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Abstract: We study the nonlinear equations of motion for equatorial wave–current in-
teractions in the physically realistic setting of azimuthal two-dimensional inviscid flows
with piecewise constant vorticity in a two-layer fluid with a flat bed and a free surface.
We derive a Hamiltonian formulation for the nonlinear governing equations that is ad-
equate for structure-preserving perturbations, at the linear and at the nonlinear level.
Linear theory reveals some important features of the dynamics, highlighting differences
between the short- and long-wave regimes. The fact that ocean energy is concentrated in
the long-wave propagation modes motivates the pursuit of in-depth nonlinear analysis in
the long-wave regime. In particular, specific weakly nonlinear long-wave regimes cap-
ture the wave-breaking phenomenon while others are structure-enhancing since therein
the dynamics is described by an integrable Hamiltonian system whose solitary-wave
solutions are solitons.
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1. Introduction

The Earth’s rotation profoundly affects the dynamics of the atmosphere and of the
ocean. However, an in-depth qualitative study of the governing equations for rotating
fluids is analytically untractable and prohibitively expensive computationally. For this
reason, it is imperative to derive simpler, manageable models which can be studied in
detail. A significant feature of equatorial ocean dynamics is that the change of sign of
the Coriolis force across the Equator produces an effective waveguide, with the Equator
acting as a (fictitious) natural boundary that facilitates azimuthal flow propagation which
is symmetric with respect to the Equator: wave–current interactions which propagate
in the longitudinal direction and are symmetric with respect to the Equator, featuring
so-called Kelvin-waves (large-scale wave motions affected by the Earth’s rotation and
trapped at the Equator) and a depth-dependent underlying current field. Moreover, due
to the pronounced density stratification of the equatorial regions, greater than anywhere
else in the ocean, a rather sharp interface—the thermocline—separates a shallow near-
surface layer of relatively warm water from a deep layer of colder and denser water,
each layer being practically of constant density. Consequently, there are two types of
equatorial Kelvin waves: surface and internal waves. These two types of waves have
quite different spatial and temporal scales, the internal waves being significantly larger
and slower, with much longer wavelengths. Let us also point out that, in the ocean, energy
tends to be concentrated in the lower frequencies (see [16]). Internal equatorial Kelvin
waves are slow (taking more than two months to cross the equatorial Pacific) and have
very long wavelengths (measured in tens/hundreds of kilometres), being typically more
strongly excited than other ocean waves. They play an essential role in the “El Niño”-
phenomenon (see [22]): a spectacular, naturally occurring anomalous appearance, every
few years, of unusually warm water in the central Pacific, transported eastwards by the
internal Kelvin waves until a large expanse of the equatorial Pacific becomes much
warmer than the average, thus altering the usual heat exchange process with the air
above it and resulting in dramatic shifts of weather patterns in a chain reaction around
the world. Moreover, the fact that a Kelvin wave is uni-directional facilitates the growth
and accumulation of nonlinear perturbations as the wave propagates, so that nonlinear
effects can become very large even if the initial amplitude is relatively small—it is not
uncommon to record internal wave heights in excess of 40 m. Nonlinearity causes the
often observed distortion of some internal equatorial Kelvin waves: the leading edge
steepens while the trailing edge becomes flatter. These physical motivations prompted
an intensive research activity, with the available studies of equatorial ocean waves falling
into one of the following categories:

(I) observational data and/or numerical simulations (see the discussion in [20]);
(II) linear wave perturbations of a depth-dependent underlying current (see the discus-

sion in [7]);
(III) nonlinear studies assuming a passive equatorial current field (see the discussion in

[29]).
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Category (I) studies convey valuable information but, given the complexity of the en-
countered flows, by itself it does not suffice to identify clearly the important processes
that are at work. Concerning the studies in category (II), the common occurence of non-
linear equatorial phenomena provides the impetus to go beyond the linear theory. As for
(III), the importance of the interactions between waves and currents is highlighted by
the fact that the underlying current field in the equatorial Pacific, generated by the pre-
vailing westerly ambient wind pattern and the forces created by the Earth’s rotation (see
the discussion in [3,8]), presents flow-reversal: an eastward jet whose core resides in the
thermocline (the Equatorial Undercurrent) is sandwiched between a westward surface
flow and an abyssal layer of practically still water. The fact that a flow with piecewise
constant vorticity (negative above the thermocline and positive below it) captures this
salient feature within a Hamiltonian framework (see Sect. 3) opens up the possibility to
develop a rigorous in-depth study of nonlinear wave–current interactions.

A detailed description of the salient physical features of the ocean flow in the equato-
rial Pacific and of the precise aims of our mathematical analysis is provided in Sect. 2. The
analysis of the Hamiltonian structure of the governing equations is pursued in Sect. 3. In
Sect. 4 we develop a Hamiltonian perturbation theory. The study of the linearised equa-
tions, performed in Sect. 4.1, reveals acute differences between the two most important
physical regimes for wave propagation:

• Internal linear short waves propagate slowly eastwards, while the short waves at
the surface are fast and can propagate eastwards as well as westwards, with each
propagation mode having no noticeable effect at the other interface.

• The effects of linear long-wave propagation are practically confined to the motion
of the thermocline, whose oscillations propagate slowly eastwards or westwards.
The fact that the westward internal waves are slower is an outcome of the dynamic
response of the ocean to the presence of strong underlying currents with flow reversal.

However, there are two major limitations of linear theory. Firstly, the ubiquitous wave-
breaking phenomenon is outside the realm of linear waves. Moreover, in the context
of equatorial wave–current interactions, the common occurrence of internal solitary
waves—localised waves that maintain their coherence, propagating with constant speed
and unaltered shape—is not captured by linear theory. In light of this, and given that most
ocean energy is concentrated in the long waves, in Sect. 4.2 we lay out the foundations for
carrying out a systematic weakly nonlinear analysis in the principal long-wave scaling
regimes of geophysical relevance (see Table 1). Of particular interest is the derivation of
model equations that capture the most striking geophysical manifestations of nonlinear
phenomena:

• Internal solitary waves of permanent form which owe their existence to a balance
between wave-steepening effects and wave dispersion—these wave patterns are im-
portant because they are often large, very energetic events, and they have therefore
a significant role in mass and momentum transport across the ocean. Actually, the
corresponding model equation is not merely Hamiltonian, it is completely integrable
and therefore the solitary waves present the enhanced structure of a soliton—solitary
waves that have an elastic scattering property (after colliding with each other, they
eventually emerge unscathed, retaining their shape and speed) and present remark-
able stability properties. This opens up the possibility of a detailed analysis of the
nonlinear interaction of several such wave patterns by means of an inverse scattering
approach, based on an appropriate Riemann–Hilbert problem formulation.
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Table 1. Overview of the considered long-wave scaling regimes, expressed in terms of the waves (a similar
scaling is performed on the tangential velocities at the two interfaces), and of the main qualitative features
that can be accommodated within a specific regime

Long-wave regime Spatio-temporal scaling of the waves
at the two interfaces (internal/surface)

Main qualitative feature of the wave–
current interaction

Linear
η(x, t) = ε η′(x, t),

η1(x, t) = ε η′
1(x, t),

with
ε ≪ 1,

(x, t, η′, η′
1) = O(1)

Dispersive character forestalls solitary
waves and wave breaking

KdV
η(x, t) = ε2 η′(εx, t),

η1(x, t) = δε2 η′
1(εx, t/δ),

with
ε ≪ 1, δ = o(ε2),

(εx, t, η′, η′
1) = O(1)

Dispersion/nonlinearity balance ac-
commodates internal solitons

Inviscid Burgers
η(x, t) = ε η′(εx, t),

η1(x, t) = δε η′
1(εx, t/δ),

with
ε ≪ 1, δ = O(ε2),

(εx, t, η′, η′
1) = O(1)

Strong nonlinearity accommodates in-
ternal wave breaking

• Large-amplitude internal waves that break—other than their widespread occurrence,
they are perceived as important for the turbulent mixing their death throes produce.
This type of solutions correspond to a model similar to the classical nonlinear shal-
low water equations, modified to account for the presence of underlying currents
in a stratified flow. We use the method of characteristics to provide insight into the
fascinating process of wave breaking.

In Sect. 5 we overview the obtained results and we offer a perspective on promising
future directions for related research.

We conclude this introduction by pointing out that, while we made a conscious effort
to avoid being pedantic, there are some aspects of our investigation where a cavalier
disregard for proper mathematical rigour is counter-productive. These are best illustrated
by some conceptual and technical challenges that contrast to the situation encountered
in the periodic setting, being specific for localised wave–current interactions. A central
issue is the fact that the Hamiltonian cannot be the total energy of the flow since the
kinetic energy contribution of the current is already infinite. Instead, we have to filter out
the contribution from the current field and prove that this is achievable at the nonlinear
level. Also, defining canonical variables of Schwartz class in the presence of depth-
dependent underlying currents is not a foregone result; to the best of our knowledge, this
problem has not been addressed in the research literature.

2. Preliminaries

The aim of this section is to briefly discuss the observational record as a physical back-
ground for the systematic mathematical approach developed in this paper.

2.1. Key features of equatorial ocean dynamics. Within a band of about 100–150 km
of the Equator and extending longitudinally over about 16,000 km, the Pacific Ocean
possesses some remarkable features: a significant density stratification (that is greater
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than anywhere else in the ocean, see [14]), an underlying current field with flow-reversal,
and a wide variety of observed wave propagation phenomena. The hallmark of the pro-
nounced density stratification is the presence of a rather sharp thermocline that separates
a shallow near-surface layer of relatively warm water from a deep layer of colder and
denser water; the assumption that each layer is of constant density is reasonable (see
[31]). Within a band of width about 300 km, centred on the Equator, there is, confined
to a depth of about 100 m, a westward current that is driven by the prevailing trade
winds, below which lies the Equatorial Undercurrent (EUC)—an eastward jet whose
core resides on the thermocline. Below the EUC the flow dies out rapidly so that, at
depths in excess of about 500 m there is an abyssal region of almost still water (see
[32]). This equatorial background state interacts with various oceanic wave propagation
modes, including long waves (with wavelengths exceeding 50 km; see [16]) and short
waves (with wavelengths of a few hundreds of metres; see [34]). A comprehensive model
of this wave–current interaction must accommodate the density stratification as well as
the coupling between the waves at the surface and on the thermocline. Observations
provide evidence for highly nonlinear regimes of internal wave motion. While explicit
nonlinear solutions can be obtained, they do not cope satisfactorily with the complexity
of the equatorial flow due to the limitations on the permissible underlying currents (see
the discussion in [7]). For this reason, it is necessary to perform approximations that
capture the relevant dynamics. The available approaches rely on linear theory, whether
they resort to a numerical treatment by means of finite differences (see [32,39]) or to
the method of multiple scales (see [7]). We aim to develop an approach that captures
nonlinear effects which, in particular, can explain the propagation of observed equatorial
solitary-like waves (see [38]). These are of special interest because they are completely
missed by linear theory (see Sect. 4.1.3) and, as pointed out in [2], they are much more
easily observable than nonlinear perturbations of an oscillatory wavetrain. Note also that
geophysical fluid-dynamical considerations show that the Reynolds number is extremely
large (see [30]), so that nonlinear effects typically dominate over viscosity. Field evi-
dence for critical levels (locations where the wave speed equals the mean-flow speed) in
the near-surface layer above the thermocline, where the flow-reversal of the underlying
current occurs is available (see [34]). It is therefore advisable to rely on the nonlinear
alternative to the conventional linear viscous boundary-layer approach for the descrip-
tion of the flow in the neighbourhood of critical levels, where Kelvin ‘cat’s eye’ flow
patterns appear (see the discussion in [9] for the somewhat simpler case of gravity water
flows with constant non-zero vorticity).

2.2. Basic modelling assumptions. A few realistic simplifying assumptions can be made.
Firstly, since the Reynolds numbers are typically very large in geophysical ocean flows,
it is reasonable to employ inviscid theory (see [30]). Secondly, because we are con-
sidering flows in the neighbourhood of the Equator, it is adequate to use the f -plane
approximation in the governing equations (see [26]). Thirdly, since field data shows that
the meridional velocities are much smaller than the zonal velocities at the Equator (see
[20]), we study flow configurations which are latitude-independent and with a vanishing
meridional velocity component. Consequently, we investigate two-dimensional inviscid
flows which present no variation in the meridional direction, regarding them as wave–
current interactions due to localised wave perturbations of a pure current background
state. The presence of underlying depth-dependent currents places us within the frame-
work of flows with non-zero vorticity. Since for wave–current interactions in which the
waves are long compared with the mean depth of the effective flow region the importance
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of a non-zero mean vorticity preponderates that of its specific distribution (see [13]), the
simplest realistic setting is that of flows with constant vorticity above and below the ther-
mocline: negative above, to permit a reversal from the surface westward wind-drift to the
eastward-flowing subsurface EUC, and positive below to model a flow that withers with
increasing depth. This choice is propitious not just because in two-dimensional flows
the vorticity of a particle remains constant as the particle moves about, as one can easily
check. Remarkably, for two-dimensional stratified flows with constant vorticity in each
layer, a separation of the flow into a pure current and an irrotational wave perturbation
can be performed within the framework of the fully nonlinear theory, without recourse
to approximations (see Sect. 3.3). This feature permits us to view the nonlinear wave–
current interaction as an irrotational wave perturbation of a mean flow representing a
pure current.

2.3. The Hamiltonian perspective. The ability to pursue in-depth nonlinear studies is
contingent upon a rich structure. Since dissipation is not important, this motivates the
quest for a Hamiltonian formulation. The Hamiltonian perspective results in a signifi-
cant simplification, serving as a guide to the choice of new dependent and independent
variables in which the equations take their simplest form. Note that the Hamiltonian
formulation of the governing equations for two-dimensional gravity water flows was pi-
oneered in [46] for irrotational flows, and was extended to rotational flows with constant
vorticity in [43,44]. A Hamiltonian approach to two-dimensional two-layer gravity water
flows with a free surface was developed in [10], and recently the rotational counterpart,
with constant vorticity in each layer, was obtained in [6] for periodic flows. This paper
establishes the validity of a Hamiltonian perspective in the presence of Coriolis effects
in the equatorial f -plane approximation, for zonal flows with no variation in the merid-
ional direction which represent localised perturbations of an underlying pure current
background state. A suitable nondimensionalisation reveals that in certain oceanograph-
ically relevant regimes the geophysical effects are not merely a small perturbation of the
governing equations for gravity water waves: scaling ascertains the relative importance
of the different components of the flow, and in this geophysical regime the (linear) con-
tribution due to the Earth’s rotation to the longitudinal momentum equation balances the
linear part of the material derivative, both being of the same order. We will also show that
the Hamiltonian framework is adequate for structure-preserving perturbations. In partic-
ular, a specific weakly nonlinear long-wave regime turns out to be structure-enhancing
since in this setting the dynamics is described by an integrable Hamiltonian system (with
infinitely many degrees of freedom). In other regimes one can derive nonlinear models
that capture wave breaking.

3. The Governing Equations

The objective of this section is to present the nonlinear governing equations and to elu-
cidate the basic structure of the associated mean flow. Also, by specifying the associated
geophysical scales we can introduce a set of non-dimensional variables which are useful
for ascertaining the relative importance of the different components of the flow.

The fundamental model is that of an inviscid two-layer fluid which admits non-zero
vorticity. Using the over-bar to represent the physical variables, we choose a coordinate
system with its origin at a point on the Earth’s surface, with the x-axis horizontally due
East, the y-axis horizontally due North and the z-axis upwards (see Fig. 1). Because
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Fig. 1. The rotating frame of reference, with the x̄-axis chosen horizontally due east, the ȳ-axis horizontally
due north and the z̄-axis upward

we are considering flows in the neighbourhood of the Equator, we use the f -plane ap-
proximation (see [26]). Since observations show that the meridional velocities are much
smaller than the zonal velocities at the Equator (see [20]) then, by assumption, our flow
configuration is latitude-independent with vanishing meridional velocity component,
and so we restrict the domain to be at a fixed latitude (see Fig. 2). Let z = h1 + η1(x, t)

be the free surface, z = η(x, t) be the thermocline and z = −h be the flat bed, where t

stands for time. Here h1 and h are the mean depths of the near-surface layer and of the
abyssal layer, with typical values about 120–250 m and 4 km, respectively (see [14]).
The density of the fluid above the thermocline is constant, ρ1 ≈ 103 kg m−3, and is re-
placed by ρ = ρ1 (1 + r) for the fluid below the thermocline, where r is a small positive
constant; typically r is about 10−3 (see [22]).

Denoting by (u1(x, z, t), v1(x, z, t)) and (u(x, z, t), v(x, z, t)) the velocity fields
in the layers

D1(t) = {(x, z) : η(x, t) < z < h1 + η1(x, t)}, D(t) = {(x, z) : −h < z < η(x, t)},

above and below the thermocline, respectively, the equations of motion are the suitably
adjusted Euler equations

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

u1,t + u1 u1,x + w1 u1,z + 2� w1 = − 1

ρ1

P x ,

w1,t + u1 w1,x + w1 w1,z − 2� u1 = − 1

ρ1

P z − g,

in D1(t), (3.1)
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Fig. 2. Sketch of the cross-section of the fluid domain at a fixed latitude: the thermocline z = η(x, t) separates
the two layers of different constant densities, the lower boundary is a flat rigid bed, z = −h, while the upper
boundary is a free surface of elevation z = h1 + η1(x, t). The surface and internal waves are coupled, with
the amplitude of the oscillations of the thermocline typically considerably larger

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ut + u ux + w uz + 2� w = − 1

ρ
P x ,

wt + u wx + w wz − 2� u = − 1

ρ
P z − g,

in D(t), (3.2)

where P = P(x, z, t) is the pressure, g ≈ 9.8 m s−2 is the (constant) acceleration of
gravity and � ≈ 7.29×10−5 rad s−1 is the (constant) rotational speed of the Earth about
the polar axis (towards the East), supplemented by the equations of mass conservation,

u1,x + w1,z = 0 in D1(t), (3.3)

ux + wz = 0 in D(t). (3.4)

The vorticity distribution is specified by

u1,z − w1,x = γ 1 in D1(t), (3.5)

uz − wx = γ in D(t), (3.6)

for suitable (physical) constants γ 1 and γ . The appropriate boundary conditions are, at
the free surface, the dynamic and kinematic boundary conditions

P = Patm on z = h1 + η1(x, t), (3.7)

w1 = η1,t + u1 η1,x on z = h1 + η1(x, t), (3.8)
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respectively, where Patm is the constant pressure of the atmosphere at the surface of the
ocean. At the thermocline we have the kinematic boundary conditions

w1 = ηt + u1 ηx on z = η(x, t), (3.9)

w = ηt + u ηx on z = η(x, t), (3.10)

together with the requirement that the pressure is continuous across the thermocline,

P+ = P− on z = η(x, t), (3.11)

where P± refer to the limits of the pressure P from above and below the interface.
Finally, at the fixed, horizontal, impermeable bottom, we have the kinematic boundary
condition

w = 0 on z = −h. (3.12)

Note that (3.9)–(3.10) ensure the continuity of the normal component of the fluid velocity
across the thermocline z = η(x, t). Since within the inviscid setting the stress at an
interface has no tangential component, due to the absence of any interaction derived from
friction at the interface, in principle it is permissible for the tangential component of the
fluid velocity to present discontinuities at the thermocline. Nevertheless, the available
field data for equatorial flows suggests a continuous transition between the two layers
(velocity discontinuities across the thermocline would correspond to a delta-sheet of
vorticity—see also the discussion at the end of Sect. 3.3), so that we also require a
tangential velocity balance:

w1ηx + u1 = w ηx + u on z = η(x, t). (3.13)

Consequently, the velocity field is continuous across the thermocline. However, since
the constant vorticities in the upper and lower layer have opposite signs, this continuity
property is not valid in the continuously differentiable sense.

3.1. The pure current background state. A steady pure current solution of the governing
equations, in a flow presenting no variations in the longitudinal direction and with a flat
free surface z = h1 and a flat thermocline z = 0, is provided by the velocity field
(U 1(z), 0) above the thermocline and (U (z), 0) below it, where

U 1(z) = γ 1z + γ h for 0 < z < h1, (3.14)

U (z) = γ (z + h) for − h ≤ z ≤ 0, (3.15)

the associated pressure distribution P(z) being given by

⎧

⎨

⎩

Patm − ρ1g (z − h1) + �ρ1

[

γ 1(z
2 − h

2

1) + 2γ h (z − h1)
]

for 0 < z ≤ h1,

Patm − ρ g z + � ρ γ (z2 + 2hz) − �ρ1h1(γ 1h1 + 2γ h) + ρ1g h1 for − h ≤ z ≤ 0.

(3.16)

The current profile (3.14)–(3.15) captures the salient features: a westward surface
drift (since |γ 1|h1 > γ h) below which resides an eastward jet (the EUC) which overlies
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u  (   )
x

z

1 hu  (    )1

0

thermocline

z = 0

free  surface

z = h1

u (  ) = 
1

0

Fig. 3. Depiction of the flow model in the absence of waves (pure current): constant negative vorticity γ 1 in
the near-surface homogeneous layer accommodates a flow-reversal from the westward wind-drift at the free
surface z = h1 to an eastward jet whose core resides on the thermocline z = 0, while a constant positive
vorticity in the abyssal homogeneous region below the thermocline permits the adjustment to practically still
water at great depths (with no motion on the flat bed z = −h). The corresponding velocity field is given by
u1(z) = γ 1z + γ h and w1 = 0 in the near-surface layer 0 < z < h1, with u(z) = γ (z + h) and w = 0 in the

abyssal layer −h < z < 0; here γ > 0 > γ 1 and |γ 1|h1 > γ h

an abyssal layer where a gradual transition to no motion on the flat bed occurs (see
Fig. 3). Note that

∫ 0

−h

U 1(z) dz +

∫ h1

0

U (z) dz = 1

2
γ h

2
+

1

2
γ 1 h

2

1 + γ h h1

represents the mass transport per unit width (in m2 s−1), so that for

(h1/h) < −(γ /γ 1) +

√

(γ /γ 1)
2 − (γ /γ 1)

there is a net eastward mass transport. Since typically (see below) h1/h and γ /γ 1

are both of order O(10−2), an eastward net flow occurs within 1◦ from the Equator;
this is compensated by a return flow at higher latitudes (see [36]). We seek nonlinear
wave–current interactions arising as localised wave perturbations of the background flow
(3.14–3.15).

3.2. Nondimensionalisation. The first stage in expressing the governing equations in a
useful form is to introduce a suitable non-dimensionalisation of the variables; to this end
we write

t = (L/U 0) t, (x, z) = L (x, z), (u, w) = U 0 (u, w),

(u1, w1) = U 0 (u1, w1), P = ρ1U
2

0 p, (3.17)

where the length scale is L = 500 m and U 0 = 0.5 m s−1 is an appropriate speed
scale. (The omission of the overbar now indicates that we are using the non-dimensional
version of the corresponding variable.) Set

h = h/L, h1 = h1/L, η(x, t) = η(x, t)/L, η1(x, t) = η1(x, t)/L.

(3.18)
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Above the thermocline, in the region

D1(t) = {(x, z) : η(x, t) < z < h1 + η1(x, t)},

Eqs. (3.1), (3.3) and (3.5) therefore become

u1,t + u1u1,x + w1u1,z + ω w1 = −px , (3.19)

w1,t + u1w1,x + w1w1,z − ω u1 = −pz − g, (3.20)

u1,x + w1,z = 0, (3.21)

u1,z − w1,x = γ1, (3.22)

while below the thermocline, in the region

D(t) = {(x, z) : −h < z < η(x, t)},

Eqs. (3.2), (3.4) and (3.6) become

ut + uux + wuz + ω w = − 1

1 + r
px , (3.23)

wt + uwx + wwz − ω u = − 1

1 + r
pz − g, (3.24)

ux + wz = 0, (3.25)

uz − wx = γ, (3.26)

where

ω = 2� L/U 0 ≈ 0.15, g = g L/U
2

0 ≈ 2 × 104

γ1 = L γ 1/U 0 ≈ −12.5, γ = L γ /U 0 ≈ 0.25, (3.27)

for a flow reversal from a westward surface wind drift of 0.5 m s−1 to a maximal eastward
EUC speed of 1 m s−1 in a layer of mean depth h1 = 120 m, with an abyssal layer of
mean depth h = 4 km; these values, corresponding to h1 ≈ 0.24 and h ≈ 8, are
appropriate for the 6000 km stretch between about 140◦E and 150◦W (see [14]). For a
flow that gradually dies out with depth, being motionless at the flat bed, we compute
γ1 ≈ −1.25 × 10−2 s−1 and γ ≈ 2.5 × 10−4 s−1. Written in nondimensional form, the
boundary conditions (3.7)–(3.12) become

p = Patm/(ρ1U
2

0) on z = h1 + η1(x, t), (3.28)

w1 = η1,t + u1 η1,x on z = h1 + η1(x, t), (3.29)

w1 = ηt + u1 ηx on z = η(x, t), (3.30)

w = ηt + u ηx on z = η(x, t), (3.31)

p+ = p− on z = η(x, t), (3.32)

w = 0 on z = −h, (3.33)

w1ηx + u1 = wηx + u on z = η(x, t), (3.34)

where p± in (3.32) refer to the limits of the function p from above and below the common
boundary z = η(x, t) of the regions D1(t) and D(t).

The non-dimensional counterpart of the pure current background state (3.14)–(3.15)
is
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U1(z) = γ1z + γ h for 0 < z ≤ h1, (3.35)

U (z) = γ (z + h) for − h ≤ z ≤ 0, (3.36)

with p(z), corresponding to the background pressure distribution (3.16), given by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Patm

ρ1U
2
0

− g(z − h1) +
ω

2

[

γ1(z2 − h2
1) + 2γ h(z − h1)

]

for 0 < z ≤ h1,

Patm

ρ1U
2
0

− (1 + r)
[

gz − ωγ

2
(z2 + 2hz)

]

− ωh1

2
(γ1h1 + 2γ h) + gh1 for − h ≤ z ≤ 0.

(3.37)

3.3. Nonlinear flow separation. For wave–current interactions the “current” component
of the flow is defined as the average velocity, and the localised perturbations that fluctuate
around this average are ascribed to the wave motion, the direction of wave propagation
being along the x-axis. We view the nonlinear equatorial wave–current interaction as a
localised wave perturbation of the pure current solution (3.35)–(3.36) in a domain that
is infinite in the x-direction. The localised nature of the wave disturbances is captured
by assuming the smooth functions η1(x, t) and η(x, t) to be of Schwartz class S(R) in
the x-variable at any instant t , with

∫

R

η1(x, t) dx =
∫

R

η(x, t) dx = 0, t ≥ 0. (3.38)

The corresponding velocity fields (u1, w1) and (u, w) are to be smooth in the domains
D1(t) andD(t), with both vector functions admitting continuous extensions to the closure
of the domains and across their adjacent boundary. It is remarkable that the interpretation
of (3.35)–(3.36) as the underlying current can be achieved within the framework of fully
nonlinear theory, without performing approximations.

Theorem 1. If the flow approaches asymptotically the pure current state, then the ve-

locity fields (u1, w1) and (u, w) and the pressure p(x, z, t) are, at any instant t , smooth

localised perturbations of the background flow (3.35)–(3.36) and of the correspond-

ing background pressure distribution (3.37), in each of the domains D1(t) and D(t),

respectively.

Proof. Consider a solution to the governing equations (3.19)–(3.22), (3.23)–(3.26),
(3.28)–(3.34), with no flow along the flat bed z = −h. Let us denote by U(z0, t) =

lim
	→∞

1

2	

∫ 	

−	

u(x, z0, t) dx the underlying current at a depth z0 below the trough of

the thermocline z = η(x, t), obtained by averaging. Applying the divergence theorem
to the divergence-free vector field (−w, u − γ z) in the rectangular domain {(x, z) :
−	 < x < 	, −h < z < z0} yields

∫ 	

−	

[

u(x, z0, t) − γ z0

]

dx −
∫ 	

−	

[

u(x,−h, t) + γ h
]

dx

=
∫ z0

−h

w(	, z, t) dz −
∫ z0

−h

w(−	, z, t) dz → 0

for 	 → ∞. Combining this with the absence of a flow on the flat bed, u = 0 on
z = −h, we get U(z0, t) = γ (z0 + h), which coincides with (3.36). Similarly, the
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underlying current at a depth z0 above the crest of the internal wave and below the
trough of the surface wave is

U1(z0, t) = lim
	→∞

1

2	

∫ 	

−	

u1(x, z0, t) dx .

Applying the divergence theorem in the domain {(x, z) : −	 < x < 	, η(x, t) < z <

z0} to the vector field (−w1, u1 − γ1z), we get

∫ 	

−	

[

u1(x, z0, t) − γ1z0

]

dx =
∫ z0

η(	,t)

w1(	, z, t) dz −
∫ z0

η(−	,t)

w1(−	, z, t) dz

+

∫ 	

−	

[

u1(x, η(x, t), t) − γ1η(x, t) + w1(x, η(x, t), t) ηx (x, η(x, t), t)
]

dx,

so that (3.38) and (3.34) yield

U1(z0, t) = γ1z0 + lim
	→∞

1

2	

∫ 	

−	

[

u1(x, η(x, t), t) + w1(x, η(x, t), t) ηx (x, η(x, t), t)
]

dx

= γ1z0 + lim
	→∞

1

2	

∫ 	

−	

[

u(x, η(x, t), t) + w(x, η(x, t), t) ηx (x, η(x, t), t)
]

dx .

This leads to U1(z0, t) = γ1z0 + γ h, which coincides with (3.35). Indeed, for this it
suffices to apply the divergence theorem in the domain {(x, z) : −	 < x < 	, −h <

z < η(x, t)} to the vector field (−w, u − γ z), using (3.34) and (3.38) together with the
vanishing of u on the flat bed z = −h. ⊓⊔

Let us point out that the velocity field is actually Hölder continuous across the smooth
thermocline. Indeed, the velocity field of the pure current background state (3.35)–(3.36)
is Lipschitz continuous in the horizontal strip −h ≤ z ≤ h1. Since the wave–current
interaction is a localized perturbation of this background flow, in an open horizontal strip
O containing the thermocline, the velocity field VF of the wave motion is divergence-free,
has a piecewise constant curl, decays as it approaches the lateral boundary components
of O at infinity, and is smooth on the upper and lower boundary components ∂O± of
O (since in the fluid domain away from the thermocline, the Laplacian of each velocity
component is constant, so that the regularity for Poisson’s equation [15] applies). For
s > 3, the a priori elliptic estimate

‖∇VF‖Ls (O) � ‖div VF‖Ls (O) + ‖curl VF‖Ls (O) + ‖VF‖L∞(∂O±)

for the div-curl system, interpreted for VF ∈ L∞(O) in the sense of distributions (see [4,
42]), ensures, by means of a Sobolev imbedding (see [15]), that VF is Hölder continuous
with exponent α < 1/3 throughout O. Consequently the velocity field of the wave–
current interaction is Hölder continuous across the thermocline.

3.4. Hamiltonian formulation. We now present the Hamiltonian formulation of the gov-
erning equations (3.19)–(3.22), (3.23)–(3.26), (3.28)–(3.34).

As a first step towards the choice of new dependent and independent variables that
reveal the Hamiltonian structure, we introduce the stream function and the perturbed
velocity potential. The equations of mass conservation, (3.21) and (3.25), ensure the
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existence of a stream function in each layer, ψ1(x, z, t) in D1(t) and ψ(x, z, t) in D(t),
determined, up to an additive term that depends only on time, by

u1 = ψ1,z and w1 = −ψ1,x in D1(t), u = ψz and w = −ψx in D(t).

(3.39)

Relying on (3.21), (3.25), (3.33) and (3.30), we may set

ψ(x, z, t) =
∫ z

−h

u(x, z′, t) dz′ for (x, z) ∈ D(t), (3.40)

ψ1(x, z, t) =
∫ x

−∞

[

u1

(

x ′, η(x ′, t), t
)

ηx (x ′, t) − w1(x ′, η(x ′, t), t)
]

dx ′

+

∫ z

η(x,t)

u1(x, z′, t) dz′ +
γ h2

2
for (x, z) ∈ D1(t), (3.41)

observing that (3.30) ensures that the first integral in (3.41) is well-defined. Each stream

function has a smooth extension to the closure of its respective domain, D(t) and D(t).
Actually, since the velocity field is a smooth localised perturbation of the background
state (3.35)–(3.36), by evaluating ψ and ψ1 on z = η(x, t) as x → −∞ we see that
(3.40)–(3.41) ensure the existence of a continuous function (x, z, t) throughout the

bulk of the fluid K(t) = {(x, z) : −d ≤ z ≤ h1 + η1(x, t)}, with  = ψ on D(t) and
 = ψ1 on D(t). The discussion after (3.13) shows that  is continuously differentiable
in K(t) without being twice continuously differentiable (due to discontinuities in the
second order partial derivatives across the thermocline). For this reason, rather than
using  we prefer to use ψ and ψ1. With the vorticity distribution defined by (3.22) and
(3.26), (3.39) yields

�ψ = γ in D(t), �ψ1 = γ1 in D1(t). (3.42)

We now introduce harmonic perturbed velocity potentials, ϕ in D(t) and ϕ1 in D1(t),
by requiring

{

u = ϕx + γ (z + h) and w = ϕz in D(t),

u1 = ϕ1,x + γ1z + γ h and w1 = ϕ1,z in D1(t).
(3.43)

More precisely, since the velocity field is a smooth localised perturbation of the back-
ground state (3.35)–(3.36), with u = 0 on the flat bed z = −h, we may set

ϕ(x, z, t) =
∫ z

−h
w(x, z′, t) dz′ for (x, z) ∈ D(t), (3.44)

ϕ1(x, z, t) =
∫ x

−∞

[

u1(x ′, η(x ′, t), t) − γ1η(x ′, t) − γ h + w1(x ′, η(x ′, t), t) ηx (x ′, t)
]

dx ′

+

∫ z

η(x,t)
w1(x, z′, t) dz′, (x, z) ∈ D1(t) ; (3.45)

to see that the first integral in (3.45) is well-defined, use (3.34) and subsequently the
divergence theorem applied to the vector field (−w, u − γ z) in {(x ′, z) : x∗ < x ′ <

x, −h < z < η(x ′, t)} with x∗ → −∞. Both perturbed velocity potentials admit

continuously differentiable extensions to the closures of their domains, ϕ ∈ C1(D(t))

and ϕ1 ∈ C1(D1(t)). However, in contrast with the stream functions, any oscillation
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of the thermocline impedes a continuous extension of the perturbed velocity potentials
to the bulk of the fluid K(t): while smooth additive functions that depend solely on
time may be added to the right sides of (3.44)–(3.45), this process does not lead to an
equality of ϕ and ϕ1 on the interface. Indeed, for η �≡ 0, (3.43) and the continuity of the
velocity field across the thermocline show that differentiation of a presumed equality
ϕ(x, η(x, t), t) = ϕ1(x, η(x, t), t) + ϕ0(t) with respect to the x-variable leads to a
contradiction since γ �= γ1.

The kinematic boundary conditions (3.29)–(3.31) can now be written as

η1,t = (ϕ1,z)s1 − η1,x

[

(ϕ1,x )s1 + γ1(h1 + η1) + γ h
]

, (3.46)

ηt = (ϕ1,z)s − ηx

[

(ϕ1,x )s + γ1η + γ h
]

, (3.47)

ηt = (ϕz)s − ηx

[

(ϕx )s + γ η + γ h
]

, (3.48)

respectively, where the subscript s1 means that we consider the traces of the involved
functions on the free surface z = h1 + η1(x, t), while the subscript s denotes traces on
the interface z = η(x, t).

We can recast the Euler equations (3.19)–(3.20) and (3.23)–(3.24) as

∇
[

ϕ1,t +
|∇ψ1|2

2
+ p − (γ1 + ω)ψ1 + gz

]

= 0 in D1(t),

∇
[

ϕt +
|∇ψ |2

2
+

p

1 + r
− (γ + ω)ψ + gz

]

= 0 in D(t),

respectively, so that the expressions on which the gradient operates are just time-
dependent. Recalling (3.40)–(3.41), (3.44)–(3.45), and taking into account that the flow
is a smooth localised perturbation of (3.35)–(3.36) with the background pressure distri-
bution (3.37), we evaluate these expressions as x → −∞ on z = η(x, t) and on z = −h,
respectively. We get

ϕ1,t +
|∇ψ1|2

2
+ p − (γ1 + ω)ψ1 + gz = Patm

ρ1U
2

0

+ (1 + r)α + β − ωγ h2

2
in D1(t),

(3.49)

ϕt +
|∇ψ |2

2
+

p

1 + r
− (γ + ω)ψ + gz = Patm

(1 + r)ρ1U
2

0

+ α − ωγ h2

2
in D(t),

(3.50)

where

α = gh1

1 + r
− ω(γ1h1 + 2γ h)h1

2(1 + r)
, β = γ (γ − γ1)h

2

2
.

Consequently, we can write the dynamic boundary condition (3.28) as

ϕ1,t +
|∇ψ1|2

2
− (γ1 + ω)ψ1 + gz = (1 + r)α + β on z = h1 + η1(x, t), (3.51)

while the continuity of the pressure across the thermocline, (3.32), becomes

(1 + r)

[

(ϕt )s +
|∇ψ |2s

2
− (γ + ω)χ + gη

]
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=
[

(ϕ1,t )s +
|∇ψ1|2s

2
− (γ1 + ω)χ + gη

]

− β − rωγ h2

2
, (3.52)

where

χ(x, t) := ψ(x, η(x, t), t) = ψ1(x, η(x, t), t), χ1(x, t) := ψ1(x, h1 + η1(x, t), t).

(3.53)

Let us now show that the governing equations (3.19)–(3.22), (3.23)–(3.26), (3.28)–
(3.34) can be tidied up as a Hamiltonian system by identifying

H = EK + EP (3.54)

as the Hamiltonian, where

EK = (1 + r)

∫

R

{

∫ η

−h

[u2 + w2

2

]

dz −
∫ 0

−h

γ 2(z + h)2

2
dz
}

dx

+

∫

R

{

∫ h1+η1

η

[u2
1 + w2

1

2

]

dz −
∫ h1

0

(γ1z + γ h)2

2
dz
}

dx, (3.55)

EP = (1 + r)

∫

R

{

∫ η

−h

gz dz −
∫ 0

−h

gz dz
}

dx +

∫

R

{

∫ h1+η1

η

gz dz −
∫ h1

0

gz dz
}

dx

= rg

2

∫

R

η2(x, t) dx +
g

2

∫

R

η2
1(x, t) dx, (3.56)

are the excess kinetic and potential energies, respectively. Other than the technical spur to
avoid infinite energy, the rationale for the above choice is that not all potential energy can
be converted into kinetic energy, the portion that is available for this conversion being the
difference in the potential energy between the perturbed wave–current state and the pure
current background state. In view of (3.17) and (3.27), the nondimensional expression in

(3.54) corresponds to the total excess energy per unit width, H = ρ1U
2

0 L
2

H . To see that

ρ1U
2

0 L
2 ≈ 625 × 105 m kg s−2 is a suitable scale, note that, over the 16,000 km length

of the EUC, it corresponds to a mean total energy of about 4 kg s−2, which is of the order
of the mean kinetic energy at the surface of the equatorial Pacific (about 2 kg s−2; see
[19]). As for the estimate of potential energy, field data gathered at 45 m depth indicates
an average ratio between potential and kinetic energy of about 0.76, varying between
0.18 and 3.63 with means of the order of 10−2 kg s−2 (see [28]). Moreover, the energy
is dominated by the zonal component, which is about one order of magnitude greater
than the meridional component, thus corroborating the realistic nature of an approach
that invokes the f -plane approximation and the neglect of meridional variations.

Using (3.43) and (3.38), we get

EK = (1 + r)

∫

R

{

∫ η

−h

[ |∇ϕ|2
2

+ γ (z + h) ϕx

]

dz +
γ 2

6
η3 +

γ 2h

2
η2
}

dx

+

∫

R

{

∫ h1+η1

η

[ |∇ϕ1|2
2

+ (γ1z + γ h) ϕ1,x

]

dz

+
γ 2

1

6
(η3

1 − η3) +
γ γ1h

2
(η2

1 − η2) +
γ 2

1 h1

2
η2

1

}

dx . (3.57)
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ϕ = Φ

ϕ1 = Φ1

ϕ1 = Φ2

ϕ = 0
z = −h

D(t)∆ϕ = 0

D1(t)
∆ϕ1 = 0

z = η(x, t)

z = h1 + η1(x, t)

flat bed

thermocline

free surface

X

N−(X)

N+(X)

N+(X1)

X1

Fig. 4. Sketch of the geometric features that are relevant in the definition of the Dirichlet–Neumann operators
associated with the two layers: at the instant t , the outward unit normals for the abyssal layer D(t) and for
the near-surface layer D1(t) at a point X on the thermocline are N−(X) and N +(X), respectively, while the
outward unit normal at a point X1 on the free surface is N +(X1)

Since �ϕ = 0 in D(t) with ϕ = 0 on z = −h, setting

�(x, t) = ϕ(x, η(x, t), t), (3.58)

integration by parts yields
∫

R

∫ η

−h

|∇ϕ|2 dzdx =
∫

R

�
[

G(η)�
]

dx, (3.59)

where G := G(η) is the Dirichlet–Neumann operator on D(t), associating to � the
normal derivative of ϕ on the upper boundary z = η(x, t) with outward unit normal N ;
see Fig. 4. Similarly, denoting

�1(x, t) = ϕ1(x, η(x, t), t), �2(x, t) = ϕ1(x, h1 + η1(x, t), t), (3.60)

we define on D1(t) the Dirichlet–Neumann matrix operator

G+ := G+(η, η1) =
(

G11 G12

G21 G22

)

that associates to the boundary values of the harmonic function ϕ1 on the lower and
upper boundaries, �1 and �2, respectively, the outward normal derivatives N · ∇ϕ1 at
these boundaries. Then

∫

R

∫ h1+η1

η

|∇ϕ1|2 dzdx =
∫

R

(

�1

�2

)

⊺
(

G11 G12

G21 G22

)(

�1

�2

)

dx . (3.61)
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On the other hand, since F = ψ − 1
2

γ (z + h)2 is harmonic in D(t), with ∇F =
(−ϕz, ϕx ) and F = 0 on z = −h, the divergence theorem applied to 1

2
γ (z + h)2 ∇F

yields

∫

R

∫ η

−h

γ (z + h)ϕx dzdx =
∫

R

γ

2

[

η + h
]2

(∂x�) dx = −
∫

R

γ (η + h)ηx � dx .

(3.62)

Similarly, the divergence theorem applied to 1
2

(γ1z2 + 2γ hz)∇F1, where F1 =
ψ1 − 1

2
(γ1z2 + 2γ hz) is harmonic in D1(t) with ∇F1 = (−ϕ1,z, ϕ1,x ), yields

∫

R

∫ h1+η1

η

(γ1z + γ h)ϕ1,x dzdx

= −
∫

R

[

γ1(h1 + η1) + γ h
]

η1,x �2 dx +

∫

R

[

γ1 η + γ h
]

ηx �1 dx . (3.63)

From the definition of the Dirichlet–Neumann operators, using (3.43) and (3.29)–
(3.31), we see that

G11�1 + G12�2 = (ϕ1,x )s ηx − (ϕ1,z)s = −ηt − (γ1η + γ h)ηx , (3.64)

G� = −(ϕx )s ηx + (ϕz)s = ηt + γ (η + h)ηx , (3.65)

G21�1 + G22�2 = −(ϕ1,x )s1 η1,x + (ϕ1,z)s1 = η1,t +
[

γ1(h1 + η1) + γ h
]

η1,x . (3.66)

Adding up the relations (4.9) and (3.65), we obtain

G11�1 + G12�2 + G� = (γ − γ1)ηηx . (3.67)

Let us now define the operator

B = B(η, η1) := G + (1 + r) G11. (3.68)

Introducing the variables

ξ = (1 + r)� − �1, ξ1 = �2, (3.69)

relation (3.67) enables us to express � and �1 in terms of ξ and ξ1:

� = B−1
(

G11ξ − G12ξ1 + (γ − γ1)ηηx

)

, (3.70)

�1 = B−1
(

− Gξ − (1 + r) G12ξ1 + (1 + r)(γ − γ1)ηηx

)

. (3.71)

Regarding h1, h, γ1, γ, ω as fixed parameters and gathering (3.54)–(3.57), (3.59),
(3.61)–(3.63) and (3.70)–(3.71), we express H as a functional depending solely on the
variables η, η1, ξ , ξ1:

H = H(η, η1, ξ, ξ1). (3.72)

Since x �→
x
∫

−∞
θ(x ′) dx ′ ∈ S(R) if and only if θ ∈ S(R) satisfies

∫

R

θ(x ′) dx ′ =

0, we see that the functions ϕ and ϕ1 defined by (3.44)–(3.45) are smooth localised
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perturbations. This property is passed on to ξ and ξ1, while for η and η1 it is part of our
setup.

It is of interest to provide a concise explicit form of the functional H in (3.72). Since
�1 = (1 + r)� − ξ by (3.69), B and G are unbounded self-adjoint operators on L2(R)

while (G12)
∗ = G21, and using the relation (1 + r)B−1G11 = Id − B−1G that follows

from (3.68), we get

H = γ 2
1

6

∫

R

η3
1 dx +

(1 + r)γ 2 − γ 2
1

6

∫

R

η3 dx +
rg + γ h[(1 + r)γ − γ1]

2

∫

R

η2 dx

+
g + γ1[γ h + γ1h1]

2

∫

R

η2
1 dx − γ

∫

R

(η + h)ηxξ dx

−
∫

R

[γ1(h1 + η1) + γ h]η1,xξ1 dx

− (γ − γ1)

∫

R

ηηx B−1Gξdx − (1 + r)(γ − γ1)

∫

R

ηηx B−1G12ξ1dx

− (1 + r)(γ − γ1)
2

2

∫

R

ηηx B−1ηηx dx

+
1

2

∫

R

[

ξ1G22ξ1 + ξG B−1G11ξ − ξG B−1G12ξ1

− ξ1G21 B−1Gξ − (1 + r)ξ1G21 B−1G12ξ1

]

dx . (3.73)

We now compute variations of the functional H, with respect to the inner product
associated to square-integrable real functions defined on the real line. We consider vari-
ations of the wave field, regarding the underlying current field (3.35)–(3.36) as fixed; in
particular, the flat bed, the vorticity and the mean depths of the layers do not change.
Note that

δ
{

r

∫

R

η2 dx +

∫

R

η2
1 dx

}

= 2

∫

R

{

r η δη + η1 δη1

}

dx, (3.74)

δ
{

(1 + r)

∫

R

[γ 2

6
η3 +

γ 2h

2
η2
]

dx +

∫

R

[γ 2
1

6
(η3

1 − η3)

+
γ γ1h

2
(η2

1 − η2) +
γ 2

1 h1

2
η2

1

]

dx
}

=
∫

R

{( (1 + r)γ 2 − γ 2
1

2
η2 + γ h

[

(1 + r)γ − γ1

]

η
)

δη

+
(γ 2

1

2
η2

1 + γ1 (γ1h1 + γ h) η1

)

δη1

}

dx . (3.75)

On the other hand,

δ
{

∫

R

∫ η

−h

(z + h) ϕx dzdx
}

=
∫

R

{(

(η + h) ∂x�
)

δη −
(

(η + h) ηx

)

δ�
}

dx,

(3.76)
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and

δ
{

∫

R

∫ h1+η1

η

(γ1z + γ h) ϕ1,x dzdx
}

=
∫

R

{(

− (γ1η + γ h) ∂x�1

)

δη +
(

(γ1η + γ h) ηx

)

δ�1

+
(

[

γ1(h1 + η1) + γ h)
]

∂x�2

)

δη1 −
(

[

γ1(h1 + η1) + γ h)
]

η1,x

)

δ�2

}

dx,

(3.77)

respectively. For harmonic variations of ϕ, using the divergence theorem and the identity

δ� = lim
ε→0

(ϕ + ε δϕ)(x, η + εδη, t) − ϕ(x, η, t)

ε
= (δϕ)s + (ϕz)s δη,

we get

δ
{

∫

R

∫ η

−h

|∇ϕ|2 dzdx
}

=
∫

R

|∇ϕ|2s δη dx + 2

∫

R

{

(ϕz)s − (ϕx )sηx

}[

δ� − (ϕz)s δη
]

dx . (3.78)

Similarly, for harmonic perturbations of ϕ1 we get

δ
{

∫

R

∫ h1+η1

η

|∇ϕ1|2 dzdx
}

=
∫

R

|∇ϕ1|2s1
δη1 dx −

∫

R

|∇ϕ1|2s δη dx

+ 2

∫

R

{

(ϕ1,z)s1 − (ϕ1,x )s1η1,x

}[

δ�2 − (ϕ1,z)s1δη1

]

dx

− 2

∫

R

{

(ϕ1,z)s − (ϕ1,x )sηx

}[

δ�1 − (ϕ1,z)sδη
]

dx . (3.79)

From (3.54)–(3.57) and (3.74)–(3.79), using (3.29)–(3.31), (3.40)–(3.41), (3.44)–(3.45),
(3.51)–(3.52), we conclude that

δH =
∫

R

{(

(1 + r)ηt

)

δ� +
(

− ηt

)

δ�1 +
(

η1,t

)

δ�2

+
(

− ξ1,t + (γ1 + ω)χ1 − (γ1h1 + γ h)h1(γ1 + ω)

2

)

δη1

+
(

− ξt +
[

(1 + r)γ − γ1 + rω
]

χ +
γ h2[γ1 − rω − (1 + r)γ ]

2

)

δη
}

dx

=
∫

R

{(

ηt

)

δξ +
(

η1,t

)

δξ1 +
(

− ξ1,t + (γ1 + ω)χ1

)

δη1

+
(

− ξt +
[

(1 + r)γ − γ1 + rω
]

χ
)

δη
}

dx, (3.80)
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since the invariance of the total mass in each layer ensures

∫

R

δη dx =
∫

R

δη1 dx = 0. (3.81)

Switching from the variables (η, η1, ξ, ξ1) to the new variables (η, η1, ζ, ζ1), where

ζ(x, t) = ξ(x, t) + μ

∫ x

−∞
η(x ′, t) dx ′ where μ = (1 + r)γ − γ1 + rω

2
,(3.82)

ζ1(x, t) = ξ1(x, t) + μ1

∫ x

−∞
η1(x ′, t) dx ′ where μ1 = γ1 + ω

2
, (3.83)

using the identities

0 =
∫

R

(

ηt

∫ x

−∞
(δη) dx ′ + (δη)

∫ x

−∞
ηt dx ′

)

dx

=
∫

R

(

η1,t

∫ x

−∞
(δη1) dx ′ + (δη1)

∫ x

−∞
η1,t dx ′

)

dx,

we can write (3.80) as

δH =
∫

R

{

ηt

(

δζ − μ

∫ x

−∞
(δη) dx ′

)

+ η1,t

(

δζ1 − μ1

∫ x

−∞
(δη1) dx ′

)

+
(

− ζ1,t + μ1

∫ x

−∞
η1,t dx ′ + 2μ1 χ1

)

δη1 +
(

− ζt + μ

∫ x

−∞
ηt dx ′ + 2μχ

)

δη
}

dx .

(3.84)

Recalling (3.53), note that ηt = −∂xχ and η1,t = −∂xχ1, due to (3.31) and (3.29),

while (3.40) and (3.41) yield the asymptotic behaviour χ → γ h2

2
and χ1 →

h1
∫

0

(γ1z +

γ h) dz +
γ h2

2
= γ1h2

1+2γ hh1+γ h2

2
for x → −∞. Consequently

χ(x, t) = γ h2

2
−
∫ x

−∞
ηt dx ′, χ1(x, t) = γ1h2

1 + 2γ hh1 + γ h2

2
−
∫ x

−∞
η1,t dx ′.

(3.85)

Since differentiation of (3.38) with respect to the t-variable yields
∫

R
ηt dx =

∫

R
η1,t dx =

0, using integration by parts, (3.85) and (3.81), we get

∫

R

(

∫ x

−∞
(δη)dx ′

)

ηt dx = −
∫

R

(δη)
(

∫ x

−∞
ηt dx ′

)

dx =
∫

R

(δη)χdx,

∫

R

(

∫ x

−∞
(δη1) dx ′

)

η1,t dx =
∫

R

(δη1) χ1 dx .

Cancellations occur in (3.84) due to the above two relations in (3.84), so that

δH =
∫

R

{

(ηt ) δζ + (η1,t ) δζ1 − (ζ1,t ) δη1 − (ζt ) δη
}

dx .

Therefore we proved the following result.
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Theorem 2. Let u = (η, η1, ζ, ζ1)
⊺. With H given by the explicit expression (3.73),

the system

⎧

⎪

⎨

⎪

⎩

δH

δζ
= ηt ,

δH

δη
= −ζt ,

δH

δζ1
= η1,t ,

δH

δη1
= −ζ1,t ,

(3.86)

is the Hamiltonian form ∂tu = J δu H of the governing equations with respect to the

canonical symplectic structure induced by the matrix operator J =
(

0 I2−I2 0

)

with I2 =
(

1 0
0 1

)

, acting on the phase space X = S(R) × S(R) × S(R) × S(R) of Schwartz-class

functions.

The above variational derivative of H : X → R at u0 ∈ X is defined by 〈u, δH
δu

(u0)〉 =
lim
ε→0

H(u0+εu)−H(u0)
ε

, with respect to the inner product 〈·, ·〉 in the Hilbert space L2(R)×
L2(R) × L2(R) × L2(R).

4. Hamiltonian Perturbations

We regard the equatorial waves as localised perturbations of the background state, typical
examples being solitary waves. A reasonable measure of the “wavelength” of a solitary
wave is the spatial extent of the region where the deviation of the profile from its mean
level is at least 1% of the maximum height. In the geophysical regime in which the
wavelength is long compared to the average depth, both gravity and the rotation of the
Earth play a role in the dynamics. In our nondimensional framework x = 1 corresponds
to 500 m, so that the relevant spatial scaling is

x ′ = εx (4.1)

with ε ≪ 10−1. This defines a physical regime in which the dependent and independent
variables are O(1), and the relation to the nondimensional variable x is by means of
(4.1); in particular, a perturbation that mainly occurs for values x ′ ∈ (−1, 1) corresponds
to x ∈ (−1/ε, 1/ε) and thus represents a physical region spreading over more than 10
km. Our approach to systematic derivations of model equations is from the point of view
of Hamiltonian perturbation theory. The parameter ε from (4.1) will also be introduced
through choices of scaling of the dependent variables (η, η1, ζ, ζ1), corresponding to
scaling regimes of interest, in which dispersive and nonlinear effects are brought into
play. Since our main interest is the propagation of internal waves, the representative
scales are determined by the motion of the thermocline, and we use these scales also for
the surface waves. This results in a Hamiltonian that is a function of the small parameter
ε. The approximating Hamiltonian systems are obtained by retaining a finite number of
terms in the Taylor expansion in ε of the Hamiltonian.

Given a constant α > 0 and a smooth local diffeomorphism f : R
4 → R

4, the change
of variables [αt ′ = t, u′ = f (u)] transforms the Hamiltonian system ∂tu = J δuH to the
Hamiltonian system ∂t ′u

′ = J ′ ∂u
′H′ with Hamiltonian H′(u′) = H(u) if the operator

J ′ = α(δu f )J (δu f )⊺ is symplectic, that is, (J ′)⊺ J J ′ = J (see [35]); moreover, if
the change of variables preserves the Hamiltonian form of all Hamiltonian equations,
then J ′ must be symplectic (see [33]). Due to the physical interpretation in which the
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dynamics is governed by the perturbations of the two interfaces, the relevant coordinate
transformation in our setting is the spatial scaling

η′ = aη, ζ ′ = aζ, η′
1 = bη1, ζ ′

1 = bζ1, (4.2)

for some positive scalars a and b. Since a 2n × 2n block matrix
(

M11 M12
M21 M22

)

is symplectic

if and only if the n × n matrices M
⊺

11 M21 and M
⊺

12 M22 are symmetric and M
⊺

11 M22 −
M

⊺

21 M12 = In (see [33]), we see that the scaling transformation (4.2) coupled with the
simultaneous temporal scale

αt ′ = t, (4.3)

is symplectic if and only if a = b = √
α. Note for our nondimensionalisation t = 1

corresponds to about 17 min. The space-time scale (4.2)–(4.3) specifies the distance and
time needed to bring about the balance

x ′ = O(1) and t ′ = O(1) (4.4)

for the dynamics of the flow. Note that a regime of type (4.2) comes about due to wave
perturbations of the pure current background state described in Sect. 3.1. Since these
perturbations are harmonic, as shown by the considerations in Sects. 3.3 and 3.4, their
overall effect is encoded in the way they operate at the surface and at the interface. Using
the relations (3.43), (3.58), (3.60), (3.69), (3.82)–(3.83), one can render (4.2) in terms of
the magnitude of the deviation of the surface/interface from the quiescent flat state and
of the relative sizes of the wave/current components of the fluid velocity field at these
boundaries. We will provide details of this interpretative aspect in each specific case that
we discuss.

The linear Dirichlet–Neumann operators G and G+ are analytic in their dependence
on η and (η, η1), respectively, having convergent Taylor series expansions

G(η)ζ =
∞
∑

j=0

G( j)(η) ζ, (4.5)

G+(η, η1)

(

ζ

ζ1

)

=
∞
∑

m0,m1=0

(

G
(m0m1)
11 (η, η1) G

(m0m1)
12 (η, η1)

G
(m0m1)
21 (η, η1) G

(m0m1)
22 (η, η1)

)

(

ζ

ζ1

)

, (4.6)

with each linear operator G( j)(η) homogeneous of degree j in η and each linear op-

erator G
(m0m1)
i j (η, η1) with i, j = 1, 2 homogeneous of degree m0 in η and of degree

m1 in η1 (see the discussion in [10,11]); moreover, each of the operators G( j)(η) and

G
(m0m1)
i i (η, η1) with i = 1, 2 and m0, m1 ≥ 0 is self-adjoint, while (G

(m0m1)
12 (η, η1))

∗ =
G

(m0m1)
21 (η, η1). Denoting

D = −i∂x

and given a smooth function m : R → C whose derivatives of any order have polynomial
growth, the Fourier multiplication operator

(m(D) f )(x) = 1

2π

∫

R

∫

R

eik(x−x ′)m(k) f (x ′) dx ′ dk (4.7)
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maps S(R) into S(R) and extends to a self-adjoint operator in L2(R) if and only if m

is real-valued; see [40]. The operator (4.7) is bounded if and only if m ∈ L∞(R), with

m(D) f real-valued or imaginary-valued, for real-valued f ∈ S(R), if m(−x) = m(x)

or if m(−x) = −m(x) for all x ∈ R, respectively. In terms of Fourier multipliers the
leading order terms of the Dirichlet–Neumann operators G and G+ are given by

G(0)(η) = D tanh(h D), (4.8)

G(1)(η) = Dη(x)D − D tanh(h D)η(x)D tanh(h D), (4.9)

while
(

G
(00)
11 (η, η1) G

(00)
12 (η, η1)

G
(00)
21 (η, η1) G

(00)
22 (η, η1)

)

=
(

D coth(h1 D) −Dcsch(h1 D)

−Dcsch(h1 D) D coth(h1 D)

)

, (4.10)

(

G
(10)
11 (η, η1) G

(10)
12 (η, η1)

G
(10)
21 (η, η1) G

(10)
22 (η, η1)

)

=
(

D coth(h1 D)η(x)D coth(h1 D) − Dη(x)D −D coth(h1 D)η(x)Dcsch(h1 D)

−Dcsch(h1 D)η(x)D coth(h1 D) Dcsch(h1 D)η(x)Dcsch(h1 D)

)

,

(4.11)
(

G
(01)
11 (η, η1) G

(01)
12 (η, η1)

G
(01)
21 (η, η1) G

(01)
22 (η, η1)

)

=
(

−Dcsch(h1 D)η1(x)Dcsch(h1 D) Dcsch(h1 D)η1(x)D coth(h1 D)

D coth(h1 D)η1(x)Dcsch(h1 D) −D coth(h1 D)η1(x)D coth(h1 D) + Dη1(x)D

)

.

(4.12)

The above formulas are indicative of the nonlinear nonlocal dependence of the operators
G(η) and G+(η, η1) on η and (η, η1), respectively. Concerning the effect of scaling,
note that a simple change of variables confirms that the transformation (4.1) replaces
the Fourier multiplier operator m(D) by m(εD′), with D′ = −i∂x ′ . More precisely, for
f ∈ S(R) we have

m(D) f (x) = m(εD′)F(x ′), (4.13)

where F(x) = f (x/ε). On the other hand, the effect of the scaling (4.2) is expressed
by

G( j)(η′)ζ ′ = a j+1G( j)(η)ζ, j ≥ 0, (4.14)

with more intricate but workable scaling formulas expressing G
(m0m1)
i j (η′, η′

1) in terms

of G
(m0m1)
i j (η, η1) for 1 ≤ i, j ≤ 2 and m0, m1 ≥ 0.

4.1. The linearised equations. The quiescent state (no waves) corresponds to the trivial
solution η = η1 = ζ = ζ1 = 0. Since most practical predictions of water waves
use linear approximations, it is natural to investigate the linearised equations about the
state of rest. An elegant way to derive them is to truncate the Taylor expansion of the
Hamiltonian at its quadratic term. The quadratic part of the Hamiltonian (3.73) is

H (2) = rg + γ h[(1 + r)γ − γ1]
2

∫

R

η2 dx +
g + γ1(γ1h1 + γ h)

2

∫

R

η2
1 dx
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−γ h

∫

R

ηxξ dx − (γ1h1 + γ h)

∫

R

η1,xξ1 dx

+
1

2

∫

R

ξ
D tanh(h D)

1 + r + tanh(h D) tanh(h1 D)
ξ dx

+

∫

R

ξ
D tanh(h D)sech(h1 D)

1 + r + tanh(h D) tanh(h1 D)
ξ1 dx

+
1

2

∫

R

ξ1
D tanh(h D) + (1 + r)D tanh(h1 D)

1 + r + tanh(h D) tanh(h1 D)
ξ1 dx (4.15)

since B ≈ D tanh(h D) + (1 + r)D coth(h1 D), G ≈ D tanh(h D) and

(

G11 G12

G21 G22

)

≈
(

D coth(h1 D) −Dcsch(h1 D)

−Dcsch(h1 D) D coth(h1 D)

)

.

To obtain the linearised form of (3.86) we have to exhibit in (4.15) a functional depen-
dence on u = (η, η1, ζ, ζ1)

⊺. This can be achieved as follows. Note that (3.82)–(3.83)
yield

∂xξ = ∂xζ − μη, ∂xξ1 = ∂xζ1 − μ1η1, (4.16)

Dξ = Dζ + iμη = D
(

ζ − μ

∫ x

−∞
ηx dx ′

)

,

Dξ1 = Dζ1 + iμ1η1 = D
(

ζ1 − μ1

∫ x

−∞
η1,x dx ′

)

. (4.17)

Using the calculus of pseudodifferential operators with smooth symbols, by means of
(4.17) we can handle the last three terms in (4.15) by relying on the fact that although the
functions and the operators of interest are all real-valued, the natural set-up for Fourier
multipliers is the complex inner product on L2(R), which is also adequate for taking
advantage of the self-adjointness of operators of the type (4.7). We get

H (2) =
(rg + γ h[(1 + r)γ − γ1]

2
− μγ h

)

∫

R

η2 dx

+
(g + γ1(γ1h1 + γ h)

2
− μ1(γ1h1 + γ h)

)

∫

R

η2
1 dx

+ γ h

∫

R

ηζx dx + (γ1h1 + γ h)

∫

R

η1ζ1,x dx

+ μ

∫

R

ηx

tanh(h D)

(1 + r)D + D tanh(h D) tanh(h1 D)
ζ dx

+
μ2

2

∫

R

η
tanh(h D)

(1 + r)D + D tanh(h D) tanh(h1 D)
η dx

+
1

2

∫

R

ζ
D tanh(h D)

1 + r + tanh(h D) tanh(h1 D)
ζ dx

+

∫

R

ζ
D tanh(h D)sech(h1 D)

1 + r + tanh(h D) tanh(h1 D)
ζ1 dx

+ μμ1

∫

R

η
tanh(h D)sech(h1 D)

(1 + r)D + D tanh(h D) tanh(h1 D)
η1 dx
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+ μ

∫

R

ηx

tanh(h D)sech(h1 D)

(1 + r)D + D tanh(h D) tanh(h1 D)
ζ1 dx

+ μ1

∫

R

η1,x

tanh(h D)sech(h1 D)

(1 + r)D + D tanh(h D) tanh(h1 D)
ζ dx

+
1

2

∫

R

ζ1
D tanh(h D) + (1 + r)D tanh(h1 D)

1 + r + tanh(h D) tanh(h1 D)
ζ1 dx

+
μ2

1

2

∫

R

η1
tanh(h D) + (1 + r) tanh(h1 D)

(1 + r)D + D tanh(h D) tanh(h1 D)
η1 dx

+ μ1

∫

R

η1,x

tanh(h D) + (1 + r) tanh(h1 D)

(1 + r)D + D tanh(h D) tanh(h1 D)
ζ1 dx .

The linearised equations of motion are

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ηt = δH (2)

δζ
, ξt = −δH (2)

δη
,

η1,t = δH (2)

δζ1
, ξ1,t = −δH (2)

δη1
.

(4.18)

Given an initial data u0, representing a localised wave perturbation of the pure current
background state described in Sect. 3.1, we can solve the linear system (4.18) using the

Fourier transform. Indeed, setting f̂ (k) =
∫

R
f (x)e−ikx dx for f ∈ S(R) in each

component of u, the system (4.18) is transformed for any fixed k ∈ R into the linear
autonomous system of ordinary differential equations

∂t û(k, t) = M(k) û(k, t), (4.19)

where

M(k) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−iγ hk + iμk �(k) iμ1k sech(h1k) �(k) k2�(k) k2sech(h1k) �(k)

iμk sech(h1k) �(k) −iŴ1k + iμ1k �1(k) k2sech(h1k) �(k) k2�1(k)

Ŵ − μ2 �(k) −μμ1sech(h1k) �(k) −iγ hk + iμk�(k) iμk sech(h1k) �(k)

−μμ1sech(h1k) �(k) ωŴ1 − g − μ2
1�1(k) iμ1k sech(h1k) �(k) −iŴ1k + iμ1k�1(k)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ŵ = r(ωγ h − g), �(k) = tanh(hk)

k[1 + r + tanh(hk) tanh(h1k)] ,

Ŵ1 = γ1h1 + γ h, �1(k) = tanh(hk) + (1 + r) tanh(h1k)

k[1 + r + tanh(hk) tanh(h1k)] .
(4.20)

Note that in the absence of vorticity (γ = γ1 = 0) the matrix M(k) is real but
the context of equatorial wave–current interactions (for which γ �= 0) brings about
purely imaginary entries on the main diagonal. The complex system (4.19) can be cast
in the form of a real Hamiltonian system with double degree of freedom (of dimension
eight) by separating the real and complex part of each of the four components of the
vector û ∈ C

4. However, in our context it is advisable to work with the complex linear
Hamiltonian system to avoid going beyond the treshold of Galois theory for roots of
polynomials. In particular, finding the spectrum of M(k) is computationally within reach
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for a fixed value of ξ since explicit formulas are available for its quartic characteristic
polynomial. On the other hand, since the available theoretical studies of Hamiltonian
systems deal with systems in R

2n , there is a need for theoretical adjustment but with
guaranteed structural features. For example, the matrix M(k) being Hamiltonian means

that J M(k) is self-adjoint, so M(k) = J−1(−M(k)
⊺

)J . Therefore the matrices M(k)

and M(k)
⊺

are similar. Thus if 	(k) is an eigenvalue of M(k), then so is −	(k) and

the whole Jordan block structure will be the same for 	(k) and −	(k).
The unique solution to (4.19) with initial data û0(k) =

∫

R
u0(x) eikx dx , given by

û(k, t) = eM(k)t û0(k) for t ≥ 0, corresponds, by means of the inverse Fourier transform,
to the solution

u(x, t) = 1

2π

∫

R

eM(k)t û0(k) eikx dk, t ≥ 0 (4.21)

of (4.18) with initial data u0 ∈ S(R). To a purely imaginary eigenvalue 	(k) = −ikc

with c ∈ R\{0} of M(k), with corresponding eigenvector v(k) �= 0, we can associate
the oscillatory mode solution eM(k)tv(k) = e−ikct v(k) of (4.19), and for the initial data
u0 ∈ S(R) with û0(k) = v(k), we can interpret the solution

1

2π

∫

R

eik(x−ct) v(k) dk (4.22)

as a linear superposition of such modes. This way a purely imaginary eigenvalue 	(k) =
−ikc of M(k) corresponds to the fundamental oscillation mode eik(x−ct) v(k) with fre-

quency
|k|
2π

, propagating at the constant speed c. Due to (3.17), a fixed nondimensional
value of k �= 0 corresponds in physical variables to a harmonic oscillation of wavelength
2π
|k| L . With our choice L = 500 m, since ocean waves have wavelengths in excess of 50

m, the qualitative behaviour of the solutions to the linear system (4.19) for |k| < 64 is
physically relevant. Note that an eigenvalue 	(k) with nonzero real part is the symp-
tom of an oscillation mode whose amplitude grows exponentially in time since 	(k) or

−	(k) leads to a coefficient of the type eω(k)t with ω(k) > 0. This Kelvin-Helmholtz
instability corresponds to a situation when a wave is capable of extracting energy from
the background pure current state, by drawing either kinetic energy from the pure current
motion or potential energy from the stratification.1 Since these instability phenomena
are a prelude to mixing and turbulence, it is important to understand whether or not they
are inherent to the equatorial wave–current interactions. For considerations of spectral
type the explicit formulas for the roots of the quartic characteristic polynomial are too
unwieldy. We advocate an approach that takes advantage of the fact that each entry of
the matrix M(k) depends smoothly (actually, the dependence is real-analytic) on the pa-
rameter k. This ensures that the eigenvalues depend continuously on k, even if splitting
and coalescence of eigenvalues may take place (see the discussion in [21], Chapter VII)
and the eigenvalues need not be differentiable, which makes it difficult to translate this
feature quantitatively. Also, note that the eigenspaces can behave quite singularly—they
are not necessarily continuous. However, for simple eigenvalues the eigenvalue itself as
well as the (unique) normalised eigenvector will exhibit a real-analytic dependence on
k (see [25]). Note that the multiparameter version of this last result fails spectacularly:
for simple eigenvalues, a locally Lipschitz-dependence holds but differentiability might

1 The wave motion involves lifting of denser fluid and sinking of lighter fluid, both of which cause a change
in the centre of gravity which brings about a change of potential energy. In the absence of dissipation, the
supply/loss of potential energy can only be provided by conversion of/into kinetic energy.
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fail and it may not even be possible to choose eigenvectors in a continuous way (see the
discussion in [24]).

Since our main interest is the propagation of localised perturbations, it is advantageous
to use the Paley-Wiener theorem to translate the feature that x �→ u(x, t) has compact
support at every instant into the requirement that k �→ û(k, t) is an analytic function of
exponential type. The general solution of (4.19) is a linear combination of solutions of
the form tne	(k)tU, where n is a nonnegative integer, U is a constant vector and 	(k) is an
eigenvalue of M(k). Since the fact that no entry of the matrix M(k) exhibits a superlinear
growth in k towards infinity ensures, by inspection of Ferrari’s classical algebraic solution
to the quartic, the existence of a constant m > 0 such that |	(k)| ≤ m(1 + |k|) for
all k ∈ R, we deduce that k �→ û(k, t) remains forever of exponential type if it is
initially so. Consequently the linearised system captures the propagation of localised
wave perturbations of the pure current background state.

A simple calculation shows that M(0) has 	(0) = 0 as an eigenvalue of algebraic
multiplicity four and geometric multiplicity two, with the eigenspace spanned by the
eigenvectors (1 0 0 0)⊺ and (0 1 0 0)⊺. This behaviour is quite different from that en-
countered for waves in the physically relevant regime 0 < |k| < 64.

Lemma. The matrix M(k) has four distinct purely imaginary eigenvalues for 0 < |k| <

64.

Proof. Note that 	(k) ∈ C is an eigenvalue of M(k) with eigenvector (v1 v2 v3 v4)
⊺ if

and only if λ(k) = i	(k)
k

is an eigenvalue with corresponding eigenvector
(v1 v2 ikv3 ikv4)

⊺ of the real matrix

R(k) =

⎛

⎜

⎜

⎜

⎜

⎝

γ h − μ �(k) −μ1 sech(h1k)�(k) �(k) sech(h1k)�(k)

−μ sech(h1k)�(k) Ŵ1 − μ1�1(k) sech(h1k)�(k) �1(k)

−Ŵ + μ2 �(k) μμ1sech(h1k)�(k) γ h − μ �(k) −μ sech(h1k)�(k)

μμ1sech(h1k)�(k) −ωŴ1 +g+μ2
1 �1(k) −μ1 sech(h1k)�(k) Ŵ1 − μ1�1(k)

⎞

⎟

⎟

⎟

⎟

⎠

.

To investigate the roots of the characteristic polynomial p(λ) = det(R − λI4), we first
perform two sets of operations to simplify its structure. Add the first row multiplied by
μ to the third row, and the second row multiplied by μ1 to the fourth row, and in the
outcome add the third column multiplied by μ to the first column and the fourth column
multiplied by μ1 to the second column to obtain a determinant edxpressed in terms of
X = λ − γ h, corresponding to the wave speed relative to the maximum speed of the
EUC, as

p̂(X) =

∣

∣

∣

∣

∣

∣

∣

−X 0 � s�
0 γ1h1 − X s� �1

−Ŵ − 2μX 0 −X 0
0 ĝ − 2μ1 X 0 γ1h1 − X

∣

∣

∣

∣

∣

∣

∣

, (4.23)

where ĝ = g+γ 2
1 h1−ωγ h and s = s(k) = sech(h1k). Expanding the above determinant

by minors along the first column yields

p̂(0) = −Ŵ�
{

ĝ(�1 − s2�) − γ 2
1 h2

1

}

> 0 (4.24)

since � > 0 > Ŵ and the inequality s < (1 + s) tanh(s) for s > 0, in combination with
the relation

�1 − s2� = tanh(h1k)

k
, (4.25)



Equatorial Wave–Current Interactions 29

yields γ 2
1 h2

1/(�1 − s2�) = γ 2
1 h1h1k/ tanh(h1k) < γ 2

1 h1 (1 + h1|k|) < ĝ for |k| < 64.
On the other hand,

p̂
(

− Ŵ

2μ

)

= Ŵ2

4μ2

{(

γ1h1 +
Ŵ

2μ

)2
− �1

(

ĝ +
μ1Ŵ

μ

)}

< 0 (4.26)

since the inequality tanh(s) < s < (1 + s) tanh(s) for s > 0 yields

h + h1 >
tanh(hk)

k
+

tanh(h1k)

k
> �1(k) >

tanh(h1k)

k
>

h1

1 + h1|k| , (4.27)

while μ > 0 > μ1, Ŵ < 0, and

�1

(

ĝ +
μ1Ŵ

μ

)

> �1ĝ >
h1ĝ

1 + |k|h1
> γ 2

1 h2
1 >

(

γ1h1 +
Ŵ

2μ

)2
for |k| < 64.

Note that

h >
tanh(kh)

k
> �(k) >

tanh(hk)

k(2 + r)
= h

2 + r

tanh(hk)

hk
>

h

(2 + r)(1 + h|k|) .

(4.28)

An expansion of (4.23) by minors along the first column yields

p̂(−μ�B) = −(ĝ + 2μμ1�B)s2μ2�3 B2 < 0, (4.29)

since B = 1 +
√

1 − Ŵ/(μ2�) > 2 satisfies B(2 − B)μ2� = Ŵ and ĝ + 2μμ1�B > 0.

We conclude from −μ�B < 0 < −Ŵ/(2μ) and (4.24), (4.26), (4.29), that the
quartic (4.23), with leading term X4, has four distinct real roots, two positive and two
negative. ⊓⊔

4.1.1. Long waves. We now describe the main features of the linear wave propagation
under the over-arching assumption of long waves, characterised by wavelengths in excess
of 16 km and corresponding roughly to |k| < 0.2.

The lemma in the preamble of this section validates the applicability of perturbation
theory. Using the approximations

s(k) ≈ 1, �(k) ≈ h

1 + r
, �1(k) ≈ h

1 + r
+ h1, (4.30)

for k → 0, in combination with

− Ŵ ≈ rg, ĝ ≈ g + γ 2
1 h1, 2μ ≈ (1 + r)γ − γ1, 2μ1 ≈ γ1, (4.31)

we can approximate the determinant (4.23) by

p0(X) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−X 0
h

1 + r

h

1 + r

0 γ1h1 − X
h

1 + r

h

1 + r
+ h1

rg + [γ1 − (1 + r)γ ]X 0 −X 0

0 g + γ 2
1 h1 − γ1 X 0 γ1h1 − X

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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An expansion of the above determinant by minors along the first column yields the
polynomial

p0(X) = X4 − (γ1h1 − γ h)X3

−[g(h + h1) + γ γ1hh1]X2 + ghh1(γ1 − γ )X +
rg2hh1

1 + r
. (4.32)

While the intricacy of the coefficients prevents us from using the explicit quartic formulas
to gain insight into the location of the roots of p0, we can nevertheless take advantage
of the approach used to reduce the solution of the quartic to solving the resolvent cubic.
More precisely, we seek real numbers A, α and β such that

p0(X) =
(

X2 − γ1h1 − γ h

2
X + A

)2
− (αX + β)2, (4.33)

a process factorising the quartic into a product of two quadratics whose roots are readily
available. Expanding the brackets on the above right side and comparing the coefficients
with (4.32), we get

β2 = A2 − rg2hh1

1 + r
, (4.34)

α2 = 2A + g(h + h1) +
(γ1h1 + γ h)2

4
, (4.35)

2αβ = −A(γ1h1 − γ h) − ghh1(γ1 − γ ), (4.36)

and the two available expressions for 4α2β2 yield a cubic equation for A,

4
{

2A + g(h + h1) +
(γ1h1 + γ h)2

4

}{

A2 − rg2hh1

1 + r

}

−
{

A(γ1h1 − γ h) + ghh1(γ1 − γ )
}2

= 0. (4.37)

It is a daunting task to use Cardano’s formulas to identify a real root A of the cubic (4.37)
so that α2 and β2, defined in (4.34)–(4.35), are positive. It turns out that a computational
approach can be avoided by using the available structure. Indeed, in terms of a =
A + g(h + h1)/2, we can write the cubic A(a) on the left side of (4.37) in the form

4
{

2a +
(γ1h1 + γ h)2

4

}{[

a − g(h + h1)

2

]2
− rg2hh1

1 + r

}

−
{

a(γ1h1 − γ h) +
g(h − h1)

2
(γ1h1 + γ h)

}2
.

Since

A(0) = g2(γ1h1 + γ h)2
{ (h + h1)

2

4
− rhh1

1 + r
− (h − h1)

2

4

}

= g2(γ1h1 + γ h)2 hh1

1 + r
>0,

we see that A(−[γ1h1 + γ h]2/8) < 0 < A(0). Thus A has a negative root a0 >

−(γ1h1 + γ h)2/8 and the cubic (4.37) has a root A0 such that

− g(h + h1)

2
− (γ1h1 + γ h)2

8
< A0 = a0 − g(h + h1)

2
< −g(h + h1)

2
. (4.38)



Equatorial Wave–Current Interactions 31

Since γ1h1 + γ h < 0, corresponding to A0 we get from (4.35) a value α0 < 0 with

γ1h1 + γ h

2
< α0 < 0, (4.39)

while (4.34) yields a value β0 > 0 with

g

√

(h + h1

2

)2
− rhh1

1 + r
< β0 < g

√

(h + h1

2
+

(γ1h1 + γ h)2

8g

)2
− rhh1

1 + r
. (4.40)

Writing now (4.33) in the form

p0(X) =
{

X2 −
(γ1h1 − γ h

2
+ α0

)

X + A0 − β0

}{

X2 −
(γ1h1 − γ h

2
− α0

)

X + A0 + β0

}

,

we see that the four real roots of the quartic p0 are given by

X1,2 = γ1h1 − γ h + 2α0

4
±

√

(γ1h1 − γ h + 2α0)2

16
+ β0 − A0, (4.41)

X3,4 = γ1h1 − γ h − 2α0

4
±

√

(γ1h1 − γ h − 2α0)2

16
− β0 + A0. (4.42)

By (3.17) and (3.27), the numerical range of the relevant physical constants is

h ≈ 8, h1 ≈ 0.24, γ h ≈ 2, γ1h1 ≈ −3, g ≈ 2 × 104, r ≈ 10−3.

(4.43)

We will first obtain approximations of the roots (4.41)–(4.42) taking only into account
the relative sizes of the above parameters, more precisely, the fact that

g ≫ 1 while h + h1, γ h, γ1h1, rg are all O(1). (4.44)

The specification (4.43) singles out the details for the ocean dynamics in the equatorial
Pacific but other values, subject to (4.44), are relevant for flows in the equatorial regions
of the Atlantic and Indian ocean, respectively.

The estimates (4.38), (4.39) and (4.40) yield

X1,2 ≈ ±
√

g(h + h1), (4.45)

while Viète’s relations enable us to infer from (4.32) that

4
∑

n=1

X2
n =

(

4
∑

n=1

Xn

)2
− 2

4
∑

m,n=1,n �=m

Xm Xn = 2g(h + h1) + γ 2
1 h1 + γ 2h2,

so that X2
3 + X2

4 ≈ γ 2
1 h2

1 + γ 2h2. Using now (4.32) to write p0(X) = 0 for X = X3 and
X = X4 as

X4 − (γ1h1 − γ h)X3 − γ γ1hh1 X2

g
−
{

(h + h1)X2 − hh1(γ1 − γ )X − rghh1

1 + r

}

= 0,
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we can approximate X3,4 by the roots of the quadratic
{

(h + h1)X2 − hh1(γ1 − γ )X −
rghh1

1+r

}

, that is,

X3,4 ≈ (γ1 − γ )hh1

2(h + h1)
±

√

(γ1 − γ )2h2h2
1

4(h + h1)2
+

rghh1

(1 + r)(h + h1)
. (4.46)

Since c = λ = γ h + X and c = c U 0, we obtain from (3.17)–(3.18) that the dispersion
relations corresponding to (4.45) and (4.46) are, respectively,

c1,2 ≈ γ h ±
√

g(h + h1), (4.47)

and

c3,4 ≈ γ h +
(γ 1 − γ )h h1

2(h + h1)
±

√

√

√

√

(γ 1 − γ )2h
2
h

2

1

4(h + h1)2
+

rg h h1

(1 + r)(h + h1)
. (4.48)

Note that a root X of the quartic p̂(X) is related by means of λ = γ h + X to an
eigenvalue λ of the matrix R(k), and the corresponding eigenvector E = (E1 E2 E3 E4)

⊺

corresponds to the eigenvector (E1 E2
E3
ik

E4
ik

)⊺ for the eigenvalue 	(k) = −ikλ of the
matrix M(k). If E is an eigenvector of R(k), then, multiplying the first equation of the
system R(k)E = λE by μ and adding it to the second equation yields

E3 = −
(

μ +
Ŵ

X

)

E1,

while the second equation multiplied by μ1 and added to the fourth equation yields

E4 = μ1(X − γ1h1) + ωŴ1 − g

γ1h1 − X
E2,

and the first equation reads

−(μ� + X)E1 − μ1s�E2 + �E3 + s�E4 = 0.

Using the first two relations in the third yields

E1 = s�{g − ωŴ1 − 2μ1(X − γ1h1)}X

(X − γ1h1)[X2 + �(2μX + Ŵ)] E2. (4.49)

Taking (4.30) and (4.31) into account, (4.49) becomes

E1 ≈ h{g − γ1(X − γ1h1)}X

(X − γ1h1){X2 + (γ − γ1)h X − rgh} E2. (4.50)

For X = X1,2, (4.45) and (4.44) yield E1 ≈ gh X

X3 E2 ≈ h
h+h1

E2, that is,

η ≈ η1. (4.51)
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while for X = X3,4 the quadratic polynomial providing (4.46) yields [(γ − γ1)X −
rg]hh1 ≈ −(h + h1)X2, so that (4.50) simplifies to E1 ≈ h1{g−γ1(X−γ1h1)}

X (X−γ1h1)
E2 ≈

h1g
X (X−γ1h1)

E2, and in this case

η ≫ η1 ; (4.52)

for example, for the values specified in (4.43), the ratio η/η1 is about 500 (see Fig. 5).
The above considerations prove the validity of the following result.

Theorem 3. Within the framework of linear theory, long waves in slow-mode propagate

at speeds given by the formula (4.48), with the effects confined to the motion of the

thermocline, due to (4.52), while the propagation speed of the fast long-waves is given

by (4.47).

We showed that the Paley-Wiener theorem applied to the linear system (4.19) ensures
that a localised disturbance occurring in the equatorial mid-Pacific will generate a unique
solution in the form of a localised wave perturbation of the underlying pure current
background state, that we can regard as a superposition of periodic modes by means of
(4.22). Since in the ocean, energy tends to be concentrated in the lower frequencies, the
physically most relevant regime is that of long waves, in which the asymptotic procedure
implemented above supresses high frequencies by acting like a low-pass filter. From
(4.47) and (4.48), using the values in (4.43), we obtain four possible propagation speeds
in this regime:

c1 ≈ 202 m s−1, c2 ≈ −200 m s−1, (4.53)

c3 ≈ 1.56 m s−1, c4 ≈ −1.05 m s−1. (4.54)

The speed values (4.53) correspond to the extremely rare event2 of tsunami waves: if
triggered by a submarine earthquake or by a meteorite impact, these would consist, in
view of (4.51), of surface waves coupled with internal waves of roughly the same am-
plitude, propagating along the Equator eastwards at 727 km h−1 and westwards at 720
km h−1. While these fast waves are exceptional, note that on Sunday, 22 May 1960, sev-
eral powerful earthquakes in rapid succession, occurred along 1000 km of fault parallel
to the Chilean coastline, with the epicentre at about 200 km off the coast of Central Chile
(see the discussion in [5]). Tsunami waves were generated which propagated across the
Pacific Ocean and records of the travel time of the tsunami indicate a speed of about
720 km h−1, which matches well our predictions. On the other hand, the two values
(4.54) represent ubiquituous slow internal waves (known as eastward Kelvin waves and
westward Rossby waves): (4.52) yields that the corresponding surface waves are in-
significant, given that the typical amplitude of an internal wave is about 20 m. Note that
the predicted speed values (4.54) for the slow internal waves fit reasonably well with
reported field data (see the discussion in [7]). They highlight an important feature of the
equatorial ocean dynamics in the Pacific: the eastward internal wave speed exceeds the

2 While four out of every five tsunamis happen in the Pacific Ocean, initiated by earthquakes along the
boundary of one of the Earth’s main geologically active tectonic plates, those in the tropical Pacific tend to
be modest in size. However, a few times every century, tsunami waves generated by great earthquakes in the
North Pacific or along the Pacific coast of South America sweep across the entire Pacific. As for large asteriod
impacts into the deep ocean, these are very rare—the only currently known deep-ocean impact event on Earth
being the Eltanin asteroid impact and tsunami, ocurring about 2.5 million years ago when a asteriod exceeding
1 km in diameter did strike the ocean about 1500 km SSW of Chile (see [17]).
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thermocline

free  surface

Fig. 5. Linear long-wave theory: coupled localised wave perturbations over a large spatial scale exist but
the amplitude of the internal wave exceeds more than 500 times that of the surface wave. Typically detected
oscillations of the thermocline from its mean level are about 10 m

maximum speed of the EUC, while the westward internal wave is slower than the max-
imum speed of the surface wind-driven current. Consequently, the dynamic response of
the equatorial Pacific presents an east–west asymmetry due to the interaction between
waves and the depth-dependent underlying currents.

4.1.2. Short waves. High-frequency ocean waves, with wavelengths of 50–100 m, cor-
respond to the range 31 < |k| < 64, in which the approximations tanh(h1k) ≈ 1 and
tanh(kh) ≈ 1 are reasonable, so that �(k) ≈ 1

(2+r)|k| and �1(k) ≈ 1
|k| . On the other

hand, the fact that s �→ s/ sinh(s) is decreasing for s > 0 yields

0 < max{|μμ1|, |μk|, |μ1k|, k2} sech(h1k)�(k)

< k2 sech(h1k)�(k) <
k

(2 + r) sinh(h1k)
;

in particular, sinh(kh1) > 817 for k > 31 yields the upper bound 0.0189 above. Re-
taining only the leading order of each entry, we approximate the matrix M(k) in (4.19)
by

M∞(k) =

⎛

⎜

⎝

−iγ hk 0 |k|/(2 + r) 0
0 −iŴ1k 0 |k|
Ŵ 0 −iγ hk 0
0 ωŴ1 − g 0 −iŴ1k

⎞

⎟

⎠
, (4.55)

with Ŵ, Ŵ1 < 0. The characteristic polynomial

p∞(k,	) =
{

(	 + iγ hk)2 − Ŵ|k|/(2 + r)
}{

(	 + iŴ1k)2 + (g − ωŴ1)|k|
}

has the four disjoint purely imaginary eigenvalues

	±(k) = −iγ hk ± i
√

|Ŵk|/(2 + r), 	±(k) = −iŴ1k ± i
√

(g − ωŴ1)|k|
(4.56)
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thermocline

surface surface

thermocline

Fig. 6. Linear short-wave theory: there exist travelling periodic surface waves with speeds (4.58), with practi-
cally no recognisable effect at the thermocline (left), as well as travelling periodic internal waves with speeds
(4.57), which are not detectable at the surface (right)

with eigenvectors u±(ξ) =
(

1 0 ± i

√

(2+r)|Ŵ|
|k| 0

)

⊺

and u±(ξ) =
(

0 1 0 ± i

√

g−ωŴ1

|k|

)

⊺

,

respectively. Consequently we have four types of high-frequency oscillations: two modes
in which periodic sinusoidal disturbances of the thermocline propagate at the speeds

c±(k) = γ h ∓ |k|
k

√

|Ŵ|
(2 + r) |k| (4.57)

without any effect on the (flat) free surface, and two modes in which periodic harmonic
oscillations of the free surface propagate at the speeds

c±(k) = Ŵ1 ∓ |k|
k

√

g − ωŴ1

|k| (4.58)

with an undisturbed (flat) thermocline (see Fig. 6). The appearance of dispersive effects
is in marked contrast with the long waves: the initial disturbance can be thought of
as being composed of the sum of a great many modes and, as time passes by, due to
(4.57)–(4.58), the longer components (that is, those for which |k| is relatively smaller)
will propagate faster than the shorter modes.

Let us point out succinctly the practical meaning of the nondimensional formu-
las (4.57)–(4.58). In view of (3.17), the nondimensional travelling mode eik(x−ct), of
wavelength 2π

|k| , corresponds in physical variables to a harmonic oscillation of wave-

length 2π
|k| L , propagating at the speed c = c U0. More precisely, due to (3.27), (3.18),

(3.17), (3.82), (3.83) and (4.20), the dimensional counterpart of (4.57) for the wavelength
L = 2π

|k| L is

c±(L) = γ h ±

√

r (g − 2� γ h)

2 + r

L

2π
≈ γ h ±

√

rgL

2π(2 + r)
, (4.59)

while that of (4.58) is

c±(L) = (γ 1h1 + γ h) ±
√

(

g − 2� [γ 1h1 + γ h]
) L

2π
≈ (γ 1h1 + γ h) ±

√

gL

2π
.

(4.60)

The previous considerations prove the following result.
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Theorem 4. High-frequency linear waves can propagate as oscillations of the free sur-

face and of the thermocline, with the corresponding speeds, provided by the formulas

(4.60) and (4.59), respectively, imparting a dispersive character to the flow. The prop-

agation modes (at the surface or at the termocline) are decoupled, with no noticeable

effect occurring at the other interface.

Note that formula (4.60) predicts that sinusoidal surface waves with a wavelength
L = 100 m (corresponding to k = 10π ) propagate at speeds

c+(100) ≈ 12 m s−1, c−(100) ≈ −13 m s−1.

These values of the wavelength and of the wave speeds are realistic for wind-generated
surface waves in the Pacific (see [23]). On the other hand, by (4.59), the predicted
propagation speeds of sinusoidal internal waves with a wavelength of 100 m are

c+(100) ≈ 1.28 m s−1, c−(100) ≈ 0.72 m s−1.

Such values, close to the maximal speed of the Equatorial Undercurrent, are reported in
field data (see the discussion in [7]).

4.1.3. Solitary waves. For the linear system (4.18) the existence of a smooth localised
wave solution u(x − c0t) which propagates without change of shape at the constant
speed c0 is equivalent, upon applying the Fourier transform, to 	(k) = −ikc0 being
an eigenvalue of M(k) with corresponding eigenvector û(k) for every k ∈ R for which
û(k) �= 0. In physical terms this means that the internal solitary wave profile η ∈
S(R) is expressed in Fourier integral form η(x) = 1

2π

∫

R
η̂(k) eikx dk as consisting of

a superposition of harmonic wave components 1
2π

η̂(ξ) eikx of wavelength 2π/|k| and

amplitude 1
2π

|η̂(k)|, each travelling out at the same velocity so that the shape of the
initial localised disturbance is not altered as time passes by, the only effect being a mere
translation in the direction of wave propagation. We now prove that linear theory does
not capture the solitary wave phenomenon.

Theorem 5. The linearised problem does not admit solitary wave solutions.

Proof. The existence of a solitary wave corresponding to some non-trivial u ∈ S(R4)

and some propagation speed c0 �= 0 would ensure that c0 is a root of the characteristic
polynomial p(λ) associated to the real 4 × 4 matrix R(k) for all k in some open interval
(a, b) where û(k) �= 0. But since all entries of R(k) are real-analytic functions of the
variable k, this would mean that the real-analytic function k �→ p(c0) = det[R(k)−c0 I ]
vanishes for k ∈ (a, b). Consequently it must be identically zero, so that p(c0) = 0 for
all k ∈ R. Since limk→∞ sech(h1k) = limk→∞ �(k) = limk→∞ �1(k) = 0, letting
k → ∞ in the matrix [R(k) − c0 I ] yields the singular matrix

⎛

⎜

⎝

γ h − c0 0 0 0
0 Ŵ1 − c0 0 0

−Ŵ 0 γ h − c0 0
0 −ωŴ1 + g 0 Ŵ1 − c0

⎞

⎟

⎠
.

Consequently we should have c0 = γ h or c0 = Ŵ1. Letting k → 0 in the identity (4.24)
yields

lim
k→0

p(γ h) = Ŵhh1(γ
2
1 h1 − ĝ)

1 + r
�= 0,



Equatorial Wave–Current Interactions 37

which rules out the possibility c0 = γ h. On the other hand, from (4.23) we can express
limk→0 p(Ŵ1) expanding by minors along the last row yields to obtain the value

(ωŴ1 − g)
{ (Ŵ + 2μγ1h1)hh1

1 + r
+
( h

1 + r
+ h1

)

γ 2
1 h2

1

}

�= 0,

so that c0 �= Ŵ1. The obtained contradiction completes the proof. ⊓⊔

4.2. Weakly nonlinear models. Even the most powerful computers cannot handle the
full range of space and time scales that must be resolved to successfully simulate numer-
ically the real-world equatorial flows. Model equations and conceptual simplifications
can be brought to bear on the problem, thereby providing us with a considerable level of
understanding of various physically relevant regimes for equatorial wave–current inter-
actions. The results of the previous subsection show that linear models are not sufficient
to capture the solitary wave phenomenon. Recall that linear theory corresponds to re-
taining only quadratic terms in the expansion of the Hamiltonian, with the expansion
parameter describing the amplitude of the wave perturbation of a background pure cur-
rent state. Weakly nonlinear models can be derived by expanding the Hamiltonian up to
cubic terms in the wave amplitude, thereby permitting nonlinear interactions to become
relevant.

It is more convenient to write the governing Hamiltonian system (3.86) in terms of
the variables (q, q1, η, η1), where

q = ζx , q1 = ζ1,x . (4.61)

Using (3.82)–(3.83), (3.69), (3.58), (3.60), (3.43) and (3.13) we get

q − (μ + γ − γ1)η

r
= ∇ϕ

∣

∣

∣

z=η(x,t)
· (1, ηx ), q1 − μ1η1 = ∇ϕ1

∣

∣

∣

z=h1+η1(x,t)
· (1, ηx ),

so that [q − (μ + γ − γ1)η|/r and q1 − μ1η1 are the tangential velocities of the wave
perturbations at the interface and free surface, respectively. Therefore the variables
(q, q1, η, η1) basically encode the profiles and the propagation speeds of the inter-
face and of the free surface, whilst taking into account the vorticity values above and
below the thermocline as well as the effect of the Earth’s rotation. Note that (3.38) in
combination with (3.82)–(3.83) ensure q, q1 ∈ S(R). Since for q = ζx and q̃ = ζ̃x ,
using integration by parts, we see that

∂H

∂ζ
= −∂x

∂H

∂q
,

∂H

∂ζ1
= −∂x

∂H

∂q1
.

Similarly, since (3.82)–(3.83) yield ξx = q − μη and ξ1,x = q1 − μ1η1, we get

∂H

∂ξ
= −∂x

∂H

∂ξx

= −∂x

∂H

∂q
+ μ∂x

∂H

∂η
,

∂H

∂ξ1
= −∂x

∂H

∂ξ1,x

= −∂x

∂H

∂q1
+ μ1 ∂x

∂H

∂η1
.

(4.62)

Therefore, in terms of the new variables, the Hamiltonian system (3.86) takes on the
form

d

dt

⎛

⎜

⎝

q

q1

η

η1

⎞

⎟

⎠
= −∂x

⎛

⎜

⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟

⎠

⎛

⎜

⎝

∂H/∂q

∂H/∂q1

∂H/∂η

∂H/∂η1

⎞

⎟

⎠
. (4.63)
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4.2.1. KdV equation describing the evolution of the thermocline. Taking ε ≪ 1 and
δ ≪ 1 to be small parameters, we consider the shallow-water (long wave) regime
defined by the spatial scale

x ′ = εx, (4.64)

and the wave perturbation scales

{

η(x, t) = ε2η′(x ′, t), q(x, t) = ε2 q ′(x ′, t),

η1(x, t) = δε2 η′
1

(

x ′,
t

δ

)

, q1(x, t) = δε2 q ′
1

(

x ′,
t

δ

)

,
(4.65)

in which η and q, as well as η1 and q1, are considered of the same order of magnitude,
with the surface wave having a smaller amplitude than the internal wave—an impulse that
generates wave perturbations of the background pure current state will typically have
a pronounced oscillatory effect at the thermocline3 whereas the sea surface is hardly
affected at all.4 The interpretation of the scaling (4.65), in which the typical internal
wave amplitude ε2 and wavelength ε−1 are in quadratic balance, is that x ′, t , η′, q ′, η′

1
and q ′

1 are all of order O(1), with (4.64) specifying the distance needed to bring about
this balance for the dynamics of the flow. Note that the nondimensionalisation performed
in Sect. 3.2 fixed the reference scales of 500 m for length and 0.5 m s−1 for speed, while
typical amplitudes and propagation speeds of equatorial internal waves do not exceed
50 m and 0.1 m s−1, respectively. This is consistent with the choice ε ≪ 1 in (4.65).
The time scale at the surface, introduced in (4.65), captures the fact that changes in the
surface wave profile occur faster than at the thermocline; note also that the discussion of
Hamiltonian perturbations at the beginning of Sect. 4 shows that to use different spatial
scales for the two interfaces requires a different adjustment of the two time scales.
The scaling (4.64)–(4.65) introduces the small parameters ε and δ into the Hamiltonian
(3.73), transforming (4.63) accordingly into the Hamiltonian system

d

dt

⎛

⎜

⎝

q ′

q ′
1

η′

η′
1

⎞

⎟

⎠
= −∂x

⎛

⎜

⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟

⎠

⎛

⎜

⎝

∂H′/∂q ′

∂H′/∂q ′
1

∂H′/∂η′

∂H′/∂η′
1

⎞

⎟

⎠
, (4.66)

with Hamiltonian H′ = Hε−3.

Due to (4.8), (4.9), (4.13), (4.14), under the scaling (4.65) the Taylor expansion for
the Dirichlet–Neumann operator G(η) is

G(η′) = ε2h(D′)2 + ε4
{

− 1
3

h3(D′)4 + D′η′(x ′)D′
}

+ ε6
{

− 2
15

h5(D′)6 − h2(D′)2η′(x ′)(D′)2
}

+ O(ε8) (4.67)

3 The impulse causes the denser water to rise above the flat equilibrium thermocline level, but gravity pulls
it back down because the water beneath the thermocline is heavier than that above it, and the inertia acquired
during the falling movement causes the water to penetrate below the level of equilibrium of the thermocline,
thus setting up an oscillatory motion. This wave disturbance propagates horizontally since the local increase
in pressure that occurs where a parcel of water rises above the equilibrium level pushes the fluid below it
away from that place, generating in this process an acceleration (and thus also a force) which also comprises
a horizontal component.

4 Since the internal restoring buoyancy force is much smaller than that at the surface, the density variation
across the thermocline being about one-thousandth of that across the air-water interface.
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since tanh(s) = s − 1
3

s3 + 2
15

s5 + O(s7) and for j ≥ 2 the terms G( j)(η′) are of order

O(ε8), while

G11(η
′, η′

1) = 1
h1

+ ε2
{

1
3

h1(D′)2 + 1

h2
1

η′(x ′)
}

+ ε4
{

− 1
45

h3
1(D′)4

+ 1
3

η′(x ′)(D′)2 + 1
3

(D′)2η′(x ′)
}

− ε2δ 1

h2
1

η′
1(x ′) + ε4δ

{

1
6

η′
1(x ′)(D′)2 + 1

6
(D′)2η′

1(x ′)
}

+ O(ε6),

(4.68)

since coth(s) = s−1 + 1
3

s − 1
45

s3 + O(s5) and csch(s) = s−1 − 1
6

s + 7
360

s3 + O(s5).
Using (4.67)–(4.68) for the asymptotic expansion of the operator B, defined in (3.68),
gives

B(η′, η′
1) = 1+r

h1
+ ε2

{

h(D′)2 + 1+r
3

h1(D′)2 + 1+r

h2
1

η′(x ′)
}

− ε2δ 1+r

h2
1

η′
1(x ′)

− ε4
{

1
3

h3(D′)4 − D′η′(x ′)D′

+ 1+r
45

h3
1(D′)4 − 1+r

3
η′(x ′)(D′)2 − 1+r

3
(D′)2η′(x ′)

}

+ ε4δ
{

1+r
6

η′
1(x ′)(D′)2 + 1+r

6
(D′)2η′

1(x ′)
}

+ O(ε6), (4.69)

and, with respect to this expansion, the inverse operator is

[B(η′, η′
1)]−1 = h1

1+r
− ε2h2

1

(1+r)2

{

h(D′)2 + 1+r
3

h1(D′)2 + 1+r

h2
1

η′(x ′)
}

+ ε2δ
1+r

η′
1(x ′) + O(ε4). (4.70)

Similarly we see that

G12(η
′, η′

1) = − 1
h1

+ ε2
{

− 1

h2
1

η′ + h1
6

(D′)2
}

+ O(ε3), (4.71)

G21(η
′, η′

1) = − 1
h1

+ ε2
{

− 1

h2
1

η′ + h1
6

(D′)2
}

+ O(ε3), (4.72)

G22(η
′, η′

1) = 1
h1

+ ε2
{

1

h2
1

η′ + h1
3

(D′)2
}

+ O(ε3). (4.73)

Let us now choose δ = O(ε) in (4.64). Writing the Hamiltonian (3.73) as functionally
dependent on η′, η′

1, ξ ′, ξ ′
1, we retain terms up to order O(ε5) and thus reduce the

Hamiltonian (3.73) to

H (5) = ε6 (1+r)γ 2−γ 2
1

6

∫

R

(η′)3 dx ′

ε
+ ε4 rg+γ h[(1+r)γ−γ1]

2

∫

R

(η′)2 dx ′

ε

+ ε4δ2 g+γ1(γ h+γ1h1)
2

∫

R

(η′
1)

2 dx ′

ε

− ε4 γ

∫

R

(ε2η′ + h)η′
x ′ξ

′ dx ′

ε
− ε4δ2(γ h + γ1h1)

∫

R

η′
1,x ′ξ

′
1

dx ′

ε

+ ε4δ h
1+r

∫

R

ξ ′(D′)2ξ ′
1

dx ′

ε
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+ ε4 h
2(1+r)

∫

R

ξ ′(D′)2ξ ′ dx ′

ε
− ε6 h3

3(1+r)

∫

R

ξ ′(D′)4ξ ′ dx ′

ε

+ ε6 1
2(1+r)

∫

R

ξ ′D′η′(x ′)D′ ξ ′ dx ′

ε

− ε6 h2h1

(1+r)2

∫

R

ξ ′(D′)4 ξ ′ dx ′

ε
+ ε4δ2( h1

2
+ h

2(1+r)
)

∫

R

ξ ′
1(D′)2 ξ ′

1

dx ′

ε

since (4.64) and (3.82)–(3.83) yield ξ = εξ ′ and ξ1 = ε2ξ ′
1, and the only pseudo-

differential operators for which we have to take into account one term beyond leading
order are G22 and

G B−1G11 = ε2 h
1+r

(D′)2 + ε4
{

− h3

3(1+r)
(D′)4

+ 1
1+r

D′η′(x ′)D′ − h2h1

(1+r)2 (D′)4
}

+ O(ε5),

G21 B−1G12 = 1
(1+r)h1

+ ε2
{

1

(1+r)h2
1

η′ − 2h1
3(1+r)

(D′)2 − h
(1+r)2 (D′)2

}

+ O(ε3).

On the other hand, in analogy to (4.62), the relations

∂x ′ξ ′ = q ′ − μη′, ∂x ′ξ ′
1 = q ′

1 − μ1η
′
1, (4.74)

yield

H (5)(q ′, q ′
1, η

′, η′
1) = ε3 1

2

∫

R

(

h

r + 1
q ′2 − 2

μh

r + 1
q ′η′ + A1η

′2 + δ2(g − ωŴ1)(η
′
1)

2

)

dx ′

+ ε3δ
h

r + 1

∫

R

(

q ′q ′
1 − μη′q ′

1 − μ1η
′
1q ′ + μμ′

1η
′η′

1

)

dx ′

+ ε3γ h

∫

R

q ′η′ dx ′ + ε3δ2Ŵ1

∫

R

q ′
1η

′
1 dx ′

− ε5 A2

2

∫

R

(

(q ′
x )

2 − 2μq ′
x ′η

′
x ′ + μ2(η′

x ′)
2
)

dx ′

+ ε5 1

2(1 + r)

∫

R

η′(q ′)2 dx ′ + ε5
(γ

2
− μ

r + 1

)

∫

R

q ′(η′)2 dx ′

+ ε5 A3

6

∫

R

(η′)3 dx ′

+ ε3δ2 1

2

(

h

r + 1
+ h1

)∫

R

(

(q ′
1)

2 − 2μ1q ′
1η

′
1 + μ2

1(η
′
1)

2
)

dx ′

(4.75)

where

A1 = rg − rωγ h +
hμ2

r + 1
, A2 = h2[(1 + r)h + 3h1]

3(1 + r)2
,

A3 = (1 + r)γ 2 − γ 2
1 − 3γμ +

3μ2

r + 1
. (4.76)
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We now neglect terms of order O(ε6) in the Hamiltonian H, thus replacing (4.66) by a
truncated Hamiltonian system. The canonical equations for the variables related to the
free surface are linear

η′
1,t = −∂x ′

[

δŴ1η
′
1 +

h

r + 1
(q ′ − μη′) + δ

(

h

r + 1
+ h1

)

(q ′
1 − μ′

1η
′
1)

]

, (4.77)

q ′
1,t = −∂x ′

[

δŴ1q ′
1 − δμ1

(

h

r + 1
+ h1

)

(q ′
1 − μ1η

′
1)

− μ1h

r + 1
(q ′ − μη′) + δ(g − ωŴ1)η

′
1

]

, (4.78)

while those for the variables at the thermocline are nonlinear

η′
t = −∂x ′

[

γ hη′ +
h

r + 1

(

q ′ − μη′ + δ(q ′
1 − μ1η

′
1)
)

+ ε2 A2(q
′
x ′x ′ − μη′

x ′x ′)

+ ε2 1

r + 1
q ′η′ + ε2

(γ

2
− μ

r + 1

)

η′2
]

, (4.79)

q ′
t = −∂x ′

[

γ hq ′ − μh

r + 1
q ′ + A1η

′ − δ
hμ

r + 1
(q ′

1 − μ1η
′
1) − ε2 A2μ(q ′

x ′x ′ − μη′
x ′x ′)

+ ε2 1

r + 1

q ′2

2
+ ε2

(

γ − 2μ

r + 1

)

η′q ′ + ε2 A3
η′2

2

]

. (4.80)

For δ ≪ ε2 we can neglect the δ-terms above and decouple the internal wave motion
from the oscillations of the free surface: the system (4.77)–(4.80) simplifies to

η′
1,t = − h

r + 1
(q ′ − μη′)x ′ , (4.81)

q ′
1,t = − μ1h

r + 1
(q ′ − μη′)x ′ , (4.82)

η′
t = −∂x ′

[

γ hη′ +
h

r + 1
(q ′ − μη′) + ε2 A2(q

′
x ′x ′ − μη′

x ′x ′)

+ ε2 1

r + 1
q ′η′ + ε2

(γ

2
− μ

r + 1

)

η′2
]

, (4.83)

q ′
t = −∂x ′

[

γ hq ′ − μh

r + 1
q ′ + A1η

′ − ε2 A2μ(q ′
x ′x ′ − μη′

x ′x ′)

+ ε2 1

r + 1

q ′2

2
+ ε2

(

γ − 2μ

r + 1

)

η′q ′ + ε2 A3
η′2

2

]

. (4.84)

Note that (4.81)–(4.82) yield (q ′
1 − μ1η

′
1)t = 0; these equations also show that the

motion of the free surface is determined by the initial data and the characteristics (η′, q ′)
of the displacements of the thermocline. On the other hand, from (4.83)–(4.84) we infer
that the leading order linear equations for η′ and q ′ are

η′
t = − h

r + 1
q ′

x ′ +

(

hμ

r + 1
− γ h

)

η′
x ′, (4.85)

q ′
t =

(

hμ

r + 1
− γ h

)

q ′
x ′ − A1 η′

x ′ . (4.86)
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Therefore the wave speed c of a linear travelling wave, in which the (x ′, t)-dependence
is solely in terms of (x ′ − ct), satisfies the quadratic equation

(

c − γ h +
hμ

1 + r

)2

= h

r + 1
A1 (4.87)

which, in view of (4.76), has the solutions

c = γ h − hμ

r + 1
±

√

(

hμ

r + 1

)2

+
hr(g − γ hω)

r + 1
. (4.88)

Note that g ≫ γ hω, so that the solutions are real. Recalling from (3.36) that γ h is
the speed of the underlying current at the mean level z = 0 of the thermocline, we see
that in (4.88) the plus sign corresponds to the speed of waves outrunning the current
(downstream linear waves), while the minus sign corresponds to the speed of waves
running counter to the current (upstream linear waves). At this (leading) order c is
a constant and dispersion effects are not observable. To deal with nonlinear effects,
setting

c0 = c − γ h, c1 = c − γ h +
μh

r + 1
= ±

√

(

hμ

r + 1

)2

+
hr(g − γ hω)

r + 1
, (4.89)

with c given by (4.88), we observe that (4.85)–(4.86) show that q ′ = ((r + 1)c1η
′)/h at

the leading order. We therefore expect that

q ′ = (r + 1)c1

h
η′ + ε2b1η

′2 + ε2b2η
′
x ′x ′ + O(ε3) (4.90)

for some constants b1,2 that are yet to be determined. With the Ansatz (4.90), we sub-
stitute q ′ in (4.83)–(4.84) and write both two equations in terms of η′ only up to the
order O(ε2), thus obtaining two evolutionary equations for η′, which should coincide
up to O(ε). The equality of their coefficients allows us to find the constants b1 and b2,
as follows:

b1 = r + 1

2h

[

γ

2
− μ

r + 1
+

h

2(r + 1)c1
A3 − c1

2h

]

, (4.91)

b2 = A2

2h

(

μ2h

c1
− (r + 1)2c1

h

)

. (4.92)

The resulting evolution equation for η is

η′
t + cη′

x ′ + ε2 A2(r + 1)c2
0

2hc1
η′

x ′x ′x ′ + ε2 1

2c1

(

3c2
0

h
+ 3γ c0 + hγ 2 − hγ 2

1

1 + r

)

η′η′
x ′ = 0,

(4.93)

while the corresponding q ′ can be recovered from (4.90). Although we can write (4.93)
in the standard form of the KdV-equation in a moving frame of reference by means of
a scaling transformation (see [35]), we prefer to work with the form (4.93) to facilitate
the physical interpretation of the mathematical results. One appealing feature of the
KdV equation (4.93) is its bi-Hamiltonian structure: the equation has two expressions
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as a Hamiltonian evolutionary equation, with the two Hamiltonian operators compat-
ible, that is, any linear combination is again a Hamiltonian operator (see [35]). The
bi-Hamiltonian structure ensures the existence of infinitely many integrals of motion
that are functionally independent. Moreover, the equation can be solved exactly using
inverse scattering theory: starting with arbitrary initial data in the Schwartz class, the
solution that evolves from this data develops into a finite number of localised solitary
waves (solitons) with speeds proportional to the amplitude, plus an oscillatory tail (see
the discussion in [5]). Each solitary wave recovers its localised identity after interacting
with other solitary waves (re-emerging unscated after such interaction, the only hallmark
of the interaction being a phase shift), while the oscillatory tail disperses and spreads
out in space. Therefore the solution evolves in to an ordered set of solitons, with the
tallest in front, followed by an oscillatory tail. The details of this general picture can be
predicted fairly explicitly from detailed knowledge of the initial data. For example, the
internal solitary wave solution is a wave of depression, given in the original variables
by

η′(x, t) = − A sech2
{1

2

√

−AA
3B

[

(x − x0) −
(

c − AA
3

)

t
]}

,

with A > 0 and A = 1
2c1

(

3c2
0

h
+ 3γ c0 + hγ 2 − hγ 2

1
r+1

)

< 0, B = A2(r+1)c2
0

2hc1
> 0. We

see that the propagation speed of the solitary wave, c +
A|A|

3
, exceeds the speed c of the

leading-order linear wave by an amount that is proportional to the wave amplitude A.
Therefore larger solitary waves travel faster. With regard to the soliton interaction of two
solitary waves that are initially separated, with the larger (and faster) one overtaking the
smaller (and slower) one, they emerge unscated from the interaction, but each is shifted,
this being the hallmark of the nonlinear nature of the interaction—in contrast to mere su-
perposition. More precisely, the faster/slower solitary wave is shifted forward/backward

by
√

12B
a1|A| ln

√
a1+

√
a2√

a1−
√

a2
and

√

12B
a2|A| ln

√
a1+

√
a2√

a1−
√

a2
, respectively, where a1 > a2 > 0 are the

amplitudes of the solitary waves. We point out that case studies for such wave phenomena
in equatorial regions are available in the literature (see the interpretation of space shuttle
photographs in [47], which show the relevance of soliton theory to the propagation of
equatorial internal waves, and the discussion in [2], where it is pointed out that internal
solitons are likely to be generated by the relaxation of the trade winds at the western
boundary of the equatorial Pacific that triggers the “El Niño” event), although in general
the presence of underlying currents is neglected. We see that the effect of the currents
is encoded in the coefficients of the equation, so that these currents alter the shape and
speed of these solitons (in comparison to the classical irrotational setting).

4.2.2. Inviscid Burgers regime. Equatorial ocean dynamics present peculiar features
when compared to off-equatorial regions. A remarkable anomaly is that, despite high
levels of internal wave energy and shear due to the presence of strong, zonal, basin-
scale currents, study observations show that internal wave breaking is less frequent than
one might anticipate, with rates near the Equator less than 10% of those typical at mid-
latitudes for internal waves of comparable energy (see [18]). Nevertheless, internal wave
breaking does occur in the equatorial Pacific: observations indicate that, in a process in
which the interactions with the large shear caused by the EUC play a significant rôle
(with the EUC enhancing the internal wave activity—see the discussion in [27]), a
strong wind stress propagates downward and generates quite significant internal waves
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(see [45]) which often break. The breaking is preceded by a steepening of the internal
wave profile which results in finite-time gradient blow-up. We will now indicate how the
Hamiltonian perturbation approach yields in a specified physical regime model equations
that capture this type of behaviour.

Taking ε ≪ 1 and δ ≪ 1 to be small parameters, we consider the shallow-water
regime defined by the spatial scale

x ′ = εx, (4.94)

and the wave perturbation scales

{

η(x, t) = εη′(x ′, t), q(x, t) = ε q ′(x ′, t),

η1(x, t) = δε η′
1

(

x ′,
t

δ

)

, q1(x, t) = δε q ′
1

(

x ′,
t

δ

)

,
(4.95)

in which x ′, t , η′, q ′, η′
1, and q ′

1 are of the order of magnitude O(1), with the surface
perturbations faster but less significant than those at the thermocline (in view of the fact
that δ ≪ 1). The regime (4.94)–(4.95) captures internal waves of larger amplitude than
the long-wave regime (4.64)–(4.65), transforming (4.63) into the Hamiltonian system

d

dt

⎛

⎜

⎝

q ′

q ′
1

η′

η′
1

⎞

⎟

⎠
= −∂x

⎛

⎜

⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟

⎠

⎛

⎜

⎜

⎝

∂H̃/∂q ′

∂H̃/∂q ′
1

∂H̃/∂η′

∂H̃/∂η′
1

⎞

⎟

⎟

⎠

, (4.96)

with Hamiltonian H̃ = H/ε. For δ = O(ε), we follow the approach pursued in Sect. 4.1
and expand the Hamiltonian (3.73) up to order O(ε3), obtaining

H (3)(q ′, q ′
1, η

′, η′
1) = ε

1

2

∫

R

(

h

r + 1
q ′2 − 2

μh

r + 1
q ′η′+ A1η

′2+δ2(g − ωŴ1)(η
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1)

2

)

dx ′

+ εδ
h

r + 1
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R
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1
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+ εγ h
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1(η
′
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2
)

dx ′,

(4.97)

with the notation in (4.76). We now neglect terms of order O(ε4) in the Hamiltonian H,
thus replacing (4.96) by a truncated Hamiltonian system with Hamiltonian H (3)/ε. The
canonical equations for the variables related to the free surface are linear
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η′
1,t = −∂x ′

[

δŴ1η
′
1 +

h

r + 1
(q ′ − μη′) + δ

(

h

r + 1
+ h1

)

(q ′
1 − μ′

1η
′
1)

]

, (4.98)

q ′
1,t = −∂x ′

[

δŴ1q ′
1 − δμ1

(

h

r + 1
+ h1

)

(q ′
1 − μ1η

′
1)

− μ1h

r + 1
(q ′ − μη′) + δ(g − ωŴ1)η

′
1

]

, (4.99)

while those for the variables at the thermocline are nonlinear

η′
t = −∂x ′

[

γ hη′ +
h

r + 1

(

q ′ − μη′ + δ(q ′
1 − μ1η

′
1)
)

+ ε2 A2(q
′
x ′x ′ − μη′

x ′x ′)

+ ε
1

r + 1
q ′η′ + ε

(γ

2
− μ

r + 1

)

η′2
]

, (4.100)

q ′
t = −∂x ′

[

γ hq ′ − μh

r + 1
q ′ + A1η

′ − δ
hμ

r + 1
(q ′

1 − μ1η
′
1) − ε2 A2μ(q ′

x ′x ′ − μη′
x ′x ′)

+ ε
1

r + 1

q ′2

2
+ ε

(

γ − 2μ

r + 1

)

η′q ′ + εA3
η′2

2

]

. (4.101)

For δ = O(ε2) we can neglect the δ-terms and the ε2-terms above and decouple the mo-
tion of the thermocline from that of the free surface: the system (4.98)–(4.101) simplifies
to

η′
1,t = − h

r + 1
(q ′ − μη′)x ′ , (4.102)

q ′
1,t = − μ1h

r + 1
(q ′ − μη′)x ′ , (4.103)

η′
t = −∂x ′

[

γ hη′ +
h

r + 1
(q ′ − μη′) + ε

1

r + 1
q ′η′ + ε

(γ

2
− μ

r + 1

)

η′2
]

, (4.104)

q ′
t = −∂x ′

[

γ hq ′ − μh

r + 1
q ′ + A1η

′ + ε
1

r + 1

q ′2

2
+ ε

(

γ − 2μ

r + 1

)

η′q ′ + εA3
η′2

2

]

.

(4.105)

The Eqs. (4.102)–(4.103) show that the motion of the free surface is determined by the
initial data and the characteristics (η′, q ′) of the displacements of the thermocline, with
(q ′

1 −μ1η
′
1)t = 0. Note that (4.104)–(4.105) show that the leading order linear equations

for η′ and q ′ are (4.85)–(4.86), so that the wave speed c of a linear travelling wave, in
which the (x ′, t)-dependence is solely in terms of (x ′−ct), satisfies the quadratic equation
(4.87) whose solutions are given by (4.88). The choice of the plus sign in (4.88) yields
the speed of linear waves outrunning the current, while (3.82) shows that the minus
sign corresponds to the linear waves propagating westwards. To investigate nonlinear
effects, using the notation (4.89), we infer from (4.85)–(4.86) that q ′ = ((r + 1)c1η

′)/h

at leading order. We therefore expect that

q ′ = (r + 1)c1

h
η′ + εb1η

′2 + O(ε2) (4.106)

for some constant b1 to be determined. With the Ansatz (4.106), we substitute q in
(4.104)–(4.105) and write both two equations in terms of η′ up to the order of O(ε2),
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thus obtaining two evolutionary equations for η′, which should coincide up to O(ε).
From the equality of their coefficients we obtain

b1 = r + 1

2h

[

γ

2
− μ

r + 1
+

h A3

2(r + 1)c1
− c1

2h

]

. (4.107)

The resulting evolution equation for η is the inviscid Burgers equation

η′
t + cη′

x + ε2 1

2c1

(

3c2
0

h
+ 3γ c0 + hγ 2 − hγ 2

1

1 + r

)

η′η′
x = 0, (4.108)

while q ′ can be recovered from (4.106). It is well-known (see, for example, the discussion
in [12]) that any initial data in the Schwartz class will lead to finite-time blow-up for the
solution to (4.108) in the form of wave breaking: the solution remains bounded but its
slope becomes unbounded in finite time.

5. Concluding Discussion

Within the framework of two-dimensional equatorial flows in the f -plane, with no
meridional variations, we presented a Hamiltonian formulation of the nonlinear gov-
erning equations for wave–current interactions in a two-layer inviscid fluid with a flat
bed and a free surface, for flows with constant vorticity in each layer. A key step was to
prove, without recourse to approximations, that the flow can be viewed as an irrotational
perturbation—possibly of the same order—of a mean flow that represents the under-
lying current field. We have also derived several simplified models for the equatorial
wave–current interaction across the Pacific through systematic structure-preserving per-
turbation theory. These have genuine potential as simplified diagnostic and prognostic
models since they accommodate all the salient features of equatorial ocean dynamics in
the Pacific (strong stratification, as well as a current field with flow-reversal) and are able
to capture nonlinear effects. In particular, at some specific geophysical scales the weakly
nonlinear long-wave regime turns out to be structure-enhancing since in this setting the
nonlinear dynamics is described by a KdV equation—an integrable infinite-dimensional
Hamiltonian system. The derived models can discriminate between different physical
effects in observations and simulations, dictated by different scales. For example, the
variety of oceanographically relevant scales permits us to single out various types of in-
terplay between dispersion and nonlinearity, ranging from regimes in which dispersion
and nonlinearity balance each other and allow wave solutions that propagate without
change of form to dispersionless regimes that favour wave breaking.

The general systematic approach developed in this paper is also useful for develop-
ing accurate numerical procedures. Note that, even within the framework of irrotational
two-layer inviscid flow with a free surface, the problem of treating computationally the
nonlinear interactions between the surface and internal modes of oscillation is challeng-
ing (see the discussion in [37]). For example, for fixed densities ρ > ρ1 of the layers

but allowing variations of their mean depths h and h1, in the rigid-lid approximation the
polarity of the internal solitary waves (that is, whether they are waves of elevation or
depression) changes once in the range h1/h ∈ (0, 1), while no such change occurs in
the coupled configuration (see [1,10]). Furthermore, the presence of non-zero vorticity
in each layer complicates considerably the dynamics. Showing that within the nonlinear
framework it is possible to split the velocity field into an underlying steady current com-
ponent and a harmonic wave velocity field opens up the possibility to find numerically
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solitary wave solutions to the fully-nonlinear problem using a boundary integral method
based on Cauchy integral formula (see the discussion in [41]).

The Hamiltonian approach developed in this paper and the above mentioned topics
open up exciting perspectives for future interdisciplinary research on equatorial wave–
current interactions.
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