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INTRODUCTION

The theory of equations with delay has been considerably developed
during the past 30 years. The first book dedicated to this subject has
been published by A. D. Myshkis [180], in 1951, and has been subsequently
translated into German (1955) and English (1966). A second Russian
edition, that came out in 1972, contains a good deal of references and
points out interesting features of the theory of linear equations with
delayed argument, including also examples of equations with unbounded
delay.

The general theory of equations with delay, as well as several
basic topics in this field (stability, oscillations), have constituted
successively the aim (totally or partially) of the following monographs:
L. E. El'sgol'ts [68], N. N. Krasovski [137], E. Pinney [198],

R. Bellman and K. Cooke [10], A. Halanay [89], L. E. E1'sgol'ts [69]
S. B. Norkin [190], N. M. Oguztoreli [196], V. Lakshmikantham and

w

. Leela [145], Yu A. Mitropolskii and D. I. Martynyuk [2637, J. K.

Hale [96], L. E. E1'sgol'ts and S. B. Norkin [70], R. D. Driver [65].
The second edition of Hale's book [96] contains the mostlcomp1ete

description of the subject, though it does not cover entirely several

aspects discussed in some of the above quoted monographs.
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It should be also mentioned that, in the past few years, several
survey papers have been devoted to the theory of equations with delay:
f92], [181], [182], [242], [264].

In spite of the fact that most of the above quoted sources
contain results and references related to the theory of equations with
unbounded delay, the coverage of this topic, in monographs and survey
papers, seems to be much behind its real status in the literature. This
situation might be the result of the fact that the interest in this
class of functional equation has shown a dramatic increase only in the
past few years. Indeed, over sixty percent of the papers included in
the list of references are from the 1970's. Moreover, the main achieve-
ments, in both general theory and investigation of various special
classes that occur in applications, are undoubtedly those obtained
during the recent years. At least seven dissertations have been dedicated,
in the past few years, to the theory of equations with unbounded delay
(see [23], [56], [156], [157], [215], [216], [269]).

The aim of the authors of this survey is to provide an account
of the basic results and problems of the theory of equations with
unbounded delay.

Though we do not aim at a thorough presentation of the topic,
including its history, we think a few remarks on the early stage of this
theory may be welcome. There is no doubt, we must pay tribute to
V. Volterra (see [228], [229] and [230], where further references can
be found for the period up to 1930) as the founder of equations in which
the unbounded delays occur. Moreover, he is to be credited for the

first applications in such fields as population dynamics and mechanics



of continua (materials with memory) [228]. Of course, the development
of functional analysis at that time did not stimulate the construction
of a general theory for equations with unbounded delay (not even for
those with bounded delay). Volterra himself found it necessary to
"cut" the delay, in order to make the topic more accessible .to the
investigation (see [228]). In the period 1930-1950, only a few papers
have been concerned with equations involving unbounded delays, or with
so-called "Volterra eguations" (in more common terminology, these are
functional equations involving causal operators: x(t) = V(t,x(t)) ).
In particular, the right hand side V could be an integral operator of
Volterra type. The paper by N. A. Tychonoff [223], though isolated

in time, could serve as an illustration of the impact that Volterra's
ideas had on the applied research. The name of Lotka should be also
associated with applied research areas that rely on the concept of
equationswith delay, the case of the unbounded delay being implicitly
involved.

If the progress in the theory of equations with delay is hardly
noticeable in the period 1930-1950, the progress in Functional Analysis
and related areas (harmonic analysis, dynamical systems, various classes
of function spaces and operators, semigroups) has been overwhelming.
First, the theory of equations with bounded delay has taken advantage in
building up its structures. Hale's monograph [96] provides the best
illustration in this respect, but examples of the use of functional
analytic methods in investigating delay equations can be also found in
several of the above quoted monographs, and papers included in the

references.




Gradually, the theory of equatiomswith unbounded delay has
emerged as an independent branch of the modern research in the field
of Mathematicai Analysis, with its specific problems and many connections
to the applied fields. If there is no monograph dedicated in its greatest
part to the theory of equations involving unbounded delays, we can mention
several books containing various applications of these equations in such
fields as Continuous Mechanics [30], Population Dynamics and Ecology
[57], [169], Systems Theory [59], [61]. [170], [203], and Nuclear Reactor
Dynamics [81].

It is interesting to point out that most of the research conducted
towards the construction of a general theory of existence and stability
of solutions, for equations with unbounded delay, was aimed to shape an
adequate theory for materials with memory (i.e., the old problem Volterra
dealt with in 1928: [228]).. The group of researchers to be first
credited for the promotion of this field is, undoubtedly, that with the
Carnegie-Mellon University in Pittsburgh and their associates (see
references: B. Coleman, B. Coleman and collab., [28]-[34]; M. J. Leitman
and V. J. Mizel, [150]-[153]; R. C. MacCamy and collab., [159]-[164]).

In compiling the list of references, which shortly after its
completion required a supplement, the authors have been guided by the
following lines:

a) To include in the list, primarily, those papers that deal with
equations involving unbounded delays, but a]so‘papers that have direct
connections with the latter, or are significant in regard to certain
general procedures (Liapunov's functions or functionals, semigroup

approach, etc.) that might be applicable also in the case under consideration.




However, the number of papers not effectively connected to unbounded
delays is relatively small.

b) Not to include papers that have been already quoted in the
previously mentioned monographs, unless they are directly involved in
this presentation.

c) To include papers in which the stress is on the applications,
but only to the extent we need to illustrate the interconnections
between the theory of equations with unbounded delay, and various
applied areas. We made no attempt to give a complete 1ist of references,
as far as applications of equations with unbounded delay are concerned.

d) Papers dealing with stochastic equations involving unbounded
delay, or partial differential equations of the same kind, have not

been, generally, included in the list.



1. DESCRIPTION OF EQUATIONS WITH UMBOUNDED DELAY
The functional-differential equations with unbounded delay can be

written as

(1) X(t) = F(t.x,),

1]

where xt(u) x(ttu), - < u < 0. If x takes values in a real Banach
space B, then for each fixed t, ¢ -~ f(t,¢) is a map from a certain
function space S =S ((-»,0],B) into B. We agree that S{(-=,0],B) denotes
a function space whose elements are defined on (-«,0], and take values in
B. In most cases discussed in the literature dedicated to this subject,
the space B is of finite dimension. However, certain papers deal with
the general case when B is infinite dimensional (see, for instance,
[23], [28], [209]).

The Cauchy problem related to (1) can be stated as follows:

given ¢ ¢ S and tO e R, find a function x : (-, t. +68) + B, § > 0,

0
such that

(2) X, = ¢,

and (1) is verified on (to, ty * §).

It becomes clear from the above formulation that two basic elements
are involved in the definition of an equation with unbounded delay. First,
the function space from which we select the initial data ¢, occurring in
(2), and second, the operator (or, more accurately, the family of

operators f(t,+)) defined on that space and occurring in the right hand

side of (1).
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Unfortunately, both mathematical concepts mentioned above are not
at all simple, and many peculiarities occur when dropping the assumption
of boundedness for the delay.

Let us discuss first the space of initial functions, the so-called
"phase-space” associated to the equation (1). Its elements are functions
taking values in a Banach space, even in an Euclidean space, but their
domain of definitions is a noncompact set R = (~»,0]. One can also say
that the set of definition has infinite measure, if one thinks to the
ordinary Lebesgue measure. The structure of such function spaces is,
generally, more intricate than the one of function spaces whose elements
are defined on a compact set (see, for illustration, [38], [66], [167]).
For instance, the compactness criteria are more involved in the case of
function spaces with elements defined on noncompact sets. The separability
property is another example of property that usually holds true in the
cases of function spaces consisting of elements defined on compact sets,
while it does not in most cases of function spaces whose elements are
defined on noncompact sets.

Perhaps, more dramatic is the difference between the various
operators acting on spaces belonging to the above mentioned classes. To
illustrate only one feature, let us remind (see [96]) that the general
form of linear autonomous equations with bounded delay, and continuous
right hand side, is

: 0
(3) x(t) = [ [dn(s)Ix(t+s) + F(t),
-r
where n(s) is a matrix whose entries are functions with bounded variation

on [-r,0]. It is assumed that B = Rn. If one tries to find such a form



8
in the case of equations with unbounded delay, then the following situation
may occur. Assume that S = S((-w,O],Rn) is the space of all continuous
maps from R_ into Rn, with the topology of uniform convergence on any
compact set of R. This space is not a Banach space, but its topology
is a natural one. The general form of a linear continuous map from S

into R" 4s precisely

(4) L(¢) = fo [dn(s)14(s),
-r

with v > 0 depending on L, and n{s) a matrix whose entries are real
function with bounded variation on [-r,0]. In other words, if one looks
for the general form of the Tinear autonomous equation, with continuous
right hand side, then one finds equations like (3). The result is some-
what astonishing, because the unbounded delay is "cut" down to a bounded
one. Of course, the continuity requirement on the right hand side of
the equation is too strong here, and considerably reduces the class of
equations with such a property;

 Let us remark that similar features are present when S is the
space of all locally integrable maps from R_ into Rn, with the topo]ogy

given by the family of semi-norms
0
x> [ |x(s)|ds, n=1,2,3, ...
-n
Therefore, a special attention should be paid when choosing the

phase-space and the operators occurring in the equation, in order not

to lose the most salient features of the theory of equations with
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unbounded delay. Actually, the latest developments show that the phase-
space should be chosen not as rich as it appears in the examples described
above (see [9], [28], [31], [32], [34], [39], [41], [43], [46], [75],
(931, [94], [97], [99], [1041, [157], [158], [173], [209]), while the
operator involved does not have to be necessarily continuous (see [249],
suppl. ref.).

If one looks for the general form of the 1inear equation, with

continuous right hand side, but not necessarily autonomous, then one finds

(5) x(t) = [d n(t,s)Ix(t+s) + f(t),

-r(t)
with convenient conditions on n (we again assume that S is the space of
all continuous maps from R_into Rn, with the topology of uniform conver-
gence on any compact set of.R_). Since the function r(t) could be
unbounded, it is reasonable in such a case to consider (5) as an equation
with unbounded delay. Equations like (5), and related ones, have been
extensively investigated by A. D. Myshkis in his monograph [180], and
by several of his followers (see reference items under names: V. B.
Kolmanovskii, E. Kozakiewicz, K. M. Malov, N. P. Mironov, V. F. Subbotin,
A. M. Zverkin [240]).

Nonlinear equations involving integral operators of the form
indicated in the right hand side of (5), or even with the integral limits
-~ and 0, have been also investigated by many authors: V. E. Bénes,

L. B. Bisjarina, J. Blaz, C. Corduneanu [37], A. Haimovici, A. Kamont and
M. Kwapisz, M. Kisieliewicz, J. Kudrewicz, M. J. Leitman and V. J. Mizel,

J. J. Levin and J. A. Nohel, R. C. MacCamy, R. K. Miller, Yu. I. Neimark,
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V. R. Nosov, N. Oguztoreli, M. Picone, A. G. Ramm, V1. Rasvan, I. W.
Sandberg, G. Seifert, V. R. Vinokurov, V. Volterra [230], K. Zima (see
list of references). Usually, the equation under investigation is

supposed to be in the integral form, for instance,

(6) x(t) = f(t, x(t), ft k(t,s, x(s)ds)
or another similar form. In most of the cases, the convolution kernel
is considered: k(t,s,x) = k(t-s)g(t,x(s)).

It is worthwhile to point out that the equations of the form (6),
or their counterparts involving also the derivative, have been the first
equations with unbounded delay to be investigated (see V. Volterra [230]).
An interesting feature, they come out in a very natural manner if one searches
for the 1imiting behavior of solutions to Vo]terra equations with finite
Timits (see R. K. Miller [172] or C. Corduneanu [38]).

Besides functional differential equations of the form (1), and
integral equations of the formr(6) or related to it, we must include 1in
the class of equations with unbounded delay another family of functional
equations (see N. V. Azbelev [4], N. V. Azbelev and L. F. Rakhmatulina [5],
Yu. A. Gershman and A. D. Myshkis [78], G. A. Kamenskii and A. D. Myshkis
[114], A. D. Myshkis [181]). A very recent survey paper on this topic has
been published by N. V. Azbelev and L. F. Rakhmatulina (see suppl. list
of references). These authors deal, in fact, with boundary value problems
for functional differential equations of the form x'(t) = (Ax)(t),
a <t<b, x=¢ for t e [a,b]. The operator A depends on ¢, and in

particular on the vé]ues ¢ assumes in the half-axis t < a. Keeping ¢
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fixed for t > b, or taking the 1imit case b = +», we obtain a functional
differential equation on [a,b], with "initial" data on (-~,a]. Let us
remark that this is not a local Cauchy problem for the equation
x'(t) = (Ax)(t). Itis rather an existence problem "in the large," for
a family of equations depending upon a functional parameter .¢. Actually,
the equation should be written as x'(t) = (A¢x)(t), t > a, x(at) = ¢(a).
Since ¢ belongs usually to a space with rather intricate topological
structure, and the existence is required "in the large," the difficulty
of the problem is considerable (even in the special case formulated
above). Moreover, the difficulty is increased by the fact that the
dependence of the operator (in the right hand side of the equation)
upon ¢ does not seem usually to be of a simple nature.

To illustrate another feature of the equations with unbounded

delay, let us consider the .case

t
(7) x(t) = 6(t, [ k(t,s,x(s)ds), t eR.

-0

If one associates to (7) the initial condition (2), i.e.,

(8) x(t) = ¢(t), t <tys tyeR
then (7) becomes for t > ty
t t
x(t) = G(t, [ k(t,s,o(s)ds + [ k(t,s,x(s)ds),
o t
0

or, in another form:
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(7") x(t) = E(t, [ k(t,s,x(s)ds), t > ty-
In other words, if one prescribes the values of x(t) on (—w,to], then

x{t) can be determined on t > tO by solving a Volterra equation with
finite 1imits (or, in equivalent terms, with bounded delay). Of course,
one can object that ¢ does not verify (7) for t j_to. But this is true
also in the case of equations of the form (1), with initial condition (2).
It does not seem to be any ground to reject the legitimacy of the Cauchy
problem for non-differential functional equations as (7). Since E

to
involves [ = k(t,s,#(s))ds, i.e., an operator on a function space whose

elements ;je defined on noncompact sets, it is reasonable to regard such
problems as pertaining to the theory of equations with unbounded delay.

Before concluding this section, let us mention the example of an
equation of the form

t
(9) x'(t) = A(t)x(t) + u [ K(t,s)x(s)ds + f(t),

studied by L. P. Bisjarina[17]. It occurs, according to the author, in
the nuclear-reactor kinetics. Under appropriate hypotheses, the uniqueness
of solution is guaranteed by the "initial" condition x(-«) = Xg> @
feature that does not seem to be very common.

Summing up the discussion above, we must point out that the theory
of equations with unbounded delay heavily relies on the properties of
function spaces, whose elements are defined on noncompact sets, and on

the properties of operators acting on such spaces. As seen above,




due to the intricate structure of such spaces and operators, various
oddities can occur when starting to build up a theory of equations with

unbounded delay.

13
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2. EXISTENCE, UNIQUENESS, CONTINUATION AND
CONTINUOUS DEPENDENCE OF SOLUTIONS

The basic problems mentioned in the title of this section have
been discussed in most of the papers included in the list of references,
under various assumptions and formulations.

For instance, the Tinear equations of the form (5) have been con-
sidered in A. D. Myshkis' monograph [180], and thoroughly investigated
as far as existence, uniqueness, and continuous dependence are concerned.
The existence has a global character and the initial data are subject
to a minimum of restrictions.

Nonlinear equations, directly generalizing those considered by
Myshkis, have been studied by J. Blaz [18], [19], A. Kamont and M. Kwapisz
[115], M. Kisieliewicz [121]. Carathéodory type conditions have been
also examined.

Most of the efforts of Pittsburgh's school, in setting up an
adequate theory of existence, uniqueness and continuous dependence of
solutions for equations with infinite delay, have been summarized in
B. D. Coleman's paper [28]. See also [34], and for recent discussion
[249]. Let us elaborate now on these contributions.

We shall consider the functional differential equation (1), under
initial condition (2). But since ¢ stands in (2) for a class of (measurable)
equivalent maps, it is not possible to determine the value of ¢ at any
point of R.. As suggested by M. C. Delfour and S. K. Mitter in [58],
for a real meaning of such a condition, in conjunction to the functional-

differential equation (1), one should prescribe the initial value of the
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solution at t = tO‘ In other words, (2) should be replaced by

(2') X, = ¢, x(t0+) = x0 e B.

%
Of course, if ¢ belongs to a space of continuous functions at t = 0,
it is reasonable to take xO = ¢(0). The function space of initial
functions ¢ will consist of those classes of equivalent maps (Bochner)
from (-«,0) into the Banach space B, which are strongly Bochner measurable,

and such that

0
(10) [ lo(s)|Pk(s)ds < +=,

-0

where p > 1 is given, | - | denotes the norm in B, while k : (-~,0) » (0,=)

is an influence function. In other words, k is locally summable on (-«,0)

and for each o > 0 one has

k(s+o)

(11)  K(o) = ess - sup Eﬁ%:%l. < w, H(o) = ess - sup NOED

Se (-w,0) KUS se(-w,-0)

If one denotes by S the product space B x LE(R_,B), ie., ¢ € LE iff it

satisfies (10), then a convenient norm in S is given by

0 p Op 0 p
(12) [TxT0) [P =[x |7+ [ Je(s)]Tk(s)ds.
The requirements (11) on the weight function k are motivated mainly by
application needs (mechanics of continua). They might be strengthened

or relaxed, in accordance to the specific problem under investigation

(see [28], [31], [32], [34], [254]).
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If G is an open set 1in LE, and T > 0, then assume f : [0,T] x G -~ B
is such that

0
(13) 1£(t0) - F(t.0)| <L (J |o-u|Pkds}'/P

holds locally in [0,T] x G. Moreover, assume f(t,4), that depends only
on t and the equivalence class of ¢, is integrable on [0,T] for each ¢.
Under these assumptions, the Cauchy problem (1), (2') has a unique (local)
solution, defined on an interval [to, ty * 6], with 0 <ty < tO +8<T.
Continuous dependence of solutions, with respect to initial data, is also
assured under above assumptions.

In [254], T. L. Herdman and J. A. Burns consider the equation
(14) - x(t) = F(t,x(t)x),

with x, F ¢ R", under initial condition (2'). The condition (13) is now

replaced by the weaker one

t
(15) [ IF(sax(s)x,) - F(s,y(s),y)lds <

to

t
1/
Pr(t){fw Ix(s)-y(s)lpk(s)ds} p, t e [to,to +T],

where rr(t) > 0 is a locally bounded measurable function on [tO,fO+T],
T >0, and x, y belong to LE«~w,tO+T),B), are continuous on [to,t0+T],
and 1|(x(t),xt)||, Il(y(t),yt)ll <r, te [ty,tytT] (see formula (12)

for the definition of [|-]|). In (15), one takes k(s) = 1 for s > 0.
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Local existence and uniqueness hold true, and continuous dependence follows
from the same assumptions. More specifically, if the perturbed equation,
associated to (14) is considered,

(16) x(t) = F(t,x(t),x,) + h(t),

0
then the (unique) solution depends continuously (in the supremum norm) on
xo, ¢ and h. The phase-space the authors deal with is the product

B x LE(R_,B). Moreover, the case when F is defined only on a dense

subset, in the last two arguments, is investigated. It is interesting

to be pointed out that condition (15) does not necessarily imply continuity
of the map (xo,¢) > F(t,x0,¢). The necessity to deal with discontinuous
functions in the right hand side of the equation is not imposed, in this
case, by the requirements of a theory covering the so-called systems with

distributed parameters. It might occur in such a simple case 1ike that of

the equation

(17) x(t) = fok(s)x(t+s)ds,
with integrable k(s) on R_. For a detailed discussion, see [249], where
a k(s) is indicated, with the property that the mapping ¢ - [2¥(s)¢(s)ds
cannot be continuous on any Lp, p > 1, no matter how we take the_inf]uence
function k(s) (see conditions (11)).

Another function space that has been used by many authors, in
connection with equations with unbounded delay, can be defined as follows.

Assume B is a Banach space and Bp, p > 1, represents the set of classes
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of equivalent maps from (-~,0] into B, such that they are strongly

measurable on (-=,0] and continuous on [-r,0], r > 0, and

(18) sup _ [(s)|P + fr 16(s)|Pk(s)ds < +w,
se[-r,0] -

BP spaces have been defined by B. D. Coleman and V. J. Mizel [33], and

used by J. K. Hale [94], D. Brewer [23], T. Naito [185], [186]. The

quantity in the left hand side of (18) is the norm of ¢, at the power p,

in BP.

Local existence and uniqueness, for equation (1), under condition
(2'), can be obtained for a variety of phase spaces provided adequate
conditions are imposed on the right hand side f(t,4). As remarked in
Sec. 2, the phase space must be a subspace (not necessarily closed) of
the locally convex space L]Oc(R"B)’ with topology stronger than that
of L]oc(R"B)' Such spaces have been thoroughly investigated in the
well known monograph of J. L. Massera and J. J. Schaffer [167]. For
further development of the theory, see [131] and [262], where the idea
of a weight function is emphasized.

Unfortunately, the theory of operators (functionals) on such spaces
is not yet developed to the same extent. Moreover, it presents such
inconveniences as the one mentioned above, in connection to the equation
(17).

Because of the large variety of phase spaces that could be con-
sidered in building up a theory of equations with unbounded delay, it
became desirable to approach the problem axiomatically, In other words,
to 1ist certain axioms for the phase space and the right hand side of (1),

such that any particular space and f(t,¢) verifying these axioms,
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automatically generate existence and uniqueness. Such a task has been

19

undertaken for the first time by J. K. Hale [93]. Further contributions
to this problem have been brought by Y. Hino [101]-[104], and T. Naito
[185], [186].

Recently, J. K. Hale and J. Kato [99], and K. Schumacher [209],
have dedicated conspicuous papers to the axiomatic approach in the phase
space theory for equations of the form (1). In [99], the authors deal
with the finite-dimensional systems (i.e., x ¢ R" = B), while in [209]
one builds up a theory which is valid in a Banach space. The axioms
proposed in [99] and [209] are not exactly the same, though there is a
strong resemblance between them. This is probably due to the tendehcy
of shaping the new theory in accordance with the most discussed case of
spaces "with memory" (see [31]-[33]). J. K. Hale and J. Kato's paper [99]
deals also with stability problems. Both papers [99] and [209] came out
almost simultaneously, though [99] has been submitted for publication
eight months prior to the date [209] has been submitted.

STightly modified versions of the axioms given in [99] and [209]
have been recently considered by several authors. See, for instance,
| Y. Hino [255], T. Kaminogo [257], T. Naito [265], and K. Sawano [268].

Their contributions will be discussed in subsequent sections of the paper,
due to the fact that they are aiming at such problems as stability theory,
existence of almost periodic solutions, and boundary value problems.

Let us consider now the basic axioms that provide the framework
for a local theory of existence, in regard to equation (1). We shall
follow K. Sawano's [268] presentation of the axioms. We assume that x

and f in (1) take values in the Euclidean space R", i.e., B = R".
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Let S be a linear space whose elements are mappings from (-«,0]
into Rn, provided with a semi-norm | « |[. Two elements of S are considered
identical if and only if they coincide at each point of (-«,0]. If
SO C S is the subspace of those ¢ that satisfy |¢] = 0, then the

*
quotient space S = S/S0 is a normed linear space (not necessarily a

Banach space).

For any 8 ¢ [0,») and ¢ ¢ S, let ¢B denote the restriction of ¢ to
the interval {-~,-g]. Denote further by s® the Tinear space of these

restricted mappings from (-«,-8] into Rn, and define the semi-norm

-] b
| lB y

|1P|B = inf {[¢]5 ¢ ¢S, 6" = y}.
It is then obvious that |¢|é = |¢B[B, ¢ € S, is a semi-norm on S.

The basic axioms can now be stated as follows:

(A]) For any ¢ ¢ S, and any mapping x from (-~,T] into R,
0< T < «, such that Xg = ¢ and x is continuous on [0,T), we
have Xi € S for t ¢ [0,T), and t ~ Xy is continuous.

(Az) There exists a continuous function K(g) > 0,

8 ¢ [0,»), such that

< K t 1)
lo] < K(e) tilfg,o]m( I+ felg

for any ¢ € S, and 8 ¢ [0,»).
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In (A2), ||+1| stands for the Euclidean norm in R".
Let us denote now by ® the Tinear operator from S into SB,

B8 € [0,°), defined by the formula
(xP4)(0) = ¢(8*0), 6 & (-=,-8].
This formula makes sense on behalf of (A]).

(AS) There exists a continuous function M(B) > 0, B e [0,=), such

that
|B
vl <Me)ol, ¢ eS.
B
(A4) There exists Ki > 0, with the property
(O[] <Klols 4.

Axioms (A]) " (A4) are formulated in terms of the elements of S.
It is not difficult to see that they can be also expressed in terms of the
elements of S* (f.e., the classes of equivalence in S, according to the
relation ¢ ~ y iff |¢-y| = 0). For instance, axiom (A4) shows that
$(0) = ¢(0) if |¢-y| = 0, a feature stressing the fact that this axiom
deals, actually, with classes of equivalent functions. A

Let @ be an open set in R x S, and assume f : @ > R" is a continuous
map. If (t0,¢) e Q, then x:(—oo,t0+T)+~Rn with 0 < T < », is said to be a

solution of equation (1), under initial condition (2), if X¢ = ¢ and x(t)
0
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is continuously differentiable and satisfies (1) for t e (to,tO+T). One
denotes by x(t;t0,¢) the above solution., Of course, x(t;t0,¢) needs not
to be unique. xt(t0,¢) has an obvious meaning.

Axioms (A]) and (A2) guarantee the existence of a solution of the
functional-differential equation (1), under initial condition (2), provided
we assume the continuity of the map f. Under slightly different forms, the
existence statement appears in [99], [257], [265], and [268].

Under axioms (A]) N (A4), and assuming

(19) [1£(t,8) - F(t0)]]<n(t)e - vl on @,
where n(t) is a continuous function, there exists a nonnegative continuous

function N(t,tO), t 3_t0, such that

for all t > t, that belong to the common interval of existence of

0
xt(t0,¢) and xt(to,w). This result is due to K. Sawano [268]. A
particular case is given in [99].

From (20) one derives easily the uniqueness (at the right) of the
solution through (to,¢). The same formula (20) shows the continuous
dependence of the solution with respect to ¢.

If axioms (A]) “ (A4) hold true, and x(t;T,¥) exists up to tg * T and

is unique in a neighborhood of (t0,¢), then for any € > 0, there exists

8(e) > 0 such that

[x (osw) - % (t5>0)] < e, t e [max (totg)s ty + 71,
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as soon as

[t - tgls [v - 6] <sle), (1.0) e .

The above result, concerning continuous dependence of solutions
with respect to initial data, has been proved by K. Sawano [268]. Another
version is due to Y. Hino [104]. See also [99].

Various forms are known for the continuation theorem (see [99] and
[268]). A noncontinuable solution will leave any compact set K< @,
starting at a certain moment tK'

Strengthening somewhat the axioms (A]) N (A4), J. K. Hale and
J. Kato [99] have proved the global existence of the solution (i.e.,
on [to,m)). Moreover, conditions for the precompactness of a trajectory

{x;5 t i-to} are described.  Under such conditions, the w~limit set of a

3
bounded solution, corresponding to completely continuous f, is nonempty,
compact, connected and invariant. In other words, it meets the qualities
encountered in classical dynamical systems theory.

It is also interesting to point out that the well-known Kneser's
property (regarding the bunch of solutions starting at a given (t0,¢))
holds true under axioms (A]), (Az), and continuity and boundedness of f.
See T. Kaminogo [257] that uses this property in connection with boundary
value problems for (1).

K. Schumacher [209] built up his theory starting with a ﬁystem of
axioms that allows to cover the so-called Carathéodory conditions. The

phase space is not necessarily a normed space, but is always Hausdorff

separable. Several particular function spaces, including the "histories"
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or "memory spaces" are carefully described in connection to the proposed
axioms. Interesting remarks are also made in regard to the early stage
of development of this theory, with references to B. D. Coleman and
V. J. Mizel [31]-[33], J. K. Hale and C. Imaz [98], J. L. Gonzales [80],
J. K. Hale [93], Y. Hino [102]-[104], G. Ladas and V. Lakshmikantham [142].

Existence, uniqueness and continuous dependence for functional-
differential equations with unbounded delay have been discussed by
R. Driver [62], [63], [64] 1in the early 60's. One finds also basic
references to Soviet literature on the subject. 1In particular, the role
of differential inequalities is emphasized in obtaining estimates for
the solutions. For more details,see V. Lakshmikantham [142]-[144] and
the monograph [145].

Functional differential inequalities have been investigated and
applied in finding estimates for the solutions of functional-differential
equations by many authors (see [89], [146], [178]-[180]). The case of

inequalities with unbounded delay has been considered by K. Zima [240],

and E. Kozakiewicz [134], [136], [25¢9].
Problems related to the existence of a maximal solution, and

inequalities under monotonicity assumptions, are discussed by J. Blaz

and K. Zima [22].
Initial value problems for equations of the form
(21) x(t) = f(t,x[h(t)]) t e [a,b],

or

(21") | x(t) = f(t,x[h(t)], x[g(t)]) t e [a,b),
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where t - h(t), t - g(t) > 0 are considered by N. V. Azbelev and L. F.
Rakhmatulina in [5] and [244]. Further references are provided in [244].

More general equations, of the form
(22) 7 x(t) = f(t,Tx, Sx),

with T and S some operators conveniently chosen, are also discussed
in [244]. Under appropriate hypotheses, the Cauchy problem related to
such equations can be reduced to the solution of an integral equation of
Volterra type.

The interest for Volterra operators and equations, including the
case of unbounded delay, has been growing steadily in the past two decades.
The existence, uniqueness and convergence of successive approximations

for vector equations of the form

X
(23) y(x) = yox) + [ flx,t,y(t))dt

have been investigated by A. Erdelyi in [71]. M. Picone [197] considered
similar problems in the linear case, investigating also the dependence
of solution with respect to initial data (see formula (8)). J. A. Nohel
[189] alluded to the significance of Volterra equations (involving
general operators), and L. W. Neustadt [188] gives a theory for such
operators and equations, with applications to control problems.

The equations with Volterra operators have been also investigated
by C. V. Coffman and J. J. Schaffer [26], [27]. They consider the
linear case and develop a theory with very weak restrictions on the

initial data.
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Another approach to the theory of initial value problems for
equations with hereditary structure has been given by G. S. Jones [110].
He represents the functional-differential equation in the form

(24) X(t) = F(txley(x(£))), xe R"

o, (£) € (-»,t] being defined as follows: o : R x R" > @ = the set of

t
all closed subsets of R, and at(g) = a(t,s), with t ¢ xt(é).

The existence and uniqueness for functional-differential equations,
with state dependent delay, have been also examined by E. Winston [236] -
[238]. The case of an unbounded delay is not excluded.

The uniqueness problem for functional-differential equations with

unbounded delay has been considered in [208] and [219].

Equations of the form

(25) x'(t) = éwf[t,x(t—s)]dsr(t,s) + g(t),
or
(26) x(t) = f(t,6(t,x)),

with G(t,x) an operator subject to adequate conditions, have been
investigated by A. Bielecki and M. Maksym [15], J. Blaz [19], Z. Kamont
and M. Kwapisz [115], M. Kisielewicz [121], [122], [124], and B. Rzepecki
[206]. Continuous dependence with respect to parameters is also investi-

gated. One derives existence and uniqueness theorems in various function
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spaces, with rather general assumptions on the data. It would be useful
to compare such results with those mentioned above, in the axiomatic
framework.

A. D. Myshkis and Z. B. Tsalyuk [183] investigate the continuability
of solutions. See also [181] for examples of equations with: unbounded
delay, such that some solutions are noncontinuable.

V. F. Subbotin [220] establishes Kneser's type results for certain
classes of equations with unbounded delay. See also T. Kaminogo [257].

B. I. Ananev [3] gives existence results for differential inclusions

of the form
(27) ).((t) € R(t9xt('))s

where xt(g) = x(t+g), -h(t).< £ < 0, with h(t) > 0 a continuous function.
For equations with inclusion and unbounded delay, M. G. Crandall,
S. 0. Londen and J. A. Nohel [97] have recently obtained (global)
existence results. Their naper emphasizes the fact that the function
spaces whose elements are defined on a half-axis, and operators acting
on such spaces, constitute the basic tools in the investigation of
equations with unbounded delay.
V. Lakshmikantham and collab. [147] dealt with delay equations
on closed subsets of a Banach space, assuming the delay is bounded. It
would be interesting to approach the same problems (existence, uniqueness)

for equations with unbounded delay.

In [226], I. Ya. Viner investigates the Tinear equation

(28 x(t) = x(t™ 1), t»o.
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Some solutions of this equation can be found differentiating both sides of
(28), then eliminating x from the two equations: tzg(t) + x(t) = 0.

For equation (28),4that can be also written as

(28") x(t) = x(t-h(t)), h(t) =t -t

one can consider the Cauchy problem corresponding to the initial data
(29) x(t) = ¢(t), te (O,toj, ty > 1.

If we assume ¢(t) to be continuous, the space of initial functions consists,
for each tO > 1, of all continuous maps from (O,to] into R. Therefore,
it is convenient to endow it with the topology of uniform convergence
on each interval [e,to], e > 0. There is no difference between this
space and the analogous space that corresponds to the half-axis (-m,to].
Finally, let us remark that h(t) - = as t » .

From (27), one sees that for the construction of the solution
satisfying (29), one needs only the values of x(t) (or ¢(t)) on
(O,tél]. We can change ¢(t) onr[tél,to) as we like (of course,
preserving continuity), without any change in the solution x(t) for
t > tO. If there is no reason to wonder about such situations, the
backward uniqueness being an improper concept for equations with delay, one
can however remark the extremely weak connection between initial data and
the resulting solution. It appears more reasonable, perhaps, to associate
with each to > 1 a certain function space, in our case, the space Ct

0
of continuous maps from (O,ta]] into R, and consider the scale of spaces
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(tO’CtO)’ t0 > 1, as a framework for the discussion of the Cauchy problem.
A recent contribution on these lines has been brought recently by

A. L. Bukheim [247] who considers Volterra equations in the abstract
setting. V. A. Jakubovich [109] has used such structures in dealing

with absolute stability in abstract systems.
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3. STABILITY PROBLEMS

The stability problems for equations with unbounded delay have attracted
the interest of researchers long before any attempt has been made to set up.
a general theory of these equations. For instance, Yu. I. Neimark‘[187]

investigated stability problems for equations of the form

(30) u(t) =ftG(t,S) [f(s,u(s)) +w(s)] ds ,
in which G(t,s) 1is an operator-valued function, with regard to the validity
of the linearization procedure. Various examples of equations with unbounded
delay, whose stability can be investigated with specific methods, can be
found in the monographs [180], [89], [81] .

A first systematic approach to this topic can be found in R.D. Driver's

paper [62], in which he deals with equations of the form

where F(t,y(-)) denotes a Volterra operator (or functional). Of course,

the values of y(t) are prescribed for all t <t - After developing a
theory of existence, uniqueness, and continuation of solutions, the second
Liapunov method is applied to investigate stability for (31) . More precisely,
the author gives a rather general theorem of stability for the zero solution
of (31), using comparison method. He assumes the existence of a functional
V(t,¢(-)) , satisfying usual conditions required for a candidate Liapunov

function, and a differential inequality of the form

(32) V'(t,9) <w(t,V(t,0)) .
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The comparison equation y' =w(t,y) plays a central role in the investigation
of stability properties for (31). Let us point out that several particular
systems and Liapunov functionals are discussed in [62].

A basic inequality following from (32) is obtained by V. Lakshmikantham
in [142], and related topics are discussed by the same author in [143]. In
[144], V. Lakshmikantham investigates stability properties for systems with
unbounded delay, in the form considered by G.S. Jones [1107(see formula (24)
above).

In [128], V.B. Kolmanovskii and R.Z. Hasminskii deal with the Lz—stabi1ity

of the integro-differential equation

(33)  x(t) =ch1(t-s)d K(s) »t>0,
0
under initial conditions of the form x(t) = ¢(t) , t <0 .
Liapunov's method is applied in [125] to equations slightly more general
than (33) , in which Ko(s) is replaced by Ko(t,s) . These ideas are then
developed in [126] and [129]. 1In [129], neutral equations of the form

(34) x'(t) = -f wx(t—s)d Ko(s) +f x'(t-s)d Kl(s) +b(t,xt)

are discussed in regard to the stability of solutions. In [127], more emphasis
is placed on the use of frequency techniques in investigating stability for
equations of the form (34) .

Equations of the form
(35)  x'(t) =Jr x(t-s)dr(t,s)

0

are investigated by V. Ya. Grebennikov [83], using rather elementary considerations.
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B.D. Coleman and V.J. Mizel [33] use, in fact, Liapunov function technique.
They call the functionals involved in the formulation of the stability results

energy functions, a term inspired by the mechanical interpretation of the system

with unbounded delay. Phase spaces consisting of functions integrable with
respect to a certain measure (or weight), as those described in Section 2, are
used in order to investigate stability problems for rather genera]}equations.
In [159], R.C. MacCamy is investigating exponential asymptotic stasility for
autonomous systems of the form (1), using also phase space approach as in [33].

J.K. Hale [93] approaches the theory of equations with unbounded delay,
including some stability aspects from the standpoint of dynamical systems theory.
This paper contains the first attempt made in the literature to build up an
axiomatic phase-space theory, and hints developments that have been achieved later
by the author and his followers: [99], [119], [103], [105], [265]. Some of these
developments will be discussed in more detail in a subsequent paragraph.

In [94] and [95], J.K. Hale deals with linear equations such as

N 0

(36)  x(t) = Ay x(t-ty) +f B(s) x(t+s) ds ,

-00

[
lo'l

using Kuratowski's measure of noncompactness and Sadovskii's fixed point theorem.
The characteristic equation associated to (36) is involved in obtaining estimates

for the solutions, and, in particular, stability conditions. These papers generalize
several results obtained by means of different techniques, among them those due

to V. Barbu and S. Grossman [8].

A stability theory for equations with unbounded delay of the form.

«©

(37) .(t) = A (t't) + B(t" ) ( ) d s t > 0 ’
X J;) 3 X ] fo S} X\S S

under initial conditions
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(38) x(t) = h(t) , t<0, x(0+) = x° ,

has been built up by C. Corduneanu [39], [411, [42], C. Corduneanu and N. Luca
[46], N. Luca [157], [261] .

It is assumed that x, x0 € R" , Aj are n by n matrices with real

entries, B: [0,0) + £(R",R") , and h:(-»,0) ~ R" .
The following basic assumptions are made on the system (37) :

0

(39) ty > 0, §70,1,2,...; >T; HAJ-H < «, B € L(R.,R) .
j=

Assumptions (39) guarantee the existence and uniqueness of solution for (37),
provided h € LP(R_,R") , 1 <p <, [39], [46] . If one denotes by X(t) the

map from R into £(R",R") , such that

: = t
(40) () = ) Aty ¢ [ B(s) X(s) ds L g0,
3=0 : 0
(41) X(t) = 0, t<0, X{(O+) = 1,
then [[X(t)]| € L(R_,R) if and only if the stability condition holds true:
(42) det [s I -#4(s)] # 0, Res >0,
where

-t.
@3 4(s) = ) Ae I fo 3(t) 75 dt , Res » 0

Since (40) implies Hk(t)“ € L(R_,R) for [[X(t)]] € L(R_,R) , one sees that

condition (42) provides asymptotic stability:
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(44)  Vim [X(t)]| =0 as t o= .

Actually, (42) is equivalent to the condition HX(t)” € L(R+,R) , and, as shown
in [41], 1t is equivalent to |[X(t)|| € Lp(R+,R) forany p, 1<p<o,

The basic tool in obtaining the above result is the theory of matrix-valued
function algebras whose elements are of the form (43), under assumptions (39).

The theory of operators occuring in the right hand side of (37), asrwe11 as the
theory of function algebras generated by them can be found in some basic references
as [59]1, [79], [235] . In [59] and [235], several interesting applications of
such topics in system engineering are emphasized. Y.V. Venkatesh [234] also uses
these techniques in investigating stability andinstability for various classes of
systems encountered in the applications (without particular regard to equations
with unbounded delay).

The above results, concerning the behavior of the fundamental matrix X(t)
defined by (40) and (41), pose the following problem: Is the asymptotic stability,
implied by (39) and (42), of exponéntia1 type? In other words, is it possible to
find positive constants K and o, such that [X(t)] < K exp (-at) , for t >0 ?
We are entitled to rise such a problem, mainly on the ground that the right hand
side of (36) is an operator of the time-invariant type.

The basic properties of the fundamental matrix X(t) , defined by (40)
and (41), can be exploited to further stability theory for functional-differential
equations of the form (37), or as recently shown by N. Luca [261], for equations

of the form

: - t
(e)  3®) =) myylet) ¢ [ Bles) yo) as
j=0 oo
under initial conditions y(t) = h(t) for t <0, and y(0+) = yo e R" . The
definitions of stability, uniform stability etc. are formulated according to the

classical pattern. For instance, the uniform stability of either (37) or (45) is
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equivalent to the boundedness of X(t) , and the boundedness of all solutions

of (45), with arbitrary h € L(R_,R") , y° € R" . Also, the uniform stability of

the zero solution of (37) implies det [s I -4(s)]#0 for Res > 0 (naturally,

a condition weaker than (42)). Another set of conditions equivalent to the uniform

stability of the zero solution of (37) or (45) is: the functions X(t) ,

@ t
36)  o(t) f nf X(t-s) B(s+u) ds| du
0 0

and

_——
~
~

S

<=

—~
r+
—
1]

ess - sup [|[K(t,s)| .
s € R_

with

(48)  K(t,s) -= ij(s) K(t-t;-s) A,
i

.(t) one denotes the characteristic

‘are defined and bounded on R, . By Xg

+
function of the interval [-tj,O] .

Any equation of the form

(49) x(t) = Z ij(t-tj) +ft B(t-s) x(s) ds + f(t;x) ,

=0 | 0
with f(t;x) = (fx)(t) an operator adequately defined, and the usual initial
conditions x(t) = h(t) for t <0, x(0+) =x°¢€ R" . can be transformed by
means of the variation of constants formula [41], [46], into an integral
equation of the form

t

(50) x(t) = X(t)x° + th)(t) -+J[ X(t-s)f(s;x) ds ,
0
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where

(51)  (h)(t) =) fo K(t-ty-s) Ash(s) ds , te R,
j=0 —tj
The convergence properties of the series occuring in (51) depend on the nature of h .
Adequate results are obtained in [41], [46] for h € Lp(R_,Rn) ». .1l <p<w,
Stability results for nonlinear systems of the form (49) have been obtained,
mainly using frequency domain techniques, in a series of papers: [39], [40], [42],
[44], [45]7, [157], [261]. A problem rised in [40] has been solved by V. Rasvan [204].
Another reference regarding the systems with infinite delay of the form (37),
and their nonhomogeneous counterparts, is D.-P.K. Hsing [108]. The semigroup theory
is used in order to find estimates for solutions.
In almost all cases mentioned above, the stability is usually meant in the
norm of the R" . In other words, the quantity [|X(t)| is estimated, and relations
such as (44) have the usual interpretation we are acquainted with, from the theory
of ordinary differential equations. If instead of the Euclidean norm ||| , in
estimating the solution, one uses function-space norms (for instance, the norm
of the phase-space involved in the description of the system), some difficulties
arise as pointed out from the very beginning of the theory by R.D. Driver [62].
Let us illustrate the above statement. For instance, when the phase space
is a memory space, corresponding to a weight function k(s) the p-th power of the
norm is given either by formula (12), or (18). Assume we deal with (12). Then,

assymptotic stability should mean

0 .
(52)  [Ix(t)iP +f k(s) Ix(t+s)IP ds > 0 as t =,

-0

a condition that does not necessarily hold, even in the case x(t) - 0, as t - @ .

Similar illustrations are provided by J. Kato [119] . A more detailed

discussion of this problem, and relationships between stabilities in the
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sense of the phase space norm or the Euclidean norm, can be found in [99].
These authors, treat stability problems in the framework of an axiomatic phase

space theory. While this approach tends to become preponderant in the investigation

of equations with unbounded delay of the form (1) (see [118], [119], [102], [105],
[268]), it should be pointed out, however, that not all the available results seem
to be obtainable in this framework. The main difficulty seems to be in writing
most particular equations in the form (1), with f continuous in the second
argument, from the phase space S , into the space R"

| Let us consider now the system (1), under initial condition (2), and assume
we deal with a phase space S satisfying axioms (Al) - (A4) , Tformulated in
Section 2. Therefore, in condition (2) ¢ € S . We shall not repeat here the
definitions of various types of stability, they being very much alike to those
well known from the stability theory for ordinary differential equations or
equations with finite delay [89], [96].

The following result is due to J. Kato [119]: Assume condition (19) holds

true, and there exists a continuous real valued function V(t,¢) , defined

on R, xS., S.={¢5¢€S, [¢] <r}, such that

(53) a(lp(0) ) < V(tse) ,

(54) V(t,9) < blt,]e]) »

(55) Vi(t,e) < c(t,V(t.0)) ,

where

(56) V' (t,) = 1im sup Vo Xan) - VU8 X T b

h -~ 0+ h
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with a(r), b(t,r), c(t,r) non-negative, continuous, non-decreasing in r ,
r>0, and a(r) >0 for r >0, b(t,0) =0 . Then the zero solution of (1)

is stable in R"™ . Moreover, it is asymptotically stable in R" i

t4T
(57) jr c(s,r) ds >~ as T >,
¢ |

forany r >0 and te€R_. Furthermore, it is uniformly asymptotically stable

" §f (57) holds true, uniformly with respect to t € R_, and b(t,|e]) <bl]e]).

in R

The following converse theorem for uniform asymptotic stability is also given
in [119]: Assume condition (19) holds true with n(t) = const. > 0 , and the
zero solution of (1) is uniformly asymptotically stable in S . Then, there

exists a real-valued continuous function V(t,¢) , defined on R, X Sr (r >0) ,

such that

(58) a(le]) < V(t,e) <b(le]) »
(59) Vi(t,e) < -c V(t,e) »

(60) [V(tse) - V(t,w)| <Ll¢ - w|

with a(r) and b(r) positive definite, and c,L some positive constants.

Since stability in S 1implies stability in R" [99] under certain additional
axioms for S , the above theorem gives only a partial answer to the problem of
characterizing stability theorems in terms of Liapunov functionals. Nevertheless,
the converse theorem allows the study of some perturbed systems, as shown in

[119]. Applications regard such systems as

0
(61) (D) = Agelt) e agx(een) + [ aGs) x(ees) o

-00
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with h >0, and
)
(62) f NAGS) e ¥3ds <=, for a v>0 .
The result states exponential asymptotic stability in the space S = CY s 1.e.

(63) CY = {x;R_ ~ R" , continuous, lim éth(t) exists}
E t_)._oo

In a slightly different form, the existence of V(t,¢) satisfying (58) - (60)
is proven by K. Sawano [268].

Further results in [119] regard the so-called Razumikhin type stability
theorems. In the case of finite delay, a recent paper by V. Lakshmikantham and
S. Leela [146] develop such techniques, starting from equations written in the

form (14), and the associated differential-difference inequality

(64) VH(t,9(0),0) < w(t,V(t,0(0),0), V) .

An extension of the results in [146] to the case of equations with unbounded
delay, in the framework of the axiomatic phase space theory, would certainly
be welcome.

K. Sawano [268] investigates the linear system of the form (1), i.e.
f:R+ xS >R s continuous and linear in the second argument, with regard to
the exponential asymptotic stability. If S is such that (Al) - (A4) hold
true, and the zero solution of the linear system (1) is uniformly asymptotically
stable in S , then it is exponentially asymptotically stable in the large.
In other words, one can find positive constants M and ¢ , such that

xgltgsd)] < Mof e €T |t s g,
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for any ¢ € S . This result has the classical flavor of the similar ones from
the theory of ordinary differential equations or the theory of equations with
finite delay [89]. As mentioned above in this Section, the asymptotic stability
in S has some drawbacks (see formula (52)). Nevertheless, it would be
interesting to see whether S can be chosen conveniently for the system (37)

or (49), such that the theorem of K. Sawano stated above provide an answer to
the question rised in respect to the behavior of the fundamental matrix X(t)
defined by (40) and (41).

J.K. Hale and J. Kato [99], under supplementary axioms for the space S ,
investigate also the limit set of bounded solutions, and their relationship to
stability. See also [84], [210], [211], [162], [163].

Though most methods that provided satisfactory results in.case of ordinary
differential equations, or for equations with bounded delay, have been tested in
the case of equations with unbounded delay (for instance, Liapunov functions,
frequency domain techniques, abstract dynamical systems, semi-group theory), we
point out that other powerful methods, such as LaSalle's invariance principle
[148], [1497, have not yet been used in approaching stability problems for this
class of equations (excepting [11€]).

Several papers have been devoted to the stability theory for integral equations
with unbounded delay. The term stability may have the classical sense, i.e., the
solution must be small (or tend to zefo) if the data that determine it are small
enough, or it may mean a certain generalized kind of continous dependence, within
a function space endowed with a convenient norm.

In a recent survey paper [272], Z.B. Tsalyuk discusses most of the achievements
in the field of Volterra equations, including stability problems.

The study of stability for integral equations with unbounded delay, envisaged
as a specific kind of asymptotic behavior, goes back to the early stage of this
theory. More recent contributions, emphasizing relatively new methods, can be

found in [13], [2071, [89], [172], [38].
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Let us consider, with M.J. Leitman and V.J. Mizel [153], the integral equation

of Volterra type
t
(65) x(t) +f g(s,x(s)) a(t-s) ds = f(t), te€ R,

where a:R, - R_ 1s nonincreasing and integrable. The nonlinearity g¢:R x R > R
satisfies usual Caratheodory conditions, and is such that ug(s,u) > 0 for every
u, and almost all s . Further conditions are assumed, such as the monotonicity

in u, and a Lipschitz condiiton at infinity, in the second argument. Then

x(t) - y(t) >0 as t -« , where y(t) is the solution of the Volterra equation

with finite delay,

(66) y(t) + Jr ‘ g(s,y(s)) a(t-s) ds = f(t) , tE€ Ry >
0

provided a(t) does not vanish almost everywhere and at least one function
x(t) or y(t) be bounded on R, -

The above result provides a very convenient tool to investigate stability
for equations of the form (65), because for equation (66) we know a good deal of
stability conditions. See, for instance, the monographs [38], [172], and
references [160], [174], [269]. Further results are derived in [153].

Another recent‘contribution to the theory of integral equations with finite

(and infinite) delay is due to M.G. Crandall, $.0. Londen and J.A. Nohel [47].

They investigate problems of the form

with u(t) = h(t) on t <0 . The solution is sought in spaces like w%gi (RysH) 5
where H is a Hilbert space. The (nonlinear) operators occuring in (67) are

chosen to be the subdifferentials of some convex funtions. Some of their results
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are applicable to equations of the form

(68) ug(t,x) - ault,x) + thla(t-s) g(u(s,x)) ds = f(t,x) ,
occuring in elasticity theory. Stability results for (67) are also derived from
the existence theorems proven in [47].

In [161], R.C. MacCamy and V. Mizel deal with equation (65), with f € Wl’q(R+’V),
where VS H< V' , and V 1dis a Banach space with dual V' . H 1s a Hilbert
space, and the solution is constructed in the space Lp(R+,V) n W 1’q(RJr,V') ,
with p'l + q_1 =1 . More precisely, the solution and its translations must
belong to that space.

For other stability results regarding integral equations see [1547], [164],
[200].

A generalized concept of integral equation is investigated in [107].  Stability
results for such equations would be welcome.

An interesting point of view in investigating Tinear functional differential
eugqations, including equations with unbounded delay and stability of their solutions,
can be found in E.W. Kamen [112]. His theory is predominantly algebraic, and
is applicable to systems in which the right hand side is a generalized convolution
product. This allows to treat the equations as equations over a ring, thus making
use of rather sophisticated algebraic results.

Certain stability results for periodic or almost periodic solutions of
equations with unbounded delay will be discussed in Section 4.

In Section 6, we will include stability results for various c]assés of

equations with unbounded delay that occur in applications.
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equation

In [14], further references are given to the work of these authors, regarding
periodic or almost periodic solutions for integral equations.

C. Corduneanu [37] and A.G. Ramm [202] use various functional-analytic
methods in finding existence conditions for periodic or almost periodic solutions

to the equation
(72) %(t) +J[ k(t-s) f(six) ds = h(t) , teR,

where f(t;x) = (fx)(t) 1is a nonlinear operator acting on the space of
periodic (almost periodic) functions. Accordingly, h(t) 1is assumed pekiodic
or almost periodic. Let us point out that (72) reduces to (71) when

K(t) =0 for t<0, and (Fx)(t) = F(t.x(t)) .

J. Kudrewicz [138] also investigates existence of periodic solutions for
equations of the form (71), in the autonomous case f(t,x) = f(x) , assuming
h(t) periodic.

Small periodic solutions are sought by J. Kudrewicz and M. Odyniec [139]
to the equation

0

(73) X(taU) =f k(T,U) f[X(t-T,U),U] dr s
0

with f analytic, and under the assumption that (73) has for each u a unique

constant solution c¢ = c(u) . Frequency domain methods are largely applied.
M.J. Leitman and V.J. Mizel [153] deal with the equation (71), with

f(t,x) periodic in t : f(t+T,x) = f(t,x) . Moreover, h(t) is assumed

to have the same period T > 0. If the kernel k(t) satisfies certain conditions
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(see conditions on a(t) in Section 3), and denote kT(t) = zz: k(t+3T)
=
then the periodic solution x(t) of (71) will satisfy !

T =~
(74) x(t) +f kp (t-s) f(s,x(s)) ds = h(t) , te[o0,T),
0
r\J .

where k;(t) is the periodic extension of ke(t) from [0,T) , to [-T,T).
In other words, the problem of finding periodic solutions for equations with
unbounded delay of the form (71) is reduced to a similar problem for the
(Fredholm) integral equation (74).

B.D. Coleman and G.H. Renninger [35], [36] investigate the existence of
periodic solutions to certain integral equations with infinite delay. These

equations are of the form

where m(u) = %(u + Jul) . Such eﬁuations are motivated by the description
of neural interactions. The authors find conditions under which a unique
periodic solution exists, and also discuss related problems.

V.R. Nosov [192] - [194] studies the periodicity of solutions to the class

of integro-differential equations of the form

(75) [ vt titesn = [ aples) w1+ sl

R R
in which f(t) is w-periodic (not necessarily continuous), while r(t,s), p(t,s)
possess periodicity property in the first argument, and have bounded variation
with respect to the second argument. The author remarks that, under adequate

conditions, the operator

(76) (T2)(t) = f dr(t,s) [2(t+s)]
R
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carries the space Cw of continuous functions, with period w , into itself.

Therefore, it can be represented as

(77) (T2)(t) = f dR(t.s) [2(s)] ,

o

where R(t,s) can be constructed starting from r(t,s) , in a manner similar
to the one used above, when constructing ET(t) by means of k(t) . Of course,
R(t,s) in (77) is periodic in t , of period w . Using representation (77)
for the operator T defined by (76), the problem of searching periodic solutions
for (75) reduces to the corresponding problem for Tz = f . More precisely,

the Fredholm alternative is simultaneously true for (75) and Tz = f (and their

adjoint equations). Of course, particularizing conveniently r(t,s) and p(t,s)

in (75), one obtains equations with unbounded delay. In particular,

(78) (t) =f° dplt,s) [x(t+s)] + f(t)
constitutes a model for linear equations with unbounded delay and periodic
coefficients. It should be noticed that the powerful functional-analytic
methods used by the author provide an adequate treatment of equation (75), in
which the argument presents both advanced and delayed deviations.

J.M. Cushing [49] - [51] dealt with the existence problem of periodic
solutions for certain equations with unbounded delay that occur in Population

Dynamics. Rather general results are obtained for systems of the form

. 0
(79) x(t) = a f dH(s) [x(t+s)] + (g (t) .

-0

.. ) is of

where x € R", & = diag (A;, Ap,... A ) , and H =(h
1> 72 n U wn

bounded variation on (-»,0]J. g stands for a nonlinear operator, assumed to
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be of higher order in x, near x = 0 . More exactly, the author provides
conditions that guarnatee the existence of nontrivial periodic solutions
for (79), for certain values of A . The homogeneous linear equation
attached to (79) must possess at least one nontrivial periodic solution,
corresponding to some A . As one can see, the author obtains a bifurcation
result. The characteristic equation associated with the Tinear part of (79)
is involved in formulating the exact requirements on the equation (79).

H.C. Simpson [269], [270] has undertaken the study of various problems
regarding the periodic solutions of some classes of equations with unbounded

delay, such as

[ee]

(80) x(t) = fx(t), J[ G(s,A) x(t-s) ds,r) ,
)
and their Tinearized version
(81) x(t) = A(t) x(t) + er B(t,s) x(t-s) ds-+ c(t)
0

Besides existence and bifurcation, he pays attention to the stability of periodic
solutions, as well as to the investigation of various equations that arise in
Pupulation Dynamics. Among other topics, a diffusional model described by

the equation

(82) Ve o= oav o4 f(fw K(s) V(x,t-s) ds) ,
0

where V = V(x,t) , and A represents the Laplacian with respect to x-variables,
is analysed.

For linear equations of the form (81), the author constructs a Floquet
theory, taking CY as phase-space (see Section 3). The representation of

solutions as finite linear combinations of the form
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(83) > P, () et b

where Pu(t) are w-periodic matrices, Bu are constant matrices and bu
some constant vectors, is proven for the homogeneous equation associated
to (81). Furthermore, the Fredholm alternative is obtained for the equation (81),

its adjoint equation

(84) ) = (e Ale) - [ y(ees) Bltesens) ds + cx(e)
and their homogeneous counterparts. In (84), y and c* are row-vectors.
Since (81) is a special case of (78) and (75), it would be interesting to
compare the conditions under which the Fredholm alternative is valid in each
case. Formally, the result for (81) could be derived from the general one,
valid for (75).

The stability analysis conducted by H.C. Simpson in the papers quoted
above relies on the representation of the solution of the homogeneous equation
in the form (83). An interesting result regards the orbital stability of a

periodic solution p(t) of the "autonomous" system
(85) z(t) = f(z(t),(kez)(t)) ,

where % indicates the convolution product. The linearized system of (85),

about p(t), will be of the form

fos]

(86) W) = A(t) v(t) +“/' k(t,s) v(t-s) ds ,
0

and the characteristic values associated with (86) are the eigenvalues of the

matrices Bu occuring in the representation of solutions according to Floquet
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theory (see (83)). If all characteristic values of (86) have negative
real part, except for a simple eigenvalue that is zero, then p(t) is
asymptotically orbitally stable.

H.W. Stech [216] is also investigating linear periodic systems with infinite
delay, using the phase space BP , in which the norm is given by formula (18).
He builds up a Floguet theory, finds the adjoint system for a periodic system,
discusses the stability and the Fredholm alternative. The linear system

considered in [216] is represented in the form
(87) x(t) = L{t,xy) + h(t),

with L{t+w,$) = L(t,¢) , t€ R, ¢ €BP, nh(ttw) =h(t) , t€R . Itis
assumed that L 1is continuous from R x BP into R" , while h s locally
integrable. Representation for solutions in the form (83) is obtained. Since
L can be represented in integral form, a comparison of this theory with the
one provided by V.R. Nosov [194],‘1n regard to the Fredholm a1ternative,shou1d
be considered. In [216], the author gives a detailed discussion of the
behavior of solutions of an autonomous system x(t) = f(xt) in the neighborhood
of an orbit. f(¢) is supposed differentiable in Fréchet sense, so that a
linearized system can be attached. Like the result of H.C. Simpson,
H.W. Stech obtains his result on orbital stability. A comparison of their
results would be interesting. There are somewhat different features.

In his thesis, P.F. Lima [156] is developing a theory of equations with
unbounded delay, taking as phase space a somewhat more general space than

that resulting from the norm (12). Namely, he considers the norm

(88) R O L B HOTLEME

-0

where u is a measure satisfying appropriate conditons. Main attention is
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paid to the bifurcation problem for periodic systems.

In the framework of an axiomatic theory for the phase space, several
authors dealt with the almost periodicity of solutions of functional differential
equations of the form (1). For instance, J.K. Hale and J. Kato [99] give
various results concerning the limit set of a bounded solution, and the
relationships between stabilities, the case of periodic or almost ﬁeriodic systems
being covered. As an illustration, if the phase space S satisfies certain
additional axioms, and f is periodic in t , then asymptotic stability for
the zero solution of (1) implies uniform asymptotic stability. Further
oscillation results concerning equations with unbounded delay have been obtained
by Y. Hino [102], [105], [106], [2551, and K. Sawano [268].

In [105], Y. Hino generalizes to the case of equations with infinite delay
a classical result of L. Amerio for ordinary differential equations. Roughly
speaking, the almost periodicity of a bounded solution of (1), with f(t,9)
almost periodic in t , uniformly with respect to ¢ € Bc S for any bounded
B , is the consequence of a separation property for (1), and for any other
system in the hull of (1) : H(f) . The class of systems H(f) is defined as
being the closure of the set of translations {f(t+h,¢); h € R} , with respect
to the uniform convergence on R in the first argument, uniformly for ¢ € B S ,
with B an arbitrary bounded set. Let D =R x B, with fixed bounded B< S ,
be a set containing the graph of a solution of the system (1): (t,xt) €D, tE€R.
Then x is said separated in D if it is either the only solution of (1) lying
in D, or, in case another solution y satisfies also (t,yt) € Rx B, one
has inf [xt - yt]S > 0, t€R . The separation requirement regards not only
f , but any g € H(f) .

In [106], Y. Hino deals also with almost periodicity of solutions of linear
systems of the form (87), taking gY or BP as a phase space. The following

generalization of Favard's theorem is obtained: Assume x(t) = A(t,xt) is a
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linear almost periodic system, with A(t,¢) continuous from R x gY(R x BP)

into R" , such that any bounded nonidentically zero solution of x(t) = B(t,xt) ,
with arbitrary B € H(A) = the hull of A , satisfies inf [x|q >0, te€R

(S = 8Y
x(t) = A(t,x

or S =8P) . Then for each almost periodic f:R » R" , the system
t) + f(t) has an almost periodic solution, whenever it has a bounded
solution on R, .
Relationships between stability and almost periodicity of solutions, for
equations with unbounded delay of the form (1), are investigated in [102] by
Y. Hino. The phase space S is supposed to satisfy some additional axioms,
among them being the separability. As a consequence of the developments in this
paper, one shows that for linear almost periodic systems of the form
x(t) = A(t,xt) + f(t) , the boundedness of a solution implies existence of an
almost periodic solution, provided the zero solution of the homogeneous system
is uniformly stable (in 5Y or BP).
A result of a different nature is given in [268]. First, the phase space S
is assumed to satisfy the follwoing extra axioms: (A5) S 1is separable ;
(A6) M(B) 0 as B + = , with M(B) the function occuring in axiom (A3);
(A7) If {p1 =S . s uniformly bounded, and converges uniformly on any
compact to a function ¢ , then ¢ € S, and ]¢k - ¢|S ~0 as k> = .

Let (1) be an almost periodic system, and assume there exists a real valued

S.=1{¢:6 €S, [|¢] <r},

functional V(t,¢,p) defined on R, xS, xS., v

such that
(i) a(le-v]) < v(t,0,v) <b({e-v]) ,
with a(Ax) and b(xn) positive definite functions ;
(ii)  there exists L > 0 , such that
N . N
lV(t,¢,¢) - V(t9¢aw)| E_L {I¢"¢l + |¢-Wl} ’

(iii)  there exists ¢ > 0 , such that

Vl(ts¢9¢) 5_'C V(ta¢sW) )
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where V' denotes the derivative of V with respect to the system
x = ft,x,) , ¥ = fltyy) .

Then, if (1) has a bounded solution on a half-axis [tg,») , there exists
a solution of (1) that is bounded in the norm of S by the same constant, and is
uniformly asymptotically stable. In particular, when f(t,¢) is periodic
in t of period w , the uniformly asymptotically stable solution is periodic
of period w . Furthermore, the construction of V(t,¢,p) 1is given in the
linear case, using the converse theorem on uniform asymptotic stability (see
Section 3) .

An interesting result concerning periodic solutions for autonomous systems
x(t) = f(xt) , with f analytic on the space of continuous bounded maps
from (-«,0] into R" L, s given by R.D. Nussbaum [195]. It is shown, under
conditions that we do not list here, that a periodic solution of such a system
can be analytically extended to a neighborhoéd of the real axis (in the complex
plane). Therefore, the periodic solution is analytic.

Further results regarding oscillations in nonlinear systems with unbounded
delay, including bifurcation aspects, can be found in [82], [120].

Finally, oscillating solutions for equations with infinite delay are
investigated in [191], [214], without concern for their periodicity or almost
periodicity.

Also, related to this section are the papers [16] and [25].
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5. FURTHER TOPICS

This Section is devoted to the discussion of various results and methods
pertaining to the theory of equations with infinite delay, that did not naturally
find place into the preceding Sections. In particular, we shall survey the
Titerature related to the theory of linear equations, the semigroup approach to
the construction of solutions, boundedness and related behavior, and boundary
value problems. |

A.D. Myshkis [1797 finds asymptotic estimates for linear integro-differential

equations of the form

(o0

(89) y'(t) = Jf [dg r(t.s)] y(t-s)
0 .
under appropriate conditions for vr(t,s) . Inequalities with delay are used in

his approach.

E. Kozakiewicz [132], [133], [135] deals also with equation (89) , improving
results due to Myshkis and generalizing the equation to the case when Perron's
integral is involved.

I. Gy6r1 [85] provides conditions under which (89) has solutions satisfying

t
Tim y(t) exp {- J[ R(s) ds} = ¢C,
t >
A
where R(t) 1is defined by means of r(t,s) .
Z.B. Tsalyuk [222] studies the behavior at infinity of solutions of the

equation
m

(90) Kt) = ) As) x(g5(8) L tERe,
J=1

determined by initial conditions of the form x(t) = ¢(t) , t <0 .
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H. Grabmuller [252] investigates the behavior at infinity of solutions of

the integro-differential equation

oo (o8]

(91)  y'(t) + c A y(t) +Jr h(t-s) A y(s) ds + Ejr k(t-s) y'(s) ds + ¢(t) =0,
0 0

in a reflexive Banach space E. A:D(A) - E is a closed linear operator with dense
domain, and -A generates a semigroup on E . Though (91) is not itself an
equation with unbounded delay, it has common features with the "adjoint" of such

an equation.

The general theory of Tinear functional differential equations with unbounded
delay, i.e., when the equation is represented in the form (1), with f Tinear
in the second argument, and the phase space is chosen among the those described
in Section 2 or defined axiomatically, has been recently considered by several
authors: [94], [185], [186], [24], [216], [217], [265]1, [266] .

In [94], J.K. Hale deals mainly with the space B1 as a phase space, using
semigroup theory in order to obtain exponential estaimates for the solutions, in
the autonomous case. He points out the fact that the phase space B1 could
be replaced by other spaces, still following the same approach.

T. Naito [185], [186] investigates the linear autonomous equation x(t) = f(xt) s
the phase space being the space BP (see formula (18) for the definition of the
norm), with complex-valued elements. It is assumed that k(t) in (18) is

integrable on (-=,0), positive, and non-decreasing. The relation T(t)4 = xt(¢) ,

$ € BP , t>0 » defines a semigroup on BP » Wwhose infinitesimal generator

A is determined as follows: (A¢)(u) = ¢(u) , a.e. on (-=,0) , (A$)(0) = f(s) ,
for all ¢ € B? that are absolutely continuous on any compact interval of (-~,0] ,
and for which ¢ € BP . This result constitutes the extension of a classical
result due to J.K. Hale [94; Ch.7 ] for the case of autonomous linear equations

with finite delay. See also [140]. The spectral properties of A are then
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thoroughly investigated in [185]. As a final application of the general theory,
one obtains in the absence of the "characteristic values" with zero real parts

a decomposition of the phase space 8P, say BP=U®8 VvV, with U finite
dimensional, and such that T(t) can be extended to the whole real axis on U .

Moreover, the following estimates are valid:

IT(t)e] < Ke*Tlo] , t<0, ¢€U,
IT(t)s] < ket lg] ,t>0, s€V,

with K and o two positive constants.

In [186], T. Naito defines the adjoint system of x(t) = f(xt) , using
extensively semigroup theory. The spaces 8P and gY are taken as phase spaces.

H.W. Stech [217] also deals with the adjoint theory for autonomous linear
equations with unbounded delay, relying on J.K. Hale's [94] and T. Naito's
results [185], but making use, in a more systematic manner, of the concept of
duality. His phase space is the space B! , with k:(-»,0] - (0,~) continuous,
nondecreasing, integrable on (-~,0] , and such that k(u+v) < k(u)k(v) , u,v <0 .
The norm is (see 18))

-r

(92) 4] = sup llo(u)] f c(w) llo(u)l du .
ue [-r,0] -

The dual space (Bl)* consists of all y:(-=,0] » R" , such that the restriction
of ¥ to (-»,-r) belongs to L” ((-=,-r), R") , while the restriction to

[-r,0] is of bounded variation, left continuous on [-r,0) , and w(0) =0 . The
duality pairing between ¢ € Bl and p € (BL)* is given by

0

-r
(93) <y > f o(u) 6(u) k(u) du +f Cdw(u)] o(u)

-0 _Y‘
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with we¢ and [dy] ¢ standing for scalar products in the Euclidean space.

1

The linear equation x(t) = f(xt) , with f:B" > R" continuous, can be

always represented as

-r 0

(58) #(6) =[ K(s) ns) als) as [ et et
i -r
with n : (-=,0] > £ (Rn,Rn) a matrix whose columns are in (Bl)* .

If A is the infinitesimal generator of the semigroup attached to x(t) = f(xt) ,
then its adjoint A* can be determined from < y,A¢ > = < A*y,¢ > . The
expression for A¥* dis given, and its domain D(A*) < (Bl)* is determined.
Therefore, the adjoint system can be directly investigated. The role of the
characteristic equation det [Al - f(eA'I)] = 0 1is also emphasized, and the
spectral properties of A are discussed.

In their paper [24], J.A. Burns and T.L. Herdman also investigate the problem
of the adjoint system. The phase space is now Lp(R_,Rn) x R" , and the right
hand side of the linear equation is not necessarily a map from the phase space
into R" . As already remarked in this survey, this is a very restrictive assumption
that excludes the treatment of such simple equations as (17), with integrable
kernel. The authors assume, actually, that the map (t,¢) - f(¢)(t) , f(s) € 51,
where S1 stands for a function space, satisfies conditions similar to the ones
imposed on equation (14) (see (15)) .

The case when the phase space is defined axiomatically, and the right hand
side of (1) is linear in the second argument, has been recently considered by
T. Naito [265], [266] . Since the phase space is not a specific one, wé do not
know how to represent (by an integral) the linear functional occurring 1in the
system, and therefore, a theory that is independent of such a representation

must be built up. The author carries out this task, giving several interesting

results. For instance, if A s the infinitesimal generator of the semigroup
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T(t) attached to the linear equation x(t) = f(xt) , with f continuous from
the phase space S into ¢ (some axioms are added to (A7) - (Ag)) » then
the point spectrum PO(A) is the set of those A , for which there exists
beC", b#0, such that e b€ S, and ab - f(e*'b) = 0 . The spectral
radius rO(T(t)) is also estimated. It is shown that, for Rex sufficiently
large, "’ b €S . An interesting result regarding the adjoint of A is that
D(A*) does not depend on the particular choice of the right hand side

(provided all axioms and conditions are fulfilled) . Another topic discussed

in [265] is the validity of the variation of constants formula, for the equation

x(t) = f(x.) + h(t) . If X(t) denotes the fundamental matrix (see (40) and (41),

t

for equation (37)) associated with x{(t) = f(x then the solution of the

t) 3
nonhomogeneous system with x(t) = ¢(t) , t <0, is given by

t t
x(t) = ¢(0) +-Jr X(t-s) h(s) ds +-Jf X(t-s) f(TO(s)¢) ds ,
0 0

where To(t)¢ is the operator semigroup corresponding to the linear equation
x(t) =0 .
The paper [266] is dedicated to the definition of the fundamental matrix X(t) ,

as the inverse Laplace transform of the matrix A(A)_l

, with a(A)=Al = f(et71) .
Related problems are discussed
Various problems pertaining to the variation of constants formula for
equations with infinite delay are discussed in A. Halanay [89], H.T. Banks [6],
C. Corduneanu [39], [41] - [43], C. Corduneanu and N. Luca [46]. Also, most
papers dealing with semigroup theory contain representation formulas for the
solutions of nonhomogeneous equations. A very recent reference is M.C.»Delfour [248].
The approach in [248] is based on semigroup theory, the initial function space
being MP = R x (P , with the norm given by (12), for k(t) =1 . A subspace
of MP, 1 < p <=, is the Sobolev space wl’p = wl’p(R_,Rn) , and it will

play a significant role in discussing Tinear equations. Consider the linear system
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(95)  x(t) f [A(s) x(t+s) + An(s) x(t+s)]ds + f(t) ,

(96) x(t) = ¢(t) , t<0, x(0+) =xO
A basic assumption on the kernels is
(97) A Ay € LR 2(RMRY)

where p 1in the definition of MP , and g in (97) , are conjugate indices:

p - +q =1. Formally, (95) and (96) lead to
(uts) , uts > 0 .
(98) f (A +
o(ut+s) , uts < Of
A,(s) x(trs) - ols) s > 01:] ds-t[
o(t+s) - o(s) , t+s < QJ

While the integral in the right hand side of (95) represents the general linear
functional continuous on Wl’p » the right hand side of (98) has a meaning

for any couple (x°, b) € MP . The following basic results are obtained in
[2487:

(i) Forany (x°,6) ¢ M, and f€ L, (R+,R") , the equation (98) has

loc
unique continuous solution x:Ry » R" . There exists c(T) >0 , for all

T >0, such that

.
(99)  [Ix(t)]| < (1) [](x%,9)] ) +f If(s)]] ds 1, t.€[0,T].
M

0

(ii) For any ¢ &€ WP and continuous f:Ry » R" , the equation (95)



has a unique continuously differentiable solution Xx:Ry » R" , the same as
the solution of (98) for x° = ¢(0) .

(iii) When f =0, the relation
(100) S(t)e = (x(t), xg) » t>0,

defines a strongly continuous operator semigroup on MP , of class Zo ,

whose infinitesimal generator A 1is described by the formula

(101)  D(A) = 1(e(0),6) 5 o € WP L A= (Losd))

where L¢ s given by

0

(10 < [ Iagls) a(s) + Apls) dls)T ds
(iv) For all (x%,0) € M and f € L (Re,R")

one has for t >0,

t
(103)  (x(t),xy) = S(t) (x%8) +Jf S(t-u) (F(u),0) du .
0
The results (i) - (iv) generalizes most known results regarding the
Tinear case. The following remark [248] will give a better idea on this
matter. Since the linear map L , given by (103) on wl’p, cannot be

continuously extended to P, that serves as a phase space, there results

that the theory above is actually concerned with unbounded operators on P,

with dense domain. This is one of the most promising features in further
developing the theory of linear equations with unbounded delay, such that

simple equations like (17) be covered satisfactorily.

59
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Let us remark that Delfour's theory does not cover the case q =1 .
Using function algebra techniques, this case is thoroughly investigated in
[39], [41], [42], [46], [158], [259], where L¢ Tlooks somewhat different,
but any mP » 1 <p<w, is admnissible for building up a theory that allows
investigation of stability, other behavior,the use of variation of constants

formula etc. In the case of operators that can be represented by

t
Lx = Ax(t) +Jf B(t-s) x(s) ds , R.K. Miller [173] dealt with the situation

when B(t) 1is integrable (g=1) , using MP spaces , and semigroup theory.

We also mention the fact that (103), and the variation of constants formula
due to T. Naito [185], look very much alike, though they have been obtained
under conditions that are independent. The spaces MP are covered by Naito's
theory, while the continuity of L 1is not required in Delfour's theory.

A pioneering paper in regard to the use of P (or LP ) spaces as initial
spaces, and with the right hand side of the equation non necessarily a continuous
operator, is due to J.G. Borisovié'and A.S. Turbabin [246]. They consider only
the case of finite delays.

R. Datko [53] deals with equations of the form

(104) X(t) = AE) x(8) + ) Hyltug) x(t-uy)
Jj=1

with x taking values in a Banach/Hilbert space E . For each t € Ry ,

A(t):E -~ E 1is a linear operator, not necessarily bounded, while Hj(t):E + E

is bounded. One assumes that 0 < wp < Wy <oy <. Existence, uniqueness,
and variation of constants formula are obtained for the Cauchy problem attached

to (104) . In the autonomous case, a C, semigroup is constructed and the

solution of (104) is obtained. When E s a Hilbert space, the stability

properties are also investigated. The author also deals with related neutral

equations. As applications, some partial differential equations with delay are
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investigated.

For Tlinear integral equations'of the form
x(t) +j x(t-s) d A(s) = h(t) , tER,
R

J.J. Levin and D.F. Shea [155] undertook a systematic study of the asymptotic
behavior of bounded solutions. A key element in these studies is the characteristic

equation
4 () = 1+j e da) = 0.
R

A brief account is given in [38]. Solutions with Timit at infinity, with
asymptotic almost periodic behavior, and other behavior, can occur. Their ideas
are developed in [212], [234] and [256].

Further references, concerning the use of operational calculus in finding
the solution of a linear equation with infinite delay, are [112] and [205].

The nontinear semigroup theory has become one of the most widely used
tool, in the past decade. See V. Barbu [8] for basic results, and numerous
applications to various classes of functional equations, including equations
of Volterra type and finite delay. In the case of nonlinear equations with
finite delay, the semigroup theory has been used by G.F. Webb [2327, [273]

H. Flaschka and M.J. Leitman [77], A.T. Plant [199], J. Dyson and R. Villella
Bressan [250], [251] .

In the past few years, the nonlinear semigroup theory has been used in
connection to the theory of equations W1th unbounded de1ay by D.W. Brewer [23],
J. Dyson and R. Villella Bressan {2497 - [2517, W.E. Fitzgibbon [73] - f76],
A.T. Plant [200], and G.F. Webb [233], [273]. Further references are contained
in the above quoted papers.

D.W. Brewer [23] develops a semigroup theory for autonomous nonlinear

equations in a Banach space E
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(105) x(t) = fxy) ,t>0,

(106) Xo = ¢ € B,

where B1 is defined as usual , and k(u) dinvolved in formula (92) is positive,
and nondecreasing on (-«,-r]. The operator semigroup acting on Bl(E) is
defined by means of the relations

1

(107) D(A) = o3 ¢, ¢ € B~ , $(0) = F(¢)} , A¢ = -¢ .

If f 1in (105) satisfies a global Lipschitz condition on B1

(108) I£(e) - Fwll<M fo - vlg1

then -A generates a nonlinear quasicontraction strongly continuous semigroup
on B! , say S(t) , such that S(t) ¢ = X for t>0, and ¢¢€ Bl .

For w > M+ k(-r) , one has for t >0, and ¢,y € B1 :
(109) S(t)e - S(t)y| < et o - v] .

Applications are given, among them being the Volterra integro-differential

equation

t
(110) u(t) = C u(t) - ‘/. a(t-s) g(u(s)) ds ,
with initial condition (106) .

In [251], J. Dyson and R. Villella Bressan deal with nonlinear equations

in a Hilbert space, of the form
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(111) x(t) = flt,x(t)) +g(t,xy) , t>0,

and initial condition (106). The phase space is E x B1 » with r =0, and
k(u) monotone increasing and Lebesque integrable on (-«,0] . Since (111)

is not an autonomous system, the semigroup definition is somewhat more involved.
It is assumed that f s m-accretive, and g 1is Lipschitzian with. g(t) instead
of a constant. Then

(112) D(A(t)) = {(h,¢) € E x gl » ¢ absolutely continuous on bounded

sets, ¢ €BL, h=¢(0) € D(F(t, )} .

(113) A(t) (h,e) = {-f(t,h) - g(t,¢) » =-¢ I,

define the nonlinear semigroup attached to (111) . It is assumed that D(f(t,:))
is dense in E . The set LJtD(A(t)) is characterized. The transition operator
U(t,s) 1is defined by means of the Tinear equation ¢ = -A(t)¢ . Estimates for
the solutions of (111) are found.

W.E. Fitzgibbon [73] - [76] uses the nonlinear semigroups in investigating

various properties of functional-integral equations of the form

(114) x(o)(t) = W(t,s) ¢(0) + J[ W(t,u) Flu,x, (¢)) du ,

that arise when equations with unbounded delay of the form (111) are reduced to
integral equations. W(t,s) stands for the linear evolution operator (transition
operator). The author deals with various phase spaces, including the space of
uniformly continuous maps from (-«,0] 1into the space E (a Banach space),

and the space B1 used above. Existence, stability, and other behavior is

investigated in [73] - [76]. Applications are given to some partial differential
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equations involving infinite delay.

A.T. Plant [199] applies semigroup method to autonomous equations of the form

- (111), under accretivity and Lipschitz conditions. He also deals with inclusions

associated to (111): x(t) € f(x(t)) + g(xt) . His space consists of functions

4 , such that e MU

¢(u) is bounded on (-»,0] , A > 0 .
In his papers [233], [273], G.F. Webb treats, by the method of:non1ihear
semigroup theory, equations of the form (111). Also, he shows how to extend

this method to nonlinear Volterra equations of the form

t
(115) x(t) = y(t) +f G(t-s, x(s)) ds , t >0

(0]

For equations of the form (111), he considers phase space of the BP - type.
Then, (111) is regarded as an abstract ordinary differential equation in the
phase space (let us mention that the basic space, to which x belongs

is a Hilbert space). Of course, finding this equation or the corresponding
semigroup are equivalent problems. Under appropriate conditions, (115) can be
differentiated, and subsequently reduced to an equation of the form (111). An

alternate method is given in [273], where (115) is shown to be equivalent to
(116) x(t) = h-G(s) +G(xg) , t>0,

under initial conditions

(117) X, = ¢ € gp , x(0) =h,

h € E = the underlying Banach space, with

0
(118) 6(4) f g(-s,4(s)) ds , ¢ € B
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Of course, g 1is subject to convenient conditions. One obtains a G satisfying
a convenient Lipschitz condition. The connection between y(t) and h can

be easily found comparihg (115) and (116) . Since (116) is not a differential-
functional equation, this constitutes a good illustration of the statement made

in the Section 1, regarding the fact that Cauchy's problem (initial value problem)
makes sense for other kinds of evaluation equations than differential ones.

We shall survey now further contributions to the theory of equations with
unbounded delay, that deal with various topics and emphasize a variety of methods
and results.

Y. Hino [101], using BP phase spaces considers stability problems by means of
Liapunov functions, and almost periodicity.

G.F. Webb [231] finds existence/behavior results, using accretive operator
theory. He considers equations of the form y'(t) = F(t,y(t), y(w(t))) , with
usual initial conditions in spaces of functions that are bounded with respect
to a weight function, and continuous or uniformly continuous.

J. BYaz [18] finds boundedness results for equations of the form (25).

D. Fargue [72] gives conditions under which systems of the form

t
(119) J(t) = Flt.x(t)) +f K(t.s,x(s)) ds

can be reduced to ordinary differential equations or to partial differential
equations.

V.R. Vinokurov [227] investigates boundedness of solutions for certain
equations of the form (119).

T.G. Hallam [100] studies boundedness of solutions for systems of the
form x(t) = A(t) x(t) + F(t;x) , where f(t;x) stands for an operator that
could be chosen, in particular, to be an operator with unbounded delay.

M. Kisielewicz [123] deals with category theorems, and shows that for equations
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equations with delay, as they are formulated by Soviet mathematicians (see [243]
and [244] for recent contributions, the last reference being a survey on the
topic).

N.V. Azbelev [243] deals with boundary value problems of the form x = Fx
on [a,b], 2x =0, where F:D > L is a map from the space D of absolutely
continuous functions on [a,b] , into the space L of Lebesque integrable
functions (with values in R" ) . o s a linear continuous map from D , into
R" . To this scheme, one can reduce problems formulated as follows: find
x:[a,b] > R", such that x(t) = F(t.x(t), x(h(t))) , t € (a,b) 5 x(t) = o(t) ,
t E'[a,b] . The function h(t) could represent a delay for some values of t s
i.e., h(t) <t , but it might not satisfy the above inequality for all values

of t € [a,b] . Moreover, neutral functional-differential equations of the form
x(t) = F(t.x[h(t,x)T, x[9(t,x)1) , t € [a,b] ,

with boundary value conditions x(u) = o¢(u) , x(u) = ¢(u) , u € [a,b], can be also
treated within the functional scheme described in [243], [2447 . This scheme

Teads to a Hammerstein integral equation of the form

b
z(t) = ,[ r(t,s) f(s;z) ds , t € [a,b],
a

provided certain specific conditions are verified. An interesting result [244]
is due to L.F. Rakhmatulina : for each functional % on D , there exists

a linear invertible operator W:L > R(W) = {x; x € D, 2x = 0} , Such fhat

the product of the differentiation operator by W ‘is a Fredho]m operator on L .
This result, and similar ones, allow to reduce rather general boundary value
problems to nonlinear integral equations of Hammerstein type (not necessarily

symmetric) . The same procedure is developed in [4].
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1ike (25), the nonuniqueness may occur only in a class that constitutes a set
of Baire's first category (in a convenient topology for the right hand sides).
R.K. Miller's paper [174], though not dedicated to equations with unbounded
delay, contains interesting features and invites to extend the study to such
equations.
G.S. Jordan [111], generalizing some results of A.S. Lodge, J.B. MclLeod,
and J.A. Nohel [2607], deals with the nonlinear integral equation with infinite

delay

t
(120) oy (t) f b(t,s) Fly(t),y(s)) ds » t >0,

under initial condition y(t) = g(t) , t € (-~,0]. The parameter u > 0

is assumed "small", b(t,s) , t >s , is integrable on (-»,t] with respect
to s , and satisfies various restrictions that will not be stated here. The
nonlinearity F:Ry x Ry = R 1is of class C1 , and F(x,x) =0 for x>0,
Fe(xsy) >0, and F

Yy
on (-=,0] , and satisfies g(-») =1, g(0) > 1 . On behalf of these hypotheses,

(x,y) <0 . Finally, g is continuous and nondecreasing

the equation (120) has a unique solution ¢(t,u) , defined for t € R+ and
small u , such that &(t,u) <0, and 1 < ¢(t,u) <g(0) , te€ Ry . Estimates

are found for ¢'(t,u) , and the Timit equation {(n = 0) 1is shown to possess a
unique solution ¢O(t) on Ry, o(t,u) - ¢O(t) being estimated.

In [47], the authors obtain for the integro-differential relation (67),
besides stability, various results regarding the asymptotic behavior of solutions
(for instance, the boundedness on Ry ) .

Many results concerning various types of asymptotic behavior have been
obtained in connection to equations generated in applied fields. They will be

surveyed in Section 6.

In the Section 1, we made a few comments on boundary value problems for
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J. Eisenfeld and V. Lakshmikantham [67] investigate boundary pfob1ems
of the form x"(t) + f(t,x(t) , x(h(t))) =0, t € [a,b] , with x(t) = a(t) ,
t<a, and x(t) =8(t) , t>b . They also reduce the problem to a nonlinear
integral equation on [a,b].

J. BYaz [20] deals with the following boundary value problem: find x(t)

on [0,a] , such that
K6 = [ fleax(es)) dgr(te) Lt (ab)
0

and x(t) = ¢(t) , t<0, x(a)=n¢ R" . Of course, A is a parameter to
be determined in solving the problem.
Recently, T. Kaminogo [257] dealt with boundary value problems for equations
of the form (1) , in the framework of the axiomatic theory for the phase space.
More specifically, he considers the scalar second order equation x"(t) = f(t,xt,x'(t)) 5
with boundary value conditions X; = ¢ €S, x(T)=A, T>0¢ . If one denotes
x'(t) = y(t) , then the second order equation becomes a system of the form (1)
for col (x,y). His approach relies upon the method of subsolutions and supersolutions,
j.e., he assumes the existence of two functions a(t) and pg(t) , such that
a"(t) 3_f(t,at,u'(t)) , and g'(t) g_f(t,st,s'(t)) , t € (a,b) . The solution
will satisfy a(t) < x(t) < g(t) , t € [a,b] . Supplementary conditions are
imposed on f, o, and g8 , that will not be reproduced here. The analysis of the
problem involves previous investigation of certain basic properties for equations
of the form (1), including Kneser's type results.
In concluding this Section, we must remark that the theory of boundary

value problems for equations with unbounded delay is at its very beginning.
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6. APPLICATIONS

Several results and topics mentioned in the preceeding sections of
this survey have been motivated by various applications of equations
with unbounded delay. As stated in the introduction, the fields in
which the equations with unbounded delay have already found ihteresting
applications are Mechanics of Continua, Population Dynamics and Ecology,
Systems Theory (mainly engineering and control systems), and Nuclear
Reactor Dynamics. HWe shall briefly review some contributions to the
above listed areas of applied research, trying to avoid repetition of
those topics that have been already discussed in the preceeding Sections.

The original approach of Volterra to the theory of hereditary
phenomena in ContinuumMechanics [228] Teads to equations with unbounded
delay, and opened the way for a great deal of contemporary research
work. In [29], B. D. Coleman and H. Di1l investigate stability problems
in the theory of imcompressible materials with memory, using the energy
functional to provide adequate conditions of stability (see also [33]).
For instance, the study of inflation of a circular tube leads to the

system of equations

v(t) .

(121) B(t)

<<
—
o+
e
I

= kv2(t) + h(g,) + C

with k >0, and C real. The functional h(¢) 1is given on a history

space, and is assumed to be continuous. Of course, the initial condtions

for (121) must be of the form v(0) =v_, 8, = ¢ (i.e., 8(u) = o(u) »

0
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u < 0). The energy functional is explicity constructed in terms of the
data in the problem. The study of inflation of a spherical shell Tleads
to a system with unbounded delay similar to (121).

Further applications of equations with unbounded delay in Continum
Mechanics regard the study of wave propagation in dissipative materials
with memory, and can be found in the book [30], representing a collection
of papers published in Archive for Rational Mechanics and Analysis by
B. D. Coleman, M. E. Gurtin, I. Herrera R., and C. Truesdell.

M. J. Leitman and V. J. Mizel [150] - [152] paid much attention to
the study of hereditary phenomena, and emphasized the role of integral
equations 1in investigating them.

C. M. Dafermos [52] reduces the problem of asymptotic stability
for viscoelastic materials to the investigation of stability properties

for the equation

t
(122) %(K)g%) +Cou(t) + f G(t-s) u(s)ds = 0 ,

under initial condition u(s) = v(s) , s € (-»,0]. In (122), u takes
the values in a real separable Hilbert space H, p 1is a bounded self-
adjoint operator on H, while C and G(t) stand for (unbounded)self-
adjoint operators in H, such that D{(C) € D(G(t)) , te R+ .
Roughly speaking, the asymptotic stability of the zero solution of
equation (122) is a consequence of the following property: each eigen-

n

solution w_ of the problem Cw - Apw = O is such that, one can find

&, € R, with é(gn)wn # 0 . In other words, the stability condition
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relies on the spectral properties of the operators C and p . The
applications to viscoelasticity involve, of course, some integro-
differential equations with partial derivatives.

S. Adali [1] considers equations that generalize (122), namely
¢ v
(123) é%— Qa(t)%%) + C(t)u(t) + ,/, G(t-s,t) u(s)ds = f(t) ,

with initial condition u(t+s) = v(x) » <€ (-=,0]. He obtains
existence and uniqueness conditions for the solution of (123), and gives
criteria of asymptotic stability for the4zero solution of the homogeneous
equation attached to (123).

Somewhat different types of equations with unbounded delay appear
in the paper [55] by P. L. Davis (see also [54]). By means of adequate

transformations, P. L. Davis reduces such equations to

t
(124) u, = kau + mu-+4/ﬂ {}(t-s) u(s) + b(t-s)Aé} ds ,

where u = u(t,x) denotes the deviation of temperature with respect to a
standard distribution, A stands for the Laplace operator in the space
variable x , and a(t) , b(t) mean operator valued functions acting
on convenient function spaces. The applications concern heat conduction
in materials with memory. In [160], R. C. MacCamy deals with similar
problems.

M. Slemrod [213], [271], uses various classes of equations with un-

bounded delay in studying problems related to fluid mechanics. The velocity
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vector satisfies an equation of .the form

(125) v(t) =-vp + A jf G(s,*) v(t-s)ds ,

0
with initial condition v = v_€ memory space. The Lap]acelpperator
is also meant in the space variables.

N. Distefano [61], dedicates two chapters of this book to the
description of hereditory processes in Continuum Mechanics, with special
emphasis on viscoelastic materials. The role of Volterra is illustrated,
and the significance of Volterra equations with infinite lower limit is
also pointed out.

In Population Dynamics, the work started by Volterra [229] has been

considerably developed during the past few years. The paper [168] and
the monographs [169], [51], contain a good deal of comments and results
concerning the role of delays in population models. In [51], J. M.
Cushing provides a broad survey of the literature pertaining to the area
of delay models in population dynamics, and includes some basic results,
as those mentioned in Section 4. The main emphasis is placed on stability
of such models, and the occurence of oscillations. Various special
models are examined, such as Volterria's predator-prey model with delays.
It is shown, among other things, that the presence of delaying terms in
an ecological system can stabilize an otherwise instable equilibrium.

See also [48] - [50] for contributions that have been covered in-[51],
especially in regard to the presence of oscillations in population models

with delay.
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In [86] and [87], A. Haimovici investigated the existence and
uniqueness problem for equations with unbounded delay motivated by
Volterra's popu]afion theory.

R. K. Miller [171] develops interesting topics related to Volterra's
population equation, providing various results that overreach the

initial framework. For instance, if x(t) is a bounded solution

(on R,) of the equation
t
(126) x(t) = F(x(t)) + S/ A(t-s) G(x(s))ds ,
0]
where A(t) 1is integrable on R, » then the limit set o(x(t)) s

an invariant set for the equation with infinite Tower 1limit attached to
(126):

: -t
(127) y(t) = F(y(t)) + A(t-s) G(y(s))ds

- 00

In the special case of the Volterra population equation

. t
(128) %%%% =a - N(t) - ,// f(t-s) N(s)ds ,

with a>0, bs> 0, f(t) continuous and integrable on R, » and
such that f(t) # 0 , there exists a unique solution on R, that
reduces to g(t) on the negative half-axis, and satisfying

[eed

(129) Tim N(t) = N* = a[ b+ J/ f(s)ds]™

t > = 0
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provided b >>/}: [f(s)|ds .

H. W. Stech [218] is concerned with the effect of delays on the
stability of equilibrium in a population model, considering the integro-
differential equation

(o]

(130) ﬁ(t) = o N(t)[T - N;{J’ N(t-s)dn(s)]

A. Worz-Busekros [239] investigates global stability properties in
population models described by Volterra integro-differential equations
with unbounded delay. A method proposed by D. Fargue [72] is used in
order to reduce the equations to ordinary differential ones.

H. C. Simpson [269] dedicates most of his thesis to the investigation
of various problems generated by the Volterra's equations in population
dynamics (see equations (85)vabove).

The applications of equations with unbounded delay in Systems Theory

and Control Engineering are very numerous, and several monographs have

been already dedicated to such topics.

I. W. Sandberg and V. E. Benes [207] are investigating Volterra
integral equations (in which the lower 1limit of the integral is -«),
showing their significance in the theory of some dynamical systems.

Following V. M. Popov [201], I. Barbdlat and A. Halanay [7] give
necessary and sufficient conditions for the hyperstability of certain

linear systems whose description involves operators of the form

(131) A (1) = ) Ay x(t-t) +j B(s)x(t-s)ds
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with {tj} R Aj , and B satisfying conditions (39).

The monographs by J. C. Willems [235], C. A. Desoer and M.
Vidyasagar [59], V]. Rasvan [203], A. N. Michael and R. K. Miller [170],
and M. Vidyasagar [225] provide a good deal of results regarding
various stability properties of systems (in most cases, feedback sys-
tems) whose description involves operators of the form (131), or
particular cases of such operators, as well as some non linearities.

The papers [39], [40], [42], [44], [45] by C. Corduneanu, and
[46] by C. Corduneanu and N. Luca, contain several stability results
for feedback systems described by the equations
(132) x(t) = (Ax)(t) + (Be(a))(t)
(Cx)(t)

{l

Q
—
“+
—
1

where A , B and C stand for operators of the form (131). V1. Rasvan
[204] has found the transfer function for (132), and has given the most
general stability result, by means of frequency domain techniques.

M. Podowski [267] illustrates the use of functional analytic methods,
with main emphasis on stability of nonlinear systems. Operators and
equations with unbounded delay are investigated, including some integro-

differential equations of the form

t
(133) x(t) = Px(t) + ‘f/ 0(t-s)x(s)ds + f(t) , t>0 ,

as well as nonlinear equations obtained by perturbing (133).



76

M. N. Oduztoreli [196] considers systems of the form (36), in
connection to various problems in control theory.

M. C. Delfour [57] deals with equations with unbounded delay of
the form (36), being mainly concerned with the optimal control theory
in case of a quadratic cost functional.

V. Barbu [245] applies some general results regarding convex

control problems to the case of systems

t
x(t) = Ax(t) + -J( B(t-s)x(s)ds + Cu(t) , t>0 |,

-00

(134)

o]

x(0+) = x , x(s) =4(s) , s<0 ,
with a cost functional of the form ‘f’ L(x(t),u(t))dt , where L is
Tower-semicontinuous and convex. He Sses results from [9].

Let us conclude the comments regarding the use of equation with
unbounded delay in Control fheory, by sending the reader to L. W. Neustadt
[188], where he sketches a theory of optimization in a class of processes
described by Volterra operators (the case of unbounded delay being,
apparently, admissible).

The Titerature on Nuclear Reactor Dynamics is considerable, and the

use of equations with unbounded delay appears in most textbooks and mono-
graphs dedicated to this field. For instance, V. D. Gorjatchenko [81]
dedicates several sections of the monograph to the discussion of some
basic problems for functional differential equations with unbounded delay,
and gives various applications of such equations (in most cases, integro-

differential equations) to the dynamics of nuclear reactors. See also [2]



77

where the use of integral operators and attached equations play a signifi-
ant role. Both books [2] and [81] contain lists of references that in-
clude many cases of equations with unbounded delay occuring in reactor
dynamics.
F. Kappel [116], F. Kappel and F. DiPasquantonio [60], [117], con-
tinuing research topics conducted by J. J. Levin and J. A. Nohel [154],
V. M. Popov, E. Gyftopoulos, Z. Akcasu and P. Akhtar, dealt with equations
of the form
M t
- _1 _1
pt) = ), a7 e Ip(t)-c,(t)] - 2 P[Hp(t)]f k(t-5)p(s)ds
(135) i=1 -

¢;(t) = aIp(t)-ci(t)] 1 =1,2,....1

that characterize the dynamics of a nuclear reactor, under adequate
hypotheses. Their method relies mainly on Liapunov's technique. It is
worth to be pointed out that they generalize previous work done in the
field, starting with the so-called Welton-type criterion for stability
of nuclear reactors.

A. Halanay [90], and A. Halanay and V1. Rasvan [91], further gen-
eralize the stability results by considering delays in the state variables
of the system. They make extensive use of the frequency domain techniques,
and obtain a general criterion that leads, in particular, to the criteria
earlier known.

The approach in [91], combined with the asymptotic stability result
in [417 (see Section 3 above), conducted C. Corduneanu [42] to an even

more general stability criterion. Let us dwell on this criterion.



The system describing the dynamics of the nuclear reactor is

x(t) = (Ax)(t) + (bp)(t)
M

S(t) = - ) e d ()0, (8)] - P [T (0)Iv()
k=1 ;

(136) \
nt) = 2 lo(t)n (1)1, k=1.2,...M

(c*x)(t) + (ap)(t)

<
—
—+
—

1

with A, b, c* and o standing for certain difference-integral

operators, of the form:

_ o t

(137) (Ax)(t) = on(t) + 2;; ij(t—tj) +‘J: B(t-s)x(s)ds ,
Jm t
(138) wmw=%m+2?ng+igwmmm,
’ o t
(139) (e*x)(t) = ch(t) + Z:% cﬁx(t—tj) + J: d*(t-s)x(s)ds ,
J:
0 t
(]40) (Otp)(t) = aOp(t) + Z] OLJQ(t"tJ) +[oo Y(t‘S)p(S)dS s
J:
where tj >0, j=1,2,..., and conditions
(141) '{uAju} ,’{nbjn} » eyl ,‘{|aj1} € gl

(142) IBCEM » ws(th 5 wd(t » [y(t)] € LH(R.LR)
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hold true. The asterisk indicates the transpose of the vector (Cj is
suppose to be a column n-vector, for every j). The initial conditions

that determine a unique solution are

(143) x(t) = h{t) , p(t) = a(t) , t <0 ,
(144) x(04) = x® € R", p(0+) =p_€ R, n (0) =% s k=1,2,...,M.
The constants A , B and A are assumed positive.

The following linearized system, depending upon a real parameter h ,

is attached to (136):

(y(t) = (Ay&(t) + (be)(t)
(145) ﬁ £(t) = - g;% BkA-l[E(t)-;k(t)] - PAT AL (e*y) (£)+(ag) (t)]

Lo () = A Le(t)-g (0] 5 k=1,2, ... M

A basic assumption for the sequel is the existence of two numbers
hy » h, , such that 0 <h, <1< h, , for which (145) is asymptotically
stable (i.e., when h = h; or h=h,).

Before stating further conditions needed in the stability criterion,
let us define the transfer functions occuring in the formation of this
criterion. The symbol gé(s) of the operator A has been defined by (43).
Then let b(s) , &*(s) be the corresponding symbols attached to b(t)

and c*(t). Denote



(146) k(s) = &*(s)[sI -A(s)17" b(s)

1

(147) v, (s) = R{S)T+PA" h Rs)y ()17,

(148) v,(s) = PA T h oy (s)v,(s)
M

where v (s) = k(s) + als), and [sR(s)17'=1+ 270 ) g (sta)™ .
=1

Finally, let

(149) H(s) = ,[(h,-h )™ + hlty (s)] + & v, (s)

-1
+6,Pa (h=h )y, (s) ]2y (s)

be such that

(150) Re H(iw) > 0 for weR ,

when 8y > 0 , and besides (150), assume

M
- Y

(151) s 07t ) e+ Lsh 4o (h }:: o)
k=1

holds true when . = 0 . The numbers &, , 8, , &, 1in (149) are

2 0 1 2

supposed non-negative, §, > 8, > and §, * 8, > 0.

Under the above assumption on (136), each solution x(t) , p(t) .

yk(t) , k=1,2,...,M of that system, for which

80
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(152) Th(e) , [a(t)] € LER_,R) n L2(R_,R)
is defined on the positive half-axis, and satisfies

(153) th (x(thn + [o(t)] + Z I (B)]) ;
> o
provided certain initial constraints are satisfied.
In order to describe these initial constraints (actually, they
determine the zone of attraction of the zero solution), let us consider

the function of a real variable
o(1) = u - Tn(T+0) - 51— u2
2
and choose u € (0,1-h,) ’-.JOEE(O’/HQ-]) , such that
o - =1,"1., -
o(u) < ¢(/h2-1)m1n{1,3kxk Aty k=1,2,....,M,

for u € [—uo,ﬁoj . Then, we must choose ,(0) and ”k(o) ,
k=1,2,...M, in the interval (—uo,ﬁh) .

For concluding this Section, let us point out that the equations
with unbounded delay have found applications in other research fields.
For instance, in R. Bellman and G. M. Wing [11], one can find such
equations in connection to some pseudo-transport problems. B. D. Coleman

and G. H. Renninger [35],[36], encountered equations with unbounded delay

in the study of neural interactions (see Section 4 of this survey).
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