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Abstract
This paper introduces a bottleneck game with finite sets of commuters and depart-
ing time slots as an extension of congestion games of Konishi et al. (J Econ Theory 
72:225–237, 1997a). After characterizing Nash equilibrium of the game, we provide 
sufficient conditions for which the equivalence between Nash and strong equilibria 
holds. Somewhat surprisingly, unlike in congestion games, a Nash equilibrium in 
pure strategies may often fail to exist, even when players are homogeneous. In con-
trast, when there is a continuum of atomless players, the existence of a Nash equi-
librium and the equivalence between the set of Nash and strong equilibria hold as in 
congestion games (Konishi et al. 1997a).
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1  Introduction

A bottleneck model is used in analyzing traffic congestion during rush hours, where 
commuters depart from their origins (e.g. their houses) to their destinations (e.g. 
their workplaces). The simplest model was independently analyzed by Vickrey 
(1969) and Hendrickson and Kocur (1981), where a continuum of commuters depart 
from a single origin to a single destination connected by a single road with continu-
ous time horizon. Along the road, there is a bottleneck in which a queue forms if the 
number of commuters exceeds the capacity of the road at a given time, where the 
capacity is defined as the maximum number of commuters that can pass through it 
in each slot. In these papers, commuters decide on the departure time based on the 
trade-offs between congestion and their optimal arrival time. Players are assumed to 
have the same preferred time of arrival and a specific form of the trip cost function. 
Subsequent papers, such as Smith (1984) and Daganzo (1985), introduce heteroge-
neity in allowing differences in preferred time of the commuters, and Newell (1987), 
in addition, allow heterogeneity in the different cost functions of the commuters, 
albeit under the restriction of linear cost functions. Overall, the aforementioned 
papers have stuck to the simple model with a single bottleneck and preferences of 
commuters defined by a specific functional form. We refer the reader to the survey 
by Small (2015) that summarizes a broad line of research regarding the bottleneck 
model.

More recent papers have incorporated a general network within the model to 
expand on the single-bottleneck model of the papers. Most of these papers have 
retained the continuum assumption of the set of players and the specific functional 
form of the preferences in the literature but have expanded the network to incor-
porate many routes, examples of such are given in Koch and Skutella (2011) and 
Cominetti et  al. (2015). The main reason for retaining the functional form is that 
these papers focus on the relationship between equilibrium and the social optimum 
through measures such as the price of anarchy and price of stability, and social opti-
mum is easier to define in these models. Recently, Scarsini et al. (2018) consider a 
discretized model with atomic players but again retains a similar functional form for 
the utility function of the commuter. In another related and recent paper, Rivera et al. 
(2018) consider a model where the set of commuters and the set of departure times 
are discrete (finite) sets, but instead simplify the network so that they revert back to 
the original bottleneck model. However, unlike the previous papers, they show that 
nonexistence of a Nash equilibrium is a widespread phenomenon when the cost of 
being late to work is substantially high. Instead, they focus on mixed equilibria and 
correlated equilibria, which exist under these conditions, and use these equilibrium 
concepts to calculate the price of anarchy and the price of stability.

In this paper, we define a bottleneck game with a finite set of departure time slots 
to enter a single bottleneck, but we allow commuters to have more general prefer-
ences. Each commuter has preferences on two arguments: her departure time and 
the length of the queue in which she has to wait to pass through the bottleneck. Our 
game is an anonymous game with congestion generated by a queue structure without 
imposing a specific form of trip costs function. The model is a discrete version of 
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the bottleneck model given in Konishi (2004) with one simple bottleneck. Also, the 
network structure we consider resembles very closely to that of a recent paper by 
Rivera et al. (2018), where they also consider a single bottleneck with a finite set of 
commuters and a finite set of departure times. However, unlike Rivera et al. (2018) 
and other papers mentioned before, we do not specify a functional form for the pref-
erences of the commuter. In addition, because of the generality of preferences that 
we consider, we do not explicitly include players’ preferences towards exit times out 
of the bottleneck. Instead, these factors could be implicitly assumed to be part of the 
players’ attitudes towards congestion when they enter the bottleneck.

Despite the abstractness of preferences outlined in the previous paragraph, we 
can interpret our model in a different context other than traffic congestion. For 
example, consider a location choice problem along a river, in which residents pol-
lute the river while the river has an ability to abate pollution up to some level at each 
location of the river. We can allow residents’ arbitrary preferences over locations 
(such as scenic and/or convenient locations) on the river. However, if many residents 
prefer locations upstream ceteris paribus and do choose these locations, then resi-
dents either located at that spot or at more downstream locations are affected by the 
pollution caused by these residents. In this model, the natural cleansing ability of 
the river corresponds to the capacity of our bottleneck model. The residue of pollut-
ants then corresponds to the congestion that results from the bottleneck. Moreover, 
the residents’ preferences over locations corresponds to the commuters’ preferences 
over time slots. While the assumption of preferences over just time slots may seem 
simplistic, it has the advantage of applicability to models outside of the transporta-
tion literature.

Mathematically, our model is also an extension of the congestion game given by 
Konishi et al. (1997a), which has the following three properties:1 Anonymity (A), 
Congestion (C) and Independence of Irrelevant Choices (IIC). First, A requires 
that the payoff of each player depends on the number of players who choose each 
action and not on the players’ names. Second, C states that the payoff of each player 
increases if another player who had chosen the same strategy chooses a different 
strategy. Finally, IIC states that the payoff of a player is not affected even if another 
player that chooses a different strategy from hers switches to another strategy that is 
also a different strategy from hers. In this game, Milchtaich (1996) shows that this 
class of games always admits a Nash equilibrium in pure strategies.2 Konishi et al. 
(1997a) show that in the same model, any strictly improving coalitional deviation 

1  The name “congestion game” is sometimes attributed to a class of games introduced by Rosenthal 
(1973), who considers a situation in which players choose a combination of primary factors out of a cer-
tain number of alternatives. Each player’s payoff is determined by the sum of the costs of each primary 
factor she chooses, while the cost of each primary factor depends on the number of players who choose 
it, and not on the players’ names. Rosenthal (1973) proved that there always exists at least one pure-
strategy Nash equilibrium by constructing a potential function, which is later formalized by Monderer 
and Shapley (1996). However, these congestion games do not require payoffs being negatively affected 
by the population while requiring that payoff functions have the same form among the players who take 
same factors.
2  Although the formulation of the game of Milchtaich (1996) is different from Konishi et al. (1997a), 
Voorneveld et al. (1999) show that these two formulations are equivalent.
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from a Nash equilibrium results in another Nash equilibrium, thus implying a con-
gestion game also admits a strong equilibrium, introduced by Aumann (1959), that 
is immune to any strictly improving coalitional deviation. They also show that if 
there is a continuum of atomless players, then the sets of Nash and strong equilibria 
coincide with each other. Holzman and Law-Yone (1997) also provide several condi-
tions under which the sets of strong equilibria and Nash equilibria coincide for con-
gestion games of Rosenthal (1973), while Harks et al. (2013) also provide sufficient 
conditions for the existence of strong equilibrium for a class of games called bot-
tleneck congestion games, which are different from the model considered in the pre-
sent paper in that their model resembles more closely to communication networks.

Our bottleneck game does not satisfy IIC, whereas the other two conditions 
hold (though C applies in a strict sense only after a queue forms by exceeding the 
capacity). Specifically, IIC would be violated in the case where a player who had 
departed later then switched to an earlier departure time and thereby possibly creat-
ing a longer queue for some of those players which she leaps over. With this dif-
ference in mind, we analyze the Nash equilibria and strong equilibria of the bottle-
neck game. In contrast to Rivera et al. (2018) which consider mixed Nash equilibria 
and correlated equilibria that involve probabilistic choices by the players, we focus 
exclusively on pure strategies. One reason for this is to compare our results to Koni-
shi et al. (1997a), which also consider only pure strategies, more directly. Another 
important reason is that we can compare the results in the game with a finite number 
players to a game with a continuum of atomless players, where it is customary to 
consider pure strategy equilibria due to their existence in such games [see Schmei-
dler (1973)]. Moreover, we can view strong equilibria to be an equilibrium concept 
that allows for correlation of strategies among a group of players, not confined to be 
the whole player set. When the possibility of such correlation by a group of play-
ers is not ruled out a priori, then the strong equilibrium is a suitable equilibrium 
concept to consider in such circumstances. This possibility may arise not only in 
the transportation context of the bottleneck game, but also in the location choice 
problem.

Specifically, we first show the equivalence between Nash and strong equilibria 
under some conditions (Propositions 1, 2, and 3), but we show that a Nash equi-
librium may not exist even when players are Homogeneous (H) and other stringent 
conditions such as Single-Peakedness (SP) and Order-Preservation (OP) on the pay-
off function are satisfied (Examples 2 and 7). With an even more stringent condi-
tion, we show the existence of Nash equilibrium (Proposition 4), which yields the 
types of strategy profiles in the earlier sections that are also strong equilibria. These 
results are in stark contrast with the ones in congestion games: a Nash equilibrium 
always exists, but it is hard to ensure the equivalence between Nash and strong equi-
librium due to coordination failures unless players are homogeneous. In contrast, 
when players are atomless, we can establish both the existence of Nash equilibrium 
and equivalence between Nash and strong equilibria exactly in the same way as in 
congestion games (Proposition 7).

The rest of the paper is organized as follows. In Sect.  2, we define our bottle-
neck game with a finite number of players. In Sect. 3, we provide three sufficient 
conditions under which Nash and strong equilibria are equivalent to each other. In 
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Sect. 4, we show that our bottleneck game may not have a Nash equilibrium in pure 
strategies even when players are homogeneous. We also provide a positive result for 
the existence although the conditions are very stringent. Section 5 introduces a bot-
tleneck game with atomless players, and we show that the existence of Nash and the 
equivalence between Nash and strong equilibria all hold in this idealized environ-
ment. Sect. 6 concludes.

2 � The model with a finite number of players

The following model we introduce is a discretized and simplified version of a model 
considered in Konishi (2004) with a single bottleneck and a finite set of departure 
time slots. Let N = {1, 2,… , n} denote the finite set of players or commuters, and 
let T = {1, 2,… , T} be the set of available departing time slots where time period 1 
represents the earliest time slot. For example, each discrete time unit can represent 
every minute or every five minutes.

For each t ∈ T  , denote by qt the length of the resulting queue at departing time 
slot t. This length can be calculated inductively by

where mt is the number of players who depart at time slot t, and c ∈ ℤ+ is the 
capacity of the bottleneck, and we let q0 = 0 . We also introduce the notation 
q̃t = qt−1 + mt − c to describe possible slacks: q̃t < 0 means that the road capacity 
is not binding at time slot t, and the queue at time slot t does not develop even if an 
additional car joins. For notational convenience, let q̃0 = 0.

Each player i’s choice (strategy) of departing time is denoted �i ∈ T  . A strat-
egy profile is � = (�1,… , �n) ∈ T

N , and resulting queue lengths at all time slots are 
described by a vector q̃(𝜏) = (q̃1(𝜏),… , q̃T (𝜏)) and q(�) = (q1(�),… , qT (�)) , respec-
tively. To denote the dependence of mt on � more explicitly, we use the notation 
mt(�) as well. Denote player i’s payoff from choosing time slot t with queue length qt 
ui(t, qt) , where each function ui could be different for each player, thus allowing for 
heterogeneity. Note that by this specification, we are assuming the condition Ano-
nymity (A) implicitly, the formal statement of which is as follows.

Anonymity (A)  For each i ∈ N , the payoff function ui depends on � only through the 
strategy �i chosen by i and the overall distribution of strategies chosen by the players 
(mt(�))t∈T  according to strategy profile �.

In addition, we also assume that the game satisfies the following condition Con-
gestion (C), which states that ceteris paribus, each player dislikes an additional unit 
of queuing. This condition can be encompass more than a player’s dislike for queue-
ing time and can include pure distaste for a congested environment caused by the 
queueing.

Congestion (C)  For all i ∈ N , ui(t, k) > ui(t, k + 1) holds for all t ∈ T  and all k ∈ ℤ+.

qt = max
{
0, qt−1 + mt − c

}
,
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Unless specified otherwise, we assume conditions A and C throughout, as they 
are integral to the setup of the bottleneck games that we want to consider.

As was explained in the introduction, while the motivation behind the above 
abstract model comes from bottleneck models, application of the abstract model 
need not be confined to just transportation settings. For example, consider a river 
and a set of firms who are choosing where to locate along the river. Each t ∈ T  
represents a section of the river, where a lower index represents a more upstream 
location. Each firm emits the same amount of pollutant onto the river, where now 
the capacity c can be interpreted as the amount of pollutant per section the river can 
sustain without being completely polluted and the queue at t, qt , represents the resid-
ual amount of pollutants that have not been washed out by the natural ability of the 
water. This amount then flows down to the next section downstream. The equations 
regarding the queue qt then represents the accumulation of pollutants at a particular 
section t with respect to its capacity t and the pollutants that are flowing from its 
immediate upstream neighbor. Moreover, each firm has preferences over combina-
tions of location (t) and the amount of pollutant present in the river at that location 
( qt ), where in general, firms have a dislike for more pollutants, expressed by condi-
tion C. The problem is then for each firm to decide where to locate along the river. 
The abstract model is thus set up to seamlessly include these types of problems as 
well.

A strategy profile � is a Nash equilibrium if and only if for all i ∈ N and all 
t ∈ T  , ui(�i, q�i(�)) ≥ ui(t, qt(t, �−i)) holds. In the following, we give a characteriza-
tion for Nash equilibria in this model.

First, note that although qt = 0 holds either when q̃t = 0 or q̃t < 0 , these two 
cases are different when an additional car arrives at time slot t. In the former 
case, a queue develops with an additional car while in the latter case it does not 
develop. Based on this, we introduce the following concepts.

Definition 1 

1.	 A single slot t is said to be a basin at � ∈ T
N if q̃t(𝜏) < 0 and q̃t−1(𝜏) ≤ 0.

2.	 A single slot t is a single terrace at � ∈ T
N if q̃t(𝜏) = 0 and q̃t−1(𝜏) ≤ 0.

3.	 A set of consecutive time slots I = [t1, t2] with 1 ≤ t1 < t2 ≤ T is said to be a con-
nected terrace at � ∈ T

N if q̃t(𝜏) > 0 for all t ∈ [t1, t2) , q̃t1−1(𝜏) ≤ 0 , and q̃t2(𝜏) ≤ 0 
whenever t2 < T .

Note that each time slot t in a particular strategy profile is a basin, a single ter-
race, or part of a connected terrace. Therefore, for each strategy profile, the set of 
time slots can be partitioned into basins, single terraces, and connected terraces.

To illustrate, consider the following example. Let N = {1, 2, 3, 4} and 
T = {1, 2, 3, 4, 5} . Let � = (�1, �2, �3, �4) be a strategy profile such that 
�1 = �3 = �4 = 3 and �2 = 1 . Let the capacity c = 1 . Figure 1 depicts the situation, 
where the upper line represents the queue length at each time period, and the 
lower line represents the capacity level, which is fixed at 1 in this example. The 
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queue lengths qt and q̃t at each time period t can be calculated, resulting in the 
following.

Using the above information, we can conclude that t = 1 is a single terrace, t = 2 is a 
basin, and the interval [3, 5] is a connected terrace.

The following is a characterization of Nash equilibria of the bottleneck game 
stated using the above terminology. Compared to the usual definition of Nash 
equilibrium, the following form is much easier to check as one needs to only 
compare the time-slot and queue-length combinations with some slight adjust-
ments in the queue length (see the second statement of the lemma below).

Lemma 1  Suppose that the bottleneck game satisfies condition A. A strategy profile 
� is a Nash equilibrium if and only if for all i ∈ N , 

1.	 for all t′ < 𝜏i , ui(𝜏i, q𝜏i(𝜏)) ≥ ui(t�, max{q̃t� (𝜏) + 1, 0})

2.	 for all t′ > 𝜏i , 

(a)	 ui(𝜏i, q𝜏i(𝜏)) ≥ ui(t�, max{q̃t� (𝜏), 0}) if t� ∈ [t1, t2] , where [t1, t2] is a connected 
terrace at � such that � i ∈ [t1, t2],

(b)	 ui(𝜏i, q𝜏i(𝜏)) ≥ ui(t�, max{q̃t� (𝜏) + 1, 0}) , otherwise.

Proof  Let � be a Nash equilibrium and consider any i ∈ N . If player i chooses a 
time slot t′ < 𝜏i , by definition of Nash equilibrium, we must have the following 
inequality:

q̃1 =0 + 1 − 1 = 0, q1 = max{0, 0} = 0

q̃2 =0 + 0 − 1 = −1, q2 = max{0,−1} = 0

q̃3 =0 + 3 − 1 = 2, q3 = max{0, 2} = 2

q̃4 =2 + 0 − 1 = 1, q4 = max{0, 1} = 1

q̃5 =1 + 0 − 1 = 0, q5 = max{0, 0} = 0

Fig. 1   Illustration of the concepts defined in Definition 1. The capacity level is set at 1, while the line 
representing the queue length is normalized to 0 when it hits the capacity line
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Now, note that because all players other than i have not switched to a different time 
slot, mt(�) = mt(t

�, �−i) for all t < t′ and mt� (t
�, �−i) = mt� (�) + 1 . This then implies 

that qt�−1(�) = qt�−1(t
�, �−i) , so that q̃t� (t�, 𝜏−i) = q̃t� (𝜏) + 1 . Using the definition of qt′ , 

part 1. of the proposition then follows.
Now, suppose t′ > 𝜏i and that t′ and �i are contained in the same connected ter-

race [t1, t2] at strategy profile � . Now, as before mt(�) = mt(t
�, �−i) for all t < 𝜏i , 

but now m�i
(t�, �−i) = m�i

(�) − 1 , which implies that q̃𝜏i(t
�, 𝜏−i) = q̃𝜏i(𝜏) − 1 . Now, 

because �i is in the interior of the connected terrace, q𝜏i > 0 holds, which implies 
that q𝜏i(𝜏) = q̃𝜏i(𝜏) . Moreover, mt(�) = mt(t

�, �−i) for all t > 𝜏i with t ≠ t′ . Putting all 
of these facts together, we have qt�−1(t�, �−i) = qt�−1(�) − 1 . Thus, we have the fol-
lowing equality:

if the right-hand side is nonnegative, and is equal to 0 if it is negative. This proves 
part (a). For part (b), we must instead have qt�−1(t�, �−i) = qt�−1(�) so that by the 
same logic as part 1, we have the inequality in (b).

It is relatively easy to check following the same argument as above that if the two 
conditions in the proposition are satisfied, then � is a Nash equilibrium. 	� ◻

With IIC, Konishi et al. (1997a) shows that with strict preferences, every Nash 
equilibrium has the same structure (the same distribution of strategies—the game 
satisfies anonymity) in their domain. However, in our domain, there may be Nash 
equilibria with multiple distinct queue structures even under strict preferences.

Example 1  Let N = {1, 2, 3, 4} and T = {1, 2, 3, 4} with capacity c = 1 . Players 1 and 
2 are attached to time slots 1 and 2, respectively (that is, preferences are such that 
they will not choose to move to any other time slot under any circumstance). Players 
3 and 4 have the following preferences:

where, throughout this paper, the ellipses denote that slot-queue combinations that 
do not appear in the above list can be ordered in any way. Also, any other slot-queue 
combinations such as (1, 0) and (2, 0) not listed above for player 4 can be ordered in 
any way that does not contradict condition C.

There are two Nash equilibria: � = (�1, �2, �3, �4) = (1, 2, 4, 1) and �� = (1, 2, 2, 4) . 
The queue vector for � can be calculated in the following way: q1(�) = 2 − 1 = 1 , 
q2(�) = 1 − 1 + 1 = 1 , q3(�) = 0 − 1 + 1 = 0 , and q4(�) = 1 − 1 = 0 , which leads to 
q(�) = (1, 1, 0, 0) . To check that � is a Nash equilibrium, note that we only need to 
consider players 3 and 4, as players 1 and 2 cannot be improved. Player 3 faces the 
slot-queue combination of (4, 0). If player 3 moves to slot 3, she faces the slot-queue 
combination of (3, 1) as the resulting queue at slot 3 still carries the residue from 

ui
(
�i, q�i(�)

)
≥ ui

(
t�, qt�

(
t�, �−i

))

qt�
(
t�, 𝜏−i

)
= q̃t�

(
t�, 𝜏−i

)
= qt�−1(𝜏) − 1 + mt� (𝜏) + 1 = q̃t� (𝜏),

u3(2, 0) >u3(1, 0) > u3(2, 1) > u3(3, 0) > u3(4, 0) > u3(1, 1) > ⋯

u4(4, 0) >u4(1, 1) > u4(3, 0) > u4(2, 1) > u4(3, 1) > ⋯
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time slot 1. Similarly, player 3 moving to time slot 2 results in (2, 2) and moving to 
time slot 1 results in (1, 2). None of these are better than (4, 0) for player 3, so player 
3 cannot benefit by moving to another time slot. Player 4 faces (1, 1) under � . The 
only slot-queue combination that is better is (4, 0), but if player 4 moves to time slot 
4, she faces (4, 1), since player 3 is also at time slot 4. Thus, player 4 cannot benefit 
by moving to another time slot, and thus, � is a Nash equilibrium.

Now consider �′ , whose queue vector is q(��) = (0, 1, 0, 0) . It is easy to check that 
under �′ , all players face their most preferred slot-queue combination, and it can be 
shown that �′ is a strong equilibrium (see the next section for details). Note that the 
queue structure may be different across different Nash equilibria. 	�  □

3 � Equivalence between Nash and strong equilibria

A coalitional deviation from � is a pair of (C, 𝜏C) such that (i) C ≠ ∅ , and (ii) for all 
i ∈ C , ui(𝜏) > ui(𝜏) , where 𝜏 = (𝜏C, 𝜏−C) . A strong equilibrium is a strategy profile 
such that there is no coalitional deviation from �.3 By definition, strong equilibria 
are Nash equilibria, but not all Nash equilibria need not be strong equilibria. None-
theless, under some special cases, we can show that every Nash equilibria are strong 
Nash equilibria. This result in our domain is very distinct from the results in Konishi 
et al. (1997a), since in the latter model, inefficient Nash equilibria are prevalent due 
to coordination failure.

The first of the domains where we can establish the equivalence between the sets 
of Nash equilibria and strong equilibria is where each player has the same prefer-
ences. We state this property as homogeneity (H), which is formally given below.

Homogeneity (H).  For all players i, j ∈ N , ui = uj .

We then have the following result.

Proposition 1  Suppose that the bottleneck game satisfies conditions A, C, and H. 
Then, the set of Nash equilibria coincides with the set of strong equilibria.

The proof of this result, along with the rest of the results in this section are given 
in the Appendix. Note that Proposition 1 says nothing about whether a Nash equi-
librium exists or not. In fact, it is shown in Sect. 4 that even under the conditions of 
Proposition 1, a Nash equilibrium may not exist. Proposition 1 sheds light on the dif-
ficulties of the existence problem, as it is well-known that a strong equilibrium may 
not exist as well.

Proposition 1 is a strong statement when a pure strategy Nash equilibrium exists, 
but when it does not, the equivalence result holds trivially. Because the set of 

3  We use this version of a strong equilibrium, as it is the same as the one used in Konishi et al. (1997a). 
See the discussion at the end of this section regarding an alternative version.
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strategies is a finite set, it is well known that a Nash equilibrium in mixed strategies 
exists. The next example shows that Proposition 1 does not hold for mixed strategy 
Nash equilibria, as there exists a mixed strategy Nash equilibrium from which a coa-
lition can deviate.

Example 2  Consider the following example with three players and three time slots 
with N = {1, 2, 3} and T = {1, 2, 3} and with capacity c = 1 . Suppose that all the 
players have the same utility function defined by u(t, q) = v(t) − q where v(1) = 4.4 , 
v(2) = 3.5 , and v(3) = 3.

First, note that there is no pure strategy Nash equilibrium. To see this, first note 
at least one player chooses 1 in a Nash equilibrium. Let player 1 be such a player. 
Without loss of generality, consider strategy profiles where player 2 chooses a time 
slot that is not later than what player 3 has chosen. There are five possible strategy 
profiles, each of which is not a Nash equilibrium: (i) at (1, 1, 1), one of the players 
would move to 3 since u(3, 0) = 3 > u(1, 2) = 4.4 − 2 = 2.4 ; (ii) at (1, 1, 2), player 3 
would move to 3 since u(3, 0) = 3 > u(2, 1) = 3.5 − 1 = 2.5 ; (iii) at (1, 1, 3), player 
1 or 2 moves to 2 since u(2, 0) = 3.5 > u(1, 1) = 4.4 − 1 = 3.4 ; (iv) at (1,  2,  2), 
player 2 or 3 moves to 3 since u(3, 0) = 3 > u(2, 1) = 3.5 − 1 = 2.5 ; and (v) at 
(1, 2, 3), player 3 moves to 1 since u(1, 1) = 4.4 − 1 = 3.4 > u(3, 0) = 3 . Thus, there 
is no Nash equilibrium in pure strategies.

Next, we look at mixed strategies. In particular, by assumptions A and H, the bot-
tleneck game is symmetric so that there exists a symmetric Nash equilibrium. By 
the observation that a pure strategy Nash equilibrium does not exist, the symmetric 
Nash equilibrium must be in mixed strategies. Let p = (p1, p2, p3) be the mixed strat-
egy that is used by the players. Consider first the case where all time slots are played 
with positive probability. Then, each player must be indifferent between choosing 
any of the time slots 1,2, and 3. Because the utility functions are the same for all the 
players, it suffices to consider just one player. The expected utility when choosing 
time slot 1 when the other players play the mixed strategy p is given by

The expected utility when choosing time slot 2 is given by

and when choosing time slot 3, the expected utility is given by

Note that the first expression is bounded above 4.4, the second expression by 3.5, 
and the third by 3. Moreover, in equilibrium, these three expressions must be equal, 
so that the expected utilities must be bounded above 3. Moreover, because the prob-
abilities are all positive, the expected utilities must be below 3. Consider then a devi-
ation by N to the pure strategy profile (1, 2, 3). All the players are strictly improved, 
player 1 has a utility of u(1, 0) = 4.4 , player 2 with u(2, 0) = 3.5 , and player 3 with 
u(3.0) = 3 , all of which are greater than the expected utility they receive when 

2.4p2
1
+ 4.4p2

2
+ 4.4p2

3
+ 2

(
3.4p1p2 + 3.4p1p3 + 4.4p2p3

)
.

2.5p2
1
+ 1.5p2

2
+ 3.5p2

3
+ 2

(
2.5p1p2 + 3.5p1p3 + 3.5p2p3

)
,

3p2
1
+ 2p2

2
+ p2

3
+ 2

(
3p1p2 + 2p1p3 + 2p2p3

)
.



659

1 3

Equilibria in bottleneck games﻿	

playing the mixed strategy equilibrium. Thus, the mixed strategy equilibrium is not 
a strong equilibrium.

Now, consider the case when one strategy is not used in the mixed strategy equi-
librium. Slot 1 must be played with positive probability, since slot 1 is the unique 
best response to any combination of strategies of the other players that do not choose 
slot 1. We consider only the case p3 = 0 , as the logic for p2 = 0 is similar. When 
p3 = 0 , we only need the expected utilities of choosing slots 1 and 2 to be equal. 
Moreover, the expected utility of choosing slot 2 is strictly below 2.5 since p3 = 0 
and p2 > 0 . At equilibrium, the expected utilities must be equal so that the expected 
utilities of the players must be below 2.5. As before, N has a deviation to (1, 2, 3). 
Thus, this mixed strategy equilibrium is not a strong equilibrium. 	�  □

Condition H is undoubtedly strong, as it forbids any form of heterogeneity as 
well. The next question then involves whether we can obtain a similar existence 
result while admitting some sort of heterogeneity. The next proposition analyzes this 
problem indirectly. It shows that if a Nash equilibrium has a certain shape, then it 
must also be a strong equilibrium.

Proposition 2  Assume that the bottleneck game satisfies conditions A and C. Sup-
pose that there is a Nash equilibrium � with a unique connected terrace [t1, t2] , and 
q̃t(𝜏) < 0 for all t ∉ [t1, t2] . Then, � is a strong equilibrium.

The condition in the previous proposition is satisfied, for example, when each 
commuter has a same preferred arrival time and would like to arrive as close to that 
time as possible without being late. This simple setup is used in Arnott et al. (1990), 
where the resulting queue structure resembles one large connected terrace. In the 
next section, we introduce a sufficient condition for the existence of a Nash equi-
librium that has possible connections to these earlier literature on bottlenecks. The 
queue structure constructed in showing the existence results consists of one con-
nected terrace, so that the previous result can be used to show that the Nash equilib-
rium must also be a strong equilibrium.

The above result relies both on the uniqueness of connected terrace and the 
absence of single terraces in equilibrium. The next example shows that the equiva-
lence result may not hold if the conditions are not satisfied.

Example 3  Let N = {1, 2, 3, 4, 5, 6} and T = {1, 2, 3, 4, 5} with capacity c = 1 . Play-
ers 1, 2, 3 and 4 are attached to time slots 1, 2, 4, and 5, respectively. Players 5 and 6 
have the following preferences, respectively:

In this example, player 5 prefers time slots 1, 2, 4, and 5 in that order, while player 
6 prefers time slots 4, 5, 1, and 2 in that order. Both players want to avoid queues, 
but most importantly, both players want to avoid time slot 3. Therefore, time slot 3 is 
very unpopular among the players. There are two Nash equilibria: � = (1, 2, 4, 5, 1, 4) 

u5(1, 0) > u5(2, 0) > u5(4, 0) > u5(5, 0) > u5(1, 1) > u5(2, 1) > u5(4, 1) > u5(5, 1) > ⋯

u6(4, 0) > u6(5, 0) > u6(1, 0) > u6(2, 0) > u6(4, 1) > u6(5, 1) > u6(1, 1) > u6(2, 1) > ⋯
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and �� = (1, 2, 4, 5, 4, 1) . In these cases q̃3 = 0 . Only � is a strong equilibrium, as 
({5, 6}, (1, 4)) is a coalition deviation from �′ with player 5 preferring (1,  1) over 
(4, 1) and player 6 preferring (4, 1) over (1, 1).	�  □

While we noted the importance of the single connected terrace condition, by 
imposing an additional condition, single-peakedness, we can still obtain an equiva-
lence result between the set of Nash equilibria and the set of strong equilibria. To 
explain this concept, we first define the concept of an optimal time slot. We say 
that a time slot t∗

i
∈ T  is an optimal slot for player i ∈ N if ui(t∗

i
, 0) > ui(t, 0) for all 

t ∈ T, t ≠ t∗
i
.

Single‑Peakedness (SP).  For each i ∈ N , there exists an optimal time slot t∗
i
∈ T  , 

and for all t� < t < t∗
i
 or t∗

i
< t < t� , ui(t, 0) > ui(t�, 0) holds.

Single-peakedness also appears quite frequently in models other than transporta-
tion models, such as voting, public goods, and division problems. Note that in the 
definition, each commuter may have a different optimal slot, but each commuter 
must have preferences such that absent any queue, a time slot closer to the optimal 
time slot must be strictly preferred over one that is further away. As long as commut-
ers’ preferences satisfy this structure, even if there are multiple connected terraces, 
as long as there are only basins between any two connected terraces, instead of sin-
gle terraces, then the Nash equilibrium strategy profile behind this queue structure 
must be also be a strong equilibrium.

Proposition 3  Suppose that conditions A, C, and SP are satisfied, and consider a 
Nash equilibrium � in which (i) there is no single terrace, and (ii) all the time slots 
between any pair of connected terraces is contained in a basin. Then, � is a strong 
equilibrium.

If connected terraces are not separated by q̃t < 0 , the equivalence between Nash 
and strong equilibria need not hold.

Example 4  Let N = {1, 2, 3, 4, 5, 6, 7} and T = {1, 2, 3, 4, 5} with capacity c = 2 . 
Players 1, 2, and 3 are attached to time slot 1, and players 4 and 5 are attached to 
time slot 3. Players 6 and 7 have the following preferences:

There is a Nash equilibrium � = (1, 1, 1, 3, 3, 2, 3) , but (C, 𝜏C) = ({6, 7}, (3, 2)) is a 
coalitional deviation from � . The destination profile 𝜏 = (1, 1, 1, 3, 3, 3, 2) is a strong 
equilibrium. In this example, SP is satisfied, but q̃2(𝜏) = q̃2(𝜏) = 0 , and the two con-
nected terraces [1, 2] and [3, 4] are not separated by q̃2 < 0 . 	�  □

u6(3, 0) > u6(3, 1) > u6(2, 0) > u6(1, 0) > u6(4, 0) > u6(3, 2) > ⋯

u7(2, 0) > u7(3, 0) > u7(3, 1) > u7(4, 0) > u7(2, 1) > u7(1, 0) > ⋯
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The following example also violates SP, but it shows that we cannot ensure the 
existence of strong equilibrium even if there exists a Nash equilibrium.

Example 5  Let N = {1, 2, 3, 4, 5} and T = {1, 2, 3, 4, 5} with capacity c = 1 . Players 
4 and 5 are attached to time slots 1 and 4, respectively. Players 1,2, and 3 have the 
following preferences, respectively:

There is only one Nash equilibrium � = (1, 1, 4, 1, 4) . However, 
(C, 𝜏C) = ({1, 2, 3}, (4, 2, 3)) is a coalitional deviation. Hence, � is not a strong equi-
librium. 	� □

To summarize, we have shown instances where every Nash equilibrium is a 
strong equilibrium, albeit under strong conditions. In general, this equivalence result 
need not hold, since it could be possible that even in a Nash equilibrium, a group of 
players may want to swap time slots. In the case of Konishi et al. (1997a), preventing 
these types of swaps was sufficient. However, for the bottleneck game analyzed in 
this paper, there could be a another type of deviation where one player leaves a time 
slot that decreases the congestion of nearby time slots and creating an opportunity 
of some other player to choose such time slot. The first deviator can then move to 
the vacated spot. The propositions presented in this section provide the conditions 
where this kind of “almost” swapping time slots cannot hold.

Alternatively, one can think of a stronger form of strong equilibrium where for a 
strategy profile � , we cannot have a coalition C ⊂ N such that ui(�C, �−C) ≥ ui(�) for 
all i ∈ C with strict inequality holding for some i ∈ C . If preferences are such that 
for each i ∈ N and each pair (t, k) ≠ (t�, k�) , ui(t, k) ≠ ui(t�, k�) , that is, each player 
i ∈ N has strict preferences, then Proposition 1 still holds with this “stronger” ver-
sion of strong equilibrium. Otherwise, the following example shows that the result 
may not hold if a player exhibits indifference between two distinct time-queue pairs.

Example 6  Let N = {1, 2, 3} , T = {1, 2, 3} and c = 1 . Suppose that preferences of all 
players is given by the same function u(t, q) = 3t − 6q , which induces the following 
order:

It can be checked that the strategy profile � = (2, 3, 3) is a Nash equilibrium. By 
Proposition 1, it must also be a strong equilibrium, since the preferences of the play-
ers satisfies condition H. However, it is not immune to the weakly improving coa-
litional deviation outlined in the previous paragraph. Let C = N and �� = (3, 2, 1) . 
Note that the following inequalities hold:

u1(1, 1) >u1(4, 1) > u1(1, 2),

u2(2, 0) >u2(1, 1) > u2(1, 2) > u2(2, 1),

u3(3, 0) >u3(1, 2) > u3(4, 1) > u3(3, 1),

u(1, 1) < u(2, 1) < u(3, 1) = u(1, 0) < u(2, 0) < u(3, 0).
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Therefore, � does not satisfy the stronger version of strong equilibrium. 	� ◻

4 � (Non)existence of Nash equilibrium

Unfortunately, even under homogeneity, the existence of (pure-strategy) Nash equilib-
rium is not guaranteed. In fact, the following simple example shows that there may not 
be a Nash equilibrium even under H together with SP and another stringent condition, 
Order Preservation (OP) introduced by Konishi et al. (1997b) that investigates positive 
externality games (see below).

Order Preservation (OP).  For all i ∈ N , all t, t� ∈ T  and all k, k� ∈ ℤ+,

The following Boundedness (B) condition together with OP enables us a tractable 
representation of payoff functions.

Boundedness (B)  For every t, t� ∈ T  , there exists a nonnegative integer ktt� ∈ ℤ+ 
such that ui(t, ktt� ) < ui(t�, 0).

Furthermore, we can derive the following variation of the result in Konishi and Fish-
burn (1996).4 The proof of this result follows the same steps as Konishi and Fishburn 
(1996) with a few modifications and can be found in the appendix.

Fact.  Under conditions A, C, B, and OP, utility function ui has a quasi-linear rep-
resentation. There is a vector vi = (vi(1),… , vi(T)) ∈ ℝ

T  such that for all t, t� ∈ T  , 
and all k, k� ∈ ℤ+,

While these conditions were sufficient for a Nash equilibrium to exist in Konishi 
et al. (1997b), the example below shows that these conditions are still not sufficient 
for a Nash equilibrium to exist. In Example 2, the utility function of the players 
satisfies conditions A, B, H, OP, and SP. However, a pure strategy Nash equilibrium 
failed to exist.

u1(𝜏) = u(2, 0) <u(3, 0) = u1
(
𝜏�
)

u2(𝜏) = u(3, 1) <u(2, 0) = u2
(
𝜏�
)

u3(𝜏) = u(3, 1) =u(1, 0) = u3
(
𝜏�
)

ui(t, k) ≥ ui
(
t�, k�

)
⟺ ui(t, k + 1) ≥ ui

(
t�, k� + 1

)
.

ui(t, k) ≥ ui
(
t�, k�

)
⟺ vi(t) − k ≥ vi

(
t�
)
− k�.

4  Note that this Boundedness condition differs from the one in Konishi and Fishburn (1996). Their 
Boundedness goes: “For all t, t� ∈ T  , there exists ktt� ∈ ℤ+ such that ui(t, ktt� ) > ui(t�, 0) ,” and the result-
ing utility representation is vi

t
+ qt (conformity instead of congestion).
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Therefore we seek a stronger concept, which we call symmetric single-peaked-
ness (SSP). Symmetric single-peakedness reflects a player who values the trade-off 
between departing at her optimal slot and the queue-length at a one-to-one ratio. 
That is, departing k slots later (earlier) than the optimal slot is equivalent to facing 
an added queue-length of k at her optimal slot. The formal definition is given in the 
following.

Symmetric single‑peakedness (SSP).  Suppose that for each i ∈ N , ui satisfies SP, and 
let t∗

i
∈ T  be an optimal slot. Then, player i’s payoff function ui satisfies

Finally, we show that additionally assuming SSP enables us to establish the exist-
ence of a Nash equilibrium. Thus, SSP is a stronger version of SP, which together 
with the conditions we have introduced so far, gives a sufficient condition for the 
existence of a Nash equilibrium. Moreover, because we assume condition H, by 
Proposition 1, this Nash equilibrium must also be a strong equilibrium. Condition 
SSP is quite strong, so Proposition 1 should also be viewed as a result highlighting 
the difficulty in deriving an existence result.

Proposition 4  Under conditions A, C, B, H, SSP, and OP, there exists a Nash equi-
librium with pure strategies, which is also a strong equilibrium.

Before proving the result, we note a class of payoff functions that satisfy the 
hypotheses of Proposition 4. Let t∗ be the optimal time, which is the same for all 
commuters by H. Then, the utility function ui below satisfies all the conditions stated 
in Proposition 4.

Intuitively, this utility function illustrates that quasi-linear preferences such that the 
commuter values a time difference from the optimal time the same as an additional 
unit of the queue.

Proposition 4 is proved by constructing a Nash equilibrium profile using the fol-
lowing procedure. Suppose that each player chooses her most preferred time slot 
one-by-one, given the choices of the players who have chosen before her. Based on 
the preferences, there may be ties in the preferences. The tie-breaking rule resolves 
ties by prioritizing first t∗ , then t∗ + 1 and then t∗ − 1 , then t∗ + 2 , etc. in that order. 
This process continues until all players have chosen their preferred time slots. The 
formal procedure given below explicitly describes the actual choices made by the 
players under this procedure.

Let n′ denote the number of players yet to be allocated.

Procedure

ui(t∗
i
, k) = ui(t∗

i
± k, 0) for all k ∈ ℕ such that t∗

i
± k ∈ T.

ui(t, k) = −|t − t∗| − k.
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Step 1	 Set n� = n.
Step 2	 At slot t∗ , put (c + 1) players if n� ≥ c + 1 , and proceed to Step 3. If n� < c + 1 , 

put all n′ players at slot t∗ , and stop.
Step 3	 Update n′ with n� − (c + 1) , i.e., n� → n� − (c + 1).
Step 4	 Set � = 1.
Step 5	 While t∗ − 𝜅 > 0 and n′ > 0 : 

Step 5-1	 If t∗ + � ≤ T  , then at slot (t∗ + �) , put (c − 1) players whenever 
possible, and proceed to Step 5-2. If n� < c − 1 , put all of the remaining n′ 
players at slot (t∗ + �) , and stop. If t∗ + 𝜅 > T  , then proceed to Step 5-3.

Step 5-2	Update n� → n� − (c − 1).
Step 5-3	At slot t∗ − � , put (c + 1) players whenever possible, and proceed to Step 

5-4. Otherwise, put all n′ players at slot (t∗ − �) , and stop.
Step 5-4	Update n� → n� − (c + 1) and � → � + 1.
Step 6	 While n′ > 0 : 

Step 6-1	 If t∗ + � ≤ T  , then at slot (t∗ + �) , put (c − 1) players whenever 
n� ≥ c − 1 , and proceed to Step 6-2. If n� < c − 1 , put all of the remaining n′ 
players at slot (t∗ + �) , and stop. If t∗ + 𝜅 > T  , then skip to Step 6-3.

Step 6-2	 Update n� → n� − (c − 1).
Step 6-3	 At slot 1, put one player in slot 1, and proceed to Step 6-4. Other-

wise, stop.
Step 6-4	 Update n� → n� − 1 and � → � + 1.

When c = 1 , steps 5-1, 5-2, 6-1 and 6-2 can be skipped since c − 1 = 0 . Also, 
note that if there are enough players so that Step 5 in the procedure is implemented, 
then the procedure allocates (c + 1) players to all slots t ∈ [2, t∗] , (c − 1) players to 
all slots t ∈ [t∗ + 1, t�] for some t� > t∗ , and the remaining players to slot 1.

Proof  Let � be a profile resulting from this procedure. If the total number of players 
n ≤ c + 1 , then we have �i = t∗ , which is trivially a Nash equilibrium. Thus, we con-
sider the case in which n > c + 2.

(I) Suppose t∗ ≥ 2 . There exists at most one connected terrace, which we label as 
[t1, t2] at � . We consider further two cases: (i) t1 > 1 and (ii) t1 = 1.

(i) When t1 > 1 , we have the following:

At this profile, the queue-length vector q(�) becomes

SSP and OP imply

mt(�) = c + 1 t ∈
[
t1, t

∗
]
,

mt(�) = c − 1 t ∈
[
t∗ + 1, t2 − 1

]
.

(1)
q(�) =

(
q1,… , qt1−1, qt1 , qt1+1,… , qt∗ , qt∗+1,… , qt2−1=2t∗−t1 , qt2 ,…

)

=
(
0,… , 0, 1, 2,… , t∗ − t1 + 1, t∗ − t1,… , 1, 0,…

)
.
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First, note that player i with �i ∈ [t1, t2] cannot improve by departing later in [t1, t2] , 
since the queue-length at switched slot, �′

i
 is the same as in (1), so player i is indiffer-

ent between �i and �′
i
.

In addition, these players cannot improve by departing earlier in [t1, t2] , since 
the queue-length at switched slot, �′

i
 , compared to (1), increases by one, so they are 

worse off by switching to �′
i
.

Next we consider the case when they depart later or earlier out of the connected 
terrace. At �′

i
 , they face a queue of length zero or one if ��

i
= t1 − 1 or of length 

zero otherwise. If ��
i
= t1 − 1 and qt1−1(�

�
i
, �−i) = 0 , player i is indifferent between 

��
i
= t1 − 1 and �i . If ��i = t1 − 1 and qt1−1(�

�
i
, �−i) = 1 , ��

i
= t1 − 1 is worse than �i . If 

��
i
≠ t1 − 1 , u(𝜏�

i
, 0) < u(t1 − 1, 0) = u(t2, 0) , they making worse-off.

Player i in slot t1 − 1 , if any, does not depart earlier than slot t1 − 1 or later than 
slot t2 by the same logic in the above. Player i also does not switch to �i ∈ [t1, t2] , 
since the queue-length at switched slot, �′

i
 , compared to (1), increases by one, so 

they are worse.
Thus, since no player has an incentive to switch their slots in the case (A)-(i), � is 

a Nash equilibrium.
(ii) If t1 = 1 , we have the following:

Depending on the value of n, there may be some player(s) at slot t2 , say

Let m1(�) ≡ q∗
1
 . At this profile the queue-length vector q(�) becomes

In this case, using a similar argument as in case (A)-(i), no player has an incentive to 
switch their slots.

(II) Suppose t∗ = 1 . This is a variant of the case (A)-(ii), and it is shown that no 
player has an incentive to switch their slots. 	�  ◻

While we have shown that without SSP, a Nash equilibrium may not exist, we 
also note that removing OP also jeopardizes the existence of a Nash equilibrium, as 
the next example shows.

Example 7  Let N = {1, 2, 3, 4} and T = {1, 2, 3, 4} with capacity c = 1 . Players have 
the following preferences.

u
(
t1 − 1, 0

)
= u

(
t1, 1

)
= ⋯ = u

(
t∗, t∗ − t1 + 1

)

= u
(
t∗ + 1, t∗ − t1

)
= ⋯ = u

(
t2 − 1, 1

)
= u

(
t2, 0

)
.

m1(�) ≥ c + 1,

mt(�) = c + 1 t ∈
[
2, t∗

]
,

mt(�) = c − 1 t ∈
[
t∗ + 1, t2 − 1

]
.

mt2
(�) = k for some k ∈ [0, c − 1].

q(�) =
(
q1, q2,… , qt∗ , qt∗+1,… , qt2−1, qt2 ,…

)

=
(
q∗
1
, q∗

1
+ 1,… , q∗

1
+ (t∗ − 2 + 1), q∗

1
+ (t∗ − 2 + 1) − 1,… , 1, 0,…

)
.
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In this example, H and SSP with optimal time slot t∗ = 2 are satisfied, while OP 
is not, since u(2, 0) > u(1, 0) but u(2, 1) = u(1, 0) > u(1, 1) . This example does not 
admit a pure strategy Nash equilibrium. To see this, first consider four cases: (i) 
(1, 2, 2, 3) then player 4 moves to 1. (ii) (1, 2, 2, 1) then player 3 moves to 3. (iii) 
(1, 2, 3, 1) then player 4 moves to 2. (iv) (1, 2, 3, 2) then player 3 moves to 1. Since 
the queue-structure when (i) and (iv) are the same and H holds, the cycle is started 
by player 3, and never stops. Moreover, even when stating from an arbitrary profile, 
the deviation process is finally absorbed to this cycle. 	� □

The assumptions used in Proposition 4 are quite strong, but the previous exam-
ple shows how essential these conditions are. We can show that a Nash equilibrium 
exists under a slight relaxation of condition SSP in Proposition 4, which we will call 
(SSP*). While condition SSP required a one-to-one trade-off between an additional 
unit of congestion and a time unit away from the optimal time slot, the weakened 
condition SSP* requires a constant trade-off between one unit of time slot away from 
the optimal slot and � units of additional congestion, where � is a positive integer.

Symmetric single‑peakedness* (SSP*).  Suppose that for each i ∈ N , ui satisfies SP, 
and let t∗

i
∈ T  be an optimal slot. Then, for some positive integer � , player i’s payoff 

function ui satisfies

For an example of a utility function that satisfies the above condition SSP* and the 
other conditions in Proposition 4, consider a utility function given in the following 
form:

where � and � can be interpreted in the same way as the parameters used in the util-
ity (or cost) function of the commuters in Hendrickson and Kocur (1981) or Arnott 
et  al. (1990). Condition SSP requires that � = � = 1 hold, while condition SSP* 
requires that � = 1 and � be a positive integer, or by considering an equivalent rep-
resentation, that �∕� be an integer. We can then show using a similar technique in 
Proposition 4 that if we replace SSP with SSP*, we still have an existence result for 
a Nash equilibrium and also a strong equilibrium by condition H and Proposition 1.

Proposition 5  Under conditions A, C, B, H, SSP*, and OP, there exists a Nash equi-
librium in pure strategies.

Proof  In the procedure used in the proof of Proposition 4, we replace c + 1 with 
c + � and with c − 1 with min{c − �, 0} . More specifically, in Step 2 and in Step 5-3, 
we place c + � players, whenever possible, in time slots t ≤ t∗ where t∗ is the peak 

u(2, 0) > u(1, 0) = u(2, 1) = u(3, 0) > u(1, 1) > u(3, 1) > u(2, 2) = u(4, 0) > ⋯ .

ui(t∗
i
, �k) = ui(t∗

i
± k, 0) for all k ∈ ℕ such that t∗

i
± k ∈ T.

ui(t, k) = −�|t − t∗| − �k,
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time slot for the players. We place c − � players in time slots t > t∗ in Step 5 if c − � 
is positive and do not place any players there if it is negative.

Moreover, when Step 6-3 is implemented, we put � players at time slot 1 instead 
of just one player. The resulting strategy profile then induces a queue profile where 
within a connected terrace, the queue increases by � per time unit until the optimal 
time slot t∗ , from which the queue decreases by � per unit time.

Suppose first that t∗ ≥ 2 , and as before, let [t1, t2] be the resulting connected ter-
race formed by running the procedure as outlined in the previous paragraphs. Again, 
we divide the proof into two cases: (i) t1 > 1 and (ii) t1 = 1.

(i) When t1 > 1 , we have the following:

At this profile, the queue-length vector q(�) becomes

Between time slots t1 and t∗ , the queue increases by � in each time slot towards t∗ . 
By condition SSP*, each player i is indifferent between choosing a time slot in this 
interval and a later one within the same interval, and each player i would be worse 
off by moving to an earlier time slot within this interval. This logic extends easily 
to time slots beyond t∗ for the case when c − � ≥ 0 , as the queue then decreases 
by � for each time slot after t∗ , and by SSP*, no player can improve by deviating to 
another time slot. For the case when c − 𝛼 < 0 , the queue decreases by c instead of 
� with c < 𝛼 . Thus, no player from time slots t1 to t∗ has an incentive to deviate to a 
time slot beyond t∗ by condition SSP* and the fact that the queue decreases by a rate 
c which is less than the level � that the player finds indifferent between choosing a 
unit time away from t∗ . Also, there are no players located in time slots beyond t∗ , so 
we have shown for the first case that no single player can deviate, and the resulting 
profile is a Nash equilibrium.

(ii) When t1 = 1 , the proof is similar as in the first case, except that q1 > 0 . We 
then have the following:

The argument is the same as in (i) with the queue levels increased by q1.
Finally, suppose t∗ = 1 . This is a variant of the case (ii) above, where it was 

shown that no player has an incentive to switch their slots. Therefore, the resulting 
profile is a Nash equilibrium in this case as well. 	�  □

The restriction that �∕� is an integer is indispensable, as the following example 
shows that there may not be a Nash equilibrium when �∕� is not an integer.

mt(�) = c + � t ∈ [t1, t
∗],

mt(�) = min{c − �, 0} t ∈ [t∗ + 1, t2 − 1].

(2)

q(�) =
(
q1,… , qt1−1, qt1 , qt1+1,… , qt∗ , qt∗+1,… , qt2−1=2t∗−t1 , qt2 ,…

)

=
(
0,… , 0, �, 2�,… ,

(
t∗ − t1 + 1

)
�,
(
t∗ − t1

)
� −min{c − �, 0} − c,… , qt2 , 0,…

)
.

m1(�) ≥ c + 1,

mt(�) = c + �, t ∈
[
2, t∗

]
,

mt(�) = min{c − �, 0}, t ∈
[
t∗ + 1, t2 − 1 ].
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Example 8  Suppose that there are n = 10 players, and the capacity of the bottleneck 
is c = 1 . For simplicity, assume that T = {1, 2, 3, 4, 5} , although the exact upper 
bound does not affect the following analysis. Suppose that all players have the same 
utility function with parameters in the utility function given by � = 3 , � = 2 , and 
t∗ = 4 . That is, the players’ utility function is given by

Note that conditions B, H, SP, and OP are still satisfied, but �∕� = 1.5 , which is not 
an integer.

Suppose that there is a Nash equilibrium � , and to keep the notation simple, we 
suppress the dependence of mt and qt on � in the following when no confusion arises. 
First, we claim that m4 ≥ 2 . If not, since n > m4 , we must have q4 ≤ qt + 1 for some 
t ≠ 4 with mt > 0 , but any player i with �i = t can benefit by deviating to time slot 4, 
which contradicts � being a Nash equilibrium. Since m4 ≥ 2 , we have q4 ≥ 1 , which 
in turn implies q̃5 ≥ 0.

We must have m5 ≤ 1 , since otherwise, we would have q5 ≥ q4 + 1 , and any 
player at time slot 5 can benefit by moving to time slot 4.

Observe that if m4 > 0 , then the inequalities q4 − q3 ≤ 2 , q4 − q2 ≤ 4 , and 
q4 − q1 ≤ 5 must hold, or otherwise, any player i with �i = 4 can benefit by switch-
ing to time slot 3, 2, or 1, depending on whether the first, second, or third inequality 
is violated. This immediately implies that m4 ≤ 3 , and combined with m5 ≤ 1 , we 
have m1 + m2 + m3 ≥ 6 , which implies q3 > 0 has to hold. Moreover, when consid-
ering the restricted game to time slots {1, 2, 3} , by the same argument applied to 
showing that m4 > 0 must hold, we must have m3 > 0 hold as well.

If in addition m3 > 0 and q3 > 0 , then q4 − q3 ≥ 2 , or else players in time slot 
3 can benefit by moving to time slot 4. Therefore, q4 − q3 = 2 has to hold, which 
implies m4 = 3 . Moreover, we must now have m5 = 0 , since with m5 = 1 , we have 
q5 = q4 = q3 + 2 , and the player at time slot 5 can deviate to time slot 3. Apply 
the same set of steps to time slot 3 as we did with time slot 4 to conclude that 
q3 − q2 ≤ 2 holds, which implies m3 ≤ 3 . Now, m1 + m2 ≥ 4 must hold, which 
implies q2 > 0 holds. Moreover, with � being a Nash equilibrium, m2 > 0 must also 
hold, thus implying m3 = 3 as well.

Next, consider the restricted game with the four remaining players choosing 
between 1 and 2. The unique Nash equilibrium distribution of this restricted game 
involves m1 = 1 and m2 = 3 . Now, putting the argument together, the only possible 
Nash equilibrium distribution must be m1 = 1,m2 = m3 = m4 = 3 . However, simple 
calculation shows that q1 = 0 and q4 = 6 , so that q4 − q0 = 6 > 5 . Indeed, a player at 
time slot 4 can benefit by moving to time slot 1. Thus, there is no Nash equilibrium 
of this game. 	�  □

Another extension would be to consider the case when all players view choosing 
time slots after t∗ to be arbitrarily unfavorable, while for retaining the same set of 
assumptions (H, SSP being applied only to slots t∗ − k ∈ T  , and OP) for those time 
slots t with t ≤ t∗ . These types of preferences are similar in spirit to those made in 
Rivera et al. (2018) as well, although this condition is not directly comparable as we 

u(t, k) = −3|t − 4| − 2k.
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have not included an explicit departure time out of the bottleneck that is necessary to 
fully capture the notion of schedule delay. The procedure used in the proof of Propo-
sition 4 can be modified to filling in only time slots at or before t∗ and leaving time 
slots after t∗ completely unfilled.

Another relaxation of condition H where we can still obtain an existence result 
is if there are two types of players with preferences that satisfy SSP and OP that 
differ in the optimal time slot. Let t∗

E
 and t∗

L
 be the two optimal times where t∗

E
< t∗

L
 

(“E” for early and “L” for late), and for convenience, we call a player with optimal 
time t∗

E
 (resp. t∗

L
 ) an early (resp. a late) player. Given that there are a sufficiently 

many players, we can show that a Nash equilibrium exists. Moreover, we can 
show that the strategy profile induces a single connected terrace, which by Propo-
sition 3 implies that the strategy profile is also a strong equilibrium. The proof of 
the following proposition is rather lengthy and can be found in the Appendix.

Proposition 6  Assume conditions A, B, SSP, and OP. Suppose that there are two 
types of players, early and late, whose peaks are t∗

E
 and t∗

L
 respectively with t∗

E
< t∗

L
 . 

If n ≥ 2c(t∗
L
− 1) + (c + 1) , then there exists a Nash equilibrium in pure strategies, 

and this Nash equilibrium is also a strong equilibrium.

We have found several combinations of conditions that ensure the existence of 
a Nash equilibrium in pure strategies, and the proof involved an explicit method in 
constructing a particular Nash equilibrium. This method differs from those such as 
in Rosenthal (1973) and Konishi et al. (1997b), where the game is shown to be a 
potential game, as defined in Monderer and Shapley (1996), and a Nash equilibrium 
can be obtained from maximizing a particular function called the potential function. 
We now show in the following that the bottleneck game is in almost all cases not a 
potential game. Moreover, the conditions in Proposition 1 may actually cause the 
bottleneck game to not be an ordinal potential game, which is a weaker version of a 
potential game also defined in Monderer and Shapley (1996).

For consistency in notation, we present the definitions of potential games in terms 
of the bottleneck game. First, the bottleneck game is an (exact) potential game if 
there exists a real-valued function P on TNsuch that for all � ∈ T

N , i ∈ N , and t ∈ T ,

The following example shows that bottleneck games with 3 or more players and with 
3 or more time slots can never be potential games.

Example 9  Let N = {1, 2, 3} and T = {1, 2, 3} and c = 1 . Consider the sequence of 
strategy profiles with �0 = (1, 3, 1) , �1 = (2, 3, 1) , �2 = (2, 2, 1) , �3 = (1, 2, 1) . If this 
game were a potential game, then the function P would need to satisfy the following:

ui
(
�i, q�i(�)

)
− ui

(
t, qt(t, �−i)

)
= P(�) − P

(
t, �−i

)
.
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Adding both sides of the equations yields 0 on the left-hand side and 
u1(2, 0) − u1(2, 1) which is positive by condition C, a contradiction. Thus, this game 
is not a potential game for any utility functions u1 , u2 , and u3 that satisfy conditions 
A and C. The example can be extended to games with more than three players by 
considering strategy profiles where all the other players other than players 1 and 2 
choose time slot 1, as the only change in the above analysis is that the second argu-
ment in each of the functions u1 and u2 increased by the same number that equals the 
number of players other players 1 and 2 in time slot 1. The extension to a game with 
more than three time slots is similarly trivial. 	�  □

The condition for a potential game may be strong, and thus, we consider whether 
the bottleneck game is an ordinal potential game, also defined in Monderer and 
Shapley (1996). A bottleneck game is an ordinal potential game if there exists a real-
valued function P on TNsuch that for all � ∈ T

N , i ∈ N , and t ∈ T ,

The condition states that the signs of the two expressions must be the same. We use 
Example 9 again to illustrate that condition SSP actually is the reason a game may 
not be an ordinal potential game.

Example 10  (Example 9 continued) Consider once again the setup as in Example 
9 with 3 players and 3 time slots. For concreteness, suppose that the utility func-
tion for player 1 and player 2 is given by u1(t, q) = u2(t, q) = −|t − 1| − q . While 
we do not have to impose any assumptions on the utility function of player 3, 
we assume that player 3 also has the same utility function, so that this game sat-
isfies the sufficient conditions in Proposition 1. Assume that the game is an ordi-
nal potential game with function P. Using the same sequence of strategy profiles 
�0 = (1, 3, 1), �1 = (2, 3, 1), �2 = (2, 2, 1), �3 = (1, 2, 1) , the following conditions 
hold:

The conditions regarding P are contradictory, and thus, the above bottleneck game, 
which satisfies the conditions in Proposition 1 is not an ordinal potential game. 	�  ◻

P
(
�1
)
− P

(
�0
)
=u1(2, 0) − u1(1, 1)

P
(
�2
)
− P

(
�1
)
=u2(2, 1) − u2(3, 0)

P
(
�3
)
− P

(
�2
)
=u1(1, 1) − u1(2, 1)

P
(
�0
)
− P

(
�3
)
=u2(3, 0) − u2(2, 1)

ui
(
𝜏i, q𝜏i(𝜏)

)
− ui

(
t, qt(t, 𝜏−i)

)
> 0 ⇔ P(𝜏) − P

(
t, 𝜏−i

)
> 0.

P(𝜏1) = P
(
𝜏0
)
since u1(2, 0) = u1(1, 1),

P(𝜏2) = P
(
𝜏1
)
since u2(2, 1) = u2(3, 0),

P(𝜏3) > P
(
𝜏2
)
since u1(1, 1) > u1(2, 1),

P(𝜏0) = P
(
𝜏3
)
since u2(3, 0) = u2(2, 1).
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5 � Bottleneck games with atomless players

When there are a finite number of players, the existence of Nash equilibrium and in 
the equivalence between Nash and strong equilibria held under special circumstances. 
The primary reason for the number of negative results may be the asymmetry of the 
effect of a player deviating to an earlier slot versus deviating to a later slot within a 
connected terrace (Proposition 1). This is coming from the fact that players are atoms 
in that deviating players taken into account the change in the queue distribution caused 
by their deviations. In this section we will consider an idealized game in which players 
are atomless as in Vickrey (1969). The model is essentially a special case of the bot-
tleneck model introduced in Konishi (2004) where there is only one origin-destination 
pair and one path. While (Konishi 2004) focused on the uniqueness of equilibria, we 
focus on the equivalence of Nash and strong equilibria in the atomless case.

The set of players is the interval I = [0, 1] endowed with Lebesgue measure � . There is a finite 
set of alternatives T = {1,… , T} . A strategy profile is a measurable function � ∶ I → T  , and we 
use the notation �i in place of �(i) to denote the strategy of player i in � . We assume anonymity (A) 
in the sense of Schmeidler (1973), where each player’s payoff function depends on her strategy and 
the overall distribution of the strategies. Formally, for each strategy profile � , let �(�) be a T-dimen-
sional vector �(�) = (�1(�),�2(�),… ,�T (�)) , where �t(�) = �({i ∈ I ∶ �(i) = t}) 
for each t ∈ T  . Given a strategy profile � , define the queue at a slot t resulting from � by 
q̃t(𝜏) = qt−1(𝜏) + 𝜇t(𝜏) − c , and qt(𝜏) = max

{
q̃t(𝜏), 0

}
 . To keep the same notation as the 

finite case, we assume that ui depends on � only through the time slot chosen by i, �i , and the queue 
that i faces at that slot, denoted by q�i . As before, ui is a function on T ×ℝ+ . Notice ui then depends 
on � only through �i and (�t(�))t∈T  , which is a restatement of Anonymity (A).

Under the atomless player assumption, we will assume Schmeidler’s technical assumption.

Regularity (R)  (Schmeidler 1973). (i) For all i ∈ I , and all t ∈ T  , ui(t, ⋅) is continu-
ous. Thus, all utility functions are uniformly bounded and there exists a positive con-
stant K such that ||ui(t, q)|| < K for all i ∈ I , t ∈ T  , and q ∈ ℝ+ . (ii) For all t, t� ∈ T  
and q ∈ ℝ+ , the set 

{
i ∈ I ∶ ui(t, q) > ui(t�, q)

}
 is measurable.

In this current context, we define the concept of Nash equilibrium as follows. 
A strategy profile � is a Nash equilibrium if for almost all i ∈ I and every t ∈ T  , 
ui(�i, q�i(�)) ≥ ui(t, qt(�)).

Proposition  (Schmeidler 1973). Under A and R, there exists a Nash equilibrium in 
pure strategies.

A strategy profile is a strong equilibrium if there is no measurable subset C ⊂ I with 
𝜆(C) > 0 and a strategy profile 𝜏 of players in C such that ui(𝜏i, q𝜏i(𝜏)) > ui(𝜏i, q𝜏i(𝜏)) 
almost everywhere on C, where 𝜏 = ((𝜏i)i∈C, (𝜏i)i∉C).5 We will impose the following con-
gestion condition.

5  The definition of strong equilibrium is from Konishi et al. (1997a), which is defined to be an analogue 
of the one by Aumann (1959) for games with atomless players. The same terminology also appears in 
Cominetti et al. (2015), but what they call strong equilibrium is equivalent to that of Nash equilibrium.
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Congestion (C)  ui(t, qt) is strictly decreasing in qt for all t ∈ T  and all qt ∈ ℝ+.

Recall that qt depends on qt−1 so that for bottleneck games, player i’s payoffs not 
only depend on her choice and the number of players choosing the same strategy as 
her as is the case for congestion games, but also on the overall distribution of the 
players’ strategy choices. Nonetheless, we can show that a similar equivalence result 
with Nash and strong equilibria as Konishi et  al. (1997a) for atomless congestion 
games. Note that unlike Proposition 1, condition H is not needed here, and unlike 
Propositions 2, and 3, no condition on the structure of equilibria is needed as well.

Proposition 7  Consider an atomless game. Under conditions A, C, and R, the set of 
Nash equilibria coincides with the set of strong equilibria.

Proof  Suppose that � is a Nash equilibrium while it is not a strong equilibrium. 
Then, there exist a coalition C with 𝜆(C) > 0 and a strategy profile 𝜏 for C such 
that ui(𝜏i, q𝜏i(𝜏)) > ui(𝜏i, q𝜏i(𝜏)) , where 𝜏 = ((𝜏i)i∈C, (𝜏i)i∉C) . Consider the set 
C� =

{
i ∈ C ∶ q̃𝜏i(𝜏) ≤ 0

}
 . Note that �(C�) = 0 must hold. Indeed, for any i ∈ C� 

except on some set of Lebesgue measure zero, we have the following inequality:

Thus, if 𝜆(C�) > 0 , we have a contradiction to � ’s being a Nash equilibrium.
Assume now that there is a time slot t with qt(𝜏) > 0 and qt(𝜏) > qt(𝜏) . Take the 

earliest time slot of this kind t. Then, the set C ∩
{
i� ∈ N ∶ 𝜏i� = t

}
 must have pos-

itive measure, or otherwise the inequality qt(𝜏) > qt(𝜏) cannot hold. Let i be any 
player in this set. Since � is a Nash equilibrium and by conditions A and C, for all 
such i, ui(𝜏i, q𝜏i(𝜏)) ≥ ui(t, qt(𝜏)) > ui(t, qt(𝜏)) = ui(𝜏i, qt(𝜏)) must hold. This contra-
dicts that 𝜏 is a deviation by C. This immediately implies qt(𝜏) ≤ qt(𝜏) for t with 
qt(𝜏) > 0.

Suppose that for some t, qt(𝜏) < qt(𝜏) . Because the set of players who deviate to 
a slot with q̃t(𝜏) ≤ 0 has measure zero and the set of time slots is finite, there must 
exist a time slot t′ with qt� (𝜏) ≥ qt� (𝜏) > 0 such that the set {i� ∈ C ∶ 𝜏i� = t�} has 
positive measure. For all such i in this set, ui(𝜏i, q𝜏i(𝜏)) ≥ ui(𝜏i, q𝜏i(𝜏)) , which con-
tradicts the condition for a deviation for coalition C. Therefore, we must have for all 
t with qt(𝜏) > 0 , qt(𝜏) = qt(𝜏) . Consequently, we must have the following hold for 
almost all i ∈ C ⧵ C�:

Recalling that 𝜆(C) > 0 and �(C�) = 0 , we must have 𝜆(C ⧵ C�) > 0 , which implies 
that the above inequality holds for a set of players with positive measure. This con-
tradicts the fact that � is a Nash equilibrium. 	� □

ui
(
𝜏i, q𝜏i(𝜏)

)
≥ ui

(
𝜏i, q𝜏i(𝜏)

)
> ui

(
𝜏i, q𝜏i(𝜏)

)
.

ui
(
𝜏i, q𝜏i(𝜏)

)
= ui

(
𝜏i, q𝜏i(𝜏)

)
> ui

(
𝜏i, q𝜏i(𝜏)

)
.
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6 � Concluding remarks

We have investigated the bottleneck games with finite players and atomless play-
ers. Although the bottleneck game is a natural extension of congestion game by 
Milchtaich (1996) and Konishi et  al. (1997a), the results of these two games dif-
fer from each other in the finite case. Somewhat surprisingly, the presence/absence 
of single-terraces (time slots that are chosen by the same number of players as the 
capacities) can alter the structure of the equilibria of the bottleneck game. This is 
because there is an asymmetry between an increase and a reduction in population at 
single-terraces: the former reduces payoffs while the latter has no effect on them. In 
contrast, in an atomless bottleneck game, we need essentially no condition for the 
result. There is no such asymmetry: players can simply choose the most preferable 
time slot given the queue structure without affecting the queues. This is why we can 
recover the nice equivalence result between Nash and strong equilibria as in Konishi 
et al. (1997a).

Thus, whether the traffic bottleneck model started by Vickrey (1969) would pro-
vide us useful insights or not depends on how we interpret the “atomless” assump-
tion of the model. If we accept this assumption as an reasonable approximation of 
the real world, we can enjoy nice properties and rich results of the model. However, 
if we question the legitimacy of atomless players, then we need to suffer from the ill-
behaved model coming from finite problems.

In this paper, we have focused on a very simple model with one bottleneck. 
Despite this simplicity, we have seen rather negative results in the discrete case, 
while we do have some positive results for the atomless case. In reality, however, 
more complex networks of roads with possibly many bottlenecks do exist. Although 
our results for the simple one-bottleneck model suggest the difficulty of extending 
the results to a more general network, one interesting direction would be whether we 
can derive similar results in such a more complex network, as is considered in Koni-
shi (2004) and in other models of congestion networks. We conjecture that for the 
case in which there is one origin-destination pair with multiple routes that connect 
them, Proposition 1 holds.

Appendix: proofs omitted from the main text

Proofs of results from Sect. 3

Before proving Propositions 1, 2, and 3, we note some conditions that a coalitional 
deviation needs to satisfy when deviating from a Nash equilibrium. The follow-
ing lemmas establish these properties that will be used to proving the equivalence 
results presented in this section. The first lemma establishes that in order a strategy 
profile �′ be part of a coalitional deviation from � , the queue length at each time slot 
in �′ must weakly decrease relative to � . The formal statement is given below.
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Lemma 2  Assume that the bottleneck game satisfies conditions A and C. Suppose 
that is a Nash equilibrium, and that � (C, 𝜏C) is a coalitional deviation from � . Then, 
qt(𝜏) ≤ qt(𝜏) for all t ∈ T  , where 𝜏 = (𝜏C, 𝜏−C).

Proof  Suppose not. Then, there exists at least one slot t such that

If multiple slots are found, take the earliest such slot. Since the queue-length at slot 
t strictly increases, there must be at least one player who deviates to slot t at 𝜏 , i.e., 
mt(𝜏) > mt(𝜏) . Then, we can find at least one member i of C who deviates to 𝜏i = t 
from �i ≠ t since only the members of C can change their strategies. Since the devia-
tion is strictly improving, it must hold that

Note that (3) can be rewritten as

and by condition C we have

Together with (4), we have

This shows that under � , player i could have switched to slot t and obtained a higher 
payoff. This contradicts that � is a Nash equilibrium. 	�  □

The next lemma shows the limitations of coalitional deviations from a Nash 
equilibrium. In particular, if a coalitional deviation from a Nash equilibrium were 
to exist, there cannot be a member of that coalition that deviates to a slot that 
where the capacity is not binding.

Lemma 3  Assume that the bottleneck game satisfies conditions A and C. Suppose 
that � is a Nash equilibrium, and that (C, 𝜏C) is a coalitional deviation from � . Then, 
no member of C deviates to slots t such that q̃t(𝜏) < 0.

Proof  Suppose not. Then, there exists at least one member i ∈ C such that q̃t(𝜏) < 0 
with t = 𝜏i . Letting 𝜏 = (𝜏C, 𝜏−C) , we consider two cases:

Since the deviation is strictly improving, it must follow that

(3)qt(𝜏) > qt(𝜏).

(4)ui
(
t, qt(𝜏)

)
> ui

(
𝜏i, q𝜏i(𝜏)

)
.

qt(𝜏) ≥ qt(𝜏) + 1 > qt(𝜏),

ui
(
t, qt(𝜏)

)
≤ ui

(
t, qt(𝜏) + 1

)
< ui

(
t, qt(𝜏)

)
.

ui(𝜏i, q𝜏i(𝜏)) < ui(t, qt(𝜏) + 1).

(i) q̃t(𝜏) < q̃t(𝜏) + 1 = q̃t
(
t, 𝜏−i

)
≤ q̃t(𝜏) ≤ 0,

(ii) q̃t(𝜏) < q̃t(𝜏) + 1 = q̃t
(
t, 𝜏−i

)
≤ 0 < q̃t(𝜏).
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In case (i), noting qt(𝜏) = qt(t, 𝜏−i) = qt(𝜏) = 0 , we obtain

This shows that under � , player i could have switched to slot t and obtained higher 
payoff. This contradicts that � is a Nash equilibrium.

In case (ii), we immediately obtain

contradicting Lemma 2. 	�  □

In proving Proposition 1, we prove that for a coalitional deviation (C, 𝜏C) , for 
each connected terrace [t1, t2] at � , the number of players choosing a slot in [t1, t2] 
in � does not change after the deviation at 𝜏 as well (Lemma 6). These connected 
terraces play a similar role to the partition induced by looking at the set of players 
choosing an action, as in Konishi et al. (1997a). While looking at the time slots, the 
distribution of players with respect to each time slot may change in a coalitional 
deviation, when looking at a connected terraces at � as one large unit, we can show 
that the distribution of players with respect to the connected terraces are unchanged. 
The proof is much more involved compared to that in Konishi et al. (1997a), since 
in congestion games, it is trivial to show the equivalence between Nash and strong 
equilibria if players are homogeneous since swapping strategies among members in 
a given coalition cannot improve all the members in that coalition.

Formally, for a time interval [t1, t2] and strategy profile � , with a slight abuse of 
notation, define m([t1, t2], �) as the number of players in C choosing a time slot in 
[t1, t2] , which is given by

Note that since in a coalitional deviation, players outside of C do not change their 
strategies, we only need to count the number of players in C. Our first goal is to 
prove that m([t1, t2], 𝜏) = m([t1, t2], 𝜏) holds, and we do so by showing first that the 
left-hand side is at least as large as the right-hand side. Note that the following lem-
mas do not use condition H.

Lemma 4  Assume conditions A and C. Suppose that � is a Nash equilibrium, and 
that (C, 𝜏C) is a coalitional deviation from � . Then, for any connected terrace [t1, t2] 
at � , we have

Proof  Suppose, by way of contradiction, that there exists a connected terrace at � , 
[t1, t2] such that m([t1, t2], 𝜏) < m([t1, t2], 𝜏) . We consider two cases: (i) q̃t2(𝜏) = 0 , 
and (ii) q̃t2(𝜏) < 0.

ui
(
t, qt(𝜏)

)
> ui

(
𝜏i, q𝜏i(𝜏)

)
.

ui
(
t, qt

(
t, 𝜏−i

))
= ui

(
t, qt(𝜏)

)
> ui(𝜏i, q𝜏i(𝜏)).

0 = qt(𝜏) < qt(𝜏),

m
([
t1, t2

]
, �
)
=
|||
{
i ∈ C ∶ �i ∈ [t1, t2]

}|||.

m
([
t1, t2

]
, 𝜏
)
≥ m

([
t1, t2

]
, 𝜏
)
.
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In case (i), we have

contradicting Lemma 2. In case (ii), by Lemma 3, |||
{
i ∈ C ∶ 𝜏i = t2

}||| = 0 holds. 
Thus, we have m([t1, t2 − 1], 𝜏) < m([t1, t2 − 1], 𝜏) , implying

This is a contradiction with Lemma 2. Thus, m([t1, t2], 𝜏) ≥ m([t1, t2], 𝜏) must hold. 	
� □

While, Lemma 3 showed that no player in a deviating coalition can move to a 
time slot that was previously a basin, the following lemma shows that no player 
in a deviating coalition that was in a basin or the tail slot of a connected terrace 
where the capacity is not binding can move to a slot that was part of a connected 
terrace.

Lemma 5  Assume conditions A and C. Suppose that � is a Nash equilibrium, and 
that (C, 𝜏C) is a coalitional deviation from � . Then, there does not exist i ∈ C such 
that q̃𝜏i(𝜏) < 0 and 𝜏j ∈ [t1, t2] , where [t1, t2] is a connected terrace at �.

Proof  Suppose not. Then, there exists at least one j ∈ C such that q̃𝜏j(𝜏) < 0 and 
𝜏j ∈ [t1, t2].

Note that no player i ∈ C can deviate at 𝜏 to the slots which is a basin at �.
Due to the addition of this player j to 𝜏j ∈ [t1, t2] and the finiteness of the number 

of connected terraces at any profile, we can find some connected terrace at � , [t�
1
, t�
2
] 

with t′
1
≤ t′

2
 such that

However, this contradicts Lemma 4. 	�  □

Now, we can show that the inequality in Lemma 4 must actually hold with 
equality.

Lemma 6  Assume conditions A and C. Suppose that � is a Nash equilibrium, and 
that (C, 𝜏C) is a coalitional deviation from � . Then, for any connected terrace [t1, t2] 
at � with t1 ≤ t2 , we have

Proof  Suppose not. By Lemma 4, for some connected terrace at � , [t1, t2] with 
t1 ≤ t2 , we have

q̃t2 (𝜏) ≥

t2∑

t=t1

mt(𝜏) − c
(
t2 − t1 + 1

)
>

t2∑

t=t1

mt(𝜏) − c
(
t2 − t1 + 1

)
= q̃t2(𝜏) = 0,

q̃t2−1(𝜏) ≥

t2−1∑

t=t1

mt(𝜏) − c
(
t2 − t1 + 1

)
>

t2−1∑

t=t1

mt(𝜏) − c
(
t2 − t1 + 1

)
= q̃t2−1(𝜏).

m
([
t′
1
, t′
2

]
, 𝜏
)
< m

([
t′
1
, t′
2

]
, 𝜏
)
.

m
([
t1, t2

]
, 𝜏
)
= m

([
t1, t2

]
, 𝜏
)
.
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Note that from Lemma 3 no player involving an improving coalitional deviation 
takes the slots that is a basin at � or at �′.

Due to the finiteness of the number of players in C, |C|, we can find another con-
nected terrace at � , [t�

1
, t�
2
] with t′

1
≤ t′

2
 such that

Again, this contradicts Lemma 4. 	�  □

We now prove Proposition 1. Suppose that � is a Nash equilibrium, and that 
(C, 𝜏C) is a coalitional deviation from � . We will derive a contradiction through 
the following steps.

Step 1.    Find t ∈ T  such that qt(𝜏) < qt(𝜏) . If there exist multiple such slots, take 
the earliest one. Denote by [t, t] the connected terrace where t belongs. Note that some 
player i ∈ C switches to 𝜏i ∉ [t, t] at 𝜏.

Step 2.    Find a player who deviates to a slot in [t, t] at 𝜏 . By Lemma 6, there must be 
at least one such player. Among these players, let the player who chooses the latest slot 
at 𝜏 be player j ∈ C . Note that player j chooses �j at � which does not belong to [t, t] , 
say [t�, t�] . That is, player j chooses �j ∈ [t�, t

�
] at � and 𝜏j ∈ [t, t] at 𝜏.

Step 3.    Find a player who deviates to a slot in [t�, t�] at 𝜏 , and name player k the 
one among such players who chooses the latest slot at 𝜏 . Likewise in Step 2, such 
player must be found due to player j’s deviation from [t�, t�] . Let player k choose 
�k ∈ [t��, t

��
] ≠ [t�, t

�
] . That is, player k chooses �k ∈ [t��, t

��
] at � and 𝜏k ∈ [t�, t�] at 𝜏.

Step 4.    In this sequence of terraces, by finiteness in the number of connected ter-
races at � , there must be a cycle; that is, there exists a player who deviated from a con-
nected terrace we have identified earlier.

Let [t(1), t(1)], [t(2), t(2)],… , [t(k), t
(k)
] be a cycle of connected terraces, where 

[t(k+1), t
(k+1)

] ≡ [t(1), t
(1)
] . Moreover, denote, by i(1), i(2),… , i(k) ∈ C with k ∈ ℕ and 

i(k + 1) ≡ i(1) , the player who takes �i(l) ∈ [t(l), t
(l)
] at � and 𝜏i(l) ∈ [t(l+1), t

(l+1)
] at 𝜏 for 

l = 1,… , k.
Since the payoffs of players i(1), i(2),… , i(k) must improve under the deviation,

for all l = 1,… , k.
From Proposition 1, since � is a Nash equilibrium, for all l = 1,… , k,

for all t ∈ [t(l), t
(l)
] ⧵ {�i(l)} . Specifically, for i(l + 1)-th player and 𝜏i(l) ∈ [t(l+1), t

(l+1)
],

We would see that q𝜏i(l) (𝜏) = q𝜏i(l) (𝜏i(l), 𝜏−i(l+1)) ≤ q𝜏i(l) (𝜏).

m
([
t1, t2

]
, 𝜏
)
> m

([
t1, t2

]
, 𝜏
)
.

m
([
t′
1
, t′
2

]
, 𝜏
)
< m

([
t′
1
, t′
2

]
, 𝜏
)
.

(5)ui(l)
(
𝜏i(l), q𝜏i(l) (𝜏)

)
> ui(l)

(
𝜏i(l), q𝜏i(l) (𝜏)

)

ui(l)
(
�i(l), q�i(l) (�)

)
≥ ui(l)

(
t, qt(t, �−i(l))

)

(6)ui(l+1)
(
𝜏i(l+1), q𝜏i(l+1) (𝜏)

)
≥ ui(l+1)

(
𝜏i(l), q𝜏i(l) (𝜏i(l), 𝜏−i(l+1))

)
.
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Thus,

Note that by H,

Hence, from (5), (6), (7) and (8), we obtain

However, this yields a cycle on the preference:

which is a contradiction. 	�  □
Note that condition H was used only in the last step, where the cycle induced by 

the deviating players also induces, by H, a cycle of strict preference relations, which 
by transitivity of preferences yields a contradiction.

We now prove Proposition 2. Suppose that there is a coalitional deviation (C, 𝜏C) . 
By Lemma 3, all members of C choose time slots in [t1, t2] under � , and no member 
of C will not go out of [t1, t2] under 𝜏 = (𝜏C, 𝜏−C).

(7)ui(l+1)
(
𝜏i(l), q𝜏i(l) (𝜏i(l), 𝜏−i(l+1))

)
≥ ui(l+1)

(
𝜏i(l), q𝜏i(l) (𝜏)

)
.

(8)ui(l+1)
(
𝜏i(l), q𝜏i(l) (𝜏)

)
= ui(l)

(
𝜏i(l), q𝜏i(l) (𝜏)

)
.

ui(l+1)
(
𝜏i(l+1), q𝜏i(l+1) (𝜏)

)
≥ ui(l+1)

(
𝜏i(l), q𝜏i(l) (𝜏i(l), 𝜏−i(l+1))

)

≥ ui(l+1)
(
𝜏i(l), q𝜏i(l) (𝜏)

)

= ui(l)
(
𝜏i(l), q𝜏i(l) (𝜏)

)

> ui(l)
(
𝜏i(l), q𝜏i(l) (𝜏)

)
.

ui(1)
(
𝜏i(1), q𝜏i(1) (𝜏)

)
< ui(1)

(
𝜏i(1), q𝜏i(1) (𝜏)

)

< ui(2)
(
𝜏i(2), q𝜏i(2) (𝜏)

)

< ui(2)
(
𝜏i(2), q𝜏i(2) (𝜏)

)

⋮

< ui(k)
(
𝜏i(k), q𝜏i(k) (𝜏)

)

< ui(k)
(
𝜏i(k), q𝜏i(k) (𝜏)

)

< ui(k+1)
(
𝜏i(k+1), q𝜏i(k+1) (𝜏)

)

= ui(1)
(
𝜏i(1), q𝜏i(1) (𝜏)

)
,
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Denote by t̄, t̂ the last slots which coalition members choose at 𝜏, 𝜏 , respectively, 
i.e., t̄ = max{𝜏i ∶ i ∈ C} and t̂ = max{𝜏j ∶ j ∈ C} . We consider two cases: (i) t̂ < t̄ 
and (ii) t̂ ≥ t̄.

In case (i), noting that |||
{
i ∈ C ∶ 𝜏i ∈ [t1, t̂]

}||| ≤ |C| − 1 and 
|||
{
i ∈ C ∶ 𝜏i ∈ [t1, t̂]

}||| = |C| , we have 𝛥qt̂ ∶= qt̂(𝜏) − qt̂(𝜏) ≥ 1 , since all slots in 
[t1, t̄] belong to connected terrace [t1, t2] . However, this contradicts Lemma 2.

Then, we consider case (ii). First we have 𝛥qt̂ = 0 , i.e., q̃t̂(𝜏) = q̃t̂(𝜏) , since 
|||
{
i ∈ C ∶ 𝜏i ∈ [t1, t̂]

}||| =
|||
{
i ∈ C ∶ 𝜏i ∈ [t1, t̂]

}||| = |C| by the definitions of t̄ and t̂ , 
and all slots in [t1, t̂] belong to connected terrace [t1, t2] . Moreover, the deviation is 
strictly improving, and there must be member j of C such that 𝜏j = t̂ and 𝜏j ≠ t̂ , 
which implies 𝜏j < 𝜏j = t̂ . That is, player j delayed her departure time. These suggest 
that she could have done that under � as well. This is a contradiction with � ’s being a 
Nash equilibrium. 	�  □

Finally, we prove Proposition 3. Suppose that there is a Nash equilibrium � 
consisting of K connected terraces [t1, t2],… , [t2k−1, t2k],… , [t2K−1, t2K] each with 
q̃t < 0 for all t ∈ (t2k, t2k+1) and k = 1, 2,… ,K . Focus on the k-th connected ter-
race [t2k−1, t2k] . Since � is a Nash equilibrium, any player i with �i ∈ [t2k−1, t2k] sat-
isfies ui(�i, q�i(�)) ≥ ui(t2k−1 − 1, 0) and ui(�i, q�i(�)) ≥ ui(t2k + 1, 0) . From the SP 
assumption, the optimal time slot of each player i with �i ∈ [t2k−1, t2k] must also be 
in that same set. If not, then the optimal time slot would be outside the connected 
terrace, and in the case where the optimal time slot is earlier than t2k−1 , player i 
would prefer to move to t2k−1 − 1 , since by conditions SP and C,

which contradicts � being a Nash equilibrium. A similar logic shows that the optimal 
time slot cannot be later than t2k . By SP and the fact that � is a Nash equilibrium, we 
have ui(�i, q�i(�)) ≥ ui(t, 0) for all t ≤ t2k−1 − 1 and t ≥ t2k + 1 . Thus, for any coa-
litional deviation from � , (C, 𝜏C) , if i ∈ C with �i ∈ [t2k−1, t2k] then 𝜏i ∈ [t2k−1, t2k] 
must hold. However, from the proof of Proposition 2, there cannot be such a coa-
litional deviation that involves all players in C moving within the same connected 
terrace at � . Therefore, no coalitional deviation from � can exist, and � is a strong 
equilibrium. 	�  □

Proof of the quasi‑linear representation

In this section, we show that conditions A, B, C, and OP imply that the utility 
function ui has a quasi-linear representation. The proof follows the same lines as 
Konishi and Fishburn (1996) with very small changes. For simplicity, suppose 
that for t ≠ t′ , ui(t, 0) ≠ ui(t�, 0) . The case where such indifference between two 
distinct slots is allowed can be resolved in a similar manner as in Konishi and 
Fishburn (1996).

Without loss of generality, relabel the set of time slots so that 
ui(0, 0) > ui(1, 0) > ⋯ > ui(T , 0).

ui
(
t2k−1 − 1, 0

)
> ui

(
𝜏i, 0

)
≥ ui

(
𝜏i, q𝜏i(𝜏)

)
,
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For any two time slots t and t′ with t < t′ , by condition B and C, there exists a 
number ktt′ such that the following inequalities hold:

Then, we have the following lemma, which is the analogue of Lemma 2 in Konishi 
and Fishburn (1996).

Lemma 7  Assume conditions A, C, B, and OP. If 1 ≤ t < t′ ≤ T  , then

Proof  By definition of ktt′ , ui(t, ktt� ) < ui(t�, 0) . By OP, we must have 
ui(t, ktt� + kt�t�� ) < ui(t�, kt�t�� ) . Meanwhile, the definition of kt′t′′ implies that 
ui(t�, kt�t�� ) < ui(t��, 0) . Putting these inequalities together, we have

Then, by definition of ktt′′ , we must have the following inequality:

On the other hand, by definition of ktt′′ , ui(t, ktt�� ) < ui(t��, 0) < ui(t, ktt�� − 1) holds. 
The definition of kt′t′′ implies ui(t��, 0) < ui(t�, kt�t�� − 1) , while the definition of ktt′ 
implies ui(t�, 0) < ui(t, ktt� − 1) . Using OP, the second inequality is equivalent to 
ui(t�, kt�t�� − 1) < ui(t, ktt� + kt�t�� − 2) . Putting the inequalities together, we have

which by definition of ktt′′ implies the following inequality:

or equivalently, ktt�� ≥ ktt� + kt�t�� − 1 . 	�  □

Using the above lemma, we prove our characterization result. As is noted in 
Konishi and Fishburn (1996), the quasi-linear representation is equivalent to finding 
numbers vt = v(t) for each t = 1, 2,… , T  such that if 1 ≤ t < t′ ≤ T  , then the follow-
ing inequality holds:

This can be shown by induction on T. This condition is vacuous when T = 1 and thus 
holds. Suppose that for some T, we can find T − 1 numbers vt with t = 1, 2,… , T − 1 
such that the above inequality holds. It is sufficient if we can find a number vT so 
that along with numbers v1, v2,… , vT−1 , condition (9) is satisfied. A sufficient condi-
tion for (9) to be satisfied is the following inequality:

ui
(
t, ktt�

)
< ui(t�, 0) < ui

(
t, ktt� − 1

)
.

ktt� + kt�tε ≥ ktt�� ≥ ktt� + kt�t�� − 1

ui
(
t, ktt� + kt�t��

)
< ui

(
t��, 0

)
.

ktt� + kt�t�� ≥ ktt�� .

ui
(
t��, 0

)
< ui

(
t, ktt� + kt�t�� − 2

)
,

ktt�� − 1 ≥ ktt� + kt�t�� − 2,

(9)vt − ktt� < vt� < vt −
(
ktt� − 1

)
.

(10)max
t<T

(
vt − ktT

)
< min

t<T

(
vt − ktT + 1

)
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Indeed, if (10) holds, then we can set vT between the two sides of the above inequal-
ity. That is, for all t < T  , the following inequalities hold:

Because (9) already holds for t < t′ < T  , the above inequality implies that (9) holds 
for all t < t′ ≤ T .

Suppose (10) does not hold for some distinct pair t, t′ . That is, for some t and t′ 
with t ≠ t′,

Consider first the case when t < t′ . (9) implies that −ktt� < v�
t
− vt . By (11), 

vt� − vt ≤ kt�T − ktT − 1 . Combining these two inequalities yields the following 
inequality:

or equivalently,

which contradicts Lemma 7 where t�� = T .
Now, consider the case when t′ < t . Because for these t′ and t, (9) is satisfied so that 

we have

Using the above relationship and (11) we have

which implies

The above inequality contradicts Lemma 7 again with t�� = T  and the roles of t′ and t 
being switched in this case. Thus, (10) must hold, and a quasilinear representation of 
the form v(t) − kt must exist. 	�  □

Proof of Proposition 6

In this section, we prove Proposition 6, which gives a sufficient condition regarding 
the existence of a Nash equilibrium and strong equilibrium when we have two types 
of players: early and late, based on the property that early players’ peak t∗

E
 is earlier 

than the late players’ peak t∗
L
.

First, run the procedure used to prove Proposition 4 as if the players’ peaks are 
at t∗

L
 , but allocate the players such that no late player is allocated at a slot earlier 

than one occupied by an early player. Let �0 be the resulting strategy profile. By the 
condition n ≥ 2c(t∗

L
− 1) + (c + 1) , this implies that the connected terrace at �0 must 

vt − ktT < vT < vt −
(
ktT − 1

)
.

(11)vt� − kt�T + 1 ≤ vt − ktT

−ktt� < kt�T − ktT − 1

ktT < ktt� + kt�T − 1

v�
t
− kt�t < vt < vt� − kt�t + 1.

ktT − kt�T + 1 ≤ vt� − vt < −kt�t + 1

kt�t + ktT < kt�T
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start at time slot 1. To see this, �0 satisfies the following conditions, based on the 
procedure used in the proof of Proposition 4:

where the connected terrace at �0 is given by [t1, t2] . Recall that the procedure allo-
cates players in t∗

L
+ � before t∗

L
− � , and suppose initially that t2 < T  . In this setup, 

the number of players allocated is equal to (t∗
L
− t1 + 1)(c + 1) + (t2 − t∗

L
)(c − 1) , as 

slots t1 through t∗
L
 contain c + 1 players, while slots t∗

L
+ 1 through t2 contain c − 1 

players. This connected terrace starts at time slot 1 when t1 = 1 and t2 = 2t∗
L
− 1 if 

this value is less than T, which gives the right-hand side of the inequality. When 
2t∗

L
− 1 > T  , then the procedure allocates players at earlier slots more quickly in the 

procedure and thus reaches time slot 1 with a fewer number of players. Thus, the 
inequality is sufficient for the connected terrace to start at time slot 1. In the follow-
ing, we denote the connected terrace by [1, t2].

The queue vector q with respect to �0 is the same as equation (1) in the proof of 
Proposition 4, except with t∗ replaced by t∗

L
 . Thus, the following conditions hold:

Also note that the same argument in the proof of Proposition 4 can be used to show 
that no late player cannot improve by choosing a different slot. Moreover, by the 
same argument, if �0

i
≤ t∗

E
 for all early players i, then no early player can improve 

by moving to a different slot. Thus, in this case �0 is a Nash equilibrium and also 
a strong equilibrium by Proposition 3, because there is only one connected terrace.

In the following, we use the following property of a connected terrace. Consider 
two strategy profiles � and �′ such that for some player i, 𝜏′

i
< 𝜏i and for all other 

players j ≠ i , ��
j
= �j and such that � and �′ have the same connected terrace, but a 

different queue vector. That is, a player i moves from �i to �′
i
 . Then, the following 

property holds:

The intuition behind this property is the following. Take any t with t ≥ �i + 1 . The 
number of players choosing t is the same, and the total number of players choosing 
a time slot before t is the same. Thus, the queue at t should be unchanged. For t = �i , 
the number of players choosing t decreases by 1, but the total number of players 
choosing a time slot before t increases by 1, so the queue at t = �i is also unchanged. 
For 𝜏′

i
< t ≤ 𝜏i , the number of players choosing t is the same, but the total number of 

players choosing a time slot before t increases by 1, and the queue at t increases by 

mt

(
�0
)
= c + 1, t ∈

[
t1, t

∗
L

]
,

mt

(
�0
)
= c − 1, t ∈

[
t∗
L
+ 1, t2

]
,

�0
i
≤ �0

j
if i is an early player and j is a late player

q1
(
𝜏0
)
> 0,

qt
(
𝜏0
)
= qt−1

(
𝜏0
)
+ 1, t ∈

(
1, t∗

L

]
,

qt
(
𝜏0
)
= qt−1

(
𝜏0
)
− 1, t ∈

[
t∗
L
+ 1, t2

]
,

qt
(
��
)
= qt(�) + 1, t ∈

[
��
i
, �i − 1

]
,

qt
(
��
)
= qt(�), t ∈ T ⧵

[
��
i
, �i − 1

]
,
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1. When t = ��
i
 , the number of players choosing �′

i
 increases by 1, while the number 

of players choosing a time slot before �′
i
 (if such exists) is unchanged, so the queue 

at t increases by 1. Finally, t < 𝜏′
i
 , the situation is unchanged under � and �′ , so the 

queue at t is unchanged.
Let t∗∗ be the latest time slot chosen by an early player. The above argument 

shows that if t∗∗ ≤ t∗
E
 , then the strategy profile �0 is a Nash equilibrium. Now, sup-

pose that t∗∗ > t∗
E
 so that there is an early player i with 𝜏0

i
> t∗

E
 , in which case �0 may 

not be a Nash equilibrium. In the following, we describe an adjustment process, 
which leads to a Nash equilibrium. First, begin by noting that no early player can 
deviate from �0 to a later time slot than the one she is currently choosing. The rea-
soning for this fact is the same as in the proof of Proposition 4. Thus, if an early 
player can improve by deviating, she must move to an earlier slot. Specifically, an 
early player i with �0

i
= t∗

E
+ 1 can improve by deviating to an earlier slot. To see 

this, first note that ui(1, q1(�0)) = ui(2, q2(�
0)) = ⋯ = ui(t∗

E
, qt∗

E
(�0)) . Recalling that 

player i must take into account the effect she has on the queue vector by this move, 
by the conditions of the queue vector of �0 and condition C, 
ui(t∗

E
, qt∗

E
(𝜏0) + 1) = ui(t∗

E
+ 1, qt∗

E
(𝜏0)) > ui(t∗

E
+ 1, qt∗

E
(𝜏0) + 1) = ui(t∗

E
+ 1, qt∗

E
+1(𝜏

0)) . 
Thus, player i is better off by moving to any of the time slots from 1 to t∗

E
 , so move 

player i to time slot 1, and call the resulting strategy profile �1 . That is, �1
j
= �0

j
 for 

all j ≠ i and �1
i
= 1 . Then, we have the following:

Consider the strategy profile �1 . As was with �0 , no late player benefits by moving to 
another time slot, since the queue length she faces is unchanged, and the queue 
length at all the other alternatives have not decreased. It is still the case that no early 
player at a time slot from 1 to t∗

E
 benefits by moving. Moreover, by construction, 

since ui(1, q1(�0)) = ui(2, q2(�
0)) = ⋯ = ui(t∗

E
, qt∗

E
(�0)) , and the queue length at 

these time slots all increase by 1, we have 
ui(1, q1(�

1)) = ui(2, q2(�
1)) = ⋯ = ui(t∗

E
, qt∗

E
(�1)) . Thus, no player i in time slots 1 to 

t∗
E
 cannot benefit by moving to a time slot in that span. Also, a player in t ∈ [1, t∗

E
] 

cannot benefit by moving to t∗
E
+ 1 , since that would imply 

ui(t, qt(𝜏
0) + 1) = ui(t, qt(𝜏

1)) < ui(t∗
E
+ 1, qt∗

E
+1(𝜏

1)) = ui(t∗
E
+ 1, qt∗

E
+1(𝜏

0)) , which 
contradicts the inequality from the previous step. As will be seen throughout, this 
property holds throughout the process. For �1 , qt∗

E
+1(�

1) = qt∗
E
(�1) holds, which 

implies that any player choosing t∗
E
+ 1 cannot benefit by moving to t∗

E
 since for such 

player i, ui(t∗
E
+ 1, qt∗

E
+1(𝜏

1)) = ui(t∗
E
, qt∗

E
+1(𝜏

1) + 1) > ui(t∗
E
, qt∗

E
(𝜏1) + 1) . This also 

implies that this player cannot benefit by moving to any time slot from 1 to t∗
E
 . More-

over, since the queue length of time slots after t∗
E
+ 1 are unchanged, then any player 

choosing t∗
E
+ 1 at �1 cannot benefit by moving to any other time slot. If t∗∗ = t∗

E
+ 1 , 

then we are done. If not, we look at an early player i that is choosing �1
i
= t∗

E
+ 2 . 

For such player i, note that ui(t∗
E
+ 2, qt∗

E
+2(�

1)) = ui(t∗
E
+ 2, qt∗

E
+2(�

0))

= ui(t∗
E
, qt∗

E
+2(𝜏

0) + 2) = ui(t∗
E
, qt∗

E
(𝜏0) + 4) = ui(t∗

E
, qt∗

E
(𝜏1) + 3) < ui(t∗

E
, qt∗

E
(𝜏1) + 1)  . 

qt
(
�1
)
= qt

(
�0
)
+ 1, t ∈

[
1, t∗

E

]
,

qt
(
�1
)
= qt

(
�0
)
, t ∈

[
t∗
E
+ 1, t2

]
,
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Therefore, player i benefits by moving to t∗
E
 , and hence to time slot 1 as well. Move 

this player i to time slot 1 and denote the resulting strategy profile by �2.
For strategy profile �2 , the same argument can be used to show that another early 

player at t∗
E
+ 2 (again, if there is such a player) benefits by moving to time slot t∗

E
 , 

since ui(t∗
E
+ 2, qt∗

E
+2(�

2)) = ui(t∗
E
+ 2, qt∗

E
+2(�

0)) = ui(t∗
E
, qt∗

E
(�0) + 4) = ui(t∗

E
, qt∗

E
(�2) + 2)

< ui(t∗
E
, qt∗

E
(𝜏2) + 1) . However, this also implies that this player i benefits by moving 

to time slot 1. Move this player to time slot 1 and denote the strategy profile by �3 . 
Notice that at �3 , no early player at t∗

E
+ 2 no longer benefits by moving to another 

time slot, and no early player at time slots 1 through t∗
E
+ 1 benefits by moving. Also, 

at this step, no late player benefits by moving as well.
Suppose first that t∗∗ ≤ t∗

L
 . Repeat the above process by moving two early players 

at each time slot past t∗
E
+ 2 and further until we reach t∗∗ . Then, no player early or 

late can benefit by moving, and thus the strategy profile at this step is a Nash equi-
librium. If t∗∗ > t∗

L
 , we stop moving players, since once we remove two players from 

t∗
L
 , as at that point no player early or late can benefit by moving, and thus the strategy 

profile at this step is a Nash equilibrium.
Note that during this adjustment process, the queue length of time slot 1 never 

decreases, and no time slot has a nonpositive q by the assumption on n. Therefore, 
the connected terrace at the resulting strategy profile is still [1, t2] . By Proposition 3, 
this strategy profile must also be a strong equilibrium. 	�  □
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