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Abstract
In this paper, we consider a stochastic economic growth model in the form of an intergenera-
tional dynamic game. Both paternalistic and non-paternalistic components are present in the
model. Under very general assumptions allowing for unbounded utility functions and weakly
continuous transitions, we establish the existence of Markov perfect equilibria that consist
of a consumption strategy and an indirect utility function. In the pure paternalistic case, we
obtain new results on equilibria. An important point of our contribution is that we make no
separability assumptions on the utility functions of generations.

Keywords Stochastic game · Intergenerational game · Altruistic growth models ·
Markov perfect equilibrium

1 Introduction

The literature concerning various aspects of altruism in economic models is pretty large. For
a comprehensive survey with historical notes, the reader is referred to [9,21,33,35] and their
references. This paper is devoted to study some mathematical issues related to existence of
equilibria in a large class of economic growth models with altruism between generations.
Intergenerational altruism has usually been modeled in two ways. In the paternalisticmodel,
the utility of the current generation depends on its own consumption and the consumptions
of other generations. In other words, the generation cares about what all or some successors
will consume, but it does not take into account the utilities the successors derive from the act
of consumption. In the non-paternalisticmodel, each generation derives utility from its own
consumption and the utilities of future generations.
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First strong results on the existence of Markov perfect equilibria in paternalistic economic
growth models with deterministic transitions were established by Bernheim and Ray [11]
and Leininger [28]. They assume that each generation cares only about consumption of its
immediate successor. From the mathematical point of view, their proofs are rather compli-
cated. A simpler and more direct method was used by Balbus et al. [3]. Certain extensions
of the works of [11,28] to models with specific stochastic production functions are surveyed
in [8,9,25]. However, more general results the reader may find in [4,5], where the transition
probability function obeys a natural weak continuity condition. Such transition probabilities
are extensively used in economics, since economic dynamics are typically described by some
difference equations with additive or multiplicative shocks. The most general paternalistic
model was considered by Balbus et al. [5]. However, their results concern non-atomic tran-
sition probabilities. The model studied in [4] allows to cover both deterministic production
functions and the stochastic transitions that satisfy a stochastic dominance assumption. The
drawback of this approach lies in the compactness of the state space and in the separabil-
ity of the utility function which takes into account only an immediate descendant for each
generation.

In contrast to the paternalistic case, there have been very few rigorous studies of models
assuming the non-paternalistic altruism. As suggested by Ray [35], “this framework appears
to be of somewhat greater interest in the context of applications.” Examples include theworks
of [10,29]. For instance, Ray [35] described a general model with deterministic transitions
involving non-paternalistic altruism and formulated an equilibrium concept, but its existence
remains an open problem. Balbus et al. [6] showed that an equilibrium in a stochastic version
of Ray’s framework exists provided that the transition probabilities are non-atomic. The
other group of models were considered by Barro [10] or Loury [29], who dealt with only one
descendant for each generation. However, the existence of an equilibrium consisting of an
indirect utility and an optimal consumption (or saving) strategy in the aforementionedmodels
can be studied by dynamic programming methods using contraction mapping theorems. It is
worth mentioning that these methods were also applied to the wide class of various decision
processes with recursive utilities, see for instance [17,18].

In this paper, we study a version of so-called mixed models with both paternalistic and
non-paternalistic components. A need for studyingmixedmodels is expressed on page 113 in
[35]. An approach tomixedmodels (two-sided altruism) is given byHori [23]. He considers a
rather specificmodel with pretty strong assumptions on the utility and deterministic transition
functions.An equilibrium is shown to exist in thismodel by the Schauder fixed-point theorem.
Although the approach of [23] concerns some specific model, it is inspiring for us.

In ourmodel, we assume that every generation considers only its immediate successor. The
equilibrium problem studied in this paper is a double fixed-point problem. One fixed point is
obtained for an indirect utility function via a contraction mapping with a nonlinear discount
function. This is a sort of recursive utility extensively discussed in economics, see Becker and
Boyd [15]. The second one (in an appropriate strategy space) corresponds toNash equilibrium
in an intergenerational game. Our basic tool is the Schauder–Tychonoff fixed-point theorem
(see e.g., Dugundji and Granas [16]). We would like to emphasize that the indirect utility that
we consider depends on both consumption and endowment of the generation. This approach
is generalized in the model of [35]. A similar mixed model is studied in the recent paper
of [2]. However, he considers risk-sensitive generations (uses different utility functions),
makes much stronger assumptions on the stochastic transition function and proves existence
of equilibria in the class of Borel measurable randomized strategies. Therefore, his approach
is essentially different from the one applied in this paper. Our proofs are based on techniques
used in [3,4] with some necessary modifications. We prove a general existence theorem for
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the mixed model with unbounded utility functions by applying the weighted norm approach,
which was well developed in dynamic programming (see Wessels [40]; Jaśkiewicz et al.
[27]). However, instead of standard exponential discounting, we use a nonlinear discount
function. As a by-product, we considerably extend our earlier result for paternalistic models
given in [4]. The most important point is that no separability condition on the utility function
is imposed.

The rest of the paper is organized as follows. Section 2 contains preliminaries. Section 3
derives the utility function which incorporates the paternalistic and non-paternalistic altruism
and formulates an equilibrium. Section 4 presents basic assumptions and existence theorems.
Examples satisfying our conditions are given in Sect. 5. Finally, the proofs are collected in
Sects. 6 and 7.

2 Preliminaries

In this section,we introduce some notation and state a few auxiliary results. As usual,R stands
for the set of all real numbers and N is the set of all positive integers. Let S = R+ = [0,∞),
S+ = R+\{0} and A(s) := [0, s], s ∈ S.

Let X be the vector space of all continuous from the left functions φ : S → R such that
φ(0) = 0 and that the restriction of φ to any bounded interval [0,m] (m ∈ N) has a bounded
variation. We assume that X is endowed with the topology of weak convergence. Recall that
a sequence (φn) converges weakly to φ ∈ X if and only if φn(s) → φ(s) as n → ∞ at
any continuity point s ∈ S of φ. Here, we point out that s = 0 is considered as a continuity
point of φ ∈ X if lims→0+ φ(s) = φ(0). The weak convergence of (φn) to φ is denoted by

φn
∗→ φ.
Let F be the set of all continuous function from the left mappings c : S → S such that

the function y(s) := s − c(s) is non-decreasing and c(s) ∈ A(s) for all s ∈ S. Note that
s → y(s) is lower semicontinuous. Thus, c ∈ F is upper semicontinuous. Define

I := {y ∈ X : y(s) = s − c(s) where s ∈ S, c ∈ F}.
Observe that I ⊂ X . Moreover, s = 0 is the continuity point of every function in F or I .

Lemma 1 X is a locally convex topological vector space. The sets I and F are convex and
sequentially compact in X .

For a more detailed discussion, consult Lemma 1 and Appendix in [7].
In the sequel, we shall use a generalized version of the contraction mapping principle due

to [31], see also Theorem 5.2 in [16].

Proposition 1 Let (Y , ρ) be a complete metric space and δ : S → S be a continuous function
such that δ(0) = 0 and δ(r) < r for all r ∈ S+. Assume that T : Y → Y is a mapping such
that

ρ(T x, T y) ≤ δ(ρ(x, y)) for all x, y ∈ Y ,

and define T 1x := T x, Tm+1x := T Tmx, x ∈ Y , m ∈ N. Then, T has a unique fixed point
x∗ ∈ Y and limn→∞ ρ(T nx0, x∗) = 0 for any x0 ∈ Y .

We shall also assume that z → δ(z)/z is non-increasing on S+. This assumption implies
that δ is subadditive and hence

|δ(z1) − δ(z2)| ≤ δ(|z1 − z2|) for all z1, z2 ∈ S.
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Moreover, the fact that z → δ(z)/z is non-increasing implies that δ(κz)/κz ≤ δ(z)/z for
any z ∈ S+ and κ ≥ 1. Hence, it holds

δ(κz) ≤ κδ(z) for all κ ≥ 1, z ∈ S. (1)

As in the dynamic programming literature (see Jaśkiewicz et al. [27]), we call δ a discount
function.

Let d > 0 and η : [d,∞) → R be a fixed function. FollowingMilgrom and Shannon [32],
we say that η has the strict single crossing property on [d,∞), when the following holds: if
there exists some x ≥ d such that η(x) ≥ 0, then for each x ′ > x , we have η(x ′) > 0. It is
worth to note that η need not be increasing, see Example 3 in [3].

Let u : S × S → R+ be a function of the form u(a, w) = g(uo(a, w)). We make the
following assumptions.

(U1) g is continuous, increasing, and g(0) = 0.
(U2) uo(0, 0) = 0 and uo is continuous on S × S and increasing in each variable.
(U3) For anyw2 > w1 in S, l > 0 and for each d > 0, the function Dluo(x) := uo(x, w2)−

uo(x + l, w1) has the strict single crossing property on [d,+∞).

Remark 1 The form of u(a, w) = g(uo(a, w)) is very convenient for verification of our
assumptions. From them, it follows that u is nonnegative. Using this representation, one can
immediately see that (U1)–(U3) hold for u(a, w) such as ln(1+√

a+w),
√
1 + √

a + w−1,√√
a + w or ln(1 + w

√
a). The function u plays the role of “aggregator” in our definitions

of the utility functions in altruistic growth models. Note that the aggregator of [20] of the

form u(a, w) = ((1 − β)aσ + βwσ )
1
σ with β, σ ∈ (0, 1) also satisfies (U1)-(U3).

The study of unbounded from below utilities u requires new methods and seem to be
difficult to handle in this setup.

Remark 2 Bernheim and Ray [11] in their study of an altruistic growth model did not assume
that u is the composition of uo and g. They directly imposed conditions on u: u is strictly
concave in its first argument and u satisfies the increasing difference property (ID). (ID) says
that for each w1 > w2 in S, the function x → u(x, w1) − u(x, w2) is non-decreasing. The
function u that satisfies (ID) is called supermodular. Supermodular functions turn out to be
useful in operations research and game theory, see Topkis [38,39]. Balbus et al. [3], on the
other hand, assumed that u meets the strict single crossing property. On page 517 in [3],
it is also shown that if u satisfies (ID) and is strictly concave in the first argument, then u
possesses the strict single crossing property. Observe that the functions ln(1 + √

a + w),√
1 + √

a + w − 1,
√√

a + w do not satisfy (ID). However, they are compositions of an
increasing function g with uo satisfying (ID). Below, we give an example of u = g ◦ uo
where g is increasing and uo satisfies condition (U3) and does not have the (ID) property.
This example also illustrates how (U3) can be checked directly using the definition of uo.

Example 1 Let u(a, w) := (w + ln(a + w))σ where σ ∈ (0, 1). Clearly, g(z) = zσ is
increasing and continuous and uo(a, w) = w + ln(a + w). The function uo does not satisfy

(ID), since ∂2uo
∂a∂w

< 0. For any w2 > w1 in S, l > 0 we have

Dluo(x) := uo(x, w2) − uo(x + l, w1) = w2 − w1 + ln

(
1 + w2 + x

1 + w1 + l + x

)
.

If w2 ≥ w1 + l, then Dluo(x) > 0 for all x ≥ d, where d is an arbitrary number larger than
0. If w2 < w1 + l, then Dluo(x) is increasing and there is a unique point xo ≥ d such that
Dluo(xo) = 0. Thus, Dluo has the strict single crossing property on [d,+∞).
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3 Markov Perfect Equilibria in Altruistic Growth Economies

Consider an infinite sequence of generations labeled by t ∈ T = N. There is one commodity,
whichmay be consumed or invested. Every generation lives one period and in the paternalistic
case derives utility from its own consumption and consumption of its immediate descendant.
In the non-paternalistic case generation, t ∈ T takes into account a utility for consumption of
generation t +1. In this paper, we are interested in mixed model where both paternalistic and
non-paternalistic components are present. Generation t ∈ T receives the endowment st ∈ S
and chooses consumption level at ∈ A(st ) = [0, st ]. The investment it := st −at determines
the endowment of its successor according to some transition probability q from S to S,which
depends on it ∈ A(st ). Let Φ be the set of Borel measurable functions φ : S → S such that
φ(s) ∈ A(s) for each s ∈ S. A strategy or policy for generation t ∈ T is a Borel measurable
function ct : S → S such that ct (st ) ∈ A(st ) for all st ∈ S. The set of all strategies for each
generation is denoted by Π.

Let v : S → R+ be a continuous increasing function such that v(0) = 0. Assume that
generation t ∈ T consumes a ∈ A(st ) in state st = s and the following generation is going
to use a strategy ct+1 = c′ ∈ Π. Then, the term

E iv(c′) :=
∫

S
v(c′(s′))q(ds′|i)

is a generation t’s evaluation of consumption policy c′ of generation t + 1 under investment
i = s − a. Let U (c′)(s′) denote the (Borel measurable in s′) utility for generation t + 1
resulting from its consumption policy c′ in state s′ ∈ S. This utility can also be evaluated by
generation t under investment i = s − a by computing the expected value with respect to
the probability measure q(·|i). More formally, generation t can consider

EiU (c′) :=
∫

S
U (c′)(s′)q(ds′|i).

Assume that Eiv(c′) and EiU (c′) are aggregated with the aid of the functionW : R+×R+ →
R+, i.e., w = W (Eiv(c′), EiU (c′)) is calculated. Then, the aggregated utility for generation
t is obtained by aggregating a ∈ A(s) and w by the function u discussed in Preliminaries.
More precisely, the utility of generation t under investment i = s − a is defined as

P(a, c′,U (c′))(s) := u(a,W (Es−av(c′), Es−aU (c′))). (2)

Similarly as in [35] or [29],we can callU an indirect utility for generation t ∈ T .However, one
should note that indirect utilities in their approaches are functions depending on endowments
only.

If s = st , a = ct (st ), c′ = ct+1, it = st − ct (st ), this utility equals

P(ct (st ), ct+1,U (ct+1))(st ) = u(ct (st ),W (Eit v(ct+1), Eit U (ct+1))). (3)

This clearly shows that the utility of generation t depends on its own consumption in state
st , the expectation of its own evaluation v of consumption of generation t + 1 (paternalistic
altruism component) and the utilityU of consumption of generation t + 1 (non-paternalistic
altruism component). In the sequel, we impose additional assumptions on functions v and
W and the transition probability q to cover an unbounded case.

Definition 1 A pair (c∗,U∗) with c∗ ∈ Π is a stationary Markov perfect equilibrium
(SMPE) with the utility defined in (2), if

U∗(c∗)(s) = P(c∗(s), c∗,U∗(c∗))(s) = sup
a∈A(s)

P(a, c∗,U∗(c∗))(s) for every s ∈ S.(4)
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Note that in (4), we deal with a double fixed-point problem. The strategy c∗ is the best
response for every generation t , if its immediate successor is going to use c∗, and each gen-
eration evaluates its consumption strategy c∗ using the same function U∗. Following Ray
[35], one can say that it is assumed in Definition 1 that “there exist an indirect utility func-
tion and a consumption strategy (policy), both depending on current endowment, such that
each generation finds it optimal to adopt that consumption strategy, provided its immediate
descendant uses the same policy and exhibit the given indirect utility. Moreover, the indirect
utility function generated by the generations maximization problem is also the same as that
announced by its descendant.”

In the pure paternalistic case, the utility for generation t is of simpler form

P̃(ct (st ), ct+1)(st ) = u(ct (st ), Eit v(ct+1)).

The analogous form to (2) is

P̃(a, c′)(s) := u(a, Es−av(c′)), (5)

where a ∈ A(s) is a consumption of generation t , i = s − a is its investment in state s ∈ S
and c′ is a consumption strategy of generation t + 1.

The definition of equilibrium is similar to that given in [11,28,34] or [3,4].

Definition 2 A strategy c∗ ∈ Π is a stationary Markov perfect equilibrium (SMPE) with
the utility defined in (5), if

P̃(c∗(s), c∗)(s) = sup
a∈A(s)

P̃(a, c∗)(s) for every s ∈ S. (6)

Remark 3 By putting i = s − a in (2) and (5), we can rewrite Eqs. (4) and (6) in a more
convenient forms for our proofs. Namely, observe that

P(c∗(s), c∗,U∗(c∗))(s) = sup
i∈A(s)

u(s − i,W (Eiv(c∗), EiU∗(c′))).

and

P̃(c∗(s), c∗)(s) = sup
i∈A(s)

u(s − i, Eiv(c∗)).

Remark 4 If W (b, r) = r , then the utility in (3) reduces to a pure non-paternalistic case,
which is of the form

R(ct (st ),U (ct+1))(st ) := u(ct (st ), Eit U (ct+1)). (7)

Thismodelwas studied byLoury [29]with a deterministic transition function andbyRay [35],
who considered countably many descendants for each generation. An equilibrium existence
in themodel of [35] is still an open problem. In the stochastic case with non-atomic transition,
the existence of such equilibrium was established by Balbus et al. [6].

Moreover, we would like to point out that in this pure non-paternalistic case with utility
(7), the fixed point U∗ is independent of c ∈ F . This follows from the fact that the fixed
point belongs to the subspace of functions considered here. The consumption strategy c∗ ∈ F
in Definition 1, on the other hand, can be found by dynamic programming technique, see
Loury [29], Durán [17,18]. Our results within this special framework can be considered as
an extension of the results of [18] to models with nonlinear discount function.

In the general case, c∗ from Definitions 1 and 2 is a solution to a non-cooperative game
problem. This is a symmetric Nash equilibrium in a game played by generations. Further
comments on this issue, the reader may find in [25].
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4 Basic Assumptions andMain Results

Let Pr(S) be the set of all probability measures on the state space S.We recall that a sequence
(μn) of probability measures on S converges weakly to someμ0 ∈ Pr(S) (μn ⇒ μ0 in short)
if, for any bounded continuous function h : S → R, it holds that

lim
n→∞

∫

S
h(s)μn(ds) =

∫

S
h(s)μ0(ds).

We already made three assumptions (U1)-(U3) on the aggregator u. Below, we provide
additional conditions on the primitive data that will be imposed in our two main results. To
include unbounded from above utilities, we shall apply a weighted norm approach inspired
by the papers in dynamic programming (see Wessels [40]; Hernández-Lerma and Lasserre
[22]; Jaśkiewicz and Nowak [24]) or recursive utility theory (see Boyd [14]; Durán [17,18]).

Let ω : S → [1,∞) be a continuous non-decreasing function. Further, ω will be called a
weight function. We now make some basic assumptions on the transition probability.

(Q1) Assume that λ j : S → [0, 1], j ∈ J := {1, . . . , N }, are continuous functions such
that

∑N
j=1 λ j (i) = 1 for all i ∈ S. In addition, suppose that there exist transition

probabilities q j from S to S, j ∈ J , such that for each i ∈ S, we have

q(·|i) =
N∑

j=1

λ j (i)q j (·|i). (8)

Moreover, for every j ∈ J , q j ({0}|0) = 1, and the transition probability q j (·|i) has
the Feller property, i.e., if in → i0 in S as n → ∞, then q(·|in) ⇒ q(·|i0).

(Q2) Every transition probability q j (·|y) in (8) satisfies the stochastic dominance condition,
i.e., if z → Q j (z|i) := q j ([0, z]|i) is the cumulative distribution function for q j (·|i),
then for any i1 < i2 and z ∈ S, we have that Q j (z|i1) ≥ Q j (z|i2).

(Q3) For every z ∈ S, the set Sz := {i ∈ S : q({z}|i) > 0} is countable.
(Q4) The function i → ∫

S ω(s′)q(ds′|i) is continuous on S.

(Q5) We have

κ0 := sup
s∈S

sup
a∈A(s)

∫
S ω(s′)q(ds′|s − a)

ω(s)
< ∞.

As in preliminaries, we make the following assumption on the discount function δ.

(D) δ : S → S is continuous and non-decreasing, and δ(z) < z for all z ∈ S+. (Hence,
it follows that δ(0) = 0.) Moreover, the function z → δ(z)/z defined on S+ is non-
increasing.

We can now continue our assumptions on the utility function.

(U4) The function v : S → R+ is increasing and continuous, and v(0) = 0.
(U5) If v is unbounded, then the function i → ∫

S v(s′)q(ds′|i) is continuous on S.

(U6) The function W : R+ ×R+ → R+ is continuous and increasing in each variable, and
W (0, 0) = 0.

(U7) There exists a constant κ1 > 0 such that for each s ∈ S, we have

u(s,W (‖v‖ωκ0ω(s), 0) ≤ κ1ω(s).

Here, ‖v‖ω is defined as supx∈S v(x)/ω(x) and is assumed to be finite.
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(U8) For any r1, r2 ∈ R+ and every s ∈ S, a ∈ A(s), b ≥ 0,, we have

|u(a,W (b, r1)) − u(a,W (b, r2))| ≤ δ(|r1 − r2|).
For any f : F × S → R we define

‖ f ‖ω := sup
s∈S

sup
c∈F

| f (c, s)|
ω(s)

.

Let C(F × S) be the Banach space of all continuous functions f : F × S → R such
that ‖ f ‖ω < ∞. Further, in some cases we shall write f (c)(s) instead of f (c, s) for any
f ∈ C(F × S).
We can now state our main results.

Theorem 1 Let assumptions (Q1)–(Q5), (U1)–(U4), (U6)–(U8) and (D) be satisfied. Assume
also that if κ0 > 1, then δ(κ0r) < r for all r > 0. Then, there exists an SMPE (c∗,U∗) in
the sense of Definition 1 and c∗ ∈ F, U∗ ∈ C(F × S).

Remark 5 It should be noted thatU∗ in Theorem 1 is unique. However, in a general case the
uniqueness of c∗ is not guaranteed. This issue for similar models is also considered in [8,30].

In the paternalistic case, we can drop the assumptions involving the discount function δ

and weight function ω.

Theorem 2 Under assumptions (Q1)–(Q3) and (U1)–(U5), there exists an SMPE c∗ in the
sense of Definition 2 and c∗ ∈ F .

Remark 6 (a)Assumptions (Q1)–(Q5)wereused to study stochastic gamesof resource extrac-
tion by Jaśkiewicz and Nowak [26]. (Q3) was first used in [4], and it holds for the purely
deterministic transitions and as well their convex combinations. Moreover, it may occur that
all sets Sz in (Q3) are empty. This means that q is non-atomic. Other possible transitions are
presented in Sect. 5. Here, we only wish to point out that (Q3) is not satisfied, for instance,
for q of the form

q(·|i) = (1 − i)δ̃{0}(·) + iqu(·|i),
where δ̃{0}(·) is the Dirac measure at point 0 and qu(·|i) is the uniform distribution on
S := [0, 1]. Then, q({0}|i) = 1− i and q({0}|i) > 0 for all i ∈ [0, 1). Hence, the cardinality
of S0 is continuum.

(b) Although the transition probability q has the Feller property, it need not satisfy the
stochastic dominance condition, even if the expected new state

∫
S s

′q(ds′|i) is increasing
with respect to the investment i (consult with Examples 4–6 in [26]).

(c) Assumption (D) was used in dynamic programming models studied in [27].

Remark 7 The classes of strategies F and I were used to study bequest equilibria byBernheim
and Ray [11] and Leininger [28]. Their proofs are rather complicated. A simpler method was
proposed in [3,4]. Moreover, this class of semicontinuous strategies is also useful in dynamic
gamemodels of resource extraction, see Sundaram [37],Dutta andSundaram [19], Jaśkiewicz
and Nowak [26].

Remark 8 Theorem 1 is new, even in the pure non-paternalistic case (see Remark 4). The-
orem 2, on the other hand, considerably extends the work of [4] (in the risk-neutral case),
where the state space S is a compact interval and thus, the utility function u is bounded. More
importantly, Balbus et al. [4] assume that P̃(a, c)(s) = û(a) + ∫

S v(c(s′))q(ds′|s − a), i.e.,
the utility is separable. Hence, these results generalize ones of [4] in the two aforementioned
directions. We wish to emphasize that certain techniques and ideas used in [3,4] are useful
in our setup, but after a suitable adaptation.
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5 Examples

In this section, we give four examples. The first example is inspired by a two-sided altruism
model of [23]. The remaining three examples provide some specific functions in the altruistic
growth economies for which the imposed conditions are satisfied. Examples 3 and 4 refer
to the assumptions used in Theorem 1, whereas Example 5 illustrates conditions used in
Theorem 2.

Example 2 Assume that each generation t ∈ T consists of two populations: old and young
members. The young population in generation t becomes old in generation t + 1. The utility
functions for consumptions are: u1 for the young population and u2 for the old population.
Supposing that the members of generation t cooperate, we can maximize u1(a1t ) + u2(a2t )
subject to a1t + a2t = at , where at ∈ A(st ) is the total consumption of generation t in state
st ∈ S. Assuming that the functions u1 and u2 are increasing and strictly concave, one can
show that there exist continuous increasing functions ψ1 and ψ2 on S such that

û(at ) = max
a1t +a2t =at

(u1(a
1
t ) + u2(a

t
t )) = u1(ψ1(at )) + u2(ψ2(at )).

By Lemma 1 in [23], û is strictly concave and increasing.
Let ct+1 be a consumption strategy of generation t + 1 and U (ct+1)(st+1) be a chosen

(announced) utility function by generation t + 1 depending on both ct+1 and st+1. Then, the
aggregated utility for generation t is

û(at ) + (1 − β)

∫

S
u2(ψ2(ct+1(st+1)))q(dst+1|st − at )

+ β

∫

S
U (ct+1)(st+1)q(dst+1|st − at ),

where β ∈ (0, 1). Thus, the utility of generation t is the sum of the utility resulting from
cooperation of populations in period t and the weighted sum of the utility from consumption
of old in period t + 1 (who were young in period t) and the expected utilityU announced by
generation t + 1 calculated for the strategy ct+1 and endowment st+1.

Example 3 Let the transition probability be of the following form

q(·|i) = λ(i)δ̃{i}(·) + (1 − λ(i))qu(·|i),
where λ : S → (0, 1) is a continuous function such that λ(i) → 0 as i → 0, and δ̃{i}(·) is the
Dirac measure concentrated at point i and qu(·|i) is the uniform distribution on [0, 2i] with
i ∈ S. Obviously, qu({0}|0) = 1. Note that (Q1)–(Q3) immediately hold. Moreover, the set
Sz in (Q3) has at most 1 element. Now we prove (Q4) and (Q5) for ω(s) = 1 + s. Observe
that the function

i →
∫

S
ω(s′)q(ds′|i) = 1 + λ(i)i + (1 − λ(i))i = 1 + i

is continuous on S and additionally,

sup
s∈S

sup
i∈A(s)

∫
S ω(s′)q(ds′|i)

ω(s)
= sup

s∈S
sup

i∈A(s)

1 + i

s + 1
= 1.

Hence, we have κ0 = 1. Furthermore, we define the function δ satisfying (D) as

δ(z) = αz + (1 − α) ln(1 + z) with α ∈ (0, 1), z ∈ S,



10 Dynamic Games and Applications (2020) 10:1–18

and the function in (U4) as v(s) = 2
√
s, s ∈ S. Clearly, ‖v‖ω = 1. Finally, we put

W (b, r) = δ(b + r), (b, r) ∈ S × S and u(a, w) = ln(1 + √
a + w), (a, w) ∈ S × S (see

Remark 1). Then, we have

u(a,W (b, r)) = ln
(
1 + √

a + α(b + r) + (1 − α) ln(1 + b + r)
)
.

Condition (U8) follows from the mean value theorem, because

|u(a,W (b, r1)) − u(a,W (b, r2))| = | ln(1 + √
a + δ(b + r1)) − ln(1 + √

a + δ(b + r2))|
≤ |δ(b + r1) − δ(b + r2)| ≤ δ(|r1 − r2|).

The last inequality is due to this fact

|δ(b + r1) − δ(b + r2)| ≤ α|r1 − r2| + (1 − α)

∣∣∣∣ln
(
1 + b + r1 + r2 − r2

1 + b + r2

)∣∣∣∣ (9)

≤ α|r1 − r2| + (1 − α) ln

(
1 + |r1 − r2|

1 + b + r2

)

≤ α|r1 − r2| + (1 − α) ln (1 + |r1 − r2|) = δ(|r1 − r2|).
It remains to check condition (U7) and find the constant κ1. For every s ∈ S we obtain

u(s,W (‖v‖ωκ0ω(s), 0) = ln(1 + √
s + δ(ω(s)))

= ln
(
1 + √

s + αω(s) + (1 − α) ln(1 + ω(s))
)

≤ ln
(
1 + √

s + ω(s)
) ≤ √

s + 1 + s ≤ 3

2
(s + 1).

Thus, it suffices to take κ1 = 3/2.

Example 4 Assume that the transition function is deterministic, i.e., q(·|i) = δ̃{i+ 4√3i}(·). Let
the function W be as in Example 3, ω(s) = s + l for s ∈ S and some l ≥ 1 (which will be
chosen below). Furthermore, suppose that

δ(z) = (1 − 2α)z + α ln(1 + z) with α ∈ (0, 1/2), z ∈ S.

Note that δ obeys all requirements in (D). Conditions (Q1)–(Q4) hold and (Q5) is satisfied
with

κ0 = sup
s∈S

l + s + 4
√
3s

l + s
= 1 + 3

4 4
√
l3

.

This last equality follows from the fact that the function s → 1 + 4√3s
l+s attains its maximum

at s = l/3. We now observe that

δ(κ0z) = (1 − 2α)κ0z + α ln(1 + κ0z) ≤ (1 − α)κ0z < z

holds if (1 − α)κ0 < 1. Hence, for every α ∈ (0, 1/2), we may choose l ≥ 1 such that
(1−α)κ0 < 1 and consequently δ(κ0z) < z for all z > 0.Let u(a, w) = 2

√
1 + √

a + w−2,
(a, w) ∈ S × S (consult with Remark 1). We have

u(a,W (b, r)) = 2
√
1 + √

a + (1 − 2α)(b + r) + α ln(1 + b + r) − 2.

Assumption (U8) holds, since

|u(a,W (b, r1)) − u(a,W (b, r2))| = 2

∣∣∣∣

√
1 + √

a + δ(b + r1) −
√
1 + √

a + δ(b + r2)

∣∣∣∣

≤ δ(|r1 − r2|),
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where the last inequality can be shown in the same manner as in (9). Let us put v(s) =
ln(1 + s), s ∈ S, and observe that

‖v‖ω = sup
s∈S

ln(1 + s)

s + l
≤ sup

s∈S
ln(1 + s)

1 + s
= 1

e
.

Finally, we have to prove (U7). Choosing l > 1 such that (1− α)κ0 < 1, we can assure that
κ0 < e/2. Then,

u(s,W (‖v‖ωκ0ω(s), 0) = ≤ u(s,W (0.5ω(s), 0)

= 2

(√
1 + √

s + (1 − 2α)0.5ω(s) + α ln(1 + 0.5ω(s)) − 1

)

≤ 2

(√
1 + √

s + (1 − 2α)0.5ω(s) + α0.5ω(s) − 1

)

≤ 2
(

4
√
s + √

0.5 (1 − α)ω(s)
)

≤ 2
(

4
√
s + √

0.5ω(s)
)

< 3ω(s).

Thus, it suffices to take κ1 = 3.

Example 5 In this example, we assume that the next state evolves according to the following
recursive equation st+1 = it (1 + ε)ζt , where ε > 0 is a fixed interest rate and (ζt ) is a
sequence of i.i.d. random shocks with values in [0,∞) and with a distribution π such that

∫

S

√
ζ π(dζ ) < ∞.

Thus,

q(B|i) =
∫

S
1B(i(1 + ε)ζ )π(dζ ) for every Borel set B ⊂ S, i ∈ S.

Note that (Q1)–(Q3) are satisfied, if 0 is not an atom of π . In the paternalistic model, we may
define u(a, w) = (1/4

√
a + 3/4

√
w)2 for (a, w) ∈ S × S and v(s) = √

s for s ∈ S. Note
that the function

i →
∫

S
v(s′)q(ds′|i) =

∫

S
v(i(1 + ε)ζ )π(dζ ) = √

i(1 + ε)

∫

S

√
ζ π(dζ )

is continuous. Hence, all assumptions in Theorem 2 are satisfied.

6 Basic Monotonicity Result

In this section, we provide a useful result that may have applications to various models in
optimization. Let ξ : S → S be an upper semicontinuous function. For any s ∈ S, define

Aξ
o(s) := arg max

i∈A(s)
u(s − i, ξ(i)) and aξ

o (s) := min Aξ
o(s). (10)

Under our assumptions (U1)–(U2), the function i → u(s − i, ξ(i)) is upper semicontinuous
on A(s). Therefore, the set Aξ

o(s) is non-empty and compact. Thus, aξ
o (s) is well defined.

The following result is related to Proposition 1 in [3].

Proposition 2 If (U1)–(U3) are satisfied and ξ is an upper semicontinuous function, then

(a) any selection of the set-valued mapping s → Aξ
o(s), i.e., a function ϕ : S → S such that

ϕ(s) ∈ Aξ
o(s) for all s ∈ S is non-decreasing.
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(b) If, in addition, ξ is continuous from the left, then the function φ = aξ
o is continuous from

the left at any point s ∈ S.

Proof Observe that since g is continuous and increasing, we conclude from (10) that

Aξ
o(s) = Âξ

o(s) := arg max
i∈A(s)

uo(s − i, ξ(i)).

Therefore, aξ
o (s) := min Aξ

o(s) = min Âξ
o(s) and in the remaining part of the proof, we can

work with uo.
(a) First note that ϕ(0) = 0 ≤ ϕ(s) for each s ∈ S. Assume that there exist s1, s2 ∈ S

such that 0 < s1 < s2 and ϕ(s1) > ϕ(s2). Let S1 = [s1,∞) and A1 = [0, ϕ(s1)]. Note that
ϕ(s1) > 0. Choose any i1, i2 ∈ A1 such that i1 > i2 and define

η(s) = uo(s − i1, ξ(i1)) − uo(s − i2, ξ(i2)), s ∈ S1.

If ξ(i1) ≤ ξ(i2), then under our monotonicity assumptions on uo, we have η(s) < 0 for all
s ∈ S1, and η has the strict single crossing property. If ξ(i1) > ξ(i2), then we write

η(s) = uo(s − i1, ξ(i1)) − uo(s − i1 + (i1 − i2), ξ(i2)), s ∈ S1.

By (U3), this function has a strict single crossing property. Let ϕ′ be any function defined
on S1 such that ϕ′(s) ∈ argmaxi∈A1 uo(s − i, ξ(i)) for all s ∈ S1 and ϕ′(s1) = ϕ(s1)
and ϕ′(s2) = ϕ(s2). By Theorem 4’ in [32], ϕ′ is non-decreasing. Hence, it follows that
ϕ(s1) ≤ ϕ(s2). We have come to a contradiction, which finishes the proof of part (a).

(b) Let s0 > 0. Assume that sn ↑ s0 as n → ∞. Choose any i ∈ [0, s0). Then, we get
uo(sn − φ(sn), ξ(φ(sn))) = max

i ′∈A(sn)
uo(sn − i ′, ξ(i ′)) ≥ uo(sn − i, ξ(i))

for all but finitely many n ∈ N. Since φ is non-decreasing, the limit i0 := limn→∞ φ(sn)
exists and i0 ∈ A(s0). By assumption, the function ξ is continuous from the left. Thus, we
have

uo(s0 − i0, ξ(i0)) ≥ uo(s0 − i, ξ(i)), i ∈ [0, s0). (11)

Since ξ is continuous from the left, (11) also holds for i = s0. Hence, i0 ∈ Aξ
o(s0). Clearly,

i0 ≥ aξ
o (s0). If i0 > aξ

o (s0) = φ(s0), then there exists some n ∈ N such that sn < s0 and
φ(sn) > φ(s0). This inequality contradicts the fact that φ is non-decreasing. ��

The following auxiliary result is a simple modification of Lemma 3 in [4].

Lemma 2 Let ϕ ∈ I be any function such that ϕ(s) ∈ Aξ
o(s) for all s ∈ D and D be a dense

subset of S. If s ∈ D is a continuity point of ϕ, then the set Aξ
o(s) is a singleton.

7 Proofs of Theorems 1 and 2

In this section, we assume that assumptions used in Theorems 1 and 2 are satisfied, although
they are not explicitly recalled.

Lemma 3 Let f ∈ C(F × S). Then, the function (c, i) → ∫
S f (c, s′)q(ds′|i) is continuous

on F × S.
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Proof First note that both functions f and f ω defined by f ω(c, s) := ω(s)‖ f ‖ω − f (c, s)
are continuous and nonnegative. A simple adaptation of the proof of Proposition 7.31 in [12]
yields that the functions (c, i) → ∫

S f (c, s′)q(ds′|i) and (c, i) → ∫
S f ω(c, s′)q(ds′|i) are

lower semicontinuous. Since i → ∫
S ω(s′)q(ds′|i) is continuous, it follows that (c, i) →∫

S f (c, s′)q(ds′|i) is simultaneously lower and upper semicontinuous. ��
Lemma 4 For any c ∈ F, the function i → ∫

S v(c(s′))q(ds′|i) is upper semicontinuous.
Proof Since v is continuous and increasing and c ∈ F, the function v(c(·)) is upper semicon-
tinuous.Hence,ω(s)‖v‖ω−v(c(s)) is nonnegative and lower semicontinuous.ByProposition
7.31 in [12], the function i → ∫

S(ω(s′)‖v‖ω − v(c(s′)))q(ds′|i) is lower semicontinuous.
Since → ∫

S ω(s′)q(ds′|i) is continuous, the assertion follows. ��
Lemma 5 For any c ∈ F, the function i → ∫

S v(c(s′))q(ds′|i) is continuous from the left.

Proof Consider any q j from the representation (Q1) of q. Then, recall that q j has the Feller
property and the stochastic dominance property. Using the Skorohod representation theorem
for weak convergence of probability measures (see Billingsley [13]), continuity from the left
of v(c(·)) and the dominated convergence theorem as in the proof of Lemma 6 in [4], one
can conclude that the function i → ∫

S v(c(s′))q j (ds′|i) is continuous from the left. Since
all functions λ j in the representation of q in (Q1) are continuous, it follows the assertion of
our lemma. ��

Let (hn) be a sequence of Borel measurable real-valued functions on S. For each s ∈ S,

define

lim inf
n→∞, s′→s

hn(s
′) := inf{lim inf

n→∞ hn(sn) : sn → s}

and

lim sup
n→∞, s′→s

hn(s
′) := sup{lim sup

n→∞
hn(sn) : sn → s}.

Lemma 6 Assume that μm ⇒ μ0 and
∫
S ω(s)μn(ds) → ∫

S ω(s)μ0(ds) as n → ∞. Sup-
pose that there exists k > 0 such that 0 ≤ gn(s) ≤ kω(s) for all s ∈ S and n ∈ N. Then, we
have

∫

S
lim sup

n→∞, s′→s
gn(s

′)μ0(ds) ≥ lim sup
n→∞

∫

S
gn(s)μn(ds). (12)

Proof Note that hn(s′) := kω(s′) − gn(s′) ≥ 0 for all s′ ∈ S and n ∈ N. By Lemma 3.2 in
[36], we have

∫

S
lim inf

n→∞, s′→s
hn(s

′)μ0(ds) ≤ lim inf
n→∞

∫

S
hn(s)μn(ds). (13)

It is clear that

lim inf
n→∞, s′→s

(kω(s′) − gn(s
′)) = kω(s′) − lim sup

n→∞, s′→s
gn(s

′).

Moreover, we have

lim inf
n→∞

∫

S
hn(s)μn(ds) =

∫

S
kω(s′)μ0(ds

′) − lim sup
n→∞

∫

S
gn(s)μn(ds).

Now observe that (12) follows easily from (13). ��
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Lemma 7 Assume that cn
∗→ c0 in F. Then, for every s′ ∈ S, we have

lim sup
n→∞, z→s′

v(cn(z)) ≤ v(c(s′)). (14)

Proof Let (zn) be arbitrary sequence in S converging to s′. By Lemma 4 in [4], we obtain

lim sup
n→∞

v(cn(zn)) ≤ v(c(s′)). (15)

Thus, (14) follows by taking supremum over all sequences (zn) converging to s′ on the
left-hand side of (15). ��

Let V be the closed subset of all nonnegative functions f in the Banach space C(F × S)

such that f (c, 0) = 0. Let f ∈ V be fixed. For any c ∈ F, s ∈ S, define

Ao(c)(s) := arg max
i∈A(s)

u(s − i,W (Eiv(c), Ei f (c))) and ao(c)(s) = min Ao(c)(s).

(16)

By Lemmas 3 and 4, the set Ao(c)(s) is non-empty and compact and therefore, ao(c)(s) is
well defined. Put for any c ∈ F

(T f )(c, s) := max
i∈A(s)

u(s − i,W (Eiv(c), Ei f (c))), s ∈ S. (17)

Lemma 8 T maps V into itself.

Proof Step 1. First note that from q({0}|0) = 1, u(0, 0) = 0 and W (0, 0) = 0, it follows
that (T f )(c, 0) = 0. Assume that cn

∗→ c0 in F and sn → s0 in S as n → ∞. For each
n ∈ N, choose any in ∈ Ao(cn)(sn). Without loss of generality, it can be assumed that
in → i0 ∈ A(s0) as n → ∞. By Lemma 3, Ein f (cn) → Ei0 f (c0) as n → ∞. From
Lemmas 6 and 7, it follows that

lim sup
n→∞

Einv(cn) ≤
∫

S
lim sup

n→∞, s′→s
v(cn(s

′))q(ds|i0) ≤
∫

S
v(c0(s))q(ds|i0) = Ei0v(c0).

Therefore, by our monotonicity and continuity assumptions on u and W , we infer that

lim sup
n→∞

(T f )(cn, sn) ≤ u(s0 − i0,W (Ei0v(c0), Ei0 f (c0))) ≤ (T f )(c0, s0). (18)

Observe now that if s0 = 0, then

lim inf
n→∞ (T f )(cn, sn) ≥ (T f )(c0, s0) = (T f )(c0, 0) = 0.

Let C(c0) be the set of all continuity points of the function c0.Clearly, 0 ∈ C(c0) and S\C(c0)
is countable. Assume that s0 > 0 and define D := {i ∈ [0, s0) : q(C(c0)|i) = 1}.By (Q3), D
is a dense subset of [0, s0). Choose any i ∈ D. Then, i ≤ sn for all but finitely many n ∈ N.

Under our conditions on v and ω, the sequence (v(cn(·)) satisfies the assumptions of the
dominated convergence theorem and it converges to v(c0(·)) q(·|i)−a.e. Therefore, we have
that limn→∞ Eiv(cn) = Eiv(c0). By Lemma 3, we also have limn→∞ Ei f (cn) = Ei f (c0).
Therefore,

lim inf
n→∞ (T f )(cn, sn) ≥ lim

n→∞ u(sn − i,W (Eiv(cn), Ei f (cn)))
= u(s0 − i,W (Eiv(c0), Ei f (c0))). (19)
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Assume that ĩ ∈ [0, s0)\D or ĩ = s0. Then, ĩ > 0 and we can take i ∈ D such that i < ĩ and
i ↑ ĩ . Since c0 is continuous from the left, by Lemma 5, the function i → Eiv(c0) is also
continuous from the left. Thus, we infer that

lim
i↑ĩ

u(s0 − i,W (Eiv(c0), Ei f (c0))) = u(s0 − ĩ,W (Eĩv(c0), Eĩ f (c0))).

This equality and (19) imply that

lim inf
n→∞ (T f )(cn, sn) ≥ u(s0 − i,W (Eiv(c0), Ei f (c0)))

for all i ∈ A(s0). Hence,

lim inf
n→∞ (T f )(cn, sn) ≥ (T f )(c0, s0). (20)

From (18) and (20), it follows that T f is continuous at any point (c0, s0) ∈ F × S.

Step 2. By (Q5), we have
∫
S ω(s′)q(ds′|i) ≤ κ0ω(s) for all s ∈ S, i = s − a ∈ A(s).

Note that i ≤ s, v(c(s′)) ≤ v(s′) for all s′ ∈ S and

Eiv(c) =
∫

S
v(c(s′))q(ds′|i) ≤

∫

S
ω(s′)‖v‖ωq(ds′|i) ≤ ‖v‖ωκ0ω(s). (21)

We also have

Ei f (c) =
∫

S
f (c, s′)q(ds′|i) ≤

∫

S
ω(s′)‖ f ‖ωq(ds′|i) ≤ ‖ f ‖ωκ0ω(s). (22)

From (U8) and (D), it follows that

u(s − i,W (Eiv(c), Ei f (c))) ≤ u(s − i,W (Eiv(c), 0)) + δ(Ei f (c))
≤ u(s − i,W (Eiv(c), 0)) + Ei f (c). (23)

From (21)–(23), we conclude that

u(s − i,W (Eiv(c), Ei f (c))) ≤ u(s,W (‖v‖ωκ0ω(s), 0)) + ‖ f ‖ωκ0ω(s). (24)

By (24) and (U7), we obtain that

u(s − i,W (Eiv(c), Ei f (c)) ≤ Kω(s)

for all s ∈ S, and for K = κ1 + ‖ f ‖ωκ0. Thus, we have 0 ≤ (T f )(c, s) ≤ Kω(s) for all
s ∈ S and consequently ‖T f ‖ω ≤ K < ∞. ��
Lemma 9 For every f1, f2 ∈ V , we have

‖T f1 − T f2‖ω ≤ δ(κ0‖ f1 − f2‖ω). (25)

Proof By (U8), for any f1, f2 ∈ V , we have

|(T f1)(c, s) − (T f2)(c, s)| ≤ δ

(

sup
i∈A(s)

∫

S
| f1(c, s′) − f2(c, s

′)|q(ds′|i)|
)

≤ δ

(

sup
i∈A(s)

∫

S
ω(s′)‖ f1 − f2‖ωq(ds′|i)

)

.

This fact, (1) and (Q5) imply that

|(T f1)(c, s) − (T f2)(c, s)| ≤ δ(κ0‖ f1 − f2‖ω)ω(s), s ∈ S, c ∈ F .

Hence, (25) follows. ��
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Proof of Theorem 1 If κ0 ≤ 1, then, by Lemma 9, T is a δ-contraction mapping from V into
itself. If κ0 > 1, then we define δ0(r) = δ(κ0r). By (D) and (25), T is a δ0-contraction
mapping. By Proposition 1, there exists a unique U∗ ∈ V such that TU∗ = U∗.

Let

A∗
o(c)(s) := arg max

i∈A(s)
u(s − i,W (Eiv(c), EiU∗(c))), c ∈ F, s ∈ S.

The set A∗
o(c)(s) is non-empty and compact. Define the mapping a∗

o (c)(s) := min A∗
o(c)(s),

s ∈ S. By Proposition 2, a∗
o : F → I . Hence, a∗

o (c) is continuous from the left. We show
that a∗

o is continuous when both F and I are given the topology of weak convergence.

Assume that cn
∗→ c0 in F as n → ∞. Put y∗

n := a∗
o (cn), Let y

∗
o be any accumulation

point of the sequence (y∗
n ) in the compact space I . We need to show that y∗

o = a∗
o (c0).

Clearly, y∗
o (0) = a∗

o (c0)(0) = 0. Let (n′) be a subsequence of positive integers such that

y∗
n′

∗→ y∗
0 as n′ → ∞. Let C(y∗

0 ) be the set of all continuity points of the function y∗
0 .

Since y∗
0 ∈ I , S\C(y∗

0 ) is countable, the set C(y∗
0 ) is dense in S. Choose any s ∈ C(y∗

0 ).

From Step 1 of the proof of Lemma 8 (with in = y∗
n′(s), i0 = y∗

0 (s) and sn = s), we
can conclude that y∗

0 (s) ∈ A∗
o(c0)(s), for any s ∈ C(y∗

0 ). Since y∗
0 is continuous at s, by

Lemma 2, A∗
o(c0)(s) is a singleton. Therefore, y∗(s) = a∗

o (c0)(s) for all s ∈ C(y∗
0 ). As

both functions y∗
0 and c0 are left continuous on S and C(y∗

0 ) is dense in S, we conclude that
y∗
0 (s) = a∗

o (c0)(s) for all s ∈ S. Thus, we have shown that the mapping a∗
o : F → I is

continuous. Let Ψ (c)(s) := s − a∗
o (c)(s), s ∈ S, c ∈ F . Obviously, Ψ : F → F is also a

continuous mapping. Moreover, we know from Lemma 1 that F is a compact convex subset
of a locally convex topological vector space. By the Schauder–Tychonoff fixed-point theorem
(see Aliprantis and Border [1] or Dugundji and Granas [16]), there exists some c∗ ∈ F such
that Ψ (c∗) = c∗. Clearly, (c∗,U∗) is an SMPE . ��

Remark 9 We have shown that U∗ is a fixed point of the mapping T defined in (17). By
Proposition 1,U∗ is unique.Moreover, if f0 ≡ 0 and f0 ∈ V , then limn→∞ ‖T n f0−U∗‖ω =
0.

In the remaining part of this section, we consider only assumptions of Theorem 2. By
replacing the function ω with v in Lemmas 4 and 5 and using condition (U5), one can prove
that the mapping

i →
∫

S
v(c(s′))q(ds′|i)

is upper semicontinuous continuous from the left. Let

Ã∗
o(c)(s) := arg max

i∈A(s)
u(s − i, Eiv(c)) and ã∗

o (c)(s) := min Ã∗
o(c)(s), s ∈ S, c ∈ F .

Proof of Theorem 2 A simple adaptation of the arguments used in the proof of Theorem 1
yields that the mapping ã∗

o : F → I is continuous in the weak topology on F and I .
Therefore, the mapping Ψ̃ (c)(s) := s− ã∗

o (c)(s) from F into F is continuous as well. By the
Schauder–Tychonoff fixed-point theorem, there exists some c∗ ∈ F such that Ψ̃ (c∗) = c∗.
Clearly, c∗ is an SMPE . ��
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