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EQUIDISTANT POINT SETS

J. H. VAN LINT

In this talk we shall consider two problems which are both con-
cerned with a set S of points in a metric space (R, d) such that for
any 2 distinct points of S the distance d(x, y) is the same. Both
problems are connected to several areas of combinatorial theory in the
sense that these areas provide examples which often turn out to meet
certain bounds which one can derive for these equidistant sets. One
other analogy seems to be the fact that we do not really understand these

problems yet.

1. Equiangular lines

In our first problem we take R to be elliptic space of dimension
r - 1 and d to be elliptic distance. It is more convenient to describe
this space by considering the lines through the origin in r-dimensional
euclidean space R" and defining the distance to be the angle between

two such lines.

Definition. (i) va(r) is the maximum number of lines in R’
such that each pair of these lines makes an angle arccos a, a > 0,

(il) v(r) = max{va(r)|0 < a=1}.

In 1965 Van Lint and Seidel [5] treated this problem for r = 7.
A few months ago a paper by Lemmens and Seidel [3] appeared which
extended the results to r =< 43, however with a number of gaps. E.g.
the value of v(14) is not known. These results revived my own interest
in the problem. It seems worthwhile to point out some 6f thé interesting
connections to other areas of combinatorial theory. For a survey of the
present state of affairs concerning v(r) we refer to [3].

Let S be a set of v unit vectors spanning R" such that any two
distinct vectors in S have inner product ta. If G is the Gram matrix

of S, then we write A = a_l(G -I). Then A is a symmetric matrix
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with zero diagonal and all other entries +1. Since G has smallest
eigenvalue 0 with multiplicity v - r the smallest eigenvalue of A is

! with multiplicity v - r. In this way the problem of finding equi-

-
distant point sets is reduced to finding such (0, +1, -1)-matrices A
such that the smallest eigenvalue is = -1 and has a large multiplicity.
Any such (0, +1, -1)-matrix A can be interpreted as the adjacency
matrix of a graph on vertices P1’ P2, ceey Pv by including the edge
{Pi’ Pj} iff aij = -1. Many good examples are connected to strong

graphs which we now define. (We exclude void and complete graphs. )

Definition. TLet A be the (0, +1, -1)-adjacency matrix of a

graph on the vertices P Pz’ ceny Pv’ If there are two integers P,

1,
and P, such that for any two vertices Pi’ Pj with aij = (-1)h there
are exactly Py points joined by an edge to one, but not both, of Pi
and Pj’ then the graph is called strong. If the graph is also regular

it is called strongly regular.

The following theorem makes it clear why these graphs are

interesting for our problem.

Theorem 1 (cf. e.g. [6]). A nonvoid and noncomplete graph of

order v is strong if and only if its (0, +1, -1)-adjacency matrix satis-

fies

A-pDA-pD=(v-1+ PPN, (o > p,)

Clearly A has at most 3 distinct eigenvalues.
In [5] it was shown that v(5) = 10. The example was provided by
the well known Petersen graph (five eigenvalues -3, five eigenvalues +3).
The following theorem shows how combinatorial designs can be

combined to construct equidistant point sets.

Theorem 2, If the projective plane PG(2, q) exists and if a

Hadamard matrix of order q + 2 exigts, then V(q2+q+1)’2. (q+2)(q2+q+1).

. Proof. Let B be the incidence matrix of the plane. Let H be
the Hadamard matrix with the first column consisting of 1's only. Delete

the first column to obtain Ho' We replace eachrow of B by g + 2 new
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rows obtained by leaving the 0's where they are and replacing the 1's
by the rows of Ho' We thus obtain a matrix A with (q+2)(q2+q+1)
rows and q2 + g + 1 columns such that any 2 rows have inner product
+1 and every row is a vector of length (q + 1)% in Rq2+q+l.

Due to our poor knowledge of projective planes the only example
presently known whose order satisfies the conditions of Theorem 2 is
q = 2 which yields v(7) = 28 (cf. [5]). Of course we can prove a more
general theorem by taking B to be the incidence matrix of any block
design with A =1 but this never gives examples near to known bounds.
However, the incidence matrix of PG(2, ZZ) in which we replace each

line by a Hadamard matrix extended with a column of 1's yields the bound

2 i

v2 r ot + 1y =2te% + 2t v,

which is close to the result of Theorem 2,

Recently D. E. Taylor [7] proved that the inequality of Theorem 2
holds if q + 1 is a power of an odd prime. The examples obtained by
this construction are best possible for small values of the parameter.
We describe his construction. Let q = pn {p # 2), (not the same q as
above). Let K= GF(qz), V the 3-dimensional vector space over K and
®(V) the corresponding projective plane. The equation

q
3

9_ 9

} _ q
F(Xl, X, X5 Vo5 Vo y3) =Xy, PRy, PRy =

defines a unitary polarity of ®(V) (cf. {2]). Let U be the associated
unital (absolute points, nonabsolute lines). Then U has q3 + 1 points
([2], exercise 2.41). Take the line with equation X, = 0 as line at
infinity and let % be the point (0, 0, 1) of U Then the q3 other
points of U are described by affine coordinates X, y. On these q3 +1
points we define a graph G as follows:
F(1, x, y;1, a, b) is a square,
g =-1(mod 4),

F(1, x, y; 1, a, b) is 0 or a non-
square, q =1 (mod 4),

(1) (%, y) is joined to (a, b) if

(i1) % ig joined to all other points of U
Then G turns out to be a strong graph with incidence matrix A satisfy-
ing
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(A + qI)(A - qZI) = 0.
Consequently, we have the following theorem.

Theorem 3, If q= pn, p #2, p prime, then

Since for €> 0 and r sufficiently large there is a prime power

between r and r(l + &) we have

3/2

Theorem 4. lim r ““v(r) = 1.
=0

It is not difficult to show (cf. [3], [7]) that v(r) = 2r(r + 1) butI con-

jecture that actually rz/ 2 gives the correct order of growth of v(r).

2. Equidistant codes

Now let R be n-dimensional vector space over GF(q) and let
d be Hamming distance, defined by d(x, y) = ] {i]xi;&yi}', We define
the weight w(x) of x by w(x) = d(x, 0).

Definition. An equidistant (m, k)-code is an m-subset S of R
such that

VxeSVyeS [x # y= d(x, y) =k].

If H is a Hadamard matrix of order n then the n rows of 5(H + J)
form an equidistant binary (n, $n)-code. From now on we take q=2.
With an equidistant (m, 2k)-code S we associate the matrix C which
has as its rows all the code words of S. Each column C of S, inter-
preted as a binary vector, has a weight. If all these weights are 0, 1,
m-1 or m, wecall S a trivial equidistant code. E.g. if
C= (ImIrn e Im), k copies of I > then 8 is trivial with distance 2k.
Let B be the incidence matrix of PG(2, k) and let J be the
k?+k+1 by k-1 matrix of 1's. Then

o6 ... 0.0 ... 0
- :
B . J
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represents an equidistant (k2 + k + 2, 2k)-code which is nontrivial, It
was shown by M, Deza [1] that a nontrivial equidistant (m, 2k)-code has

m =k +k+ 2. We now announce the following theorem ([4]).

Theorem 5. If a nontrivial equidistant (k2 + k + 2, 2k)-code

exists, then the projective plane PG(2, k) exists.

Proof. We present a proof hei'e which is shorter than the original
proof given in [4] We first remark that we can choose any row in C
and by interchanging 0's and 1's change this row into a row of 0's, Then
the other rows of the new matrix C all have weight 2k and any two of
them have inner product k. In the following we always assume that C
has a 0-row. We again use m for the number of rows of C. If a
column of C has weight t then without loss of generality we can take
this to be the first column and assume its t 1's are at the top. Let a;
be the number of 1's in the first t positions of column i and let Bi
be the number of 1's in the last m - t positions of column i. We define
a.i = ozi/t, bi = Bi/(m - t). Now we calculate the sum of the distances
between respectively the first t rows, the last (m - t) rows and

between these two sets. We find
> ai(l - ai) =k - k/t

Pb1-b)=k-k/m-1

2 {ai(l -b) +b,(1 - ai)} =2k - 1.

Hence we have

2 k k
Z(ai—bi) —_1+F+m-t’

t(m - t) = mk,

Substituting m = k2 +k+2 weseethat t<k+1 or t= K2 + 1. In
the first case we call the column light, in the second case we call it
heavy.

Now suppose there were k + 2 heavy columns. If any row had

k + 2 1's in these k + 2 positions all the others would have at most k
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1's in these positions. In the same way there can be no more than k + 2
rows having k +1 1's in these k + 2 positions. In both cases the m
rows together cannot have (k + 2)(k2 + 1) 1's in these k + 2 positions
which contradicts the fact that the columns are heavy.

Now consider any row having q of its 1's in heavy columns.
Clearly the sum of the inner products of the other rows with this row is
at most q(k2 + k) + (2k - q)k. Since this sum equals k(k2 + k) we have
now shown that there are k-1, k or k +1 heavy columns.

If there are k + 1 heavy columns then by the reasoning used
above there is a row having 1's in these k + 1 positions. Changing this
row into the 0-row we find a C with only k - 1 heavy columns., I
there are k heavy columns and the code is not trivial then there is a
row having only k - 1 1's in these heavy columns. Changing this row
into the 0-row we finda C with k + 2 heavy columns, a contradiction.
Therefore, if the equidistant code exists it can be represented by a C

with the form

0 ... 0.0 ... 0
C= 7 : B

where J has k-1 columns. Now eachrowof B has k+1 1's and
any two distinct rows of B have exactly one 1 in common. Since every
column of B has at most k + 1 1's, every column of B must have
exactly k +1 1's, Hence B is the incidence matrix of PG(2, k). This

completes the proof.

In the cases where PG(2, k) does not exist, e.g. k= 6, we have
not been able to find the maximum number of code words in an equidistant
code, For k= 6 this number is-at least 32 since PG(2, 5) exists and
at most 43 by Theorem 5. Since EG(2, 6) does not exist we tried to
show that an equidistant (m, 12)-code has m < 37. By the same methods
as used in the proof of Theorem 5 we could show that the existence of an
equidistant binary (37, 12)-code implies the existence of an equidistant
(29, 6)-code of word length 7 over an alphabet of 6 symbols which seems
very unlikely. The work is being continued.

An obvious thing to try when one is looking for equidistant codes

is to let C have the same form as above, i. e.
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c o6 ... 0. 00 ... O
C= . )
B . J

where B is the v by b point-block incidence matrix of a block design
with parameters (v, k; b, r, 2) and J isthe v by r - 2Xx matrix of
1's. Then C represents an equidistant (v + 1, 2(r - A))-code. That
this code cannot have many words is shown as follows.

Let r - A =d. From the necessary conditions for v, k, b, r

and X we find (taking k = 3v, w.L.o.g.)

_AMv-1) _ Mv - k)
d=%-1 - *="%x-1 -
1. €,
V:d(k£1)+k5___d(1;-1) +r:__~___d(d;”"1) +d+a=sd +d+1,

where the last inequality is very weak unless A = 1. For instance if
d = 6, then an example yielding more than 32 words would have to have
v = 32, hence k = 6, i.e, it would be EG(2, 6) which does not exist.

It seems likely that a nontrivial equidistant (m, 12)-code has m = 32,
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