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Abstract

We propose a general framework for multi-context reasoning
which allows us to combine arbitrary monotonic and non-
monotonic logics. Nonmonotonic bridge rules are used to
specify the information flow among contexts. We investigate
several notions of equilibrium representing acceptabliebe
states for our multi-context systems. The approach general
izes the heterogeneous monotonic multi-context systems de
veloped by F. Giunchiglia and colleagues as well as the ho-
mogeneous nonmonotonic multi-context systems of Brewka,
Serafini and Roelofsen.

Background and Motivation

Interest in formalizations of contextual information and
inter-contextual information flow has steadily increaseero
the last years. Based on seminal papers by McCarthy (1987)
and Giunchiglia (1993), several approaches have been pro-
posed, most notably McCarthy’s propositional logic of con-
text (1993) and the multi-context systems of the Trento
school devised by Giunchiglia and Serafini (1994).
Intuitively, a multi-context system describes the informa
tion available in a number of contexts (i.e., to a number of
people/agents/databases/modules, etc.) and specifies the
formation flow between those contexts. The contexts them-
selves may be heterogeneous in the sense that they can us
different logical languages and different inference syste
and no notion of global consistency is required. The infor-
mation flow is modeled via so-calldatidge ruleswhich can
refer in their premises to information from other contexts.
Figure 1 provides a simple illustration of the main under-
lying intuitions. Two agents, Mr.1 and Mr.2, are looking at
a box from different angles. As some sections of the box are
out of sight, both agents have partial information about the
box. To express this information, Mr.1 only uses proposi-
tion lettersi (there is a ball on the left) and(there is a ball
on the right), while Mr.2 also uses a third proposition lette
¢ (there is a ball in the center). The two agents’ reason-
ing may be based on different inference systems, and bridge
rules model the information flow among them.
Almost all existing work in the field is based on classical,
monotonic reasoning. The two exceptions we are aware of
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Figure 1: a magic box.

are (Roelofsen & Serafini 2005) and (Brewdtaal. 2007)*
To allow for reasoning based on the absence of informa-
tion from a context, the authors of both papers add default
negation to rule based multi-context systems and thus com-
bine contextual and default reasoning. The former paper is
based on a model theoretic approach where so-called infor-
mation chains are manipulated. The latter is based on a
multi-context variant of default logic (respectively itpes
cialization to logic programs under answer set semantics).

Although these approaches are more general than
Giunchiglia et al.'s multi-context systems because they al
low for nonmonotonic rules, they are less general in another
respect: they are homogeneous. Although different logical
languages can be used in different contexts, the inference
methods are the same in all contexts (default logic, respec-
tively answer set logic programming).

In this paper, we go an important step further and present
a framework fotheterogeneous nonmonotonic multi-context
reasoning The proposed systems are capable of combining

@rbitrary monotonic and nonmonotonic logics. For instance

we can imagine a multi-context system where one context
is a default logic reasoner, another one a description logic
system, and a third one a logic program under answer set or
well-founded semantics, or a circumscription engine.

The main contribution of this paper is thus a gen-
eralization of both heterogeneous monotonic and homo-
geneous nonmonotonic to heterogenenous nonmonotonic
multi-context systems.

Formalization

In this section, we formalize heterogeneous nonmonotonic
multi-context systems. We will simply call these systems
multi-context systems (or MCSs) from now on. We first in-

1The contextual default logic of (Besnard & Schaub 1995) ad-

dresses a different issue: unifying several variants cdulefogic
in a single system. This is achieved through generalizedudtsf

with different types of applicability conditions.



troduce MCSs, and then define several notions of equilibria
for them. An equilibrium is a collection of belief sets for

each context such that each belief set is based on the knowl-

edge base of the respective context together with the infor-
mation conveyed through applicable bridge rules.

As we will see, equilibria allow for certain forms of self-
justification via the bridge rules. For this reason, we dsscu
minimal equilibria and finally grounded equilibria. The-lat

— ACC(kb): the set ofkb's answer sets.
e Propositional logic under the closed world assumption:
— KB: the set of sets of propositional formulas over
— BS the set of deductively closed sets of propositional
Y-formulas,
— ACC(kb): the (singleton set containing the) setkdfs
consequences under closed world assumption.

ter can only be defined for the subclass of reducible MCSs. There are numerous other examples, nonmonotonic (e.g.,

Multi-context systems

circumscription, autoepistemic logic, defeasible logis)

well as monotonic (e.g., description logics, modal logics,

The idea behind heterogeneous MCSs is to allow different temporallogics). We next define multi-context systems.

logics to be used in different contexts, and to model inferma
tion flow among contexts via bridge rules. We first describe
what we mean by a logic here.

We will characterize the syntax of a logicby specifying
the setkB 1, of its well-formed knowledge bases. Without

loss of generality, we assume the knowledge bases are sets
In cases where the standard definition of a knowledge base

has more structure (like in default logic where default the-
ories consist of a set of formulas and a set of defaults), we

Definition 2 LetL = {L4,...,L,} be a set of logics. An
L-bridge rule overL, 1 < k < n, is of the form

(r1:p1), ..., (15 1 py),
not (Tj-‘rl : pj+1)a ...,hot (rm : pm)

S

@)

wherel < r, < n, pi is an element of some belief set of

L,,, and for eachkb € KBy, : kb U {s} € KBj,.

Definition 3 A multi-context system/ (C1,...,Ch)
consists of a collection of contexts; = (L;, kb;,br;),

can always make sure that elements of different substruc- whereL; = (KB;, BS;, ACC;) is a logic, kb; a knowledge

tures can be distinguished syntactically.

We also need to describE's possible belief set8S,,
that is sets of syntactical elements representing thefbelie
an agent may adopt. In most cases this will be deductively
closed sets of formulas, but we may have further restristion
e.g. to sets of atoms, sets of literals, and the like.

base (an element &B;), andbr; is a set ofL;-bridge rules
over{Ly,...,L,}.

We usehead(r) to denote the head of a bridge rule
Bridge rules refer in their bodies to other contexts and can
thus add information to a context based on what is be-
lieved or disbelieved in other contexts. Note that in con-

We finally have to characterize acceptable belief sets an trast with Giunchiglia’s (monotonic) multi-context systs,
agent may adopt based on the knowledge represented in ain our systems there is no single, global set of bridge rules.

knowledge base. For classical, monotonic logics this will

To emphasize their locality, we add the bridge rules to those

normally just be the set of classical consequences of the contexts to which they potentially add new information.

knowledge base. However, in many of the typical rule-based

nonmonotonic systems multiple acceptable belief sets may Equilibria

arise (called extensions, expansions, answer sets efr.). F

this reason we will characterize acceptable belief setsggusi

a functionACC 1, assigning to each knowledge bddea set

of belief sets taken frorBS;,.

Definition 1 A logic L = (KBj,,BS;,,ACC},) is composed

of the following components:

1. KB, is the set of well-formed knowledge based.ofWe
assume each elementkB, is a set.

2. BS;, is the set of possible belief sets,

3. ACC;, : KB, — 2BS: s a function describing the “se-
mantics” of the logic by assigning to each elemerkBf;,
a set of acceptable sets of beliefs.

Example 1 Let us first discuss some example logics, de-
fined over a signaturg:
o Default logic (DL) (Reiter 1980):

— KB: the set of default theories based®n

— BS the set of deductively closed setsXfformulas,

— ACC(kb): the set ofkb’s extensions.

e Normal logic programs under answer set semantics (NLP)
(Gelfond & Lifschitz 1991):

— KB: the set of normal logic programs ovEr
— BS the set of sets of atoms ovEr

We now need to define the acceptable belief states a sys-
tem may adopt. These belief states have to be based on the
knowledge base of each context, but also on the information
contained in other contexts in case there is an appropiiate a
plicable bridge rule. Intuitively, we have to make sure that
the chosen belief sets are in equilibrium: for each condgxt

the selected belief set must be among the acceptable belief
sets forC;’s knowledge bastgether with the heads @f;’s
applicable bridge rules

Definition 4 Let M = (Cy, ...

state is a sequencg = (54, ...

an element oBS;.

We say a bridge rule of form (1) is applicable in a belief

stateS = (Sy,...,5,) ifffor 1 <i < j: p; € S,, and for

J+H1<k<mipp &S,.

Definition 5 A belief stateS = (S4,...,5,) of M is an

equilibrium iff, forl <4 < n, the following condition holds:
S; € ACC;(kb; U {head(r) | r € br; applicable inS}).

An equilibrium thus is a belief state which contains for each

context an acceptable belief set, given the belief setseof th
other contexts.

,Cp) be an MCS. A belief
,Sn) such that eactyp; is

20ne can view each context as a player in an n-person game
where players choose belief sets. Assume for a given profile



Minimal equilibria

Equilibria are not necessarily minimal (under component-
wise set inclusion). They allow for a certain form of self-
justification of elements of belief sets via bridge rules.

Example 2 ConsiderM = (C4) with a single context based
on classical reasoning in propositional logic. Assurbgis
empty andbr; consists of the bridge rule — (1:p). Now
both (Th(0)) and (Th({p})) are equilibria. The latter is
somewhat questionable ass justified by itself.

In the example (and whenever all contexts are monotonic,
see below) we can solve the problem by considering mini-
mal equilibria. However, there may be situations where min-
imality is unwanted, or at least not for all contexts. For in-
stance, LPs with cardinality constraints (Nieéé& Simons
2000) use expressions of the forifiay, . .., ax } k to state
that the number of atoms ifuy,...,a;} contained in an
answer set must be betwegandk. Answer sets thus may
be nonminimal.

Similarly, stable expansions in autoepistemic logic (AEL)

beliefs which justify themselves, but this cannot be exetud
by requiring minimality.

Grounded equilibria

We now define grounded equilibria for a restricted class
of so calledreducible MCSs. Intuitively, an MCS is re-
ducible if each component logic is either monotonic (each
kb has a single acceptable belief set which grows monoton-
ically when information is added tbb), or it is one of the
nonmonotonic systems like default logic or logic programs
where a candidate belief sgtis tested for groundedness by
transforming the original knowledge basé to a simpler
onekd’. S is accepted if it coincides with the belief set of
kb'. The standard example is the Gelfond/Lifschitz reduc-
tion for logic programs. For bridge rules we will introduce
a similar reduction.

Definition 7 Let L = (KB, BS;,ACC;,) be a logic. L is
called monotonic iff

1. ACC(kb) is a singleton set for eackb € KB, and

(Moore 1985) are not necessarily minimal: the premise set 2. kb C kb, ACCL(kb) = {S}, andACC(kt') = {5’}

{Lp — p} has two stable expansions, one in which only
AEL tautologies are believed, and one where in additiis
believed. If a context in an MCS is based on a logic whose
acceptable belief sets are not necessarily minimal, oéisigi
the attention to minimal equilibria may not be a good idea.
The following definition allows us to explicitly select
those contexts for which minimality is required, and to keep
other contexts fixed in the minimization:

Definition 6 Let M (Ci1,...,Cy) be an MCS,S =
(S1,...,Sn) an equilibrium ofM, C* a subset of the con-
textsinM . S'is calledC*-minimal iff there is no equilibrium
S = (S51,...,5)) such that

1. S/ C S, for all contextsC; € C*,

2. S/ c S, for some context’; € C*,

3. 5} =5, for all contextsC; ¢ C*.

There are also cases where minimality is not strong enough.

impliesS C S".
Remark: an MCS can be nonmonotonic even if all involved
logics are monotonic: its bridge rules can be nonmonotonic.

Definition 8 Let L = (KB, BS;,ACC;,) be a logic. L is
called reducible iff

1. there isKB} C KBy, such that the restriction of to KB},
is monotonic,

there is a reduction functioredy, : KBy, x BS;, — KB},
such that for eaclk € KBy, and S, S’ € BS;.:

e redr(k,S) = k whenevek € KB7,
e redy, is antimonotone in the second argument, that is
redr(k,S) C redr(k,S’) whenevels’ C S,
e S € ACCL (k) iff ACCy(redr(k,S)) = {S}.
The conditions forredy, say the following: (a) should not
be further reduced if it is already in the target cl&&7] ,

2.

Several nonmonotonic systems like default logic or logic (b) justifying the elements in a larger belief set cannot be
programs under answer set semantics have a stronger notionmade easier than justifying a smaller set by using a larger
of groundedness which cannot be captured by minimality. In reduced knowledge base, and (c) acceptability of a beltef se
particular, the contextual default logic approach degctiin can actually be checked by the reduction.

(Brewka, Roelo_fsen, & S(_arafini 2007)isnota proper special Definition 9 A contexiC = (L, kb, br) is reducible iff

case of the notion described here. The reason is that con- ~ o .
textual default logic has a stronger groundedness conditio 1. its logic L is reducible,

some forms of “self-justification” are possible evenin mini 2. for all H C {head(r)|r € br} and belief sets"
mal equilibria which were not allowed in the quoted paper. redr(kbU H,S) = redy(kb,S) U H.

Example 3 Consider the MC3/1 = (C4, C3) consisting of An MCS is reducible if all of its contexts are. Note that a
two default logic contexts. Assunié, andkb, are empty, context is reducible whenever its logicis monotonic. In
andbr, consists of the single bridge rufe — (2:¢) and this caseKB * coincides withKB andredy, is identity with
bry of two rulesq «— (1:p) andr < not(1:p). Now respect to the first argument.

both (Th({p}), Th({q})) and(Th(D), Th({r})) are mini- We can now define grounded equilibria. We follow ideas
mal equilibria, but only the latter is a contextual extensio  (and terminology) from logic programming:

in the sense of (Brewkat al. 2007). The former contains Definition 10 Let M = (C4,. .., Cy) be a reducible MCS.

M is called definite iff

1. none of the bridge rules in any context contaios
2. foralli, S € BS;: kb; = red;(kb;, S).

(choice of belief sets by the players) each player’s utiity if she
picks an acceptable belief set given her knowledge basehend t
heads of bridge rules applicable under the profile, and Orwike.
The Nash equilibria of this game coincide with our equilibri



In a definite MCS bridge rules are monotonic, and knowl-

Example 4 Consider again MC3/ = (C1, Cs) of Exam-

edge bases are already in reduced form. Inference is thusple 3. We saw earlier that among the two minimal equilibria

monotonic and a unique minimal equilibrium exists. We
take this equilibrium to be the grounded equilibrium:

Definition 11 Let M = (C4,...,C,) be a definite MCS.
S = (51,...,5,) is the grounded equilibrium o¥/ iff S'is
the unigue minimal equilibrium af7.

A more operational characterization of the grounded equi-
librium of a definite MCSM = (C4,...,C},) is provided

by the following proposition. Fot < i < n, letkb{ = kb,

and define, for each successor ordinat 1,

kb3t = kb2 U {head(r) | r € br; is applicable inE*},
whereE* = (EY, ..., EY) andACC,(kbY) = {E2}. Fur-
thermore, for each limit ordinat, definekb* = (s, Kby,
and letkbs® = (J,,~( kbs*. Then we have:

Proposition 1 LetM = (C4,...,C,) be a definite MCS. A
belief stateS = (54,...,.5,) is the grounded equilibrium
of M iff ACC;(kbs°) = {S;}, for1 <i <n.

Remark: For many logics (in particular, those satisfying
compactnessb® = kb¥ holds; that is, any bridge rule is
applied (if at all) after finitely many steps; this is alswial

if br; is finite. However, there are logics conceivable which
require a transfinite number of steps.

The grounded equilibrium of a definite MCH will be
denotedGE(M). Grounded equilibria for general MCSs
are defined based on a reduct which generalizes the Gel-
fond/Lifschitz reduct to the multi-context case:

Definition 12 LetM = (C4,...,C,) be a reducible MCS,
S =(S1,...,S5,) abelief state of\/. TheS-reduct ofM is

M =(Cy,...,C%)

where for eachC; = (L;, kb;, br;) we defineC? (L;,
red;(kb;, S;), br?). Herebr? results frombr; by deleting

1. every rule with somaot (k:p) in the body such that €
Sy, and
2. all not literals from the bodies of remaining rules.

For each MCSV/ and each belief s, we have thaf\/* is
definite. We can thus check whethgris a grounded equi-
librium in the usual manner:

Definition 13 Let M = (C4,...,C,) be areducible MCS,
S = (51,...,5,) a belief state ofd/. S is a grounded
equilibrium of M iff S is the grounded equilibrium af/*,
thatis.S = GE(M¥).

We have the following result:

Proposition 2 Every grounded equilibrium of a reducible
MCSM is a minimal equilibrium of\/.

Examples of reducible nhonmonotonic systems are default
logic, NLPs, and LPs with cardinality constraints. For Re-
iter's default logic the reduction functiored(A, S) takes a
default theoryA and eliminates all defaults with justification

p such that-p € S, and deletes all justifications from the
remaining defaults. The resulting justification-free ddtfa
theories are monotonic and satisfy the required conditions

Ey = (Th({p}),Th({q})) and By = (Th(0),Th({r}))
only the second one has no self-justified beliefs. Itis easy t
verify thatGE(M 1) = (Th(0)), Th(D)) # E;1. ThusE; is

not a grounded equilibrium, as intended. On the other hand,
GE(M¥®2) = (Th(0), Th({r})) = F2, and thusE, is the
single grounded extension &1 .

Both the multi-context systems by Giunchiglia & Serafini
(1994) and contextual default logic by Brew&gal. (2007)

are special cases of MCSs: the former have monotonic con-
texts, the latter use default logic in all contexts.

Well-founded Semantics

We can define a well-founded semantics for a reducible
MCS M based on the operatan,(S) = GE(M?), pro-
vided BS; for each logicL; in any of M’s contexts has a
least elemenS*. We call MCSs satisfying this condition
normal The following result is a consequence of the anti-
monotony ofred;:

Proposition 3 LetM = (C4, ...
Thenry,, is antimonotone.

We thus obtain a monotone operator by applying twice.
Similar to what is done in logic programming we define the
well-founded semantics dff as the least fixpoint ofy,/)?.
This fixpoint exists according to the Knaster-Tarski themre

Definition 14 Let M = (C4,...,C,) be a normal re-
ducible MCS. The well-founded semantics)Mf denoted
WFS(M), is the least fixpoint ofy,)?.

The fixpoint can be computed by iteratirigy,)? starting
with the least belief staté* = (SF,...,S%). The grounded
extensions of\/ andWFS(A/) are related as usual:

Proposition 4 Let M (C1,...,Cy) be a normal re-
ducible multi-context system such thaFS(M) = (W,
..., Wp). LetS = (Sy, ..., S,) be agrounded equilibrium
of M. ThenW,; C S;for1 <i<n.

The well-founded semantics can thus be viewed as an ap-
proximation of the belief state representing what is aaspt

in all grounded equilibria. Note th&W/FS(M) itself is not
necessarily an equilibrium.

WES as defined here still suffers from a weakness dis-
cussed by (Brewka & Gottlob 1997) and (Brewka, Roelof-
sen, & Serafini 2007). Assumey (S™) (Th,...,Ty)
and one of the belief sef§ is inconsistent and deductively
closed. Then none a¥/’s bridge rules referring to context
C; through a body literahot (i : p) (for arbitraryp) will be
used in the computation dfy,,)?(S*). This may lead to
overly cautious reasoning. As discussed in the quoted pa-
pers, this problem can be dealt with by considering modified
operators, producing sets of formulas which are not deduc-
tively closed. Similar techniques can be used for MCSs.

, Cy) be areducible MCS.

Computational Complexity

In this section, we consider complexity aspects of MCSs.
We focus on the problem of deciding whether an MCS
M = (C4,...,C,) has an equilibrium, and on brave (resp.,



cautious) reasoning from its equilibria, i.e., given amsdat
p, and some&”;, isp € S; for some (resp., each) equilibrium
S =(S1,...,5,)of M. We assume familiarity with the ba-
sics of complexity (see (Papadimitriou 1994)), in partéul
the polynomial hierarchy3( =1IIf = Af = P, and, for all
k>0,%0  =NP, I}, =coX}, |, andA? | =P,
here (N)P is (non)deterministic polynomial time with an
oracle forC', and co€' is the complement of class).

Let us say that a logid. haspoly-size kernelsif there
is a mappings which assigns to evergb € KB andS €
ACC(kb) a setr(kb,S) C S of size (written as a string)
polynomial in the size okb, called thekernel of S, such that
there is a one-to-one corresponderfcbetween the belief
sets iNACC(kb) and their kernels, i.e$§ = f(k(kb,S)).
Standard propositional non-monotonic logics like DL, AEL,
NLP, etc. all have poly-size kernels.

If furthermore, given any knowledge bas#, an ele-
ment b, and a set of element&, deciding whether (i)
K = k(kb,S) for someS € ACC(kb) and (ii)b € S'is
in A7, then we say that haskernel reasoning im\}.

Note that the standard propositional NMR formalisms DL
and AEL have kernel reasoning ihh, and under suitable
restrictions even il\} = P, i.e., in polynomial time.

For convenience, we assume that any beliefsgt any
logic L contains a distinguished elementie; so forb =
true, (i) and (ii) together are equivalent to (i), i.e., whether
K is a kernel for some acceptable belief sekbf

We concentrate ofinite MCS where all knowledge bases
kb; and sets of bridge rulds; are finite; thel,; are from an
arbitrary but fixed set. The following result gives an upper
bound on deciding the existence of an equilibrium.

Theorem 1 Given a finite MCSVf = (C4,...,C,,) where
all logics L; have poly-size kernels and kernel reasoning in
A7}, deciding whethe? has an equilibrium is irEy ;.

In particular, for an MCS in which the components are
knowledge bases in an NMR formalism like propositional
DL, AEL, NLP, etc. deciding the existence of an equilib-
rium is in the worst case not more complex than deciding the
existence of an acceptable belief set in the component log-
ics. This property, however, is not automatically inhetibgy
all fragments of a logic, because the bridge rules might add
complexity (e.qg., if all logics are propositional Horn logi
programs, but the bridge rules are unstratified).

Informally, Theorem 1 holds since we can guess kernels
K1, ...,k Of the belief sets, ..., .S, in an equilibriums
for M, together with the sets of headls, . . ., H,, of bridge
rules that are applicable ifi, and check that eacty is the
kernel of someS; € ACC(kb; U H;), and thatH; is cor-
rect; by hypothesis, checking is ilv}. On the other hand,
we often get:} , , -completeness via) , ,-completeness of
deciding belief set existence for the component logics; e.g
NP-completeness for NLPs, ar¥l-completeness for DL
and AEL. The following result is easy to see.

Theorem 2 In the setting of Theorem 1, brave reasoning
from the equilibria of a finite MC3/ is in X2}, ; and cau-

i ingisidl? | = D
tious reasoning is AL, , ;, = co-X .

Again, completeness when using DL, AEL etc. in the com-
ponents is inherited from respective reasoning results.

Brave reasoning from the minimal equilibria can be more
complex than from all equilibria. Assuming that, in the set-
ting of Theorem 1, given kernelsandx’ of acceptable be-
lief setsS and .S’ of kb, deciding whetheS C S’ is in A
brave reasoning is iE,’;Jr2 while cautious reasoning stays
in HZ_H(as usual). Again, completeness Diw may be
inherited from the complexity of minimal belief sets.
Grounded equilibria  In case of a definite MC&', we can
take H; as the kernel of the single acceptable belief set of
kb; U H;. We then get the following result.

Theorem3 Let M = (C4,...,C,) be a (finite) definite
MCS where all logicd.; have kernel reasoning (using ker-
nelsx;(kb,S) = kb) in AP, k > 1. Then, the kernels;
of the belief sets; in GE(M) wrt. kb; U H;, 1 < i < n,
are computable in polynomial time with%3, _, oracle, and
brave/cautious reasoning is iy} .

In particular, fork = 1 no oracle is needed (&% = P).

Indeed, we can compute the knowledge basés:b!,. . .,
which are the kernels of the belief séf§, E},...with ker-
nel reasoning; each step requires at most polynomially many
inference tests for applicability, and the iteration stafier
polynomially many steps (sinc¥ is finite).

A general reducible MC3/ may have multiple grounded
equilibria. Here, we can guess kernels of belief sets as
above, and exploit Theorem 3.

Theorem 4 Let M = (C4,...,C,) be a (finite) reducible
MCS where each logi€; has kernel reasoning in}. and
wherered(kb;, S;) is computable, given a kernel &f €
ACC(kb; U H;), in polynomial time with a-} _, oracle.
Then (i) deciding whethelM has a grounded equilibrium
and brave reasoning from/ are inX} , ,, and cautious rea-
soning is in cox?, (=II%).

Well-founded semantics In the setting of Theorem 4,
computingy,s (S) = GE(M?) is also feasible in polynomial
time with aX}_, oracle, and so is computirgs(5))?
v (7ar(S)). Furthermore, the sequené®, (var(S*))?,
(v (S*))4, ..., canincrease only polynomially often, since
it reaches a fixpoint if no further bridge rule is applicable
and M is finite. We thus get the following result:

Theorem 5 Let M = (C4,...,C,) be a (finite) normal re-
ducible MCS where all logicg; have kernel reasoning in
A?, and wherered(kb;, S;) is computable, given a kernel
for S; (w.r.t. an arbitrary kb) resp.S7, in polynomial time
with aX? _, oracle. Then, deciding whetheris in a belief
setinWFS(M) is in A} as well.

In particular, if all component logics id/ admit poly-
nomial kernel reasoning (like, e.g., NLPs), then reasoning
under WFS is polynomial.

We finally remark that if kernel reasoning and computing
red(kb;, S;) is feasible in polynomial space, then all results
hold with PSPACE in place oA} resp.37.

Related Work

Our framework is related t&iEX programs(Eiter et al.
2005), which generalize non-monotonic LPs by higher-order



predicates and, more importantly here dxgernal atom®f

the form+#g¢[Y](X) in rule bodies, wher&” and X are re-
spective lists of input and output terms. Intuitively, such
an atom provides a way for deciding the truth value of an
output tupleX depending on the extension of named input
predicateslS7 using an external function. It subsumes the
generalized quantifier atoms proposed in (Eéeal. 2000).

For example, #each[edge, start](X) may single out in
the graph specified by a binary predicaiéye all nodes
X reachable from a node given by start(a); then,
#reachledge, start](b) is true iff b is reachable froma.

The semantics of a propositional HEX progrdpris de-
fined in terms of answer sets, which are the interpretations
I (viewing #¢[y](Z) as propositional atom, wheig Z are
lists of propositional atoms) that are minimal models of the
reduct f PT, which contains all rules fronP whose body
is true inI; here, #¢[y](Z) is true in I iff an associated
Boolean functionfy,, which depends od andy,Z, re-
turns 1; see (Eiteet al. 2005) for details.

HEX programs don’t simply subsume our MCSs. It might
seem that eacli : p) can be emulated by an external atom
#member;|[](a,), where the atom,, encodep, which tells
whetherp belongs to an acceptable belief setkdf U H;,
whereH; are the heads of the applicable bridge rule&in
However, there are subtle yet salient differences:

1. A naive usage of such “brave reasoning” atoms is
flawed, since occurring atomgmember;[](a,) and
#member;|[](a,) may use different belief se of kb; U
H; to witnessp € S; resp.q € S;. However, in an equi-
librium, all such atoms have to uiee sames;.

2. Answer sets of HEX Programs are minimal (w.r.t. set in-
clusion), while equilibria are not necessarily minimal.

However, if eachS<cACC(kb;UH;) has a kernel
SNK; for some (finite) setk; (which applies to many
standard propositional NMR formalisms), then we can over-
come the first problem by “guessing” and verifying the ker-
nel of the right belief set okb; U H; in the HEX-program.
Item 2 can be handled by blocking minimization.

In the extended paper, we describe how to encode such an

MCS M into a HEX programP,,; such that its answer sets
correspond to the equilibria o/. We further show how
the grounded equilibria of a definite such MCS and a re-
ducible such MCS can be encoded elegantly into HEX pro-
gramsP{, respectivelyPy,. In particular, the encodings can
be applied for many standard NMR formalisms. In this way,
an implementation of an MCS with equilibria semantics can
be designed, by providing suitable external functions enpl
mented on top of existing reasoners for NMR formalisms.

Conclusion

Motivated by semantic web applications, there is incraasin
interest in combining ontologies based on descriptionc®gi
with nonmonotonic formalisms, cf. (Motik & Rosati 2007;
Bonatti, Lutz, & Wolter 2006; Eiteet al. 2004). Sometimes
this is achieved by embedding the combined formalisms into
a single, more general formalism, e.g. MKNF in the case of
(Motik & Rosati 2007).

Rather than focusing on two specific formalisms, our ap-
proach aims at providing a general framework for arbitrary
logics. We leave entirely open which logics to use (and how
many, for that matter), and we leave the logics “untouched”:
there is no unifying formalism to which we translate.

The multi-context systems developed in this paper sub-
stantially generalize earlier systems. They do not suftenf
the limitations of both monotonic and homogeneous sys-
tems. We believe they can provide a useful, general frame-
work for integrating reasoning formalisms of various kinds
both monotonic and nonmonotonic.
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