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Abstract

Let f be a cusp form of weightk + 1/2 and at most quadratic nebentype character whose
Fourier coefficientsa(n) are all real. We study an equidistribution conjecture of Bruinier and
Kohnen for the signs ofa(n). We prove this conjecture for certain subfamilies of coefficients that
are accessible via the Shimura lift by using the Sato-Tate equidistribution theorem for integral
weight modular forms. Firstly, an unconditional proof is given for the family{a(tp2)}p wheret
is a squarefree number andp runs through the primes. In this case, the result is in terms of natural
density. To prove it for the family{a(tn2)}n wheret is a squarefree number andn runs through
all natural numbers, we assume the existence of a suitable error term for the convergence of the
Sato-Tate distribution, which is weaker than one conjectured by Akiyama and Tanigawa. In this
case, the results are in terms of Dedekind-Dirichlet density.
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1 Introduction

The signs of the coefficients of half-integral weight modular forms have attracted some recent atten-
tion. In particular, Bruinier and Kohnen conjectured an equidistribution ofsigns. Using the Shimura
lift and the Sato-Tate equidistribution theorem we obtain results towards this conjecture.

Throughout this paper, the notation is as follows. Letk ≥ 2, 4 | N be integers,χ a Dirichlet
character moduloN s.t.χ2 = 1 and letf =

∑∞
n=1 a(n)qn ∈ Sk+1/2(N, χ) be a non-zero cuspidal

Hecke eigenform (for operatorsTp2 for primesp ∤ N ) of weightk + 1
2 (see [15], p. 458) with real

coefficients. LetFt =
∑∞

n=1 At(n)qn ∈ S2k(N/2, χ2) be the Hecke eigenform (for operatorsTp

for primesp ∤ N ) of weight 2k corresponding tof under the Shimura lift for a fixed squarefreet
such thata(t) 6= 0 (see Section 3). We work under the assumption thatFt does not have complex
multiplication.

The question about the sign changes of coefficients of half integral weight modular forms has been
asked by Bruinier and Kohnen in [4] and there it was shown that the sequence{a(tn2)}n∈N of coef-
ficients of half integral weight modular forms has infinitely many sign changesunder the additional
hypothesis that a certainL−function has no zeros in the interval(0, 1) (later this hypothesis has been
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removed in [7]). In addition to this partly conditional result, the authors came up with a suggestion
supported by some numerical experiments. They claimed that half of the coefficients are positive
among all non-zero coefficients due to observations on computations made for one example of weight
11/2 given in [10] and for one example of weight3/2 given in [5] for indices up to106. This claim is
also supported by5 different examples of weight 3/2 in computations done in the preparation process
of [6] for indices up to107. In [8], Kohnen, Lau and Wu also study the sign change problem on
specific sets of integers. They establish lower bounds of the best possible order of magnitude for the
number of those coefficients that have the same signs. These give an improvement on some results in
[4] and [7]. Although the problem of the equidistribution of signs has beenmentioned informally in
[4], the conjecture was only given in [8] formally.

In this paper we improve the previously known results towards the Bruinier-Kohnen conjecture
by proving the equidistribution of the signs of{a(tn2)}n for n running through the set of primes (see
Theorem 4.1) and through the set of all positive integers (see Corollary5.2). The former result is
formulated in terms of natural density, the latter for Dedekind-Dirichlet density. For the latter result,
we have to assume a certain error term for the convergence of the Sato-Tate distribution for integral
weight modular forms, which is weaker than an error term conjectured by Akiyama and Tanigawa [1].
Relying on the Shimura lift as in the papers cited above, the techniques of the present article also do
not extend to study the equidistribution of the signs of{a(n)}n, whenn runs through the squarefree
integers.

The ideas and techniques of the present paper have been adapted by Narasimha Kumar toq-
exponents of generalised modular functions [9]. In a sequel to this work[2], written together with
Sara Arias-de-Reyna, we extend the main theorem to the case whenFt has complex multiplication
and we also weaken the assumption on the error bound.

2 Density and regular sets of primes

Let P denote the set of all prime numbers. We first recall some definitions. LetS ⊆ P be a set of
primes. It is said to havenatural densityd(S) if the limit limx→∞

πS(x)
π(x) exists and is equal tod(S),

whereπ(x) = #{p ≤ x | p ∈ P} is the prime number counting function andπS(x) := #{p ≤
x | p ∈ S}. The setS is said to haveDirichlet densityδ(S) if the limit limz→1+

P

p∈S
1

pz

log
(

1

z−1

) exists

and is equal toδ(S) (the limit limz→1+ is defined via sequences of real numbers tending to1 from
the right). If S has a natural density, then it also has a Dirichlet density and the two coincide. As
in [12], p. 343f, we callS regular if there is a functiong(z) holomorphic onRe(z) ≥ 1 such that
∑

p∈S
1
pz = δ(S) log

(
1

z−1

)
+ g(z). Note thatP is a regular set of primes of Dirichlet density1. We

collect some more straight forward properties of regular sets of primes in the following lemma.

Lemma 2.1. (a) LetS be any set of primes such that the series
∑

p∈S
1
p converges to a finite value.

ThenS has a Dirichlet density equal to0.

(b) Let S be a regular set of primes. Then the Dirichlet density ofS is 0 if and only if the series
∑

p∈S
1
p converges to a finite value.

(c) LetS1, S2 be two regular sets of primes having the same Dirichlet densityδ(S1) = δ(S2). Then
the function

∑

p∈S1

1
pz −∑q∈S2

1
qz is analytic onRe(z) ≥ 1.

For our application in Section 5 we need regular sets of primes. Hence, we now include a propo-
sition showing that if a set of primesS has a natural density and the convergence satisfies a certain
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error term, then it is regular. This is may be known, but, we are not aware of any reference; so we
include a full proof.

Proposition 2.2. LetS ⊆ P have natural densityd(S). Call E(x) := πS(x)
π(x) −d(S) the error function.

Suppose that there areα > 0, C > 0 andM > 0 such that for allx > M we have|E(x)| ≤ Cx−α.
ThenS is a regular set of primes.

Proof. We will use the notationDS(z) :=
∑

p∈S
1
pz andD(z) :=

∑

p∈P

1
pz . We abbreviated :=

d(S), putg(x) := E(x)π(x) andf(z) :=
∑∞

n=2 g(n)
(

1
nz − 1

(n+1)z

)
. As g(x) is a step function with

jumps only at integers, we have

f(z) = z ·
∞∑

n=2

g(n)

∫ n+1

n

1

xz+1
dx = z ·

∫ ∞

2

g(x)

xz+1
dx.

From Theorem 29 of [14], we know thatπ(x) < x
log(x)−4 for x > 55, yielding |g(x)| ≤ C · π(x) ·

x−α ≤ C · x1−α

log(x)−4 . Thus forRe(z) > 1 − α
2 we get

|
∫ ∞

55

g(x)dx

xz+1
| ≤

∫ ∞

55

|g(x)|
xRe(z)+1

dx ≤ C

∫ ∞

55

1

x1+ α
2

dx.

As the last integral is convergent, we conclude thatf(z) is an analytic function onRe(z) ≥ 1. Since
for Re(z) > 1 we have

DS(z) =
∞∑

n=2

(
dπ(n) − g(n)

)

︸ ︷︷ ︸

=πS(n)

( 1

nz
− 1

(n + 1)z

)
= dD(z) + f(z)

the proposition follows asP is regular of density1.

Finally we recall a notion of density on sets of natural numbers analogous tothat of Dirichlet
density. A subsetA ⊆ N is said to haveDedekind-Dirichlet densityδ(A) if the limit limz→1+(z −
1)
∑∞

n=1,n∈A
1
nz exists and is equal toδ(A). If A ⊆ N has a natural density (defined in the evident

way), then it also has a Dedekind-Dirichlet density, and they are the same.

3 Shimura lift and Sato-Tate equidistribution

We continue to use the notation described in the introduction. We now summarise some properties of
the Shimura lift that are proved in [15] and Chapter 2 of [13]. There is thedirect relation between the
Fourier coefficients off and those of its liftFt, namely

At(n) :=
∑

d|n
χt,N (d)dk−1a(

tn2

d2
), (3.1)

whereχt,N denotes the characterχt,N (d) := χ(d)
(

(−1)kN2t
d

)

. As we assumef to be a Hecke

eigenform for the Hecke operatorTp2 , Ft is an eigenform for the Hecke operatorTp, for all primes
p ∤ N . In fact, in this caseFt = a(t)F , whereF is a normalised Hecke eigenform independent oft.
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Moreover, from the Euler product formula for the Fourier coefficientsof half integral weight modular
forms, one obtains the multiplicativity relation for(m, n) = 1

a(tm2)a(tn2) = a(t)a(tm2n2). (3.2)

Note that the assumption thatχ be (at most) quadratic implies thatFt has real coefficients iff does.
Furthermore, the coefficients ofFt satisfy the Ramanujan-Petersson bound|At(p)

a(t) | ≤ 2pk−1/2. We
normalise them by letting

Bt(p) :=
At(p)

2a(t)pk−1/2
∈ [−1, 1].

Recall now that we are assumingFt without complex multiplication. One defines theSato-Tate mea-
sureµ to be the probability measure on the interval[−1, 1] given by 2

π

√
1 − t2dt.

Theorem B of [3], case 3 withζ = 1, gives the importantSato-Tate equidistribution theoremfor
Γ0(N), which applies in particular toF = Ft

a(t) .

Theorem 3.1(Barnet-Lamb, Geraghty, Harris, Taylor). Let k ≥ 1 and letF =
∑

n≥1 A(n)qn be a
normalised cuspidal Hecke eigenform of weight2k for Γ0(N) without complex multiplication. Then

the numbersB(p) = A(p)

2pk−1/2
are µ-equidistributed in[−1, 1], whenp runs through the primes not

dividingN .

This has the following simple corollary, which we formulate for the Shimura liftFt.

Corollary 3.2. Let [a, b] ⊆ [−1, 1] be a subinterval andS[a,b] := {p prime| p ∤ N, Bt(p) ∈ [a, b]}.

ThenS[a,b] has natural density equal to2π
∫ b
a

√
1 − t2dt.

4 Equidistribution of signs for {a(tp2)}p prime

Our main unconditional result is the following theorem.

Theorem 4.1. We use the assumptions from the introduction, in particular,Ft has no complex multi-
plication. Define the set of primes

P>0 := {p ∈ P|a(tp2) > 0}

and similarlyP<0, P≥0, P≤0, andP=0 (depending onf andt).
Then the setsP>0, P<0, P≥0, P≤0 have natural density1/2 and the setP=0 has natural density0.

Proof. Denote byπ>0(x) := #{p ≤ x | p ∈ P>0} and similarlyπ<0(x), π≥0(x), π≤0(x), and
π=0(x). Since dividingf by a(t) does not affect the assertions of the theorem, we may and do
assumea(t) = 1. In that caseFt is a normalised eigenform. Equation (3.1) specialises toa(tp2) =
At(p) − χt,N (p)pk−1 for all primesp, implying the equivalence:

a(tp2) > 0 ⇔ Bt(p) >
χt,N (p)

2
√

p
.

The idea is to use the Sato-Tate equidistribution to show that|At(p)| dominates the termχt,N (p)pk−1

for ‘most’ primes. Letǫ > 0. Since for allp > 1
4ǫ2

one has|χt,N (p)
2
√

p | = 1
2
√

p < ǫ, we obtain

π>0(x) + π(
1

4ǫ2
) ≥ #{p ≤ x prime| Bt(p) > ǫ}. (4.1)
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By Corollary 3.2, we havelimx→∞
#{p≤x prime| Bt(p)>ǫ}

π(x) = µ([ǫ, 1]). This implies that

lim inf
x→∞

π>0(x)

π(x)
≥ µ([ǫ, 1])

for all ǫ > 0, whence we can concludelim infx→∞
π>0(x)
π(x) ≥ µ([0, 1]) = 1

2 .

A similar argument yieldslim infx→∞
π≤0(x)
π(x) ≥ µ([0, 1]) = 1

2 . Usingπ≤0(x) = π(x) − π>0(x)

giveslim supx→∞
π>0(x)
π(x) ≤ µ([0, 1]) = 1

2 , thus showing thatlimx→∞
π>0(x)
π(x) exists and is equal to12 ,

whence by definitionP>0 has natural density12 . The arguments forP<0(x), P≥0(x), P≤0(x) are
exactly the same, and the conclusion forP=0 immediately follows.

We next show that the sets of primes in Theorem 4.1 are regular if the Sato-Tate equidistribution
converges with a certain error term. A stronger error term was conjectured by Akiyama-Tanigawa
(see [11], Conjecture 2.2, and Conjecture 1, on p. 1204 in [1]).

Theorem 4.2. We make the same assumptions as in Theorem 4.1. We additionally assume that there
areC > 0 andα > 0 such that for all subintervals[a, b] ⊆ [−1, 1] one has

∣
∣
∣
∣
∣
∣

#{p ≤ x prime| At(p)

a(t)2pk−1/2
∈ [a, b]}

π(x)
− µ([a, b])

∣
∣
∣
∣
∣
∣

≤ C

xα
.

Then the setsP>0, P<0, P≥0, P≤0, andP=0 are regular sets of primes.

Proof. We start as in the proof of Theorem 4.1 up to Equation (4.1) and plug in the error term to get
for all ǫ > 0 and allx > 0

π>0(x) + π(
1

4ǫ2
) ≥ #{p ≤ x prime| Bt(p) > ǫ}

≥ −Cπ(x)x−α + µ([ǫ, 1])π(x) ≥ −Cπ(x)x−α + (
1

2
− µ([0, ǫ]))π(x).

Using the estimatesµ([0, ǫ]) =
∫ ǫ
0

√
1 − t2dt ≤ ǫ and x

log(x)+2 ≤ π(x) ≤ x
log(x)−4 , which is valid for

x > 55 (see [14] Theorem 29 A on p. 211), we get

π>0(x)

π(x)
− 1

2
≥ −

(
Cx−α + ǫ +

(log(x) + 2)

−4xǫ2(log(4ǫ2) + 4)

)
≥ −C1x

−α

for someC1 > 0 and allx big enough, where for the last inequality we setǫ = x−2α. The same
argument withπ<0(x) yields

π<0(x)

π(x)
− 1

2
≥ −C1x

−α.

Usingπ≥0(x) = π(x) − π<0(x), we getπ>0(x)
π(x) − 1

2 ≤ π≥0(x)
π(x) − 1

2 ≤ C1x
−α. Thus, one has

∣
∣
∣
∣

π>0(x)

π(x)
− 1

2

∣
∣
∣
∣
≤ C1

xα
.

Proposition 2.2 now implies thatP>0 is a regular set of primes. The regularity ofP<0 is obtained in
the same way, implying also the regularity ofP=0, P≥0 andP≤0.

Remark4.3. Assume the setup of Theorem 4.1. Let[a, b] ⊆ [−1, 1] be a subinterval. Then using the

same arguments as in the proof of Theorem 4.1 one can show that the set ofprimes{p | a(tp2)

2a(t)pk−1/2
∈

[a, b]} has a natural density equal toµ([a, b]). Similarly, a more general version of Theorem 4.2 also
holds.
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5 Equidistribution of signs for {a(tn2)}n∈N

In this section we prove our equidistribution result for the signs of the coefficientsa(tn2), whenn runs
through the natural numbers. The same arguments also work forn running throughk-free positive
integers for anyk ≥ 1.

Theorem 5.1. We make the same assumptions as in Theorem 4.1. As in Theorem 4.2 we additionally
assume that there areC > 0 andα > 0 such that for all subintervals[a, b] ∈ [−1, 1] one has

∣
∣
∣
∣
∣
∣

#{p ≤ x prime| At(p)

a(t)2pk−1/2
∈ [a, b]}

π(x)
− µ([a, b])

∣
∣
∣
∣
∣
∣

≤ C

xα
.

We also assumea(t) > 0. We define the multiplicative (but, not completely multiplicative) function

s(n) =







1 if a(tn2) > 0,

−1 if a(tn2) < 0,

0 if a(tn2) = 0.

LetS(z) :=
∑∞

n=1
s(n)
nz be the Dirichlet series ofs(n).

ThenS(z) is holomorphic forRe(z) ≥ 1.

Proof. Sinces(n) is multiplicative because of Equation 3.2 and the assumptiona(t) > 0, we have
the Euler productS(z) =

∏

p∈P

∑∞
k=0 s(pk)p−kz. Taking logarithm ofS(z), we obtain

log S(z) =
∑

p∈P>0

log
(
1 +

1

pz
+ g(z, p)

)
+
∑

p∈P<0

log
(
1 − 1

pz
+ g(z, p)

)

+
∑

p∈P=0

log
(
1 + g(z, p)

)
,

whereg(z, p) :=
∑∞

m=2
s(pm)
pmz is a holomorphic function onRe(z) ≥ 1 in the variablez for fixed p.

Note that for allp, we have|g(z, p)| ≤ 1
pz(pz−1) . Using this, we conclude that

log S(z) =
∑

p∈P>0

1

pz
−
∑

p∈P<0

1

pz
+ k(z),

wherek(z) is holomorphic function forRe(z) ≥ 1.
SinceP>0 andP<0 are regular set of primes having the same density1

2 by Theorem 4.2, we can
conclude thatlog S(z) is analytic forRe(z) ≥ 1 by Lemma 2.1. Since the exponential function is
holomorphic, we find thatS(z) is analytic forRe(z) ≥ 1 by taking the exponential oflog S(z), as
was to be shown.

We now deduce our main density statement from Theorem 5.1.

Corollary 5.2. Assume the setting of Theorem 5.1. Then the sets

{n ∈ N | a(tn2) > 0} and{n ∈ N | a(tn2) < 0}

have equal positive Dedekind-Dirichlet densities, that is, both are precisely half of the Dedekind-
Dirichlet density of the set{n ∈ N | a(tn2) 6= 0}.
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Proof. We assume without loss of generalitya(t) > 0, since the statement is invariant under replacing
f by −f . We use the notation of Theorem 5.1. Since the set of all natural numbers has a Dedekind-
Dirichlet density of1 (since the Riemann-zeta function has a pole of order1 and residue1 at 1), we
can write

lim
z→1+

(z − 1)
∑

n∈N

1

nz
= 1.

SinceS(z) =
∑

a(tn2)>0
1
nz −∑a(tn2)<0

1
nz is holomorphic forRe(z) ≥ 1 by Theorem 5.1 (in fact,

much less suffices), we deduce

lim
z→1+

(z − 1)



2
∑

a(tn2)>0

1

nz
+

∑

a(tn2)=0

1

nz



 = 1.

Define t(n) := [s(n)]2 andT (z) :=
∑∞

n=1
t(n)
nz . Sincet(n) is multiplicative,T (z) has an Euler

product, which we use now. PutA(z) := T (z)
ζ(z) , then

A(z) =
∏

p

(1 − 1

pz
).
∏

p



1 +
∞∑

n=1,a(tp2n) 6=0

1

pz





=
∏

p,a(tp2) 6=0



(1 − 1

pz
)(1 +

1

pz
+

∞∑

n=2,a(tp2n) 6=0

1

pnz
)





·
∏

p,a(tp2)=0

(

(1 − 1

pz
)(1 +

∞∑

n=2

1

pnz
)

)

=
∏

p,a(tp2) 6=0

(

1 − 1

p2z
+ r1(z, p)

)

.
∏

p,a(tp2)=0

(

1 − 1

pz
+ r2(z, p)

)

,

wherer1(z, p) and r2(z, p) are the remaining terms. Taking the logarithm ofA(z), we conclude

that
∑

p,a(tp2)=0 log
(

1 − 1
pz + r2(z, p)

)

is holomorphic onRe(z) ≥ 1, sinceP=0 is a regular set

of primes of density0, by Theorem 4.2. Moreover
∑

p,a(tp2) 6=0 log
(

1 − 1
p2z + r1(z, p)

)

is also

holomorphic onRe(z) ≥ 1. Taking the exponential shows thatA(z) = T (z)
ζ(z) is holomorphic for

Re(z) ≥ 1. We obtainA(1) > 0 and limz→1+(z − 1)T (z) = A(1). Therefore we conclude that
the set{n ∈ N | a(tn2) 6= 0} has a Dedekind-Dirichlet density equal toA(1). Hence, the limit
limz→1+(z − 1)

∑

a(tn2)=0
1
nz = 1 − A(1) exists. So we conclude that

lim
z→1+

(z − 1)
∑

a(tn2)>0

1

nz
=

A(1)

2
.

This implies that the Dedekind-Dirichlet density of the two sets in the statement areequal and com-
pletes the proof.
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