniqueness)

for equations with unbounded de'lay.

In [226], I. Ya. Viner investigates the linear equation

(28 i1t1=x(t-l), t>0.
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Some solutions of this equation can be found d'ifferentiating both sides of

(28), then eljminating i fronr the two equations: tz*(t) + x(t) = s.

For equation (28), that can be also written as

(28', ) i(t) = x(t-rr(t)), h(t1 = t - t-l ,

one can consider the Cauchy problem corresponding to the initial data

(?s) x(t) = O(t), t r (o,tol, ao'1.

If we assume O(t) to be cont'inuous, the space of initial functions consists,

for each t0 t_ l, of all continuous maps from (0,t0] into R. Therefore,

it is convenient to endow it with the topology of uniform convergence

on eachinterval fe,tgl, e ] 0. There is no difference between this

space and the analogous space that comesponds to the half-axis (--,t0].

Fina11y, let us remark that h(t) * - as t -> *.

From (27), one sees that for the construction of the solution

satisfying (29), one needs only the values of x(t) (or O(t)) on

r^ --l'r ,, , /.\ -.-l , \(0,t0'1. We can change O(t) on [to',to) as we like (of course,

preserv"ing continuity), without any change in the solution x(t) for

t t t0. If there is no reason to wonder about such situations, the

backward uniqueness being an improper concept for equations with delay, one

can however remark the extreme'ly weak connection between inftial data and

the resulting soiution. it appears more reasonabje, perhaps, to associate

with each t0 t l a certain function Space, in our case, the space CaO

of contjnuous maps from (0,t;l] into R, and consider the scale of spaces
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(tn,C* ), tn r l, as a framework for the discussion of the Cauchy problem.
"t0v

A recent contribution on these lines has been brought recently by

A. L. Bukheim 1247J who considers Voltema equations in the abstract

setting. V. A. Jakubovich [.|09] has used such structures in dealing

with absolute stability in abstract systems.
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3. STABiLITY PROBLEMS

' 
The stability problems for equations with unbounded delay have attracted

" the interest of researchers long before any attempt has been made to set up,

a general theory of these equations. For instance, Yu. I. Neimark ti8Tl

investigated stab'i1ity problems for equat"ions of the form

in which G(t,s) is an operator-valued function, with regard to the va]idity

of the linearization procedure. Various examples of equations with unbounded

de1ay, whose stability can be investigated with specific methods, can be

found in the monographs [180], [89], [81]

A fjrst systematic approach to this topic can be found in R.D. Driver's

paper 162f, in which he deals with equatjons of the form

(31) y',(t) =f(t,y(.)), t'to ,

where fl(t,V(.)) denotes a Volterra operator (or functional). 0f courseo

the values of y(t) are prescribed for all t < to After develop'ing a

theory of ex'istence, unjqueness, and continuation of solutions, the second

Li apunov method i s appl i ed to i nvest'igate stabi I i ty for (31) More preci se'ly,

the author gives a rather generai theorem of stability for the zero solution

- of (31), using comparison method. He assumes the existence of a functional

, V(t,O(')) , satisfying usua'l conclitions required for a candidate Liapunov

function, and a differential inequality of the form

I

(v
(30) u(t; = I e(t,s) [f(s,u(s)) + w(s)] as ,

J
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The comparison equation y' =, (t,y) plays a central role in the investigation

of stabiiity properties for (31). Let us point out that several part'icular

systems and Liapunov functionals are discussed in [62].

A basic inequaiity following from (32) is obtained by V. Lakshmikantham

in [142], and related topics are discussed by the same author in t1431. In

[144], V. Lakshmikantham investigates stability properties for s.vstems with

unbounded de'lay, in the form considered by G.S. Jones Ii10l(see forrnu'la (24)

above )

In t128l, V.B. Kolmanovskii and R.Z. Hasminskii deal with the L2-stabilitv

of the integro-djfferential equation

underinitial conditions of the form x(t) = 4(t) , t . 0

Liapunov's method is applied in [125] to equations slightly more general

than (33) , in which fo(s) is replaced by Ko(t,s) These ideas are then

developed in [126] and [1297. In [i29], neutral equations of the form

r(33) X(t)=/ x(t-s)aKo(s) ,t>0,
J
o

(34) x'(t) = -[ 
**1t-r)d 

Ko(s) + [* *,(t-s)d Kr(s) + 5 (t,xr)
Jo Jo

are discussed'in regard to the stability of solutions. In 17271, mcre emphasis

is p'laced on the use of frequency techniques in investigating stabifity for

equations of the form (34)

Equations of the form

ti J5l it.-r)dr(t,s)*'(t) =f
to

are investigated by V. Ya. Grebennikov [83], using rather elementary considerations.
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B.D. Coleman and V.J. Mizel [33] use, in fact, Liapunov function technique.

They call the functionals involved in the formulation of the stabjlity results

energy functions, a term inspired by the mechanical 'interpretation of the system

with unbounded delay. Phase spaces consisting of functions integrable with

respect to a certajn measure (or we'ight), as those described in Section 2, are

used in order to investigate stabjlity problems for rather general.equations.

In [159], R.C. l4acCamy is investigating exponential asymptotic stabif ity for

autonomous systems of the form (1), using also phase space approach as in t331.

J.K. Hale [93] approaches the theory of equations with unbounded de1ay,

including some stability aspects from the standpoint of dynamical systems theory.

This paper contains the first attempt made in the literature to bujld up an

axiomatic phase-space theory, and hints developments that have been achieved later

by the author and hjs followers: [99], [119], [103], [105], [265]. Some of these

developments rrri11 be djscussed jn more detajl jn a subsequent paragraph.

In [94] and [95], J.K.Hale dea'ls with linear equat'ions such as

i(t) x(t-tr)
@

\-.
=)Ai

4{J
.: -nJ-U

IJo] i(t)

using Kuratowski's measure of noncompactness and Sadovskii's fixed point theorem.

The characteristic equation associated to (36) is involved in obtaining estimates

for the solutjons, and, in particular, stabi'lity cond'itions. These papers generalize

several results obtained by means of different techniques, among them those due

to V. Barbu and S. Grossman [B].

A stability theory for equations vrjth unbounded delay of the form

N

T
j=0

(37 )

or
A, x(t-to) + / s(s) x(t+s) ds ,

JJI
J_6

[* u(t-s) x(s) ds , t'o ,
Js

under i n'iti al condi ti ons
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(38) x(t) = h(t) , t.0, x(0+) = xo ,

. has been bujit up by C. Corduneanu [39], [41], 1427, C" Corduneanu and N. Luca

[46], N. Luca [157), t26l]

- It is assumed that Xr xo € Rrl , Aj are n by n matrices with real

entries, B: [0,*) + /(Rn,Rn) , and h: (--,0) + Rn

The following basic assumptions are made on the system (37) :

Assumptions (39) guarantee the exjstence and uniqueness of solution for (37),

provided h € Lp(R-,Rn) , 1. p. -, [39], t46l If one denotes by X(t) the

map from R into z(nn,Rn) , such that

@

(40) ittl = )- A; x(t-ri) + f'u(r-r) x(s) ds , r , 0 ,
j=o 'r J Jo

(41) X(t) = Q, t.0, X(C+) = [,

then llx(t)il € L(R+,R) if and only if the stability condition holds true:

(+21 det[sl-l(s)] I 0, Res>0,

wnere

i -t.S (*
" (43) il(s) = )-. Aj . 

-i" * | g(t) e-ts ot , Res > 0

i=o 
J 

o

Sjnce (40) irnpf ies lli(t)ll € L(R+,R) for llX(t)ll € L(R+,R) , one sees rhat

condition (42) prov'ides asymptotic stability:
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(++1 lrmllx(t)ll -0 as t+-

Actuaiiy, (+21 is equivalent to the condition llxtt)ll € L(R+,R) , and, as shown

in [41], it is equiva]ent to llx(t)ll € Lp(R*,R) for any p , 1. p < @.

The basic tool in obtaining the above result is the theory of matrix-valued

function algebras whose elements are of the fornr (43), under assump.lions (39).

The theory of operators occuring in the right hand side of (37), as well as the

theory of function algebras generated by them can be found in some basic references

as [59], 1797, [235] In [59] and t2351, several interesting applications of

such topics in system engineering are emphasized. Y.V. Venkatesh 1234J also uses

these techniques in investigating stability and instability for various classes of

systems encountered in the applications (without particular regard to equations

with unbounded delay).

The above results, concerning the behavior of the fundamental matrix X(t)

defined by (a0) and (41), pose the foliowing problem: Is the asymptotic stabil.ity,

imp'f ied by (39) and (42), of exponent'ia1 type? In other words, is it possible to

find positive constants K and o, such that llxtt)ll < K exp (-"t), for t > 0 ?

We are entitled to rise such a problem, mainly on the ground that the rjght hand

side of (36) is an operator of the time-invariani: type.

The basic properties of the fundamental matrix X(t) , defined by (40)

and (41), can be exp"loited to further stability theory for functional-differential

equations of the form (37), or as recent'ly shown by N. Luca [26]], for equations

of the form

(4s ) y( ti B(t-s) y(s) ds
1t+l

J
=)

f

i=0

Aj y(t-tj )

under jnjtjal conditions y(t) =

defi ni tions of stabi I i ty, uni form

classical pattern. For instance,

h(t) for t<0, and y(0+)=yo€Rn The

stability etc. are formulated according to the

the uniform stability of either (37) or (a5) is
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equ'ivalent to the boundedness of X(t) , and the boundedness of all solutions

of (45), with arbitrary h € L(R-,Rn) , yo € Rn . Also, the uniform stabj'lity of

- the zero solution of (37) imp'lies det [s I -&.(s)] I 0 for Res > 0 (natura1ly,

' a condjtion weaker than (+211. Another set of conditions equivalent to the uniform

- stability of the zero solution of (37) or (45) is: the functions X(t) ,

and

(47) u (t) = ult.-*]ro ll K(t,s )ll ,

wi th

(+a) K(t,s) = I,. x3(r) x(t-tj-r) Aj

j=0

are defined and bounded on R+ By xr(t) one denotes the characteristic

function of the interval [-tj,0]

Any equatjon of the form

(4e) i(t) = f Arx(t-t, ) - ft ,(r-r) x(s) ds + t(t;x) ,

j=0 \., ., Jo

with f(t;x) = (tx)(t) an operator adequately defined, and the usual init'ial

cond'itions x(t) =1'111; for t<0, x(0+) =xo€Rn, canbetransformedby

means of the variation of constants formula [41], [401, into an integral

- equation of the form

(46) 0(t) =lo* UI 
otX(t-s) 

s(s+u) osll du 
'

(50) x(t) - x(t)xo+(Yh)(r) 
rr

* 
Jo 

X(t-s)f(s;x) ds ,
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where

/qr \

The convergence properties of the series occuring

Adequate results are obtained in [41], t46l for

(Yh)(t) =i fo 
^(t-tu-s) 

Aoh(s) ds ,r. I J Jj=0'-ti
t € R,

T

in (5i) depend on the nature of h

h€LP(R_,Rn),1<p<6.

Stability results for nonlinear systems of the form (49) have been obtained,

mainly using frequency domain techniques, in a series of papers: [39], [40],142f,

[44], [45], il571,12611. A problem rjsed in [40] has been solved by V. Rasvan [204].

Another reference regarding the systems with infinite delay of the form (37),

and their nonhomogeneous counterparts, is D.-P.K. Hs'ing t10Bl. The senrigroup theory

is used in order to find estimates for solutions.

In almost all cases mentioned above, the stability is usually meant in the

norm of the Rn In other words, the quantity iiX(t)ll is estimated, and relations

such as (44) have the usual interpretation we are acquainted w'ith, from the theory

of ordinary differential equations. If instead of the Euclidean norm ll.ll , in

estimating the solution, one uses function-space norms (for instance, the norm

of the phase-space'involved in the description of the system), some difficulties

arise as pointed out from the very beginning of the theory by R.D. Driver 162).

Let us illustrate the above statement. For instanceo when the phase space

is a memory space, corresponding to a weight function k(s) the p-th power of the

norm js g"iven either by formula (tZ), or (18). Assume we deal with (12). Then,

assymptotic stability should mean

(52) llx(t)ilp + [oo(s) llx(t+s)llpd, + 0 as r+-,
J_*

a condition that does not necessarilJ, hold, even in the case x(t) * 0, as t + - .

Similar ilJustrations are provided by J. Kato [119] A more deta'iled

discussjon of this problem, and relationships between stabilities in the
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sense of the phase space norm or the Euclidean norm, can be found in [99].

These authors, treat stability problems in the framework of an axiomat'ic phase

- space theory. l^Jhile this approach tends to become preponderant in the investigation

- of equations with unbounded delay of the form (1) (see [118J, [119], [102], [105],

t268l)', it should be pojnted out, however, that not all the available results seem

to be obtainable in this framework. The main difficulty seems to be in writing

most particular equations in the form (1), with f cont'inuous in the second

argument, from the phase space S , into the space Rn

Let us consider now the system (i), under jnitial condition (2), and assume

we deal with a phase space S satisfying axioms (A1) - (A+) , formulated in

Section 2. Therefore, in condjt'ion (2) + € S t,Je shall not repeat here the

definjtions of various types of stabj'lity, they being very much alike to those

well known from the stabiiity theory for ordinary differential equations or

equations with fjnite delay [89], [96].

The following result is due to J. Kato [119]: Assume cond'itjon (19) holds

true, and there exists a continuous real valued function V(t,O) , defined

on R* x Sr, Sr = {O; O € S, lOl < r}, such that

(53) a(l lo(o)l D : v(t,o) ,

(54) v(t,o) . b(t,lol) ,

(55) v'(t,Q) . c(t,v(t,+)) ,

where

V'(t,O) = lim sup
h+0+

(coJ
V(t+h,xt+h) - V(t,O)

' xt*-+ '
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(57) / c(s,r) ds-+' as T*-,

J,
I
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with a(r), b(t,r"), c(t,r) non-negat'ive, continuous, non-decreasing in r '

r>0, and a(r) >0 for r>0, b(t,O) =g Thenthezerosolut'ionof (1)

'is stable in Rn Moreover, it is asymptotica'l1y stable in Rn if

for any r > 0 and t € R+ Furthermore, it js un'iformly asymptotically stable

in Rn if (SZ) holds true, uniform'ly with respect to t € R+ , and b(t,lOl):U(lOl).

The following converse theorem for uniform asymptotic stabifity is also given

'in t1191: Assume condition (19) holds true with n(t1 = const. > 0 , and the

zero solution of (1) is un'iform'ly asymptot'icaity stable in S Then, there

exists a real-valued continuous function V(t,O) , defined on R* x S,^ (r t 0) ,

such that

a(lol) . v(t,o) : n(lol) ,( 5u/

(59) V'(t,O) . -c v(t,o) ,

(60 ) lv(t,o) - v(t,,t,)l . Ll+ -,pl ,

with a(r) and b (r) positive definite, and c,L some positive constants.

Since stability in S 'implies stability'in Rn [99] under certa'in add'itional

axioms for S , the above theorem gives on'ly a partia'l answer to the prob'lem of

characterizing stability theorems in terms of Ljapunov functionals. Nevertheless'

the converse theorem allows the study of some perturbed systems, as shown jn

' [119]. Appl"ications regard such systems as

(61 )
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with h > 0 , and

(az1
fo
I lin(s)ll e-YSds.-, for a y>o

J_-

The nesult states exponential asymptotic stabi'lity in the space S = C", i.e.

(0:1

In a slightly different form, the exjstence of v(t,o) satisfying (58) - (001

is proven by K. Sawano [268].

Further results in [119] regard the so-called Razum'ikhin type stability

theorems. In the case of fjnite deldy, d recent paper by V. Lakshmikantham and

S. Leela [146] develop such techniques, starting from equations written in the

form (14 ) , and the assoc'iated di f ferenti al -di fference 'inequal i ty

(64 )

An extens'ion of the results in t1461 to the case of equations with unbounded

de1ay, in the framework of the axiomatic phase space theory, would certainly

be wel come.

K. Sawano f268l investigates the linear system of the form (1), i.e.

f:R* x S * Rn is continuous and linear in the second argument, with regard to

the exponential asymptot'ic stabi I ity. If S i s such that (Af ) - (A+) frot a

true, and the zero solution of the l'inear system (1) is uniformly asymptoticaily

stable jn S, then it is exponentia'l1y asymptot'ica11y stable in the 1arge.

In other words, one can find positjve constants M and c , such that

Cr={x;R-*Rn , continuous, lim eYtx(t) exists]
t-+-*

lxr(to,o)1 . Mlol u-c(t-t6), t' to,
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the theory

40

€ S This result has the classical flavor of the similar ones from

of ordinary different"ial equations or the theory of equations with

fin1te delay t8gl. As mentioned above in this Section, the asymptotic stabi'lity

in S has some drawbacks (see formula (52)). Nevertheless, it would be

interesting to see whether S can be chosen conveniently for the system (37)

or (49), such that the theorem of K. Sawano stated above provide an answer to

the questjon rjsed in respect to the behavior of the fundamental matrix X(t)

defjned by (40) and (41).

J.K. Hale and J. Kato [99], under supplementary axioms for the space S ,

investigate also the limit set of bounded solutions, and their relationship to

stabjlity. See also [84], [210], lzILf, [162], [163]

Though most methods that provided satisfactory results jn case of ordinary

differential equations, or for equat'ions with bounded delayo have been tested in

the case of equations with unbounded delay (for instance, Liapunov funct'ions'

frequency domain techniques, abstract dynam'ica'l systems, semi-group theory), we

point out that other powerful methods, such as LaSalle's invariance princip'le

t14$l, [149], have not yet been used in approaching stability problems for this

class of equations (excepting Il l6])'

Several papers have been devoted to the stability theory for integral equations

with unbounded delay. The term stability may have the classical sense, i.e., the

solution must be small (or tend to zero) if the data that determine it are small

enough, or jt may mean a certain generafized kind of continous dependence, within

a function space endowed with a convenient norm.

In a recent survey paper 12721, L.B. Tsaiyuk discusses most of the

in the field of Volterra equations, including stabif ity problems.

The study of stabi'lity for integral equat'ions with unbounded dela-v'

as a specifjc kind of asymptotic behavior' goes back to the early stage

theory. l4ore recent contrjbutions, emphasizing relatively new methods,

found in [13], f207f, [89], fL727, [38].

achi evements

envi saged

of this

can be
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(65) *(r) *,[t g(s,x(s)) a(t-s) ds=f(t), t€R,

(oo1 y(t) + [t g(s,y(s)) a(t-s) ds=f(t) , t€R+,
to

l' r.-, (67) u'(t) + Bu(t) +f a(t-s) Au(s) ds ) f(t) , t,0 ,
l--

41

Let us consider, with M"J. Leitrnan and V.J. Mizel t1531, the integral equation

of Vol terra type

where a:R* + R* is nonincreasing and integrable. The nonlinearity g:R x R + R

satisfies usual Carath6odory conditions, and is such that ug(s,u) t 0 for every

u, and almost all s Further conditions are assumed, such as the monotonicity

'in u, and a Lipschitz condiiton at infinity, in the second argument. Then

x(t) - y(t) - 0 as t + *, where y(t) is the solution of the Volterra equation

with finite de1ay,

provided a(t) does not vanish al.most everywhere and at least one function

x(t) or y(t) be bounded on R+

The above result provides a very convenient tool to investigate stabi'lity

for equations of the form (65), because for equation (66) we know a good deal of

stability condit'ions. See, for instance, the monographs [38], 1172f, and

references [160], 1L747, 12691. Further results are derived in [153].

Another recent contributjon to the theory of integral equations vlith finite

(and infinite) de]ay is due to 14.G. Crandall, S.0. Londen and J.A. l,lohel t417.

They invest'igate problems of the form

with u(t) = rr(t) on t < 0 The sotutjon is soughr in spaces like ti;l (R*,H) ,

where H is a Hilbert space. The (nonlinear) operators occuring in (OZ) are

chosen to be the subdifferentials of some convex funtions. Some of the'ir results
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rt
- (68) ut(t,x) - 

^u(t,x) 
+ 

J 
a(t-s) g(u(s,x)) ds = f(t,x) ,

are appiicable to equations of the form

occuring in elastic'ity theory. Stability results for (67) are also derived from

the exjstence theorems proven 'in [47.1.

In [161], R.C. MacCamy and V. l4izel deal with equation (65), with f € hl1'Q(R*,V),

where Vc Hc V' , and V is a Banach space with dual V' H is a Hilbert

space, and the solution is constructed 'in the space LP(R+,V) n W 
1'9(R+,V') 

,

11

with p-t + g'= 1 . More precisely, the solution and'its translations must

belong to that space.

For other stability results regarding integral equat'ions see [154], Ii64],

[ 200].

A generalized concept of integral equation js investigated in [107]. Stability

results for such equations would be welcome.

An jnterest'ing point of vjew in investjgating linear functional d'ifferential

euqations, jncluding equations with unbounded delay and stabiiity of their solutions,

can be found in E.l^1. Kamen flI?l. His theory is predom'inantly algebraic, and

is appf icable to systems in which the right hand s'ide is a general'ized convolution

product. This allows to treat the equat'ions as equations over a ring, thus making

use of rather sophistjcated algebraic results.

Certa'in stability results for periodic or almost periodic solutions of

equations wjth unbounded delay will be discussed in Section 4.

In Section 6, we will jnclude stabi'lity results for various classes of

equat'ions with unbounded delay that occur in applications.
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.t'. (71) x(t) * 

J_* 
k(t-s) f(s,x(s)) ds = h(t)

(72) x(t) *[* k(t-s)f(s;x)ds = h(r) ,r€R,
J-*

(z:; x(t,u) = f k(',p) ftx(t-',u),ul d' ,

Jo

equation

' In [14], further references are given to the work of these authors, regarding

periodic or almost periodic solutions for integral equations. 
:

C. Corduneanu [37] and A.G. Ramm [202] use various functional-analytic

methods in finding existence conditions for periodic or almost periodic solutions

to the equation

where f(t;x) = (fx)(t) js a nonljnear operator acting on the space of

periodic (a'lmost periodic) functions. Accordingly, h(t) is assumed periodic

or almost periodic. Let us point out that (72) reduces to (71) when

k(t)=0 for t<0, and (tx)(t)=f(t,x(t))

J. Kudrewicz [138] also investigates existence of periodic solutions for

equations of the form (71), in the autonomous case f(t,x) = f(x) , assuming

h( t) periodi c.

Small periodic solutions are sought by J. Kudrewicz and ftl.0dyniec [139]

to the eouation

' with f analytic, and under the assumption that (73) has for each u a unique

. constant solution c = c(u) Frequency domain methods are largely applied.

M.J. Leitman and V.J. Mizel [153] deal with the equation (71), w'ith

f(t,x) periodic in t : f(t+T,x) = f(t,x) Moreover, h(t) is assumed

to have the same period T > 0. If the kernel k(t) satisfies certain conditions
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(see cond'i t'ions on

then the periodic

a(t) in Section 3), and denote kT(t)

solution x(t) of (7i) will satisfy

-)
IJ

J-u

k(t+jT),

(t q) x(t)

tu

where kT(t) is the periodic extension of kT(t) from [0,T) , to [-T,T)

In other words, the problem of finding periodic solutions for equations with

unbounded delay of the form (71) is reduced to a similar problem for the

(Fredho'lm) integral equaticn (74).

B.D. Coleman and G.H. Renninger [35], [36] jnvestigate the existence of

periodic solutions to certain integral equations with infinite delay. These

equations are of the form

y(t) = m(a(t) - f 
- 

u-t s(y(t-r-s)) ds) ,
to

,1where m(u) = f(u + lul) Such equations are motivated by the description

of neural interactions. The authors find conditions under which a un-ique

periodic solution exists, and also discuss related problems.

V.R. Nosov t1921 - t1941 studies the periodicity of solutions to the ciass

of integro-differential equations of the fonn

fr+l
I
o

l, ir-r) f(s,x(s)) ds = h(t) , t € [o,T) ,

(75)
r
/ d" r(t,s) ti(t+s)l =

JJ

R

drp(t,s) [x(t+s)i + f(t),r
I

R

in which f(t) is ur-pe'riodic (not necessarily continuous), while r(tis), p(t,s)

possess period'icity property in the first argument, and have bounded variation

with respect to the second argument. The author remarks that, under adequate

conditions, the operator

=[

R

0a1 (Tz)(t) drr(t,s) [z(t+s)l
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into itself.carries the space

Therefore, 'it can

of continuous

represented as

functions, with period ur ,
1-

OJ

be

(77) drR(t,s) [z(s)],

where R(t,s) can be constructed startjng.from r(t,s) , in a manner similar

to the one used above, when constructing kT(t) by means of k(t) 0f course,

R(t,s) in (77) is periodic in t , of period 0r . Using representation (77)

for the operator T defined by (76), Lhe problem of searching periodic solutions

for (75) reduces to the corresponding problem for fz = f More prec'ise'ly,

the Fredholm alternative is simultaneously true for (75) and Tz = f (and their

adiojnt equations). 0f course, particularizing conveniently r(t,s) and p(t,s)

in (75), one obtains equations with unbounded de1ay.- In particu]ar,

(78) i(t) orR(t,s) [x(t+s)1 f( t)

constitutes a model for linear equations with unbounded delay and periodic

coefficients. it should be noticed that the powerful functiona'l-anaiytic

methods used by the author provide an adequate treatment of equation (75), in

which the argument presents both advanced and delayed deviations.

J.M. Cushing [49] - t51l dealt with the existence problem of periodic

solutions for certain equations with unbounded delay that occur in Popu'lation

Dynamics. Rather general results are obtained for systems of the form

(Tz)(t)
fa

-I
I

o

_ f o

-J

(7e) "t+t

where x€Rn,

bounded variation

7O

^ / dH(s)tx(t+s)l (sx)(t) ,

A = diag (lI, \2,... trn) , and 11 =(hij)n 
* n 

is of

on (--,01. g stands for a nonlinear operator, assumed to
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be of higher order in X, near x = 0 More exact'ly, the author provides

conditions that guarnatee the existence of nontrivial periodic solutions

for (79), for certain values of A The homogeneous linear equation

attached to (79) must possess at least one nontrivial periodic solution,

corresponding to some A As one can see, the author obtains a bjfurcation

result. The characteristic equation associated with the linear part of (79)

is invo'lved in formulating the exact requirements on the equat'ion (79).

H.C. Simpson 1269), l27A) has undertaken the study of various problems

regarding the periodic solutions of some classes of equations with unbounded

de1ay, such as

i(t) f (x(t), G(s,r) x(t-s) ds,r)I
Iro

(80 )

and their linearized version

(81) i(t) = A(t) x(t)

(82 )

* 
fo* 

B(t,s) x(t-s) ds + c(t)

Besides existence and bifurcation, he pays attention to the stability of periodic

solutions, as well as to the investjgation of various equations that arise in

Pupu'lation Dynam'ics. Among other topics, a diffusional model described by

the equation

vt = Av + t( f- k(r) v(x,t-s) ds) ,
Jo

where V = V(x,t) , and A represents the Laplacian with respect to x-variables,

is analysed.

For l'inear equat'ions of the form (81), the author constructs a F'loquet

theory, taking C",, as phase-space (see Section 3). The representation of

sol uti ons as f r'ni te I i near combi nat'i<lns of the f orm
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(83)
n+

Pu(t) e'u" bu

. where Pu(t) are ur-periodic matrices, Bu are constant matrices and bu

- some constant vectors, is proven for the homogeneous equation assoc'iated

to (81). Furthermore, the Fredholm alternative'is obtained for the equation (8t),

its adjoint equation

and their homogeneous counterparts. In (84), y and c* are row-vectors.

Since (81) is a speciai case of (78) and (75), it would be interesting to

compare the cond'it'ions under which the Fredholm alternative is val'id in each

case. Formally, the result for (81) could be derived from the general one,

valid for (75).

The stabjlity analysis conducted by H.C. Simpson'in the papers quoted

above relies on the representation of the solution of the homogeneous equation

in the form (83). An interesting result regards the orbital stability of a

periodic solution p(t) of the "autonomous" system

(85) i(t) - r(z(t),(k*z)(111 ,

where * indicates the convolut'ion product. The linearized system of (85),

about p(t), will be of the form

(84) vttl = -y(t) A(t) - ['y(t-s) B(t-s,-s) ds + c*(t) ,
J_*

@

(86) v(t) = A(t) v(t) - f k(t,s) v(t-s) ds ,
J6

and the characteristic values assocjated with (86) are the eigenvalues of the

matrices Bu occuring in the representation of solutions according to Floquet
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theory (see (83)). if all characteristic values of (86) have negative

real part, except for a simple eigenvalue that is zero, then p(t) 'is

' asymptotical 1y orbital 1y stable.

H.l^l. Stech 12161 is also investigating f inear periodic systems with infinite
- delay, using the phase space gP , in wh'ich the norm is given by formula (tg).

He bui'lds up a Floquet theory, finds the adjoint system for a periodic system,

discusses the stabifity and the Fredholm alternative. The linear system

considered jn [216] is represented in the form

(87) *ttl = L(t,x*) + h(t),
L

with L(t+ur,4) =L(t,O) , t€R,0€gP, h(t+r,r) =h(t) , t€R Itis

assumed that L is continuous from R x BP into Rn , while h is 1oca1]y

'integrable. Representation for solutions in the form (83) is obtained. Since

L can be represented in integral form, a comparison of this theory wjth the

one prov'ided by V.R. Nosov t1941, in regard to the Fredholm alternative,should

be considered. In fn67, the author g'ives a detailed discussion of the

behavior of solutions of an autonomous system i(t) = f(xa) in the neighborhood

of an orbit. f(O) is supposed differentiable in Fr6chet sense, so that a

linearized system can be attached. Like the result of H.C. Simpson,

H.[^J. Stech obta'ins his result on orbital stability. A comparison of their

results would be interesting. There are somewhat different features.

In hjs thesis, P.F. Lima [156] is developing a theory of equations with

unbounded de1ay, taking as phase space a somewhat more general space than

" that resulting from the norm (I2). Namely, he considers the norm

(BB) lolf = llo(0)llp * 
[__o 

Ilo(r)llp au(s) ,

where u js a measure satisfying appropriate conditons. Majn attention is
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paid to the bifurcation problem for periodic systems.

In the framework of an axiomat'ic theory for the phase space, several

authors dealt with the almost periodicity of solutions of functional differential

equations of the form (1). For instance, J.K. Hale and J. Kato [99] give

varjous results concerning the linit set of a bounded solution, and the

relatjonships between stabilities, the case of periodic or almost periodic systems

being covered. As an il lustration, if the phase space S satisfies certain

additional axioms, and f is periodic in t, then asymptotic stab'i1ity for

the zero solutjon of (1) implies uniform asymptotic stab'i1ity. Further

oscillation results concerning equat'ions with unbounded delay have been obtained

by Y.Hino I1027, [105], [106], [255], and K. Sawano [268].

In [105], Y. Hino generalizes to the case of equations wjth jnfinite delay

a classical result of L. Amerio for ordinary differential equations. Roughly

speaking, the almost periodicity of a bounded solution of (i), with f(t,O)

almost periodic"in t , uniformly with respect to q € Bc S for any bounded

B , is the consequence of a separation property for (1), and for any other

system in the hull of (1) : H(f) The class of systems H(f) js defined as

being the closure of the set ol translations {f(t+h,0); h € Ri , with respect

to the un'iform convergence on R in the finst argument, uniformly for 6 € Bc S ,

wjth B anarbitraryboundedset. Let D=RxB, withfixedbounded BcS,

be a set conta'ining the graph of a solution of the system (1): (t,xr) e O, t € R

Then x is said separated in D if it'is e'ither the only solutjon of (1) lying

in D, of,incaseanothersolution y satisfiesalso (t,yt)€RxB, one

has inf lx, - V1l5 > 0, t € R The separation requirement regards not only

f, butany geH(f)

In [106], Y. Hino deals also with a'lmost periodicity of solutions of linear

systems of the form (87), tak'ing 6, or 3P as a phase space. The following

generaljzation of Favard's theorem is obtained: Assume i{t; = A(t,xa) is a
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linear alnrost periodic system, with A(t,S) continuous from R x6r1n x Ap)

into Rn , such that any bounded nonidentically zero solution of i(t) = B(t,xr)

witharbitrary B€H(A) =thehullof A, Sdtisfies'inf lxtls>0, t€R

(S =6y or S = gP) Then for each almost periodic f:R -' Rn , the system

i(t) = A(t,xr) + f(t) has an almost periodic solution, whenever it has a bounded

solution on R+ l

Relationshjps between stability and almost periodicity of solutions, for

equat'ions with unbounded delay of the form (1), ar"e investigated in [102] by

Y. Hino. The phase space S is supposed to satisfy some additional axioms,

among them be'ing the separability. As a consequence of the developments in this

paper, one shows that for linear almost periodic systems of the form

i(t) = A(t,xr) + f(t) , the boundedness of a solution implies existence of an

almost period'ic solution, provided the zero solution of the homogeneous system

is uniformly stable (i n 6, or BP).

A result of a different nature is given in [263]. First, the phase space S

js assumed to satisfy the follwoing extra axioms: (AU) S is separable ;

(AO) M(e) * 0 as B + - , with M(B) the function occuring in axiom (A3);

(AZ) If {Ok} c S is uniformly bounded, and converges uniformly on any

compacttoafunction 0, then O€S, and lOf.-0lS*0 as

Let (1) be an almost periodic system, and assume there exjsts

functional V(t,+,,!) defined on R* x S" x S. , Sr = {O;O € S )

such that

(j) a(lO-,t,|) :v(t,4,{,) . b(lO-,rl),

with a(l) and U (l) positive definite funct'ions ;

('ii) thereexists L>0, suchthat
.Ufu

lv(t,0,,t,) - v(t,o,i)l . L f lo-tl n l,r,-tll ,

(iii) thereex'ists c>0, suchthat

k+*.

a real val ued

lol < r] 
'

V' (t,0,,l,) < -c V(t,0,{,) '



JZ

Where V' denotes the derivative of V with respeci to the system

i=f(t,xt) , y=f(t,yt)

Then, if (1) has a bounded solution on a half-axis [t6,*) , there exjsts

a solution of (1) tfrat is bounded in the norm of S by the same constant, and is

uniformly asymptotically stable. In particular, when t(t,+) is periodic

in t of period o I the uniformly asymptotica'l1y stable solution is periodic

of period 0r Furthermore, the construction of V(t,O,q,) is given in the

linear case, using the converse theorem on uniform asymptotic stability (see

Section 3)

An interesting result concerning periodjc solut'ions for autonomous systems

i(t) = f(x1) , wjth f analytic on the space of continuous bounded maps

from (--,01 into Rn, js given by R.D. Nussbaum [195]. It is shown, under

conditions that we do not list here, that a periodic solution of such a system

can be analytically extended to a neighborhood of the real axis (in the complex

plane). Therefore, the periodic solution is analyt'ic.

Further results regarding oscillations in nonlinear systems with unbounded

de1ay, including bifurcation aspects, can be found in [82], [120].

F'inal 1y, osci I'l ati ng so1 uti ons for equati ons wi th i nf i ni te del ay are

investigated in [191],1214f, without concern for thejr periodicity or almost

peri odi ci ty.

Also, related to this section are the papers [16] and 125).
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5. FURTHER TOPICS

- This Sect'ion'is devoted to the discuss'ion of various results and methods

pertain'ing to the theory of equations with jnfinite de1ay, that did not naturally

find place into the preceding Sections. In part'icular, we sha11 survey the

literature related to the theory of linear equations, the semigroup approach to

the construction of solutions, boundedness and related behavior, and boundary

val ue prob'lems .

A.D. Myshkis [179] finds asymptotic estimates for linear integro-djfferential

equations of the form

under appropriate conditions for r(t,s) Inequalities with delay are used in

hi s approach.

E. Kozakiewjcz [132], [133], [135] deals also with equation (89) , improving

results due to l4yshk'is and generalizing the equatjon to the case when Perron's

integral is jnvolved.

I. Gy6ri [85] provides conditions under which (89) has solutions sat'isfying

r\
ljm y(t) exp {- / R(s) ds} = C,

t+* Jn
i'l

where R(t) is defined by means of r(t,s)

Z.B. Tsalyuk 1222f studies the behavior at infinity of solutions of the

- equation

m

(90) i(tr =r a./r)x(q*(t)), t€R+,t - L ^j\t/ J
.i-1
J-1

determined by initial conditions of the form x(t) = O(t) , t < 0
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H. Grabmiiller 12521 'investigates the behavior at infinity of solutions of

the integro-d'ifferential equation

1or \

in a reflexive Banach space E. A:D(A) * E is a closed l'inear opeiator with dense

domajn, and -A generates a semigroup on E Though (91) is not itself an

equation with unbounded delay, it has common features with the "adjo'int" of such

an equation.

The general theory of I'inear functional differentjal equations with unbounded

de1ay, i.e., when the equatjon is represented in the form (1), w'ith f linear

in the second argument, and the phase space is chosen among the those described

in Section 2 or defined axjomatjcal'ly, has been recently considered by severa'l

authors: [94], Ii8s], [186], 124), 1276), l2L7l, 1265f, 12661

In t941, J.K. Hale deals mainly with the space 81 as a phase

semigroup theory in order to obtain exponential estaimates for the

the autonomous case. He po'ints out the fact that the phase space

be replaced by other spaces, still followinq the same approach.

T. Na'ito t1B5l, [186] investigates the linear autonomous equat'ion i(t1 = f(xt)

the phase space being the space Bp (see formula (18) for the definition of the

norm), wjth complex-va'lued elements. It is assumed that k(t) in (18) 'is

integrable on (--,0), positive, and non-decreasing. The relation T(t)O = xa(0) ,

O € Bp, t t 0, defines a semigroup on gP, whose infinitesimal generator

A isdeterm'inedasfollows: (AO)(u) =6(u) , a.e.on (--,0) ,(AO)(0) =f(O),
for al1 4 € ap that are absolutely continuous on any compact interval of (--,01 ,

and for whjch 6 e gp This result constitutes the extens'ion of a classical

result due to J.K. Hale [94; Ch"7 ] for the case of autonomous l'inear equations

with fin'ite de1ay. See also [140]" The spectral properties of A are then

y'(t) + c A y(t) + {* ntt-s) A y(s) ds
Jo

r*
r u I k(t-s) y'(s) ds + o(t) - o,

Jo

space, using

sol utjons, in

81 coul d
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thoroughly investigated in [185]. As a final application of the general theory,

one obtains in the absence of the "characteristic values" with zero real parts

- adecompos'itionofthephasespace Bp, sdy BP=UeV, with U finite

dimensional, and such that T(t) can be extended to the wholq real axis on U .

Moreover, the following estimates are val'id:

lT(t)ol

lT(t)+l

wi th K and o two posi ti ve constants .

In [186], T. Naito defjnes the adjoint system of i(t1 = t(xr) , us'ing

extensively semigroup theory. The spaces Bp and gy are taken as phase spaces.

H.I,J. Stech 12171 also deals with the adjoint theory for autonomous linear

equations with unbounded delay, relying on J.K. Hale's [94] and T. Naito's

results [185], but making use, in a more systematic manner, of the concept of

duality. His phase space is the space 81 , w'ith k:(--,01 * (0,*) continuous,

nondecreasing, integrab'le on (-*,01 , and such that k(u+v). k(u)k(v) , u,v < 0

The norm is (see 18))

The dual space (g1)* consists of all rp:(--,01 * pn , such that the restriction

of {, to (-*,-r) belongs to L- ((--r-r), Rn) , while the restriction to

[-r,01 is of bounded varjat'ion, left continuous on [-r,0) , and q,(0) = 0 The

dualjty pairing between O € 81 and rp € (81)* is given by

7'Y(sz1 lol = sup llo(u)ll + / t<(u) llo(u)ll du

u € [-r,0] 
J--

(es; < 0,0 > = [-' ,r,(u) o(u) k(u) du - f td,t,(u)] o(u) ]
JJ

-r
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wi th U+ and td,t,l O stand'ing for scal ar products i n the Eucl i dean space .

The linear equation i(t) = f(x*) , with f:81 * Rn cont'inuous, can be

always represented as

(e4) r(o) = [ 
-?ts) 

n(s) o(s) ds * {o [dn(s)] o(s) ,

J-* J -,

wjth n : (--,01 + z (Rn,Rn) a matrix whose columns are in 1Ai1*

If A js the infinitesimal generator of the semigroup attached to i(t) = f(x1)

then its adjo'int A* can be determined from < 0,A0 > = . A*,!,0 t The

expression for A* is given, and its doma'in D(A*) . (gi)* js determined.

Therefore, the adjoint system can be d'irectly jnvestjgated. The role of the

characteristic equation det [rI - f(.1'i)] = 0 is also emphasized, and the

spectral properties of A are djscussed.

In their paper [24], J.A. Burns and T.L. Herdman also investigate the problem

of the adjoint system. The phase space is now Lp(R-,Rn) x Rn , and the right

hand side of the linear equation is not necessari'ly a map from the phase space

into Rn As already remarked in this survey, this is a very restrictive assumption

that excludes the treatment of such simp'le equations as (17), with integrable

kernel. The authors assume, actually, that the map (t,O) * f(O)(t) , f(O) € St 
'

where 51 stands for a function space, satisfies condit'ions similar to the ones

imposed on equat'ion (14) (see (15))

The case when the phase space is defined axiomatical'ly, and the right hand

side of (1)'is linear jn the second argument, has been recently considered by

T. Na'ito t2651, [266] Since the phase space js not a specific one, we clo not

know how to represent (by an integral) tfre linear functional occurring in the

system, and therefore, a theory that is independent of such a representation

must be built up. The author carries out this task, giving several interesting

results. For instance, jf A js Lhe 'infinitesimal generator of the semigroup



57

T(t) attached to the linear equation i(t) = f(x1) , w'ith f continuous from

the phase space S jnto-Cn (some axioms are added to (Ai) - (A4)) , then

the point spectrum Po(A) is the set of those I , for which there exjsts

b€Cn, bl0, suchthat.tr'b€S, and lb-f(.^'b1 =9 Thespectra'l

radjus ro(T(t)) 'is also est'imated. It 'is shown that, for ReL sufficient'ly

large, €tr'b € S An interesting result regarding the adio'int of A is that

D(A*) does not depend on the particular choiceof the right hand side

(provided all axioms and conditions are fulfilled) Another topic discussed

jn t2651 is the validjty of the variation of constants formula, for the equation

i{t1 = f(xr) + fr(t) If X(t) denotes the fundamental matrix (see (40) and (41)'

for equation (37)) associated with i(t) = f(xg) , then the solution of the

nonhomogeneous system with x(t) = +(t) , t.0 , is given by

t rt
x(t-s) h(s) ds + / x(t-s) t(ro(s)o) ds ,

to

operator semigroup corresponding to the linear equation

-T
o

the

x(t) = O(0)

where To(t)O i s

i(t) = o.

The paper 12661 is ded'icated to the definition of the fundamental matrix X(t) ,

as the inverse Laplace transform of the matrix a(r)-1 , with l(r)=11 - f(eI'I)

Related problems are djscussed

Various problems pertaining to the variation of constants formula for

equations wjth infinite delay are d'iscussed in A. Ha]anay [89], H.T. Banks [6],

C. Corduneanu [39], [41] - [43], C. Corduneanu and N. Luca [46]. Also, most

papers dealing with semigroup theory contain representation formulas for the

solutions of nonhomogeneous equations. A very recent reference is M.C. Delfour [248].

The approach in [248] is based on semigroup theory, the initial function space

be'ing MP = Rn x LP , wjth the norm given by (i2), for k(t) = 1 A subspace

of Mp, 1 < p < @, is the sobolev space lnll'P = hll'p(R-,Rn), and it will

play a s'ignificant role in discussing i'inear equations. Consider the linear system
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(o
/ tn,ts) x(t+s) + nr(s) i(t+s)l os + f(t) ,

JI

nd'i ti on

(e5) x(t)

under initial

where p in the definition of yP , and q in (g7) , are conjugate ind'ices:

p-l + q-1 = 1 Forma1ly, (95) and (96) lead to

(eay x(t) = xo + [" [-0, tr) i-l'-t] ' 
u*s t ol 

+

J-* | r 
[O(u+s) ,u+s<0-J

nr(s) I'l'-'J - *!'j ' :*' t |1l o, *f 
t 

,,,, ds

!tt*r) - o(s) , t*s . oJJ "" J 
a

(so) x(t)=4(t), t.o, x(o+1=xo

A basic assumption on the kernels js

(97) A1, Az € rq(n-,,2(Rn,Rn)) ,

While the integrai in the right hand side of (95) represents the genera'l linear

functional continuous on tn|l'P, the right hand side of (98) has a meaning

for any couple (xo, O) e yiP The following basic results are obtained.in

[248]:

(i) For any (xo,4) e Np , and f € Llo.(R+,Rn) , the equation (9g) has

un'ique continuous solut'ion x:R+ * Rh There exjsts c(T) , 0 , for al I

- T>0,Suchthat

(ss1 llx(t)ll .c(T) tl(*o,o)1..n *['llr(s)ll ds], r€[0,T].
Mv Jo

(ii) Forany O-€W1'p andcontinuous f:R1 *ftn, theequation(95)
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has a un"ique continuously different'iable solution x:R4 * gn , the same as

the solution of (98) for xo = O(0)

- ('iii) When f =0, therelation

(100) S(t)O = (x(t),xr), t'0,

defines a strongly continuous operator semigroup on Mp , of class Uo ,

whose infin'itesimal generator A is described by the formula

(101) D(A) = r(o(0),0) ;0€ll,1'P,A+=1t-0,6)),

where LA is given by

(iv) For all (xo,O) e NP and f € Llo.(R+,Rn) ,

onehasfor t>0 )

The results (i) - (iv) generaljzes most known results regard'ing the

linear case. The followjng remark [248] will give a better idea on thjs

matter. Since the linear map L , given by (103) on Wl'P, cannot be

continuously extended to 1P , that serves as a phase space, there results

that the theory above'is actually concerned with unbounded operators on ;P ,

with dense domain. This is one of the most promising features in further

developing the theory of linear equations w'ith unbounded de1ay, such that

simple equat'ions like (17) be covered satisfactorily.

fo(102) Lo = 
J_* tAr(s) o(s) + nr(s) ,i(s)l ds

(103) (x(t) ,*t) = s(t) (xo,o) * / S(t-u)(f (u) ,0) du

o
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Let us remark that Delfour's theory does not cover the case q = 1

Using function algebra techniques, this case is thoroughly'investigated in

- t391, [41], 142f, [46], t15Bl, f25gl, where LO looks somewhat djfferent,

butany Mp, 1 < p (@ r is admjssible forbuilding upatheory thatallows

investigation of stability, other behavior,the use of variation of constants

formula etc. In the case of operators that can be represented by :

"tLx = Ax(t) + / g(t-s) x(s) ds , R.K.M'iller t1731 dealt with the s'ituat'ion
J--

when B(t) is integrab'le (q=1) , using Mp spaces , and semigroup theory.

t,.le also mention the fact that (103), and the variation of constants formula

due to T. Naito [185], look very much alike, though they have been obtained

under conclitjons that are independent. The spaces MP are covered by Naito's

theory, while the continuity of L 'is not required 'in Delfour's theory.

A pioneering paper in regard to the use of yP (or Lp ) spaces as jnitial

spaces, and with the right hand side of the equatjon non necessarily a contjnuous

operator, is due to J.G. Borisovil anct A.S. Turbabjn [246]. They consider only

the case of finite de'lays"

R. Datko [53] deals with equat"ions of the form

with x takjng va'lues in a Banach/Hilbert space E For each t € R+ )

A(t):E + E is a ljnear operator, not necessarily bounded, while Hj(t):E * E

is bounded. One assumes that O. rrrl .,Z ...< om

- and varjat'ion of constants formula are obtained for the Cauchy problem attached

- to (104) In the autonomous case, a Co semigroup'is constructed and the

solution of (104) is obtained. When E is a Hilbert space, the stability

properties are also investigated. The author also deals with related neutral

equations. As applications, some partial differential equations wjth delay are

(104) i(t) = A(t) x(t) + i H;(t-o,) x(t-0,,) ,
HJJJ
J=l
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investi gated .

For I inear

x( t)

J.J. Levin and

behavior of bo

equati on

integral equations of the form

r
+ / x(t-s) d A(s) = h(t), t € R,

Jp

D.F. Shea [155] undertook a systematic study of the asymptotic

is the characteristicunded solutions. A key element 'in these studjes

4 (r) = 1+ f eirt dA(t) = o
JR

A brjef account'is given jn [38]. Solutions with l'imit at infinity, with

asymptotic almost periodic behavior, and other behavior, can occur. Thejr ideas

are developed in 1212f, 12341 and [256].

Further references, concerning the use of operational calculus in finding

the solution of a linear equation with infin'ite delay, are [112] and [205].

The nonlinear sem'igroup theory has become one of the most widely used

tool, in the past decade. See V. Barbu [B] for bas'ic results, and numerous

appfications to various classes of functional equations, including equations

of Volterra type and finite delay. In the case of nonlinear equations with

finite de1ay, the semigroup theory has been used by G.F. Webb 1232),12731

H. Flaschka and M.J. Leitman [77], A.T. Plant [199], J. Dyson and R. Villella

Bressan [250], [251]

In the past few years, the nonl'inear semigroup theory has been used in

connection to the theory of equations with unbounded delay by D.ll. Brewer [23],

J. Dyson and R. Villella Bressan 'l24gl - l25ll, laj.E. Fitzgibbon [73] - 1761,

A.T. Plant [200], and G.F. Webb [233], l?731" Further references are contained

in the above quoted papers.

D.l^l. Brewer [23] develops a semigroup theory for autonomous nonlinear

equations in a Banach space E
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(io5) i(tl ='t(x*) , t'o ,
u

(106) xo=4€Bl,

where Bi is defined as usual , and k(u) involved in formul a (92) is positive,

and nondecreasing on (--,-rl. The operator semigroup acting on al(r) is

defined by means of the relations

(1g7) D(A) = {o; 0, 6 e s1, 6(o) = r(o)t, A o = -;

If f in (105) satisfies a giobal Lipschitz condition on 81

(1oB) llf(o) - f(,r,)ll. u lo -,r,lsr ,

then -A generates a nonl'inear quasicontraction strongly continuous semigroup

on 81, say S(t), suchthat S(t)O = xt for t>0, and OeBl

For ur > M + k(-r) , one has for t:0 , and 0,,1, € 81 :

(10e) ls(t)o - s(t),rl

Applications are given, among them being the Volterra integro-different.ial

equati on

" with jn'itial condjtion (106)

In [251], J. Dyson and R. Villella Bressan deal with nonlinear equations

in a Hilbert space, of the form

rt(i10) u(t) = c u(t) 
J a(t-s) g(u(s)) ds ,
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(rrr; i(t) - f(t,x(t)) +g(t,x*) , t'0,

1

. andin'itjalconditjon(106). Thephasespace'is ExBr, with r=0, and

k(u) monotone increasing and Lebesque integrable on (-*,01 Since (111)

is not an autonomous system, the semigroup defjnition is somewhat more involved.

It is assumed that f is m-accretjve, and g is Lipschitzian with B(t) instead

of a constant. Then

(ttZ; D(A(t)) = i(h,01 e f x al , 0 absolutely continuous on bounded

sets, Oatt, h=O(0) €D(f(t,.))]

(113) A(t) (h,o) = {-f(t,h) - g(t,o) , -d } ,

define the nonlinear semigroup attached to (11i) It is assumed that D(f(t,.))

is dense in E The set UID(A(!)) is characterized. The transition operator

U(t,s) is defined by means of the linear equation 6 = -A(t)+ Estimates for

the solutions of (111) are found.

l,l.E. Fitzgibbon t7:1 - [76] uses the nonlinean semigroups in investigating

various properties of functional-'integral equations of the form

that arise when equat'ions with unbounded delay of the form (111) are reduced to

integral equations. W(t,s) stands for the l'inear evolution operator (transition

operator). The author deals wjth varjous phase spaces,'including the space of

' uniformly continuous maps from (--,01 into the space E (a Banach space),

and the space 81 used above. Existence, stabiljty, and other behavior js

jnvestigated in [73] - 1761. Applicatjons are given to some partial differential

(114) x(o)(t) = t^l(t,s) o(0) + f ',r1r,r1 r(u,xu(o)) du ,
J,
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equat'ions involving infinite de1ay.

A.T. Plant [.|99] applies semjgroup method to autonomous equations of the form

(i11), under accret'ivity and Lipschitz conditions. He also deals wjth inclusions

assoc'iated to (li1): i(t) e f(x(t)) + g(xt) His space consists of functions

0, such that .-lu +(u) is bounded on (--,01, tr r 0

In his papers t2331, ll73f, G.F. Webb treats, by the method of nonl'inear

semigroup theory, equations of the form (111). Also, he shows how to extend

this method to nonlinear Voltema equations of the form

(115)

For equat'ions of the form (111), he considers phase space of the Ap -type.

Then, (111) is regarded as an abstract ordinary different'ial equation in the

phase space (let us mention that the basic space, to which x belongs

is a Hilbert space). 0f course, finding this equation or the corresponding

semigroup are equivalent problems. Under appropriate conditions, (115) can be

different'iated, and subsequently reduced to an equation of the form (111). An

alternate method'is given in 12731, where (115) is shown to be equivalent to

(iro; x(t) h-e(O; +G(x1) , t>0,

under initial conditions

(117) xo=O€BP, x(o)=h,

h€E=the underlying Banach space, with

x(t) = y(t) * ft G(t-s, x(s)) ds , t ' o

J
Û

fo
G(O) = I s(-s,O(s)) ds, O€ BP

J_*
(1iB)
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0f course, g 'is subject to convenjent conditions. One obtains a G satisfying

a conven'ient Ljpschitz condit'ion. The connection between y(t) and h can

be easily found comparing (i15) and (1i6) Since (1i6) is not a differentjal-

functjonal equation, thjs const'itutes a good illustrat'ion of the statement made

in the Sect'ion 1, regarding the fact that Cauchy's problem (initial value problem)

makes sense for other k'inds of evaluation equatjons than diffenential ones.

hle shall survey now further contrjbutions to the theory of equations with

unbounded de1ay, that deal with varjous topics and emphas'ize a variety of methods

and results.

Y. H'ino [101], using gP phase spaces consjders stability problems by means of

Liapunov functions, and almost period'icity.

G.F. Webb [231] finds existence/behavior results, using accretive operator

theory. He considers equat'ions of the form y'(t) = F(t,y(t)n y(o(t))) , with

usual initial conditions in spaces of funct'ions that are bounded with respect

to a weight function, and continuous or uniformiy continuous.

J. BXaz ll8l finds boundedness results for equations of the form (25).

D. Fargue l72l gives condjtions under which systems of the form

(11e) i(t) = f(t,x(t) , *l_*t k(t,s,x(s)) ds

can be reduced to ordinary different'ial equations or to part'ia1 differential

equations.

V.R. Vinokurov 1227)'invest'igates boundedness of solutions for certain

equations of the form (119).

T.G. Hallam [100] studies boundedness of solutions for systems of the

form i(t) = A(t) x(t) + t(t;x) , where f(t;x) stands for an operator that

could be chosen, in particular, to be an operator with unbounded de1ay.

M. Kisielewicz [123] deals wjth category theorems, and shows that for equations
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equations with delay, as they are formulated by Soviet mathematjcians (see [243]

and [244] for recent contribut'ions, the last reference being a survey on the

topic).

N.V. Azbelev [243] deals with boundary value problems of the form i = Fx

on [a,b], .Q,x=0, where F:D+L isamapfromthespace D of absolutely

continuous functions on [a,b] , into the space L of Lebesque integrable

functions (wjth values'in Rn ) . {, is a linear continuous map from D , into

Rn To this scheme, one can reduce problems formulated as follows: find

x:[a,b]*Rn, suchthat ittl =f(t,x(t),x(h(t))) , t€(a,b) , x(t) =E(t)

t e [a,U] The function h(t) could represent a delay for some values of t ,

i.e., h(t). t , but it might not satisfy the above inequality for all values

of t € [a,b] Moreover, neutral functional-differential equat.ions of the form

*ttl = f(t,xIh(t,x)], xIg(t,x)]), t € [a,b],

with boundary value condit'ions x(u) = 0(u) , i(u) = ,t,(u) , u € [a,b], can be also

treated within the functional scheme described in 12431,12441. This scheme

leads to a Hammerstein 'integral equation of the form

z(t) = r(t,s) f(s;z) ds, t € [a,b],

provided certain specific conditions are verified. An interesting result 12441

is due to L.F. Rakhmatulina : for each functional .(, on D, there exists

a linearinvertibleoperator W:L+R(l,J) = {x; x€D,.q,x=0}, such that

the product of the differentiatjon operator by l,rl is a Fredhoim operator on L

This result, and similar ones, allow to reduce rather general boundary value

problems to nonl'inear integral equations of Hammerstein type (not necessarily

symmetric) The same procedure is developed in t4l

['
Ja
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like (25), the nonuniqueness may occur only in a class that constitutes a set

of Baire's first category (in a convenjent topology for the right hand sides).

R.K. Miller's paper ll74l, though not dedicated to equations with unbounded

de1ay, conta'ins interesting features and invites to extend the study to such

equations.

G.S. Jordan [i11], generalizing some results of A.S. Lodge, J.B. McLeod,

and J.A. Nohel [260], deals with the nonlinear integral equation with infin'ite

de1 ay

( 120)

under initjal condition y(t) = g(t) , t € (--,01. The parameter u > 0

is assumed "sma1'1", b(t,s) , t > s , is integrable on (--,t] with respect

to s , and satisfies various restrictions that will not be stated here. The

nonl'inearity F:RaxR1 +R isof class C1 o and F(x,x) =0 for X>0,

F*(x,V) r 0 , and nr(x,v) < 0 F'inal ly, g is continuous and nondecreasing

on (-*,01 , and satisfies g(--) = 1, g(0) t 1 0n behalf of these hypotheses,

the equation (120) has a un'ique solut'ion O(t,u) , defined for t € R+ and

small u: suchthat 6(t,u).0, and 1<g(t,u).g(0), t€R+ Estimates

are found for 0'(t,u) , and the limit equation (u = 0) is shown to possess a

un'ique sol ution Oo(t) on R+ , O(t,u) - Oo(t) being estinrated.

In 1471, the authors obtain for the integro-differential relation (67),

besjdes stabjl'ity, various results regarding the asymptotic behavior of solutions

(for instance, the boundedness on R+ )

Many results concern'ing various types of asymptotic behavior have been

obtained in connect'ion to equations generated in applied fields. They will be

surveyed in Section 6.

In the Section 1o we made a few comments on boundary value problems for

+
fu

-uy'(t) =l b(t,s) r(v(t),y(s)) ds, t'0,
J
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J. Eisenfeld and V. Lakshmikantham t67l invest'igate boundary problems

of theform x"(t) +f(t,x(t) ,x(tr(t))) -0, t€[a,b], with x(t) =a(t) ,

t < a, and x(t) = g(t), t t b They also reduce the problem to a nonlinear

integral equation on Ia,b].

J. BXaz l2Al deals with the following boundary value problem: find x(t)

on [0,a] , such that

?*
x'(t) =11 ttt,x(t-s)) dsr(t,s), t€(a,b) 

'Jo

and x(t)=O(t), t..0, x(a)=n€Rn

be determi ned i n sol v'ing the probl em.

0f course, I is a oarameter to

Recently, T. Kaminogo 12571 dealt with boundary value problems for equations

of the form (i) , in the framework of the axiomat'ic theory for the phase space.

More specifically, he considers the scalar second order equation x"(t) = f(t,xt,x'(t))

w'ith boundary value conditions xo = O € S, x(T) = A, T t o . If one denotes

x'(t) = y(t) , then the second order equation becomes a system of the form (1)

for col (x,y). Hjs approach rel'ies upon the method of subsolutions and supersolutions,

i.e., he assumes the existence of two functions o(t) and B(t) , such that

o"(t) 'f(t,ot,o'(t)) , and B'(t) . f(t,81,S'(t)) , t € (a,b) The solution

will satisfy "(t) . x(t) . e(t) , t € [a,b] Supplementary conditions are

imposed on f, cx, and B , that will not be reproduced here. The analys'is of the

problem 'involves previous investigation of certajn bas'ic properties for equations

of the form (1), including Kneser's type results.

In concluding this Section, we must remark that the theory of boundary

value problems for equations with unbounded delay'is at its very beginning.
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6. APPLICATIONS

Several results and topics mentioned 'in the preceeding sections of

thjs survey have been motivated by various applicat'ions of equations

with unbounded delay. As stated in the introduct'ion, the fields'in

which the equat'ions urith unbounded delay have already found interesting

appi ications are l4echanjcs of Cont'inua, Popttlatjon Dynamics and Eco'logy,

Systems Theory (mainly engineering and control systems), and Nuclear

Reactor Dynamics. l,le shal I briefly review some contributions to the

above listed areas of applied research, trying to avoid repetit'ion of

those topics that have been already discussed in the preceeding Sections.

The orig'ina1 approach of Voltema to the theory of hereditary

phenomena in Cont jnuum lrlechan'ics [228] leads to equations with unbounded

de1ay, and opened the Way for a great deal of contemporary research

r^rork. In [29], B. D. Coleman and ll. Dill investigate stability prob'lems

in the theory of imcompressible materials wjth memory, using the energy

functjonal to provide adequate conditions of stabjlity (see also [33]).

For jnstance, the study of inflation of a circular tube leads to the

system of equations

(t 2t ) v(r),

kv2(t)+h(st)+C
fartt
l;r,r

urith k>0, and C

space, and is assumed

for ('121) must be of

real . The funct'ional

to be continuous. 0f

the form v(0) = vo ,

h(0) is given on a historY

course, the initial condtions

Bo = 0 ('i.e., g(u) = 0(u),
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u.0). The energy functional is explicity constructed in terms of the

data in the problem. The study of inflat'ion of a spherical shell leads

to a systern with unbounded delay sjmilar to (l2l ).

Further applications of equations with unbounded delay in Continum

Mechanics regard the study of rvave propagation in d'issipat'ive: materials

with memory, and can be found in the book [30], representing a collection

of papers published jn Archive for Rational l''lechanics and Analysis by

B. D. Coleman, M. E. Gurtin, I. Herrera R.o and C. Truesdell.

14. J. Leitman and V. J. tr'lizel [.l50] - [.|52] pa'id much attention to

the study of hereditary phenomena, and emphasized the role of integra'l

equations jn investigating them.

C. M. Dafermos [52] reduces the prob'lem of asymptotic stability

for viscoelastjc materials to the investigation of stability properties

for the eouation

\t(L) + c u(t) G(t-s) u(s)ds = 0

under initial condition u(s) = v(s) , S € (--,01. In (122), u takes

the values in a real separable Hilbert spac€ H, p is a bounded self-

adjo'int operator on [], rvhile C and G(t) stand for (unbounded)self-

adjojnt operators ih H , such that D(C) c D(G(t)) , ,. R+

Roughly speaking, the asymptotic stabjlity of the zero solutjon of

equation (122) is a consequence of the following property: each eigen-

solutjon wn of the problem Cw - Iptl = 0 is such that, one can find

En n R* lvith G(6n)vrn I 0 In other words, the stabil ity cond'it jon

rL
t
t+ld I du\

-r^-l

dt v dt/
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relies on the spectral properties of t,he operators C and p The

applications to viscoelasticity involve, of course, some integro-

differential equations with partia'l derivatives.

S. Adali tll considers equations that genera'lize (122), namely

(rz3) * 0,r)*t) 
+ c(t)u(t) + 

J.*" 
,rt-s,t) u(s)ds = r(t) ,

v;jth jnitial conditjon u('r+s) = v(r) , r c (-*,01. He obtains

exjstence and uniqueness condjtions for the solut'ion of (,l23), and g'ives

criteria of asymptot'ic stability for the zero solution of the homogeneous

equation attached to (.l23).

Somewhat different types of equations with unbounded delay appear

in the paper [55] by P. L. Davis (see also [5a]). By means of adequate

transformat'ions, P. L. Davis reduces such equatjons to

(124) u, = kAu * 
^, 

* 
ft*

where u = u(t,x) denotes the deviation of tenrperature with respect to a

standard d'istrjbution, A stands for the Laplace operator in the space

variable x , and a(t) , b(t) mean operator valued functions acting

on convenient function spaces. The applications concern heat conduction

in materjals with memory. In [.|60], R. C. MacCamy deals wjth sjm'ilar

probl ems.

M" Slemrod [2.l3],1271], uses various classes of equations with un-

bounded delay in studying problems re1ated to fluid mechanics. The velocity

{u,t-r) 
u(s) + n(t-s)ruJ as ,
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vector satisfies an eouation of the form

(r 25) i(t) = -yp + A . ) v(t-s)ds

w'ith injtial condjtjon v = vo € memory space. The Laplace operator

is also meant'in the space variahles.

N. Distefano [61], dedicates two chapters of this book to the

descrjption of hereditory processes in Continuum Mechanics, with special

emphasis on viscoelastic materials. The role of Voltema is il'lustrated'

and the signifjcance of Volterra equations with infinite lower ljmjt is

also pointed out.

In Population Dynamics, the work started by Volterra 1229) has been

consjderab'ly developed during the past few years. The paper [l68] and

the monographs ll69], [5.l], conta'in a good deal of comments and results

concern'ing the role of delays'in populatjon models. In [5.l], J.M.

Cushjng prov'ides a broad survey of the l'iterature perta'ining to the area

of delay mode'ls 'in population dynam'ics, and includes some basic resultso

as those mentioned'in Section 4. The main emphas'is'is p'laced on stability

of such models, and the occurence of oscjllatjons. Various special

models are examined, such as Volterria's predator-prey model with delays.

it'is shown, among other th'ings, that the presence of delaying terms in

an ecological system can stabiljze an otherwise instable equilibrium.

See also [48] - t50l for contributions that have been covered in [51]'

especially in regard to the presence of oscillatjons in population models

wi th de1 ay.

[,,,,to
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In [86] and [87], A. Haimov'icj investigated the existence and

uniqueness problem for equat'ions with unbounded delay motivated by

Vol terra ' s popul atj on theory.

R. K. Miller [.|71] deve'lops'interest'ing topics related to Volterra's

population equat'ion, providing varjous results that overreach the

i ni tial framework. Forinstance, i f x( t) i s a bounded sol ution

(on R-) of the equation

where A(t) is 'integrable on R+ , then the I imit set n(x(t)) is

an invariant set for the equation with'infinite lower limit attached to

(r 26) :

In the special case of the Volterra popu'lation equation

.r
(r2B) ffili - a - N(t) 

,f-_r(t-s) 
N(s)ds ,

with a>0, bt0, f(t) contjnuousandintegrableon R+, and

such that f(t) # 0 , there exists a unique so'lution on R+ that

reduces to g(t) on the negative half-ax'is, and satisfying

,t
(126) i(t) = F(x(t)) + ( A(t-s) G(x(s))ds ,

fo

timN(t) -N**a[b+ {*rrs)ds]-1 ,
t -+ * Jo

" (t 2e)



/t+

I
provided b > )' ,/o

H. l^1. Stech

stability of equi

djfferent'ial equa

lr,,,to,
[2lB] is concerned with

I ibrium 'in a population

tion

the effect of delays on the

model o considering the integro-

N( t-s)dn(s) l(r3o) N-'r
6 J_*

A. t^lijrz-Busekros [239] invest'igates g1oha1 stability properties in

population models described by Volterra integro-djfferential equations

with unbounded de1ay. A method proposed by D. Fargue [72] is used in

order to reduce the equat'ions to ordinary differential ones.

H. C. Simpson 12691 dedjcates most of his thesis to the investigation

of various problems generated by the Volterra's equations in population

dynamics (see equations (85) above).

The appljcatjons of equat'ions with unbounded delay in Systems Theory

and Control Engineerjng are very numerous, and several monographs have

been already dedicated to such topics.

I. 1'1. Sandberg and V. E. Bene( l2A7l are investigating Volterra

integrai equations ('in which the lower'limit of the integral is --) ,

showing their significance in the theory of some dynamical systems.

Following V. M. Popov [201], I. Barbdlat and A. Halanay [7] give

necessary and sufficient conditions for the hyperstability of certain

ljnear systems whose description involves operators of the form

@

t^J
-i -nJ-v

(r 3r ) (Ax) (t) = oj *(t-tj) . l:B(s)x(t-s)as
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wi th { tj } , Aj , and B sati sfy'ing condi ti ons (39) .

The monographs by J. C. l,ljllems [235] ' C.A. Desoer and M.

Vidyasagar [59], Vl.Rasvan [203], A. N. Michael and R. K. Mjller [.|70],

and M. Vidyasagar 12251 provide a good deal of results regarding

various stabjiity properties of systems (in most cases, feedback sys-

tems) whose description jnvolves operators of the form (l3l), or

particular cases of such operators, as welI as some non Iinearit'ies.

The papers [39] , [40] , [42] , [44] ' [45] by C. Corduneanu, and

[a6] bV C. Corduneanu and N. Luca, contain several stabifity resuits

for feedback systems described by the equat'ions

(r 32 )

where A , B and C stand for operators of the form (l3l). Vl. Rasvan

[204] has found the transfer functjon for (.|32), and has gjven the most

general stabjlity result, by means of frequency domain techn'iques.

M. Podowski 1267J jllustrates the use of functjonal analytic methods'

wjth main emphasis on stability of nonljnear systems. 0perators and

equations with unbounded delay are investigated, 'including some 'integro-

differentjal equations of the fornt

( r 33 )

{T
i(t) = px(t) * 

J_*Q(t-s)x(s)ds 
+ f(t), t' 0,

[*ttl = (Ax)(t) + (BO(o))(t) ,
t(

L"ttl = (cx)(t) ,

as well as nonlinear equat'ions obtained by perturbing (i:S).
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M. N.O{uztdreli [.l96] considers systems of the form (36), in

connection to various problems in control theory.

M. C. Delfour [57] deals with equations with unbounded delay of

the form (36), being main'ly concerned with the optimal control theory

in case of a quadratic cost functional. :

V. Barbu [245] applies some general results regarding convex

control probl ems to the case of systems

(134) fltt)
[* (o*

rt
=Ax(t)+ I aft-s)x(s)ds

J__

) = xo , x(s) = O(s) , S (

+cu(t), tro ,

nVt

/*
with a cost functional of the form I t(x(t),u(t))At , where L 'is

Jo

lower-semicont'inuous and convex. He uses results from 19].

Let us conclude the comments regarding the use of equation with

unbounded delay in Control Theory, by sending the reader to L. bl. Neustadt

[lBB], where he sketches a theory of opt'imization in a class of processes

described by Volterra operators (the case of unbounded delay being,

apparently, admi ssibl e) .

The literature on Nuclear Reactor Dynamics js considerable, and the

use of equations with unbounded delay appears in most textbooks and mono-

graphs dedjcated to thjs field. For instance, V. D. Goriatchenko t8ll

dedicates several sections of the monograph to the discussion of some

basic problems for functional differential equations with unbounded delay,

and gives various applications of such equations (in most cases, integro-

djfferential equations) to the dynamics of nuclear reactors. See also [2]
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where the use of integral operators and attached equat'ions play a signifi-

ant role. Both books [2] and [Bl] contain lists of references that'in-

clude many cases of equations r,rith unbounded delay occuring'in reactor

dynami cs.

F. Kappel Ill6], F. Kappel and F. DiPasquanton'io [60], Ill7], con-

tinuing research top'ics conducted by ,1. J. Lev'in and J. A. Nohel [.|54] '

V. I'1. Popov, E. Gyftopoulos, Z. Akcasu and P. Akhtar, dealt with equations

of the form

a.
1^l+
lP\"(r35) 
{
lr,
Lci (

M/t
. f--\ -r -1- (

) = L ^-1Bitp(t)-c,(t)l 
- .t-tn;t*p1t)l l_* k(t-s)p(s)ds

i=l

t) = rt[R(t)-cr(t)J, i = ],2, .-.,14'

that characterize the dynam'ics of a nuclear reactor, under adequate

hypotheses. Their method relies mainly on Liapunov's technique. It js

worth to be po'inted out that they generalize previous work done'in the

f iel d , starti ng wi th the so-cal I ed t^lel ton-type cr j ter j on for stabi f ity

of nuclear reactors"

A. Ha]anay 1901, andA. Halanay and Vl. RaFvan [9]], further gen-

eral'ize the stability resu'lts by considering delays in the state variables

of the system. They make extensjve use of the frequency domain techn'iques,

and obtajn a general criterion that leads,'in part'icular, to the criterja

earl ier known.

The approach in [9.l], combined wjth the asymptotic stability result

in [41] (see Sectjon 3 above), conducted C" Corduneanu [42] to an even

more general stabjljty criterjon. Let us dwell on thjs crjterion.
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The system describing the dynamics of the nuclear reactor is

i1t1 = (Ax)(t) + (bp)(t) ,

(r 36)

with A,b,c* and 0

operators, of the form:

(137 )

standing for certain dif ference-i ntegra'l

M

p(t) = [ Bkn-tIp(t)-no(t)l
k=l

nott) = rplo(t)-no(t)J n k = 'l 
,2,

u(t) = (c"x)(t) + ("p)(t) ,

- Pn-rIl+p(t)]v(t)

M
r l'l )

(r38)

(t3e)

(r40)

where tj

(t4t)

(Ax)(t) = Aox(t)

(ns)(t) = bo6(t)

(c*x)(t) = cjx(t)

("p)(t) = oop(t)

t0, j = f ,2,

rr n r I rl k r 1

tll n.:ll J : tll u:ll J t
JJ

+ ) A.x(t-t.) +
I-J J J'
J- l

-1+ L bjs(t-tj) +

j=l
6

r-1+ /-, .j*(t-tj)
j=l
o

' I /t + \- [_t cjp\r-rji
j=l

and conditions

{ll c,ll } , {lo.,l} e rt
| ' t'

B(t-s)x(s)ds ,

B(t-s)e(s)ds ,

d*(t-s)x(s)ds

v(t-s)p(s)ds

+

I
I

/o

+

(

to

!

+l
)o

/
* 

)__

(142\
ll B (t)tt ,lB(t)l , rr d(t)tt , lv(t) | e Lr(R+,R)
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hold true. The asterjsk indjcates the transpose of the vector (cj is

suppose to be a column n-vector, for every i). The injtial condit'ions

that determ'ine a unique solution are

(143) x(t) = h(t), p(t) = I(t), t < 0

(144) x(o+) - xo e R[ , p(Ot) = go. R , n*(0) = nko , k = 1,2,... ,M

The constants 1 , Bp and rk are assumed positive.

The following linearized system, depending upon a real parameter h ,

is attached to ('|36):

(r45)

(Av)(t) +

l'l

\^^- 1 . u;*,'

l,-1
la\- I

[it 
tr

J i(tl

| ,*,,,

(uE)(t) ,

-tIs(t)-Ek(t)] - P^-ih[(c*y)(t)+("6) (t)]

= rp[6(t)-eo(t)] , k = 
.l,2, ... ,M

A basic assumption for the sequel is the existence of two numbers

h' hz, such that 0 < hl < I . h2 , for which (.|45) is asymptotically

stable (i.e., when h = hr or h = hr) .

Before statjng further conditions needed

let us define the transfer functions occuring

criter jon. The symbol *4(r) of the operator

Then let n(t) , 6*(s) be the corresponding

and c*(t). Denote

'in the stab j 1 i ty cri terion,

in the formation of this

A has been defined bV (a3).

symbo'l s attached to b(t)
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(r46)

(147)

(r48)

r.(r) = c*(s)[sI -.4(s)]-t t(r) 2

vr(s) = R(s)[t + en-1hrR(s)vo(s)]-1 ,

vr(s) = PA 
tn,ro(s)vr(s) 

,

M

H(s) = 6o[(h.-hr)-1 * h]1vr(s)l + orvr(s)

+ orPl-t(hr-hr) lvr(s) | 
2yo(r)

M

where ro(s) =i(r) +o(s), and [sR(s)]-t=l+A t 
L eo(s+r,o)-1.

k=l

Final1y, let

(r4e)

be such that

(r50) ReH(it) t0 for ure R ,

when 6o r 0 o and besides (.|50), assume

(r 5r ) 6,n-t )] uo * [0,h, * ur(hr-h,)1(oo L loSl) ' o

k=l j=l

holds true when 6z = 0 The numbers 60 , 61 , 62 in (la9) are

supposed non-nega'bive, 6, > 6, : and 6r + 62 > 0

Under the above assumption on (136), each solution x(t) , p(t) ,

yk(t) , k = 1,2, ... ,14 of that system, for wh'ich
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(.l52) lh(t)l ,l,l(t) |€L1(R-,R) nL2(R-'R) ,

'is defjned on the posjtive half-axis, and satisfies

M

(153) .tjm (rrx(t)lr + lp(t) | * L- Ino(t; l)= o ! ,

L->@ 
k=l

provided certain injtial constraints are satisfied.

In order to describe these in'itial constraints (actual'ly, they

determine the zone of attraction of the zero solution), let us consider

the function of a real variable

o(u) =u-rn('r+ur-**,

and choos. uo € (O,.l-hr), 
. 
[oe (0,,41-l), such that

0(u) . q(nr-1)min{l,oor[1]-1 ; k = 
.|,2,... 

,N1] ,

for u e [-uo,[o] Then, we must choose p(0) and no(o) ,

k = 
.l,2, ...M , jn the interval (-uo,[o)

For concluding this Section, let us point out that the equat'ions

with unbounded delay have found app'licat'ions in other" research fjelds.

Forinstance, 'in R. Bellman and G. M. l,ljing [.I1], one can find such

equations in connection to some pseudo-transport problems. B. D. Coleman

and G. fl. Renninger [35],[36], encountered equatjons with unbounded delay

in the study of neural interactions (see Section 4 of this survey).
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