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EQUICONVERGENCE THEOREMS FOR
FOURIER-BESSEL EXPANSIONS WITH APPLICATIONS TO

THE HARMONIC ANALYSIS OF RADIAL FUNCTIONS
IN EUCLIDEAN AND NONEUCLIDEAN SPACES

LEONARDO COLZANI, ANTONIO CRESPI, GIANCARLO TRAVAGLINI
AND MARCO VIGNATI

Abstract. We shall prove an equiconvergence theorem between Fourier-Bessel

expansions of functions in certain weighted Lebesgue spaces and the classi-

cal cosine Fourier expansions of suitable related functions. These weighted

Lebesgue spaces arise naturally in the harmonic analysis of radial functions on

euclidean spaces and we shall use the equiconvergence result to deduce sharp

results for the pointwise almost everywhere convergence of Fourier integrals of

radial functions in the Lorentz spaces LP'q(W). Also we shall briefly apply

the above approach to the study of the harmonic analysis of radial functions on

noneuclidean hyperbolic spaces.

In 1869 Hermann Hankel proved what is by now known as Hankel's inversion

formula for Fourier-Bessel expansions:

Revisiting [Hankel] we shall prove an equiconvergence theorem between Fourier-

Bessel expansions of functions in certain weighted Lebesgue spaces and the clas-

sical cosine Fourier expansions of suitable related functions. These weighted

Lebesgue spaces arise naturally in the harmonic analysis of radial functions

on euclidean spaces and we shall use the equiconvergence result to deduce
sharp results for the pointwise almost everywhere convergence of Fourier in-

tegrals of radial functions in the Lorentz spaces Lp'q(R"). In particular we

shall prove that the partial sums of the Fourier integrals of radial functions

in L^m'1(R") + L"-i ''(R") converge almost everywhere, while for the other

Lorentz spaces either the partial sums cannot be defined, or they may diverge at

every point. Finally we shall briefly study the equiconvergence between Fourier-

Jacobi and cosine expansions. This is related to the harmonic analysis of radial

functions on noneuclidean hyperbolic spaces. It is noteworthy that in this case

pointwise convergence holds only for V^ spaces with p in a nonsymmetric

range around 2.

The plan of the paper is the following:
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44 LEONARDO COLZANI ET AL.

The first section contains some preliminary material and a short and ele-

mentary proof of the above Hankel's inversion formula for test functions. The

second section contains the equiconvergence theorems. In the third section we

study the harmonic analysis of radial functions on euclidean spaces, and in

the fourth section we construct functions with Fourier-Bessel integrals diverg-

ing everywhere. The fifth section is devoted to the harmonic analysis of radial

functions on noneuclidean spaces.

1. Hankel's inversion formula for test functions

i
2Let a > -i . An eigenfunction of the problem

d2   ,, x . 2a + 1 d   .
f(x) + —^i-f(x) = -y2f(x)

dx2 x    dx

is given by (xy)~a Ja(xy), where Ja(t) is the Bessel function of the first kind

of order a,

Ja{z) = £^oY(k + \)Y(k + a+\)\2)       ■

Denote by ¿?*(R+) the space of indefinitely differentiable even functions on

R with rapidly decreasing derivatives, and if f is in ■9P(R+) denote by / the

Hankel, or Fourier-Bessel transform,

f(y) = jo+0° f(x)J-f^x2«+x dx.

Then one can easily verify that if Ax = -x~2a~x (d/dx){x2a+xd/dx},

/■ + 0O /-+00

/      Axf(x)g(x)x2a+ldx = f(x)Axg(x)x2a+xdx,
Jo Jo

and since Ax[Ja(xy)/(xy)a] = y2Ja(xy)/(xy)a ,

(AxfT(y) = y2f(y),     (x2f(x)T(y) = Ayf(y).

In particular the Hankel transform maps S^(R+) onto itself.

Theorem (1.1). // / is in S*(R+), then

fix) = H \ rm^lt^dt) J-^y2°+xdy.
Jo     \Jo {yt)a J  (xy)*y

This result is well known, however the following proof is very elementary

and perhaps new.

Proof. First step. The inversion formula holds if f(x) = exp(-x2/2). Indeed

a term by term integration of the series defining the Bessel functions yields

k=0

f(v\=Yy_l   > z_y_ /      x2k+2a+xe-x/2dx
2^nY(k + l)Y(k + a + I) Jo

(-y2/2)k

Y(k + \)Z^ v(k 4. n     JKy>
k=0
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EQUICONVERGENCE THEOREMS FOR FOURIER-BESSEL EXPANSIONS 45

Second step. Let g(t) = f(t) - f(x) exp(x2 - t2)/2. To prove the inversion

formula for the function / it is enough to show that

I Xg(y)ïêêy2a+ldy = g(x) = o.
10 (*y)a

Third step. Write g(t) = (t2 - x2)h(t). Then

r^hM-x2~hw}Wr
C+oo

= 0.    D

Ja(xy)

(xy)a J (xy)a
x2-^l\y2°+xdy

2. Equiconvergence theorems

In this section we study certain extensions of Hankel's inversion formula to

functions not necessarily in the space S*(R+). In particular we shall consider

the .Rth partial sums of the Fourier-Bessel integrals:

SRf(x) = J*f(y)j^y2a+xdy.

Definition. For a function / in LX(R+, ^j^-dx) we define

/•+oo

SRf(x)= SR(x,y)f(y)dy,
Jo

where

SR(x,y)

(2.1) =x~aya+x [   tJa(xt)Ja(yt)dt
Jo

n^                      D„-a,.a+\xJa+\(Rx)Ja(Ry) -yJa+i(Ry)Ja(Rx)
(2.2) =Rx    y     -^—y2-.

SRf is the Rth partial sum of the Fourier-Bessel expansion of /. See [Wat-
son].

Definition. For a function g in LX(R+ , jf^) we define

r+oo_    , .      1   [+°°sinR(x-y)   . .,
pRg(x) = - /      —y    „     g(y)dy.

n Jo x-y

Füg is the Rth partial sum of the Fourier cosine expansion of g . See [Zyg-
mund].

Definition. For a function / in L'(R+, "Ç^-dx) we define

/•+oo

TRf(x) = x'a-x'2FR[y"+xl2f(y)](x) = /      TR(x, y)f(y)dy,
Jo
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46 LEONARDO COLZANI ET AL.

where

TR(x,y) = n-x(^)
y^a+l/2 Sini\(x - V)

x/ x - y

For the meaning of the measure ^j^-dx see Lemma (2.4) below. In partic-

ular the integrals defining the operators SR, FR and TR axe well defined.

Theorem (2.3). Let f be in LX(R+ , ¿Çj— dx) and let 0 < x < +00. Then

lim   \SRf(x) - TRf(x)\ = 0.
J?-»+oo

The convergence is uniform in every interval 0<e<x<r7<+oc.

The proof of this theorem is quite close to the original proof of Hankel's

inversion formula, however while the classical proofs we know consider

only functions in the space L1(R+, xa+xl2dx), we deal with the larger space

L'(R+ , ^Çr—- dx). This space is in some sense optimal, and we shall see that the

theorem implies sharp results on the almost everywhere convergence of Fourier

integrals of radial functions in euclidean spaces.

The key to the proof is to compare the kernels associated to the operators

{SR} with the ones associated to the {TR} 's.

Lemma (2.4). Let e and n be arbitrary positive numbers,

(i) If 0 <y <e <x then

\SR(x,y)\<Cya+x'2.

The constant C depends on e and x, but it is independent of y and R.

(ii) IfO<x<n<y then

\SR(x,y)\<Cya-1'2.

The constant C depends on n and x, but it is independent of y and R.

(iii) If e < x, y < r¡ then

,ysa+i/2 sini?(x -y)\
SR(x,y)-n-x(t) <C.

x-y

The constant C depends on e and r\, but it is independent of x, y and R.

Proof. The proof of the lemma is based on the classical estimates for Bessel

functions

{ C if 0 < t < 1,

(2-5) i«ois{crl/1 ifl;(;+0O,

and, if t —► +00,

(2.6) Ja(t) = ]/-^os{t-a---) + —^-sm(t-a---)+0(r

Similar estimates hold even for / complex, and |Argr| < n - e.   Again see

[Watson].
Proof of (i). IfO<v<e<x,by (2.2) and (2.5),

IWx.rtl < cjfr^.**)-1^)-'****)-'^**)-''1
x    y

< Cx-a-x/2(x-e)-xyn+x/2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EQUICONVERGENCE THEOREMS FOR FOURIER-BESSEL EXPANSIONS

Proof of (ii). If0<x<n<y,

\SR(x,y)\<CRx'ay

47

_„ Q+1 x(Rx)-x/2(Ry)-xl2+y(Ry)-x/2(Rxrx'2

< Cx-a-x/2-^—ya-x'2.
r] - x

Proof of (iii). If / is small, by (2.5) we have

(2.7) Ua(xt)Ja(yt) = 0(\),

while if t, x, v are away from 0, by (2.6) we have

(2.8)
tJa(xt)Ja(yt)

= -x_1/V1/2 cos (xt - c*2 - ^) cos (yt - o| - |)

1 - 4a2       / n     n\   .   / n     n\
cos^,_a___jsm^,_a___j+

+-

8yt

-4a2

Sxt

I n     n\  .   ¡ n.    n\     -.. _■> '
cos [yt - a - - - J sin {xt - a - - - J + 0(t ¿)

n-lX-l/2y-l/2 cos((x - y)t) + sin((x + y)t - an)

1 - 4a2 x - y   .   ..
sin((x -y)i)

8i       xy

1 - 4a2 x + y

St xy
cos((x + y)t - an) + 0(t~¿)

Integrating (2.7) between 0 and 1 and (2.8) between 1 and R it is easy to check

that

, rR , /v\«+i/2 rR
x-aya+\ i   tJa(xt)Ja(yt)dt = n-x U-J /   cos((x-y)t)dt + 0(\),

and (iii) follows.   G

Lemma (2.9). (i) Let Supp/ ç [0, e]. Then if x > e

\SRf(x)\ + \TRf(x)\ <c f \f(y)\ya+l/2dy.
Jo

The constant C depends on e and x, but it is independent of f and R.

(ii) Let Supp / C (n, +oo). Then if x <n

r+oo

\SRf(x)\ + \TRf(x)\ < C /     \f(y)\ya-l/2dy.

The constant C depends on n and x, but it is independent of f and R.

Proof. The proof is an immediate consequence of the previous lemma.   D

The above lemma is nothing but a weak form of the Riemann localization

principle for the operators {SR} and {7^} . We want to recall here that the

classical Riemann localization principle for Fourier cosine expansions holds not

only in the space LX(R+ , dx), but also in the larger space L'(R+, ^).
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48 LEONARDO COLZANI ET AL.

Proof of the theorem. The theorem is obviously true if / is indefinitely difter-

entiable and has compact support contained in (0, +00). Since the set of these

functions is dense in L'(R+ , -¡^), to prove the theorem it is enough to show

that, if e < x < n,

\SRf(x) - TRf(x)\ < C /      1/001^—7■ dy-
Jo l +y

By the previous localization lemma it is not a restriction to assume that / is

supported in [e/2, 2n], and under this assumption the above inequality is an

immediate consequence of Lemma (2.4)(iii).   □

For functions supported in the interval [0, 1], beside the Fourier-Bessel in-

tegrals one can also define the Fourier-Bessel series

V tin i'W""

where 0 < ßi < ß2 < ■ ■ ■ are the positive zeroes of /„ and

f(y)= f R
Jo

Jg(xy)

(xy)«
x)-P^x¿a+xdx

Combining Theorem 2.3 with the equiconvergence between Fourier-Bessel and

trigonometric Fourier series in [Stone] one gets the following.

Theorem (2.10). Let f be in Lx([0, 1], x2a+1 dx) and let 0 < x < 1.  Then,

for ßn<R< ßn+l ,

lim
n—»+00

V f(ß ^ßiUßkX)      rR h    Ja(xy)  2a+i = 0.

We sketch a direct proof of this fact.
It is immediate to extend the Fourier-Bessel transform and its partial sums to

the complex domain, and using the estimates (2.5) and (2.6) one easily obtains

the following.

Lemma (2.11). Let f be in Lx([0, 1], x2a+xdx). Then

(i) f is even, entire, and

|/(z)|<C||/||1^Imzl|z|-'l-Í

(ii) If SJ(x) = J0Z f(y)$$y2"+x dy, with |Arg z\ < n, then

\Szf(x)\<C\\f\\iX-«-2-\z\e(x+x»lmzK

Lemma (2.12). (i) In a neighborhood of each ßk ,

Szf(x)       Sßkf(x) 2    f(ßk)ßakUßkx)        Är,+om
-, T2t^\ - a   j2   1 a \\z ~ "k>     +—m t2   ta \—\z ~ Pk)     +U(l).
ZJ¿(Z) ßkJa+i(ßk) X"J^+l(ßk)

(ii) If ßn<R< ßn+i and 0 < x < 1,

"   -       2ß-Ja(ßkx) _ /-+oc        SR+Ilf(x)

ti    P   xaJ2a+i{ßk) ~      /-oo (R + it)J2(R + 't)

This lemma is essentially due to L. Schläfli. See [Watson, Chapter 18].
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Lemma (2.13). If ßn < R < ßn+i,

fj—(dt
n.

(R + it)J2(R + it)

This follows from the identity

d j J-a(z) 1 2sin;ra

dz \ Ja(z) J "     nzJl(z)'

Proof of the theorem. By the Lemmas 2.12 and 2.13,

V hR ¿ftUßkx) /•+<» SR+itf(x)-SRf(x)
hfißk) x°JUßk)      «f{) L   (R + it)J2(R + U)dL

\(R + it)J2(R + it)\>Ce2^,

By (2.6)

and, as in Lemma 2.11,

\SR+Itf(x) - SRf(x)\ < C||/||,*-*-,/2|i|e<1'+*)W.

Hence the above integral is dominated by  C||/||i, and the theorem fol-

lows.   D

3. Applications to the harmonic analysis on euclidean spaces

To every function / defined on R+ we associate a radial function f(\w\),
w eRN , and formally

i   eiwi r e-iz-tf{\z\)dzdç
J\£\<R Jr"l\i\<R JR"

rR Js-i
= /   -TTT^-        ^rms^dst

Jo      (\w\t)—   Jo (st)~T-

RJN-i(\w\t)    r+°° JN-i(st)
Xdt.

See e.g. [Stein-Weiss, Chapter IV]. It is therefore natural to study Fourier-
Bessel expansions of functions in Lorentz spaces on R+ with respect to the

measure x2q+1 dx.

We recall that the Lorentz space Lp-q(R+, x2q+1 dx), 1 < p < +oo, 1 <

q < +00 , is the set of all measurable functions / on R+ with the quasi-norm

where /*  denotes the nonincreasing rearrangement of /.   Again see [Stein-

Weiss, Chapter V].

Theorem (3.1). If f is in L^ ■ '(R+, x2«+' dx) + L%$ ■I(R+, x2"+xdx), then
for almost every x in R+ ,

lim SRf(x) = f(x).
R—- + OC

Since the space L£+J''(R+ , x2"+xdx) + L%$'i(R+ , x2n+x dx) contains all

the spaces LP(R+, x2a+xdx) with ^jj±| < p < j^ , we have the following

corollary, also proved in [Kanjin] and [Prestini].
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50 LEONARDO COLZANI ET AL.

Corollary (3.2). // / is in LP(R+ , x2a+xdx), gg < p < |j±f , then for almost
every x in R+

lim  SRf(x) = Ax).
R—>+oo

The theorem easily follows from the equiconvergence theorem and the fol-

lowing lemma.

Lemma (3.3). If /is in L%$ • '(R+ , x2q+i dx) + L^> • '(R+ , x2a+xdx) then

(i)
r+oo y.a+1/2

/ \f(x)\-r-—dx <+OC,
Jo I + x

and
(ii) for some p > 1 and every 0 < s < n < +oo

I \xa+xl2f(x)\pdx<+oo.
Je

Proof. If / is in L¿S~i'x(R+, x2a+x dx), by Holder inequality for Lorentz

spaces,

p+oo ra+l/2 /-(-oo

/      \f(x)\-.-dx< /      \f(x)\x~a-xl2x2a+xdx
Jo I + X Jo

"■'  MSÍ3 ''" "23ÎT'00

Similarly, if / is in L^'1(R+, x2a+1úfx),

p+oo ya+l/2 /-(-oo

/      \f(x)\~-dx< \f(x)\x-<*-3'2x2a+xdx
Jo 1 + X Jo

<   C\\   f\\ 4«+4      I      X 4aH-4 .

This proves (i). The proof of (ii) is immediate.   D

Proof of the theorem. By the equiconvergence theorem {SRf(x)} is equiconver-

gent with {TRf(x)} = {x-a-1/2irR[ya+1/2/(v)](x)} . By the classical Riemann

localization principle the convergence of FR[ya+x/2f(y)](x) depends only on

the behaviour of the function ya+x^2f(y) in a neighbourhood of x . But this

function is locally in LP(R+ , dy) for some p > 1, so that by the Carleson-Hunt

theorem FR[ya+x/2f(y)](x) -» xQ+|/2/(x) for almost every x if R -> +oc .   G

A natural way to prove the almost everywhere convergence of the means

{SRf} t° tne function / is to study the boundedness of the maximal operator

S* defined by

S*f(x) = suv\SRf(x)\.
R>0

For the operator S* we have the following theorem which extends previous

results of S. Chanillo and E. Prestini.

Theorem (3.4). If f is in the Lorentz space LP'X(R+ , x2a+xdx), p = 5^3 or
4a+4
2a+lp = £±f , then

IISVIIp.oo^cii/v,,
i.e. the maximal operator S* is of restricted weak type (p, p).
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This theorem of course implies Theorem (3.1) and Corollary (3.2). The

proof we have is based on ideas in [Chanillo] and [Prestini]. Recently F. Soria

communicated to us that this result has been also obtained in [Romera-Soria].

We therefore omit our proof, which can be found in [Crespi].

4. Divergence results

In this section we show that the results we have obtained on the pointwise

convergence of Fourier-Bessel integrals of functions in Lorentz spaces are sharp.

We start by repeating a basic remark due to J. L. Rubio de Francia, which shows

that we cannot even define the partial sum operators {SR} on the Lorentz spaces

Lp'r(R+, x2a+x dx) when p = ^±f and 1 < r < +oc , or p > ^±f .

Theorem (4.1). Let p = fëfi and 1 < r < +oc, or let p > ||±f . Then SR does

not exist as an operator from Lp'r(R+, x2a+xdx) into the space of tempered

distributions S"'*(R+).

Proof. Suppose the contrary. Then, by duality, SR maps the space of test

functions ^(R+) into L«-S(R+, x2a+xdx), }- + }- = f + j = 1 . To see that this

is false it is enough to consider a test function / with f(y) =1 if 0 < y < R .

For such /,

rRJa(xy),

10

(R+, x2a+x dx).   G

SRf(x) = Í
Jo

-y2a+xdy = (Rx)-a-xJa+i GD-(xy)a

and this function belongs only to Le

The case p < ^±| is different. In this case we are able to exhibit functions

with Fourier-Bessel integrals diverging at every point. This contains a result

in [Kanjin] on almost everywhere divergence, and indeed extends Kolmogorov

construction of an everywhere divergent trigonometric Fourier series.

Theorem (4.2). For any r> 1 there exist functions f in L^ 'r(R+, x2a+xdx)

supported in the interval [0, 1] with {SRf(x)} diverging at every x in R+.

Observe that every function in L^'r(R+ , x2a+x dx) with compact support

also belongs to every LP'S(R+, x2a+xdx), p < |^±|.

Proof. The asymptotic estimates for Bessel functions imply, if y + 0O,

(4.3)

and if \y - t\ < 1

(4.4)

"(—j^*[o,i](-)

Ja(y-)    Ja(t-\

,-«-1/2

4u+4
2a+l  ■

L (y)a    (t-)a J X[o,\](-)

(lnv)

y

l/s

-1/2

4,,+4
2<»+l   '

(The proof of the above estimates is not hard, and indeed easy when 5 = f^Jt)

The estimate (4.3), Holder inequality for Lorentz spaces and the Banach-

Steinhaus theorem, imply that there exists a sequence {yn} tending to -foe,

and a function / in L&$'r(R+, x2a+xdx) with support in [0, 1] suchthat

Q+l/2
\yn'Af(yn)\ - +™.
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But by (4.4) we also have that for every /„ , with \y„ - t„\ < 1,

\yn + i/2f(yn)-tn + l/2f(tn)\<C<+œ.

Let x be a fixed point in R+ . To the sequence {yn} we can associate a

sequence {t„} such that in the intervals with extremes yn and tn the function

y -> Ja(xy) is of constant signum, and Co <\yn-t„\ < c{, Co and Ci depending

only on x . Because of the previous estimates, the function ya+xl2f(y) is large

and of constant signum on the intervals with extremes y„ and tn , and this is

enough to conclude the proof. Indeed if n —► +00 ,

x-a-x'2 i"" \(xy)x'2Ja(xy)\ \ya+l'2f(y)\dy
Jt„

\SyJ(x)-StJ(x)\   = -foc.    G

5. Applications to the harmonic analysis on noneuclidean spaces

Let a > ß > -5 . The eigenfunctions of the problem

(sinhx)-2a-'(coshx)-2'?-1-^-|(sinhx)2a+1(coshx)2/!+1^-/(x)]

= -((a + ß+\)2 + X2)f(x)

which are even and equal to 1 at 0 are the Jacobi functions {q>x},

r(a + ß+\-iXa + ß+\ + iX .        . .2
nix) = 2Fi I-2-'-2-;a+\;- smh x

For / good enough one can define a Fourier-Jacobi transform

/(A) = 22<a+"+1> /      /(x)^(x)(sinhx)2a+1(coshx)2^+1¿/x,
Jo

and one has an inversion formula
P + OO1   r+oc -

fW = ïï /    fWn(x)\c(k)\-2dx,
2n Jo

where
r(il)r(l+il)

C(X) = 2a+fin-x'2Y(a + 1)    ,        [l\   \2  '-r.

For a = ß = -\ this is the classical cosine Fourier transform, and in gen-

eral for special a and ß the Jacobi functions can be interpreted as spherical

functions on noncompact Riemannian symmetric spaces of rank one. See the

survey [Koornwinder].

Define the .Rth partial sums of the Fourier-Jacobi transform by

p+00

SRf(x)= SR(x,y)f(y)dy,
Jo

where

22a+2/?+l pR

SR(x,y) =-(sinhv)2"+1(coshy)2^+1 /   ^(x)^(y)|C(A)r2¿A.
n Jo

It is possible to obtain asymptotic expansions of Jacobi functions in terms

of Bessel functions. See [Stanton-Tomas] and [Trimèche].
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In particular

W(x)« J^2QT(a + l)A-a-'/2(sinhx)-a-'/2(coshx)-/î-|/2cos(Ax - a| - |) ,

C(X) « J-22a+ßY(a + l)(/A)-a-'/2 ,

and one can conjecture that

2/sinhyy+1/2/coshy\^

Sr{x' y) ~ ñ {ùnhx-)        Ushx"J

x /   cos [Xx - a— - — J cos (Xy - a— - - J dX

^ I /sinhy\a+1/2 fcoshy\ß+l/2 sinR(x-y)

n \ sinh x ) \ cosh x ) x - y

If this is correct one immediately obtains an equiconvergence theorem be-

tween Jacobi and cosine expansions.

In the sequel we shall consider in some detail the case a = ß = ¿, which

corresponds to the harmonic analysis on the 3-dimensional hyperbolic space. If

a = ß = \

sin Ax 2

^W = Asinhxcoshx'    CW = TX>
and one gets an explicit expression for SR(x, y),

2 /sinhycoshy\   fR . .
SR(x, y) = —   -r-:-;—    /   sinAxsinAytfA

n \ sinh x cosh x/ JQ

1 /sinhycoshy \ sini?(x-y)      1 /sinhycoshy \ sinR(x + y,

n \sinhxcoshx)      x-y n \sinhxcoshx)      x + y

From this we easily obtain the following.

Theorem (5.1). //

f+°° , r,  m sinh x cosh x ,
J    '-^W—ïTx—dx<+oc>

then for every x, 0 < x < +oo,

lim
R—+00

SRfix)-^T-E" T" *mR{X    y)f(y) sinh y cosh y dy
'     7rsinhxcoshx J0 x-y

Proof. By the Riemann-Lebesgue lemma, if x > 0 and R —► +oo ,

1 f+°° sin Ä(x + y)

= 0.

71 sinh x cosh x J0 x + y/
-/(y) sinh y cosh y dy -» 0.   G

We now consider Fourier-Jacobi expansions of functions in Lorentz spaces

on R+ with respect to the measure (sinh x cosh x)2 dx .

Theorem (5.2). (i) // / is in

Li'l(R+, (sinhxcoshx)2í/x) +   (J  L2'S(R+, (sinhxcoshx)2dx),
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then for almost every x in R+ ,

lim   \SRf(x)-f(x)\ = 0.
R—.+OC

(ii) If p — 2 and s = +00, or if p > 2, the operators {SR} do not ex-

ist as operators from LP'S(R+, (sinh x cosh x)2dx) into the space of tempered

distributions.
(iii) If r > \ there exist functions f in L2-r(R+, (sinh x cosh x)2 dx), sup-

ported in the interval [0, 1], with {SRf(x)} diverging at every x in R+.

Proof. The proof of (i), (ii) and (iii) is similar to the proof of Theorems (3.1),

(4.1) and (4.2) respectively.
Proof of (i). The function (sinh x cosh x)~'/(l + x) is in the Lorentz space

L3'°°(R+, (sinhxcoshx)2dx) and also in every L2'S(R+, (sinhxcoshx)2dx)

if s>l.
Therefore by the Holder inequality for Lorentz spaces

f+°° , r,  m sinh x cosh x  ,
I     '^(x)l—TTx—     < +00'

Also, by the Carleson-Hunt theorem and the Riemann localization principle,

r+°° sin R(x-y)
lim 1/

Ä-.+00 n Jo0 x-y
-f(y) sinh y cosh y dy = f(x) sinh x cosh x.

(i) then follows by Theorem (5.1).
Proof of (ii). It is enough to observe that the Jacobi functions {tpx} when A>

0 are in L2'°°(R+ , (sinh x cosh x)2 dx), so that the Fourier-Jacobi transforms

of functions in L2 • ' (R+ , (sinh x cosh x)2 dx) are continuous for A > 0.

The Fourier-Jacobi transforms of functions in Lq-S(R+ , (sinh x cosh x)2 dx),

q < 2, are analytic. Therefore the operators SR cannot map a test function into
L2,1(R+, (sinhxcoshx)2dx) or into Lq'r(R+, (sinhxcoshx)2dx), q < 2.

By duality the operators SR cannot be defined on the space

L2-°°(R+, (sinhxcoshx)2dx)

or on the spaces LP-S(R+ , (sinh x cosh x)2é/x) if p > 2 .

Proof of (iii). For y in [0, 1],

(sinhy cosh y)2 dy »y2dy,     n(y) '

n(y) - <Pp(y)

Xy

sin Xy     sin py

Xy py

so that as in (4.3) and (4.4), if A —> +oc and \X - p\ < 1 ,

WnX[0,\\h,s ~ X~x(\ogX)xls,     ||(^ - <pß)X[o,\]h.s~X-x.

There exists a sequence {A„} -> +oo and a function / in

L3/2,r(R+, (sinhxcoshx)2dx),

r>\, with support in [0, 1] such that |A„/(A„)| -» +oc , and if \Xn-p„\ < 1 ,

|A„/(A„)-//„/(^)|<C.
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Let x be a fixed point in R+ . To the sequence {Xn } we can associate a sequence

{/i„} so that the function A —► sin Ax is of constant signum on the intervals

with extremes X„ and pn, and cq < \X„ - pn\ < ci . Therefore, in the above

intervals, the function Xf(X) is large and of constant signum, and if « —» +oc,

\SxJ(x)-SflJ(x)\
i r1*

(sinhxcoshx)-1 /    \Xf(X)\\sinXx\dX
Jßn

Sn
+OC.    G

We end by referring to [Colzani] for analogous results on expansions in

Jacobi polynomials, i.e. the harmonic analysis of radial functions on elliptic

noneuclidean spaces.

Added in proof. In The Hubert with exponential weights, Proc. Amer. Math.

Soc. 114 (1992), 451-457, the authors have studied the convergence of the
Fourier expansions of radial functions on hyperbolic spaces. In Bochner-Riesz

means of functions in weak-LP, to appear in Mh. Math., the authors have

considered the problem of convergence of Bochner-Riesz means of radial and

nonradial functions in weak-Lp(R").
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