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Abstract. Using the works of Mañé [14] and Paternain [18] we
study the distribution of geodesic arcs with respect to equilibrium
states of the geodesic flow on a closed manifold, equipped with
a C∞ Riemannian metric. We prove large deviations lower and
upper bounds and a contraction principle for the geodesic flow in
the space of probability measures of the unit tangent bundle. We
deduce a way of approximating equilibrium states for continuous
potentials.

1. Introduction

Let M be a closed and connected manifold equipped with a C∞ Rie-
mannian metric. We study the distribution of geodesic arcs of M with
respect to equilibrium states. We prove large deviations lower and up-
per bounds for the geodesic flow in the space of probability measures
of the unit tangent bundle. More precisely, we consider Lebesgue mea-
sures supported on a finite number of geodesic arcs and show that they
define a process which satisfy a large deviation principle with action
function given by the topological pressure. As an application, we ob-
tain equidistribution results which describe the proportion of geodesic
arcs which support Lebesgue measures close to equilibrium states. We
show that this proportion converges exponentially fast to one when the
length of the geodesic arcs tends to infinity. We also prove a contraction
principle for these probability measures, which is a large deviation the-
orem with constraints. This work is based on two remarkable formulas
due to Mañé [14] and Paternain [18] which characterize the topological
entropy and pressure as a growth rate of the number of the geodesic
arcs (see Theorem 8 and Theorem 9). On the other hand, the technics
of convex analysis and large deviations in [11] and [9] were particu-
lary usefull for this work. We adapt and extend certain of the general
arguments in [11] to our situation.
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We have two important situations where the results of the paper ap-
ply. The first situation concerns the class of manifolds with negative
curvature. In this case, it is well known that for any Hölder continuous
potential there exists a unique equilibrium state. There are three well
known invariant measures in this setting. The Bowen-Margulis mea-
sure, which is the equilibrium state (a measure of maximal entropy)
corresponding to constant potentials. The harmonic measure which
corresponds to the potential d

dt
|t=0(K ◦ ϕ̃t) where K is the Poisson ker-

nel and ϕ̃t the geodesic flow of SM̃ , where M̃ is the universal cover
of the manifold M . The Liouville measure which is the equilibrium
state of the potential d

dt
|t=0 det (dϕt|Es) where Es is the stable tangent

bundle of SM (see [7] and [8] for more details). For the “Liouville
potential”, we obtain that the geodesic arcs are uniformly distributed
with respect to the Liouville measure.
The second situation deals with the more general class of Riemann-

ian manifolds of nonpositive curvature which are Rank 1. Then by a
result of Knieper [12] we know that there exists a uniquely determined
invariant measure of maximal entropy for the geodesic flow. But it
is not known up to now which class of raisonable potentials admit a
unique equilibrium state and this question remains open for Rank 1
manifolds. However, our results give a way of approximating equilib-
rium states of the geodesic flow of such manifolds. Indeed, these results
are applicable everywhere where Mañé’s and Paternain’s formulas hold.
Finally, I’m very grateful to François Ledrappier for helpful conver-

sations.

2. Main results

2.1. Preliminaries and notations. LetM be a closed and connected
manifold equipped with a C∞ Riemannian metric and φ : SM → SM
be the geodesic flow on the unit tangent bundle SM . We assume that
M has volume one,

∫
M
dx = 1, where dx is the volume form induced

by the Riemannian metric of M .
We denote by P(SM) the space of probability measures on SM

equipped with the weak star topology. Let Pinv(SM) be the subset
of P(SM) of invariant probability measures. Given a potential F ∈
CIR(SM), the topological pressure of F is the number defined by the
variational principle [25],

(1) P (F ) = sup
m∈Pinv(SM)

(h(m) +

∫

SM

Fdm),
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where h(m) is the entropy of m. For F = 0 this reduces to

P (0) = sup
m∈Pinv(SM)

h(m) := htop

where htop is the topological entropy of the geodesic flow.
An equilibrium state for F , is a measure m ∈ Pinv(SM) which

achieves the maximum in (1),

h(m) +

∫

SM

Fdm = P (F ).

We denote by Pe(F ) the subset of Pinv(SM) of equilibrium states cor-
responding to F . By a result of Newhouse [16], since the metric is C∞,
the entropy map m → h(m) is upper semicontinuous. Then htop < ∞
and consequently, the set Pe(F ) is a nonempty closed, compact, convex
subset of P(SM) [25].
We define the functional QF on CIR(SM) based on the potential F

by,

(2) QF (ω) := P (F + ω)− P (F ).

By definition, QF is continuous on continuous functions (see Lemma
1 and Remark 1). Sometimes we will simply write Q, if there is no
confusion to be been afraid.
We set for any probability measure µ on SM ,

(3) JF (µ) := sup
ω

(

∫
ωdµ−QF (ω)),

where the sup is taken over the space of continuous functions ω on SM .
Observe that since QF (0) = 0, then JF is a non negative functional and
clearly is lower semicontinuous. We will see that (Lemma 1 and Remark
1) that Pe(F ) = {JF = 0}. Again, if there is no ambiguity we write J
instead of JF .
By duality, we have

(4) QF (ω) = sup
µ∈P(SM)

(

∫
ωdµ− JF (µ)).

For any set E ⊂ P(SM) put

JF (E) := inf
µ∈E

JF (µ).

Given x and y in M , we denote by γxy : [0, l(γxy)] → M a unit speed
geodesic arc joining x to y with length l(γxy). For any δ > 0 and T > 0
we set,

Gδ,T (x, y) := {γxy : T − δ < l(γxy) ≤ T} and,

GT (x, y) := {γxy : l(γxy) ≤ T}.
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Recall from [3] that given T > 0, the set of geodesic arcs with length
≤ T is finite and its cardinality is locally constant for an open full
Lebesgue measure subset of M × M (see also [18] p53 for a proof
using Sard’s theorem). By a result of Burns K and Gutkin E [4], the
growth of #GT (x, y) and a positive topological entropy are related to
the condition of “insecurity” of the manifold.
The integral

∫
γxy

ω of a function ω over the geodesic arc γxy is defined

by
∫

γxy

ω :=

∫ l(γxy)

0

ω(φs(γ̇xy(0))ds.

Here γ̇xy(0) is the initial condition of the geodesic γxy. The Lebesgue
measure δγxy with support in γxy is now defined by,

∫

SM

ωdδγxy :=
1

l(γxy)

∫

γxy

ω.

We will write Gδ,T and GT for simplicity, since the dependence in (x, y)
will be always clear.

2.2. The results. Consider a real continuous potential F defined on
SM . For any Borel subset E of P(SM) we set,

(5) νT (E) :=

∫
M×M

(
∑

γxy∈Gδ,T :δγxy∈E
e
∫
γxy

F
)dxdy

∫
M×M

(
∑

γxy∈Gδ,T
e
∫
γxy

F
)dxdy

.

This defines a process (νT )T>0 on the space P(SM). The first result
gives large deviations bounds for this process, namely

lim sup
T→+∞

1

T
log νT (K) ≤ −J(K)

lim inf
T→+∞

1

T
log νT (O) ≥ −J(O),

respectively, for any closed subset K and open subset O of P(SM).
Before we state the main theorem, we do the following assumption

under which we prove the lower bound part of the large deviation theo-
rem. This condition is well known when we deal with the lower bound
part (see [11] and [9]).
There exists a countable set C := {gk, k ≥ 1} ⊂ CIR(SM) of contin-

uous fucntions such that their span is dense in CIR(SM) with respect

to the topology of uniforme convergence, ‖gk‖ = 1 for all k, and for all

β ∈ IRn the potential
∑n

k=1 βkgk has a unique equilibrium state.
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Theorem 1. Let M be a closed and connected manifold equipped with

a C∞ Riemannian metric and F ∈ CIR(SM). Then for any δ > 0 we

have

(1) For any closed subset K of P(SM)

lim sup
T→+∞

1

T
log

∫ (∑
γxy∈Gδ,T :δγxy∈K

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

≤ −J(K).

(2) If for all β ∈ IRn and g = (g1, . . . , gn) ∈ Cn, F + β · g has a

unique equilibrium state, then for any open subset O of P(SM),

lim inf
T→+∞

1

T
log

∫ (∑
γxy∈Gδ,T :δγxy∈O

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

≥ −J(O).

As consequence of Theorem 1 (1) we have the following result which
asserts that the proportion of geodesic arcs supporting a Lebesgue
measure close to an equilibrium state is asymptotically equal to 1 :
limT→∞ νT (V ) = 1 and the convergence is exponential. Set V c :=
P(SM)\V .

Corollary 1. For any open neighborhood V of Pe(F ) in P(SM) we

have

lim
T→+∞

∫ (∑
γxy∈Gδ,T :δγxy∈V

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

= 1,

where the convergence is exponential with speed e−TJ(V c).

We know that large deviation principles are preserved under contin-
uous mapping, this is known as the contraction principle ([9]). In the
present case, the contraction principle reduces the preceeding theorem
to a finite dimensional one. First, we need some notations.
Set for g ∈ CIRn(SM) and α ∈ IRn, n > 0,

Pg,α(SM) := {m ∈ P(SM) :

∫

SM

gdm = α}.

We define the functional

Jg(α) =

{
inf(J(m) : m ∈ Pg,α(SM) if Pg,α(SM) 6= ∅
+∞ if Pg,α(SM) = ∅

and for any En ⊂ IRn,

Jg(En) = inf (Jg(α) : α ∈ En) .

To simplify the notations set m(g) =
∫
gdm for m ∈ P(SM).
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Theorem 2 (Contraction principle). Let M be a closed and connected

manifold equipped with a C∞ Riemannian metric and F ∈ CIR(SM).
Let g ∈ CIRn(SM). Then for any δ > 0 we have

(1) For any closed subset Kn ⊂ IRn,

lim sup
T→+∞

1

T
log

∫ (∑
γxy∈Gδ,T :δγxy (g)∈Kn

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

≤ −Jg(Kn).

(2) If for all β ∈ IRn, F + β · g has a unique equilibrium state, then

for any open subset On ⊂ IRn,

lim inf
T→+∞

1

T
log

∫ (∑
γxy∈Gδ,T :δγxy (g)∈On

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

≥ −Jg(On).

Part (1) of Theorem 2 is a consequence of Theorem 1 (1), by the
continuity of the function g. Note that we do not assume in part (2)
of Theorem 2 that g ∈ Cn. This last condition is used in the proof of
part (2) of Theorem 1. In other words, the conclusion of Theorem 2 (2)
holds for any continuous g such that for all β ∈ IRn, F + β · g admits
a unique equilibrium state.
For any δ > 0 we define the probability measures on SM ,

(6) mδ,T :=

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
· δγxy

)
dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

.

As an application of Theorem 1 (1) we prove the following theorem.

Theorem 3. Let M be a closed and connected manifold equipped with

a C∞ Riemannian metric and F ∈ CIR(SM). For any δ > 0, any weak

limit m∞ of (mδ,T )T is an equilibrium states for the potential F , i.e

m∞ is invariant and satisfies

h(m∞) +

∫
Fdm∞ = P (F ).

These theorems apply to the geodesic flow of a manifold of negative
curvature and Hölder continuous potentials F . The following result
is particulary important when the unique equilibrium state µF corre-
sponding to F is the Bowen-Margulis measure or the harmonic measure
(section 1). In particular, if F is the “Liouvile potential” (section 1)
then this corollary says that the geodesic arcs are uniformly distributed.

Corollary 2. Let M be a closed and connected manifold of negative

curvature equipped with a C∞ Riemannian metric. Suppose that the
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potential F is Hölder continuous and let µF be the unique corresponding

equilibrium state. Then, for any δ > 0, the measures (mδ,T )T converge

weakly to µF as T → +∞.

Consider now the measure µmax of maximal entropy [12] of the geo-
desic flow of a rank 1 manifold. Set

µδ,T :=

∫ (∑
γxy∈Gδ,T

δγxy

)
dxdy

∫ (∑
γxy∈Gδ,T

)
dxdy

.

Corollary 3. LetM be a closed and connected rank 1 manifold equipped

with a C∞ Riemannian metric. Then, for any δ > 0, the measures

(µδ,T )T converge weakly to µmax as T → +∞.

3. Constant and positive potentials

We state in this section some results which are not a direct conse-
quence of the previous ones.

3.1. Positive potentials. Consider the probability measures defined
on SM by

mT :=

∫ (∑
γxy∈GT

e
∫
γxy

F
δγxy

)
dxdy

∫ (∑
γxy∈GT

e
∫
γxy

F
)
dxdy

.

Theorem 4. Let M be a closed and connected manifold equipped with

a C∞ Riemannian metric and F ∈ CIR(SM). Assume that P (F ) > 0.
Then, the weak limits of (mT )T are equilibrium states corresponding to

the potential F . If M has negative curvature then (mT )T converges to

the unique equilibrium state µF corresponding to F .

Theorem 4 is a consequence of part 1 of the following theorem.

Theorem 5. Let M be a closed and connected manifold equipped with

a C∞ Riemannian metric and F ∈ CIR(SM). Then

(1) If P (F ) > 0 we have for any closed subset K of P(SM) such

that J(K) < P (F ),

lim sup
T→+∞

1

T
log

∫ (∑
γxy∈GT :δγxy∈K

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈GT

e
∫
γxy

F
)
dxdy

≤ −J(K).
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(2) If for all β ∈ IRn and g = (g1, . . . , gn) ∈ Cn, F + β · g has a

unique equilibrium state, then for any open subset O of P(SM),

lim inf
T→+∞

1

T
log

∫ (∑
γxy∈GT :δγxy∈O

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈GT

e
∫
γxy

F
)
dxdy

≥ −J(O).

Observe that given F and any constant c we have Pe(F ) = Pe(F+c).
On the other hand, we can find a constant c > 0 such that F + c > 0.
Thus up to a constant we can always assume that P (F ) > 0.

3.2. Constant potentials. We consider here constant potentials which
is equivalent to set F ≡ 0.

Theorem 6. Suppose thatM is a closed and connected manifold equipped

with a C∞ Riemannian metric. If M has no conjugate points, then for

any δ > 0,

(1) For any closed subset K of P(SM) and a.e (x, y) ∈ M ×M

lim sup
T→+∞

1

T
log

#
{
γxy ∈ Gδ,T : δγxy ∈ K

}

#Gδ,T

≤ −J(K).

(2) For a.e (x, y) ∈ M ×M , the weak limits of

µδ,T (x, y) :=

∑
γxy∈Gδ,T

δγxy

#Gδ,T

,

are measures of maximal entropy.

In part (1) of Theorem 6, the set of points (x, y) ∈ M ×M for which
we have the upper bound depends on the given closed set K, while in
part (2) it depends only on δ.

Theorem 7. Suppose thatM is a closed and connected manifold equipped

with a C∞ Riemannian metric. If M has no conjugate points, and

htop > 0 then,

(1) For any closed subset K of P(SM) such that J(K) < htop and

a.e (x, y) ∈ M ×M

lim sup
T→+∞

1

T
log

#
{
γxy ∈ GT : δγxy ∈ K

}

#GT

≤ −J(K).

(2) For a.e (x, y) ∈ M ×M , the weak limits of

µT (x, y) :=

∑
γxy∈GT

δγxy

#GT

,

are measures of maximal entropy.



EQUIDISTRIBUTION RESULTS FOR GEODESIC FLOWS 9

4. Proofs

4.1. Growth of geodesic arcs. The following two theorems of Mañé
[14] and Paternain [18] are the main tools in the proof of our results.

Theorem 8 (R Mañé [14]). Let M be a closed and connected manifold

equipped with a C∞ metric. Then

(1)

htop = lim
T→∞

1

T
log

∫

M×M

#GT (x, y)dxdy.

(2) If M has no conjugate points, for all (x, y)

htop = lim
T→∞

1

T
log#GT (x, y).

(3) Suppose that the metric is of class C3 and M does not have

conjugate points. Then for any δ > 0 and all (x, y) we have

htop = lim
T→∞

1

T
log#Gδ,T (x, y).

Theorem 9 (G P Paternain [18]). Let M be a closed and connected

manifold equipped with a C∞ metric.

(1) For any δ > 0

P (F ) = lim
T→+∞

1

T
log

∫

M×M


 ∑

γxy∈Gδ,T

e
∫
γxy

F


 dxdy.

(2) If P (F ) ≥ 0

P (F ) = lim
T→+∞

1

T
log

∫

M×M


 ∑

γxy∈GT

e
∫
γxy

F


 dxdy.

For any invariant probability measure µ we set

(7) I(µ) := P (F )− (h(µ) +

∫

SM

Fdµ).

Lemma 1. (1) The functional QF is convex and continuous on

continuous functions.

(2) Q(ω) = supµ∈Pinv(SM)(
∫
ωdµ− I(µ)). In other words, the func-

tionals I and JF agree on invariant measures.

Proof. Part (1) is a consequence of the convexity of the pressure func-
tion P and the variational principle (1) from which we can easily deduce
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that |P (f)− P (g)| ≤ ‖f − g‖∞ [25]. Part (2) follows from (7) and,

sup
µ∈Pinv(SM)

(

∫
ωdµ− I(µ))

= sup
µ∈Pinv(SM)

(

∫
ωdµ− P (F ) + h(µ) +

∫
Fdµ)

= P (F + ω)− P (F ) = QF (ω).

�

Remark 1. QF is invariant by the geodesic flow : QF (ω◦φt) = QF (ω),
for all t and continuous function ω. Thus, a probability measure m
satisfies JF (m) = 0 if and only if m is invariant and I(m) = 0. In

particular, if K is a closed subset of P(SM) and infm∈K JF (m) =
JF (µ) for some µ ∈ K, then infm∈K JF (m) = 0 iff µ is invariant and

h(µ) +
∫
Fdµ = P (F ). In other words we have Pe(F ) = {JF = 0}.

4.2. Proof of Theorem 1 (1).

Proof. We have to prove

lim sup
T→∞

1

T
log νT (K) ≤ − inf

m∈K
J(m) := −J(K).

Let ǫ > 0. There exists a finite number of continuous functions ω1, · · · , ωl

such that K ⊂ ∪l
i=1Ki, where

Ki = {m ∈ P(SM) :

∫
ωidm−Q(ωi) > J(K)− ǫ}.

Put

Γi(x, y, T ) := {γxy ∈ Gδ,T : δγxy ∈ Ki},

and

Zi(T ) :=

∫

M×M

∑

γxy∈Γi(x,y,T )

e
∫
γxy

F
dxdy.

We have νT (K) ≤
∑l

i=1 νT (Ki) and

νT (Ki) =
Zi(T )∫

M×M
(
∑

γxy∈Gδ,T
e
∫
γxy

F
)dxdy

.

We have

Zi(T ) ≤

∫

M×M

∑

γxy∈Γi(x,y,T )

e
∫
γxy

F
el(γxy)(

∫
ωidδγxy−Q(ωi)−(J(K)−ǫ))dxdy.
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Set C :=
∑

i≤l sup(1, e
−δ(−Q(ωi)−(J(K)−ǫ))). Thus, by taking into account

the sign of −Q(ωi)− (J(K)− ǫ),

Zi(T ) ≤

∫

M×M

∑

γxy∈Γi(x,y,T )

e
∫
γxy

(F+ωi)el(γxy)(−Q(ωi)−(J(K)−ǫ))dxdy

≤ CeT (−Q(ωi)−(J(K)−ǫ))

∫

M×M

∑

γxy∈Γi(x,y,T )

e
∫
γxy

(F+ωi)dxdy.

For T sufficiently large, it follows from Theorem 9 (1),

νT (K) ≤
l∑

i=1

Zi(T )∫ ∑
γxy∈Gδ,T

e
∫
γxy

F
dxdy

≤ C
l∑

i=1

eT (P (F+ωi)+ǫ)e−T (P (F )−ǫ)eT (−Q(ωi)−(J(K)−ǫ)

= CleT (−J(K)+3ǫ).

Take the logarithme, divide by T and the lim sup,

lim sup
T→∞

1

T
log νT (K) ≤ −J(K) + 3ǫ.

ǫ being arbitrary, this proves Theorem 1 (1). �

4.3. Proof of Corollary 1.

Proof. It suffices to apply Theorem 1 to the closed set K = P(SM)\V .
We have J(K) = J(m) for some m ∈ K and νT (V ) = 1 − νT (K). By
Remark 1, J(m) > 0 and for T sufficiently large,

1 ≥ νT (V ) ≥ 1− eTJ(m).

�

4.4. Proof of Theorem 2 (2).

Proof. Recall that Pg,α(SM) = {m ∈ P(SM) :
∫
gdm = α} and

(8) Jg(α) = inf(J(m) : m ∈ Pg,α(SM))

(9) Jg(On) := inf
α∈On

Jg(α).

Given a continuous function g : SM → IRn we set β · g =
∑n

i=1 βigi for
β ∈ IRn. Then, by definition of the function Q, we have

(10) Q(β · g) = sup
α∈IRn

(β · α− Jg(α)),
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and by duality,

(11) Jg(α) = sup
β∈IRn

(β · α−Q(β · g)).

If Jg(On) = +∞ then there is nothing to do. Suppose then J(On) <
+∞. Let ε > 0 and choose αε ∈ On with Pg,αε(SM) 6= ∅ such that

Jg(On) > Jg(αε)− ε.

We know from ([23] Theorem 23.4 and 23.5) that, given α in the interior
of the affine hull of the domain D(Jg) of Jg, there exists β ∈ IRn such
that

Q(β · g) = β · α− Jg(α).

Let then βε ∈ IRn such that

(12) Q(βε · g) = βε · αε − Jg(αε).

Consider now a small neighborhood of αε,

On,r := {α ∈ IRn : |αε − α| ≤ r},

such that On,r ⊂ On. Define for any E ⊂ IRn :

ΓT (E) := {γxy ∈ Gδ,T : δγxy(g) ∈ E}

ZT (E) :=

∫ (∑
γxy∈ΓT (E) e

∫
γxy

F
)
dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

.

We have, ZT (On) ≥ ZT (On,r) and
∑

γxy∈ΓT (On,r)

e
∫
γxy

F

= e−Tβε·αε

∑

γxy∈ΓT (On,r)

e
∫
γxy

F
e−T (βε·(δγxy (g)−αε))eTβε·δγxy (g)

≥ e−Tβε·αεe−r‖βε‖T
∑

γxy∈ΓT (On,r)

e
∫
γxy

F
eTβε·δγxy (g)

= e−Tβε·αεe−r‖βε‖T
∑

γxy∈ΓT (On,r)

e
∫
γxy

F
el(γxy)βε·δγxy (g)e(T−l(γxy))βε·δγxy (g).

By the condition, 0 ≤ T − l(γxy) ≤ δ, we have

e(T−l(γxy))βε·δγxy (g) ≥ e−δ‖βε·g‖∞ .

Thus∑

γxy∈ΓT (On,r)

e
∫
γxy

F
≥ e−Tβε·αεe−r‖βε‖T e−δ‖βε·g‖∞

∑

γxy∈ΓT (On,r)

e
∫
γxy

(F+βε·g).
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Set

Zε
T (On,r) :=

∫
(
∑

γxy∈ΓT (On,r)
e
∫
γxy

(F+βε·g))dxdy
∫
(
∑

γxy∈Gδ,T
e
∫
γxy

(F+βε·g))dxdy

and

ZT (βε · g) :=
1

T
log

∫
(
∑

γxy∈Gδ,T
e
∫
γxy

(F+βε·g))dxdy
∫ ∑

γxy∈Gδ,T
e
∫
γxy

F
dxdy

.

Therefore,
(13)
1

T
logZT (On,r) ≥ −r‖βε‖−

δ‖βε · g‖∞
T

+(ZT (βε·g)−βε·αε)+
1

T
logZε

T (On,r),

From Theorem 9 (1) and by definition of Q = QF (see (2)) we get,

lim
T→∞

ZT (βε · g) = P (F + βε · g)− P (F ) = Q(βε · g).

Thus

lim inf
T→∞

1

T
logZT (On) ≥ −r‖βε‖+(Q(βε·g)−βε·αε)+ lim

T→∞

1

T
logZε

T (On,r).

We will show that

(14) lim
T→∞

Zε
T (On,r) = 1.

Let us see how to finish the proof using (14) :

lim inf
T→∞

1

T
logZT (On) ≥ −r‖βε‖+Q(βε · g)− βε · αε

= −r‖βε‖ − Jg(αε)

≥ −r‖βε‖ − Jg(On)− ε,

for any ε > 0. Since r > 0 was arbitray choosen, we let r → 0 and
ε → 0 respectively and we get lim infT→∞

1
T
logZT (On) ≥ −Jg(On)

which completes the proof Theorem 2 (2).
It remains to show (14). LetKn,r be the complement set ofOn,r in the

image g∗(P(SM)) of P(SM) under the continuous map g∗ : m → g·m.
We have Zε

T (On,r) + Zε
T (Kn,r) = 1. The goal is to show that Zε

T (Kn,r)
decrease exponentially fast to zero as T → ∞ using Theorem 1.
Consider Jε := JF+βε·g which is the functional J corresponding to

Qε := QF+βε·g. We have

Qε(ω) = P (F + βε · g + ω)− P (F + βε · g),

and by (3),

Jε(m) = sup
ω

(

∫
ωdm−Qε(ω)).
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From this we deduce easily that

Jε(m) = J(m) +Q(βε · g)−

∫
βε · gdm,

and

inf
m(g)=α

Jε(m) = inf
m(g)=α

J(m) +Q(βε · g)− βε · α.

The set Kn,r is compact in IRn and by Theorem 1 (1),

lim sup
T→∞

1

T
logZε

T (Kn,r) ≤ −J ǫ(K),

with K := (g∗)−1(Kn,r) which is a closed subset of P(SM). We have,

Jε(K) = inf
α∈Kn,r

(Jg(α) +Q(βε · g)− βε · α).

If Jε(K) = +∞ there is nothing to do and the result follows. The key
point is to prove that Jε(K) > 0. Set

Jε
g (α) := Jg(α) + Q(βε · g)− βε · α.

The functional Jε is non negative (since Qε(0) = 0), lower semicon-
tinuous and then it achieves its minimum on compact sets. We have
Jε
g (α) ≥ 0 and Jε

g (αε) = 0 (see (12)). Recall that, if Jε
g (α) = 0 for

some α ∈ Kn,r, then there will correspond to α an equilibrium state
mα ∈ K for the potential F +βε ·g such that mα(g) = α. The vector αε

is the unique point realizing the minimum, i.e the unique solution for
the equation Jε

g (α) = 0. Indeed, two different solutions will produce
two distinct equilibrium states for the potential F + βε · g which con-
tradicts our standing assumption of Theorem 1. Since αε ∈ On,r, then
Jε
g (α) > 0 for α ∈ Kn,r. On the other hand the set Kn,r being compact,

by the lower semicontinuity of Jε we have Jε(K) = infα∈Kn,r J
ε
g (α) > 0.

Thus we have proved that

lim sup
T→∞

1

T
logZε

T (Kn,r) ≤ −Jε(K) < 0

from which (14) follows immediately. �

4.5. Proof of Theorem 1 (2).

Proof. Let O ⊂ P(SM) be an open set and ǫ > 0. Choose mǫ ∈ O
such that

J(mǫ) ≤ J(O) + ǫ.
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We endow the space P(SM) with a compatible topology generated by
the distance given by

d(m,m′) :=
∞∑

k=1

2−k|m(gk)−m′(gk)|,

where the functions gk were defined in section 2.2. Following [11] we
define,

dn(m,m′) :=
n∑

k=1

2−k|m(gk)−m′(gk)|.

Set 2r = inf{d(m,mǫ) : m ∈ P(SM)\O}. We have r > 0, since
P(SM)\O is a compact subset of P(SM). Since for all k, ‖gk‖ = 1,
we have 0 ≤ d(m,m′) − dn(m,m′) ≤ 2−(n−1). Thus, for n suffuciently
large,

Oǫ,r := {m ∈ P(SM) : dn(m,mǫ) < r} ⊂ O.

For each α = (α1, . . . , αn) ∈ IRn write ‖α‖n =
∑n

k=1 2
−k|αk|. Set

αǫ := (
∫
g1dmǫ, . . . ,

∫
gndmǫ) = mǫ(g

(n)) and

On,r := {α ∈ IRn : ‖αǫ − α‖n < r}.

Then, g(n)(Oǫ,r) = On,r ∩ g(n)(P(SM)). From Theorem 2 (2) we get,

lim inf
T→+∞

1

T
log

∫ (∑
γxy∈Gδ,T :δγxy∈O

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

≥ lim inf
T→+∞

1

T
log

∫ (∑
γxy∈Gδ,T :δγxy∈Oǫ,r

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

= lim inf
T→+∞

1

T
log

∫ (∑
γxy∈Gδ,T :δγxy (g

(n))∈On,r
e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

≥ −Jg(On,r)

≥ −Jg(αǫ) ≥ −J(mǫ) ≥ −J(O)− ǫ,

for any ǫ > 0. This completes the proof of the main Theorem 1. �

4.6. Proof of Theorem 3.

Proof. We have to show that the weak limits of

mδ,T :=

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
δγxy

)
dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

,
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are contained in Pe(F ).
Let V ⊂ P(SM) be a convex open neighborhood of Pe(F ) and ǫ > 0.

We consider a finite open cover (Bi(ǫ))i≤N of Pe(F ) by balls of diameter
ǫ all contained in V . Define the measures on SM ,

mT,V :=

∫ (∑
γxy∈Gδ,T :δγxy∈V

e
∫
γxy

F
δγxy

)
dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

.

Decompose the set U := ∪N
i=1Bi(ǫ) in a disjoint union as follows,

U = ∪N ′

j=1U
ǫ
j ,

where the sets U ǫ
j are disjoints and contained in one of the balls (Bi(ǫ))i≤N .

We have

Pe(F ) ⊂ U ⊂ V.

We fix in each U ǫ
j a probability measure mj , j ≤ N ′, and let m0 be

a probability measure distinct from the above ones (for example take
m0 ∈ V \U).
Set as usual,

(15) νT (E) :=

∫ (∑
γxy∈Gδ,T :δγxy∈E

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

,

and define,

(16) βT =
N ′∑

j=1

νT (U
ǫ
j )mj + (1− νT (U))m0.

We have
∑N ′

j=1 νT (U
ǫ
j ) = νT (U). The probability measure βT lies in V

since it is a convex combination of elements in the convex set V . We
have then d(mδ,T , V ) ≤ d(mδ,T , βT ). We will show that

d(mδ,T , βT ) ≤ ǫνT (U) +
3

2
νT (U

c),

where U c = P(SM)\U which is closed.
By definition of mδ,T and mT,V and the fact that U ⊂ V ,

∑

k≥1

2−k|mδ,T (gk)−mT,V (gk)| ≤
1

2
νT (U

c).

It remains to show that d(mT,V , βT ) ≤ ǫνT (U) + νT (U
c). We have for

all k ≥ 1,

|mT,V (gk)− βT (gk)| ≤ A+B + C
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where,

A =

∑N ′

j=1

∫ (∑
γxy∈Gδ,T :δγxy∈U

ǫ
j
e
∫
γxy

F
|δγxy(gk)−mj(gk)|

)
dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

,

B =

∫
(
∑

γxy∈Gδ,T :δγxy∈V \U e
∫
γxy

F
δγxy(gk))dxdy

∫ (∑
γxy∈Gδ,T

e
∫
γxy

F
)
dxdy

,

C = |(1− νT (U))m0(gk)|.

Thus, since we have for all k ≥ 1, ‖gk‖ = 1, by definition of νT (15) we
get,

∑

k≥1

2−k|mT,V (gk)− βT (gk)|

≤ ǫ

N ′∑

j=1

νT (U
ǫ
j ) +

1

2
νT (U

c) +
1

2
(1− νT (U))

= ǫνT (U) + νT (U
c).

Finally we have obtained that

d(mδ,T , βT ) ≤ ǫνT (U) +
3

2
νT (U

c).

This implies the desired inequality,

d(mδ,T , V ) ≤ ǫνT (U) +
3

2
νT (U

c).

By Corollary 1, since U c is closed, we know that limT→∞ νT (U) = 1.
Thus, lim supT→∞ d(mδ,T , V ) ≤ ǫ, for all ǫ > 0. We conclude that
lim supT→∞ d(mδ,T , V ) = 0. The neighborhood V of Pe(F ) being ar-
bitrary, this implies that all limit measures of mδ,T are contained in
Pe(F ). In particular, if Pe(F ) is reduced to one measure µ, this shows
that mT converges to µ. �

4.7. Proof of Theorem 5.

4.7.1. Proof of Part 1.

Proof. Set for any E ⊂ P(SM),

νT (E) =

∫
M×M

(
∑

γxy∈GT :δγxy∈E
e
∫
γxy

F
)dxdy

∫
M×M

(
∑

γxy∈GT
e
∫
γxy

F
)dxdy

.
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Let ǫ > 0. There exists a finite number of continuous functions ω1, · · · , ωl

such that K ⊂ ∪l
i=1Ki, where

Ki = {m ∈ P(SM) :

∫
ωidm−Q(ωi) > J(K)− ǫ}.

We can suppose that all the ωi’s are non negative since adding a con-
stant c > 0 we have,

∫
(ωi + c)dm−Q(ωi + c) =

∫
ωidm−Q(ωi).

Put

Γi(x, y, T ) := {γxy ∈ GT : δγxy ∈ Ki},

and

Zi(T ) :=

∫ ∑

γxy∈Γi(x,y,T )

e
∫
γxy

F
dxdy.

From the definition of Γi(x, y, T ) we get,

Zi(T ) ≤

∫ ∑

γxy∈Γi(x,y,T )

e
∫
γxy

F
el(γxy)(

∫
ωidδγxy−Q(ωi)−(J(K)−ǫ))dxdy.

We decompose the interval [0, T ] into subintervals [T − (j+1)δ, T − jδ]
and set

Γij(x, y, T ) := {γxy : T − (j + 1)δ < l(γxy) ≤ T − jδ, δγxy ∈ Ki}.

Since the functions ωi were supposed non negative, we have Q(ωi) ≥ 0
and then Q(ωi) + J(K) ≥ 0. Thus, from Theorem 9 (1) and for T
sufficiently large,

Zi(T ) ≤

∫ ∑

γxy∈Γi(x,y,T )

e
∫
γxy

(F+ωi)el(γxy)(−Q(ωi)−(J(K)−ǫ))dxdy

≤
∑

j

e(T−(j+1)δ)(−Q(ωi)−(J(K)−ǫ))

∫ ∑

γxy∈Γij(x,y,T )

e
∫
γxy

(F+ωi)dxdy

≤
∑

j

e(T−(j+1)δ)(−Q(ωi)−(J(K)−ǫ))e(T−jδ)(P (F+ωi)+ǫ)

=
∑

j

e(T−jδ)(P (F )−J(K)+2ǫ)e−δ(−Q(ωi)−(J(K)−ǫ)).

We assumed that J(K) < P (F ), then C :=
∑

j e
−jδ(P (F )−J(K)+2ǫ) < ∞.

Setting λi := e−δ(−Q(ωi)−(J(K)−ǫ)), we get for T sufficiently large and
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Theorem 9 (2) (P (F ) > 0),

νT (K) ≤

∑l

i=1 Zi(x, y, T )∫ ∑
γxy∈GT

e
∫
γxy

F
dxdy

≤
l∑

i=1

∑

j

eT (−J(K)+3ǫ)λie
−jδ(P (F )−J(K)+2ǫ)

= eT (−J(K)+3ǫ)C

l∑

i=1

λi.

Take the logarithme, divide by T and take the lim sup,

lim sup
T→∞

1

T
log νT (K) ≤ −J(K) + 3ǫ.

ǫ being arbitrary, this proves Theorem 5 (1). �

4.7.2. Proof of Part 2.

Proof. As for the proof of part (2) of Theorem 1, the proof will be a
consequence of the contraction principle,

lim inf
T→∞

∫ (∑
γxy∈GT :δγxy (g)∈On

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈GT

e
∫
γxy

F
)
dxdy

≥ −Jg(On).

We follow the lines of the proof of Theorem 2 (2) with the same nota-
tions. Let δ > 0. We have,

∫ (∑
γxy∈GT :δγxy (g)∈On

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈GT

e
∫
γxy

F
)
dxdy

≥

∫ (∑
γxy∈ΓT (On)

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈GT

e
∫
γxy

F
)
dxdy

,

where,

ΓT (On) := {γxy ∈ Gδ,T : δγxy(g) ∈ On}.

Set

ZT (On) :=

∫ (∑
γxy∈ΓT (On)

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈GT

e
∫
γxy

F
)
dxdy

.
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Then ZT (On) ≥ ZT (On,r) and (see (13)),

1

T
logZT (On)

≥
1

T
logZT (On,r)

≥ −r‖βε‖ −
δ‖βε · g‖∞

T
+ (ZT (βε · g)− βε · αε) +

1

T
logZε

T (On,r),

where we have set,

Zε
T (On,r) :=

∫
(
∑

γxy∈ΓT (On,r)
e
∫
γxy

(F+βε·g))dxdy
∫
(
∑

γxy∈Gδ,T
e
∫
γxy

(F+βε·g))dxdy
,

and

ZT (βε · g) :=
1

T
log

∫
(
∑

γxy∈Gδ,T
e
∫
γxy

(F+βε·g))dxdy
∫ ∑

γxy∈GT
e
∫
γxy

F
dxdy

.

From Theorem 9 (1) and (2) respectively,

lim
T→∞

ZT (βε · g) = P (F + βε · g)− P (F ) = Q(βε · g).

We proved in (14) that limT→∞ Zε
T (On,r) = 1. Thus,

lim inf
T→∞

1

T
log

∫ (∑
γxy∈GT :δγxy (g)∈On

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈GT

e
∫
γxy

F
)
dxdy

≥ lim inf
T→∞

1

T
log

∫ (∑
γxy∈Gδ,T :δγxy (g)∈On

e
∫
γxy

F
)
dxdy

∫ (∑
γxy∈GT

e
∫
γxy

F
)
dxdy

≥ −r‖βε‖+ (Q(βε · g)− βε · αε) + lim
T→∞

1

T
logZε

T (On,r)

= −r‖βε‖ − Ig(αε)

≥ −r‖βε‖ − Jg(On)− ε,

for any ε > 0. Since r > 0 was arbitray choosen, we let r → 0 and ε → 0
respectively, this completes the proof of the contraction principle. �

4.8. Proof of Theorem 4.

Proof. We have to prove that the weak limits of

mT :=

∫ (∑
γxy∈GT

e
∫
γxy

F
δγxy

)
dxdy

∫ (∑
γxy∈GT

e
∫
γxy

F
)
dxdy
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are in Pe(F ). For this and in order to follow the proof of Theorem
3, we must show that we are able to apply Theorem 5 (1) to any
open and convex neighborhood V of Pe(F ), V ⊂ P(SM). There are
minor changes due to the conditions P (F ) > 0 and J(K) < P (F ) in
Theorem 5 (1). Let ν ∈ Pe(F ) and µ a probability measure which is
not invariant, i.e a non invariant element in P(SM)\Pe(F ). We have
J(ν) = 0 and J(µ) > 0 (by Remark 1). Consider a convex sum of
these two measures, m = αµ + βν, where α + β = 1 (α 6= 0 and
β 6= 0). Observe that m /∈ Pe(F ). Indeed, assume that m lies in
Pe(F ). In particular it is then invariant. But then, since ν is invariant
by assumption, for all t we will have

αµ+ βν = αµ ◦ φt + βν ◦ φt = αµ ◦ φt + βν.

Thus µ = µ ◦ φt for all t, which is a contradiction.
From the convexity of J we get, J(m) ≤ αJ(µ). Let V ⊂ P(SM) be

an open and convex small neighborhood of Pe(F ) such that m ∈ V c :=
K (note that in particular, for all other contained small neighborhood
V we will have m ∈ V c). Therefore,

(17) inf
k∈K

J(k) ≤ J(m) ≤ αJ(µ).

Now, since we have assumed that P (F ) > 0 then for a sufficiently small
α > 0 we get from (17),

J(K) := inf
k∈K

J(k) ≤ P (F ).

Thus P (F ) − J(K) ≥ 0. We can then apply Theorem 5 (1) to the
closed sets K = V c and conclude with the proof of Theorem 3. �

4.9. Proof of Theorem 6.

4.9.1. Proof of Part (1).

Proof. It is essentially the proof of Theorem 1 (1) with the following
modifications since it is in part based on Theorem 8 and the following
lemma (see [14] Lemma 4.3, [19] Lemma 3.33 p68).

Lemma 2. Let (X,A, µ) be a probability space, and fn : X → (0,+∞)
a sequence of integrable functions. Then for µ a.e x ∈ X

lim sup
n→∞

1

n
log fn(x) ≤ lim sup

n→∞

1

n
log

∫

X

fndµ.
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Set F = 0 and proceed as in the proof of Theorem 1 (1) with the
same notations. We have Q(ω) = P (ω)− htop and,

Zi(x, y, T ) ≤
∑

γxy∈Γi(x,y,T )

e
∫
γxy

ωiel(γxy)(−Q(ωi)−(J(K)−ǫ))

≤ CeT (−Q(ωi)−(J(K)−ǫ))
∑

γxy∈Γi(x,y,T )

e
∫
γxy

ωi .

We have

νT (K) ≤
l∑

i=1

Zi(x, y, T )

#Gδ,T

.

For all (x, y) and T sufficiently large (depending on (x, y)), it follows
from Theorem 8 (2) that,

#Gδ,T ≥ eT (htop−ǫ).

On the other hand it follows from Lemma 2 above (which can be applied
to continuous time) and Theorem 9 (1),

lim sup
T→∞

1

T
log

∑

γxy∈Γi(x,y,T )

e
∫
γxy

ωi

≤ lim sup
T→∞

1

T
log

∑

γxy∈Gδ,T

e
∫
γxy

ωi

≤ lim sup
T→∞

1

T
log

∫ 
 ∑

γxy∈Gδ,T

e
∫
γxy

ωi


 dxdy

≤ P (ωi),

for (x, y) in a subset Bi of M ×M of full Lebesgue measure and i ≤ l.
The set Bi can be taken independent from i for evident reasons, and
then we will say that the above inequalities hold for a.e (x, y) in a set
B. However, note that B depends on the set of functions {ωi, i ≤ l}
which means that B depends on K. The proof can be now achieved
similarily : let (x, y) ∈ B fixed and T sufficiently large (depending on
(x, y)),

νT (K) ≤
l∑

i=1

Zi(x, y, T )

#Gδ,T

≤ C

l∑

i=1

eT (P (ωi)+ǫ)e−T (htop−ǫ)eT (−Q(ωi)−(J(K)−ǫ)

= CleT (−J(K)+3ǫ).
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Thus lim supT→∞
1
T
log νT (K) ≤ −J(K). �

4.9.2. Proof of Part (2).

Proof. Set

νT (E) =
#{γxy ∈ Gδ,T : δγxy ∈ E}

#Gδ,T

,

and

µT,V (x, y) :=

∑
γxy∈Gδ,T :δγxy∈V

δγxy

#Gδ,T

.

Thus, proceeding as in the proof of Theorem 3, we get for any open
and convex neighborhood V of Pe(0) and all (x, y),

(18) d(µT (x, y), V ) ≤ ǫνT (U) +
3

2
νT (U

c).

Let (Vi)i≥1 be a decreasing sequence of sets of the type V such that
∩i≥1Vi = Pe(0). For (x, y) in a set BVi

of full Lebesgue measure we get
from Theorem 6 (1) and (18),

lim sup
T→∞

d(µT (x, y), Vi) ≤ ǫ,

for all ǫ > 0. Thus lim supT→∞ d(µT (x, y), Vi) = 0. Therefore, if µ(x, y)
is a weak limit of µT (x, y), (x, y) ∈ BVi

, we will have d(µ(x, y), Vi) = 0.
Also, there exists a set B of full Lebesgue measure where we have
d(µ(x, y), Vi) = 0 for all i ≥ 1. From this we deduce that µ(x, y) ∈
Pe(0) for (x, y) ∈ B. �

4.10. Proof of Theorem 7.

4.10.1. Proof of Part (1).

Proof. The proof adapts the arguments of the proof of Theorem 5 (1).
Set for any E ⊂ P(SM),

νT (E) =
#{γxy ∈ GT : δγxy ∈ E}

#GT

.

Recall that the functional Q corresponding to the potential F = 0 is
given by Q(ω) = P (ω)− htop.
Let ǫ > 0. There exists a finite number of continuous functions

ω1, · · · , ωl such that K ⊂ ∪l
i=1Ki, where

Ki = {m ∈ P(SM) :

∫
ωidm−Q(ωi) > J(K)− ǫ}.

Again we can suppose that all the ωi’s are non negative.
Put

Γi(x, y, T ) := {γxy ∈ GT : δγxy ∈ Ki},
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and
Zi(x, y, T ) := #Γi(x, y, T ).

From the definition of Γi(x, y, T ) we get,

Zi(x, y, T ) ≤
∑

γxy∈Γi(x,y,T )

el(γxy)(
∫
ωidδγxy−Q(ωi)−(J(K)−ǫ)).

Set

Γij(x, y, T ) := {γxy : T − (j + 1)δ < l(γxy) ≤ T − jδ, δγxy ∈ Ki}.

Since the functions ωi were supposed non negative, we have Q(ωi) ≥ 0
and then Q(ωi) + J(K) ≥ 0. Thus, from Theorem 9 (1) and for T
sufficiently large,

Zi(x, y, T ) ≤
∑

γxy∈Γi(x,y,T )

e
∫
γxy

ωiel(γxy)(−Q(ωi)−(J(K)−ǫ))

≤
∑

j

e(T−(j+1)δ)(−Q(ωi)−(J(K)−ǫ))
∑

γxy∈Γij(x,y,T )

e
∫
γxy

ωi

≤
∑

j

e(T−(j+1)δ)(−Q(ωi)−(J(K)−ǫ))e(T−jδ)(P (ωi)+ǫ)

=
∑

j

e(T−jδ)(htop−J(K)+2ǫ)e−δ(−Q(ωi)−(J(K)−ǫ)).

We assumed that J(K) < htop, then C :=
∑

j e
−jδ(htop−J(K)+2ǫ) < ∞.

Setting λi := e−δ(−Q(ωi)−(J(K)−ǫ)), we get for T sufficiently large and
Theorem 8 (2),

νT (K) ≤
l∑

i=1

Zi(x, y, T )

#GT

≤
l∑

i=1

∑

j

eT (−J(K)+3ǫ)λie
−jδ(htop−J(K)+2ǫ)

= eT (−J(K)+3ǫ)C
l∑

i=1

λi.

Take the logarithme, divide by T and take the lim sup,

lim sup
T→∞

1

T
log νT (K) ≤ −J(K) + 3ǫ.

ǫ being arbitrary, this proves Theorem 7 (1). �

4.10.2. Proof of Part (2). The proof follows readily from the proof of
Theorem 6 (2) and Theorem 7 (1).
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