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Abstract

We propose a general framework for multi-context reasoning
which allows us to combine arbitrary monotonic and non-
monotonic logics. Nonmonotonic bridge rules are used to
specify the information flow among contexts. We investigate
several notions of equilibrium representing acceptable belief
states for our multi-context systems. The approach general-
izes the heterogeneous monotonic multi-context systems de-
veloped by F. Giunchiglia and colleagues as well as the ho-
mogeneous nonmonotonic multi-context systems of Brewka,
Serafini and Roelofsen.

Background and Motivation
Interest in formalizations of contextual information and
inter-contextual information flow has steadily increased over
the last years. Based on seminal papers by McCarthy (1987)
and Giunchiglia (1993), several approaches have been pro-
posed, most notably McCarthy’s propositional logic of con-
text (1993) and the multi-context systems of the Trento
school devised by Giunchiglia and Serafini (1994).

Intuitively, a multi-context system describes the informa-
tion available in a number of contexts (i.e., to a number of
people/agents/databases/modules, etc.) and specifies thein-
formation flow between those contexts. The contexts them-
selves may be heterogeneous in the sense that they can use
different logical languages and different inference systems,
and no notion of global consistency is required. The infor-
mation flow is modeled via so-calledbridge ruleswhich can
refer in their premises to information from other contexts.

Figure 1 provides a simple illustration of the main under-
lying intuitions. Two agents, Mr.1 and Mr.2, are looking at
a box from different angles. As some sections of the box are
out of sight, both agents have partial information about the
box. To express this information, Mr.1 only uses proposi-
tion lettersl (there is a ball on the left) andr (there is a ball
on the right), while Mr.2 also uses a third proposition letter
c (there is a ball in the center). The two agents’ reason-
ing may be based on different inference systems, and bridge
rules model the information flow among them.

Almost all existing work in the field is based on classical,
monotonic reasoning. The two exceptions we are aware of

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Mr.1 Mr. 2

Figure 1: a magic box.

are (Roelofsen & Serafini 2005) and (Brewkaet al. 2007).1

To allow for reasoning based on the absence of informa-
tion from a context, the authors of both papers add default
negation to rule based multi-context systems and thus com-
bine contextual and default reasoning. The former paper is
based on a model theoretic approach where so-called infor-
mation chains are manipulated. The latter is based on a
multi-context variant of default logic (respectively its spe-
cialization to logic programs under answer set semantics).

Although these approaches are more general than
Giunchiglia et al.’s multi-context systems because they al-
low for nonmonotonic rules, they are less general in another
respect: they are homogeneous. Although different logical
languages can be used in different contexts, the inference
methods are the same in all contexts (default logic, respec-
tively answer set logic programming).

In this paper, we go an important step further and present
a framework forheterogeneous nonmonotonic multi-context
reasoning. The proposed systems are capable of combining
arbitrary monotonic and nonmonotonic logics. For instance,
we can imagine a multi-context system where one context
is a default logic reasoner, another one a description logic
system, and a third one a logic program under answer set or
well-founded semantics, or a circumscription engine.

The main contribution of this paper is thus a gen-
eralization of both heterogeneous monotonic and homo-
geneous nonmonotonic to heterogenenous nonmonotonic
multi-context systems.

Formalization
In this section, we formalize heterogeneous nonmonotonic
multi-context systems. We will simply call these systems
multi-context systems (or MCSs) from now on. We first in-

1The contextual default logic of (Besnard & Schaub 1995) ad-
dresses a different issue: unifying several variants of default logic
in a single system. This is achieved through generalized defaults
with different types of applicability conditions.



troduce MCSs, and then define several notions of equilibria
for them. An equilibrium is a collection of belief sets for
each context such that each belief set is based on the knowl-
edge base of the respective context together with the infor-
mation conveyed through applicable bridge rules.

As we will see, equilibria allow for certain forms of self-
justification via the bridge rules. For this reason, we discuss
minimal equilibria and finally grounded equilibria. The lat-
ter can only be defined for the subclass of reducible MCSs.

Multi-context systems
The idea behind heterogeneous MCSs is to allow different
logics to be used in different contexts, and to model informa-
tion flow among contexts via bridge rules. We first describe
what we mean by a logic here.

We will characterize the syntax of a logicL by specifying
the setKBL of its well-formed knowledge bases. Without
loss of generality, we assume the knowledge bases are sets.
In cases where the standard definition of a knowledge base
has more structure (like in default logic where default the-
ories consist of a set of formulas and a set of defaults), we
can always make sure that elements of different substruc-
tures can be distinguished syntactically.

We also need to describeL’s possible belief setsBSL,
that is sets of syntactical elements representing the beliefs
an agent may adopt. In most cases this will be deductively
closed sets of formulas, but we may have further restrictions,
e.g. to sets of atoms, sets of literals, and the like.

We finally have to characterize acceptable belief sets an
agent may adopt based on the knowledge represented in a
knowledge base. For classical, monotonic logics this will
normally just be the set of classical consequences of the
knowledge base. However, in many of the typical rule-based
nonmonotonic systems multiple acceptable belief sets may
arise (called extensions, expansions, answer sets etc.). For
this reason we will characterize acceptable belief sets using
a functionACCL assigning to each knowledge basekb a set
of belief sets taken fromBSL.

Definition 1 A logic L = (KBL, BSL, ACCL) is composed
of the following components:

1. KBL is the set of well-formed knowledge bases ofL. We
assume each element ofKBL is a set.

2. BSL is the set of possible belief sets,
3. ACCL : KBL → 2BSL is a function describing the “se-

mantics” of the logic by assigning to each element ofKBL

a set of acceptable sets of beliefs.

Example 1 Let us first discuss some example logics, de-
fined over a signatureΣ:

• Default logic (DL) (Reiter 1980):
– KB: the set of default theories based onΣ,
– BS: the set of deductively closed sets ofΣ-formulas,
– ACC(kb): the set ofkb’s extensions.
• Normal logic programs under answer set semantics (NLP)

(Gelfond & Lifschitz 1991):
– KB: the set of normal logic programs overΣ,
– BS: the set of sets of atoms overΣ,

– ACC(kb): the set ofkb’s answer sets.
• Propositional logic under the closed world assumption:

– KB: the set of sets of propositional formulas overΣ,
– BS: the set of deductively closed sets of propositional

Σ-formulas,
– ACC(kb): the (singleton set containing the) set ofkb’s

consequences under closed world assumption.

There are numerous other examples, nonmonotonic (e.g.,
circumscription, autoepistemic logic, defeasible logic)as
well as monotonic (e.g., description logics, modal logics,
temporal logics). We next define multi-context systems.
Definition 2 Let L = {L1, . . . , Ln} be a set of logics. An
Lk-bridge rule overL, 1 ≤ k ≤ n, is of the form

s← (r1 : p1), . . . , (rj : pj),
not (rj+1 : pj+1), . . . , not (rm : pm)

(1)

where1 ≤ rk ≤ n, pk is an element of some belief set of
Lrk

, and for eachkb ∈ KBk : kb ∪ {s} ∈ KBk.

Definition 3 A multi-context systemM = (C1, . . . , Cn)
consists of a collection of contextsCi = (Li, kbi, bri),
whereLi = (KBi, BSi, ACCi) is a logic,kbi a knowledge
base (an element ofKBi), andbri is a set ofLi-bridge rules
over{L1, . . . , Ln}.

We usehead(r) to denote the head of a bridge ruler.
Bridge rules refer in their bodies to other contexts and can
thus add information to a context based on what is be-
lieved or disbelieved in other contexts. Note that in con-
trast with Giunchiglia’s (monotonic) multi-context systems,
in our systems there is no single, global set of bridge rules.
To emphasize their locality, we add the bridge rules to those
contexts to which they potentially add new information.

Equilibria
We now need to define the acceptable belief states a sys-
tem may adopt. These belief states have to be based on the
knowledge base of each context, but also on the information
contained in other contexts in case there is an appropriate ap-
plicable bridge rule. Intuitively, we have to make sure that
the chosen belief sets are in equilibrium: for each contextCi

the selected belief set must be among the acceptable belief
sets forCi’s knowledge basetogether with the heads ofCi’s
applicable bridge rules.
Definition 4 Let M = (C1, . . . , Cn) be an MCS. A belief
state is a sequenceS = (S1, . . . , Sn) such that eachSi is
an element ofBSi.
We say a bridge ruler of form (1) is applicable in a belief
stateS = (S1, . . . , Sn) iff for 1 ≤ i ≤ j: pi ∈ Sri

and for
j + 1 ≤ k ≤ m: pk 6∈ Srk

.

Definition 5 A belief stateS = (S1, . . . , Sn) of M is an
equilibrium iff, for1 ≤ i ≤ n, the following condition holds:

Si ∈ ACCi(kbi ∪ {head(r) | r ∈ bri applicable inS}).

An equilibrium thus is a belief state which contains for each
context an acceptable belief set, given the belief sets of the
other contexts.2

2One can view each context as a player in an n-person game
where players choose belief sets. Assume for a given profile



Minimal equilibria
Equilibria are not necessarily minimal (under component-
wise set inclusion). They allow for a certain form of self-
justification of elements of belief sets via bridge rules.

Example 2 ConsiderM = (C1) with a single context based
on classical reasoning in propositional logic. Assumekb1 is
empty andbr1 consists of the bridge rulep ← (1 : p). Now
both (Th(∅)) and (Th({p})) are equilibria. The latter is
somewhat questionable asp is justified by itself.

In the example (and whenever all contexts are monotonic,
see below) we can solve the problem by considering mini-
mal equilibria. However, there may be situations where min-
imality is unwanted, or at least not for all contexts. For in-
stance, LPs with cardinality constraints (Niemelä & Simons
2000) use expressions of the formj{a1, . . . , ak}k to state
that the number of atoms in{a1, . . . , ak} contained in an
answer set must be betweenj andk. Answer sets thus may
be nonminimal.

Similarly, stable expansions in autoepistemic logic (AEL)
(Moore 1985) are not necessarily minimal: the premise set
{Lp → p} has two stable expansions, one in which only
AEL tautologies are believed, and one where in additionp is
believed. If a context in an MCS is based on a logic whose
acceptable belief sets are not necessarily minimal, restricting
the attention to minimal equilibria may not be a good idea.

The following definition allows us to explicitly select
those contexts for which minimality is required, and to keep
other contexts fixed in the minimization:

Definition 6 Let M = (C1, . . . , Cn) be an MCS,S =
(S1, . . . , Sn) an equilibrium ofM , C∗ a subset of the con-
texts inM . S is calledC∗-minimal iff there is no equilibrium
S′ = (S′

1, . . . , S
′
n) such that

1. S′
i ⊆ Si for all contextsCi ∈ C∗,

2. S′
i ⊂ Si for some contextCi ∈ C∗,

3. S′
i = Si for all contextsCi 6∈ C∗.

There are also cases where minimality is not strong enough.
Several nonmonotonic systems like default logic or logic
programs under answer set semantics have a stronger notion
of groundedness which cannot be captured by minimality. In
particular, the contextual default logic approach described in
(Brewka, Roelofsen, & Serafini 2007) is not a proper special
case of the notion described here. The reason is that con-
textual default logic has a stronger groundedness condition:
some forms of “self-justification” are possible even in mini-
mal equilibria which were not allowed in the quoted paper.

Example 3 Consider the MCSM = (C1, C2) consisting of
two default logic contexts. Assumekb1 andkb2 are empty,
and br1 consists of the single bridge rulep ← (2 : q) and
br2 of two rulesq ← (1 : p) and r ← not (1 : p). Now
both (Th({p}), Th({q})) and(Th(∅), Th({r})) are mini-
mal equilibria, but only the latter is a contextual extension
in the sense of (Brewkaet al. 2007). The former contains

(choice of belief sets by the players) each player’s utilityis 1 if she
picks an acceptable belief set given her knowledge base and the
heads of bridge rules applicable under the profile, and 0 otherwise.
The Nash equilibria of this game coincide with our equilibria.

beliefs which justify themselves, but this cannot be excluded
by requiring minimality.

Grounded equilibria
We now define grounded equilibria for a restricted class
of so calledreducibleMCSs. Intuitively, an MCS is re-
ducible if each component logic is either monotonic (each
kb has a single acceptable belief set which grows monoton-
ically when information is added tokb), or it is one of the
nonmonotonic systems like default logic or logic programs
where a candidate belief setS is tested for groundedness by
transforming the original knowledge basekb to a simpler
onekb′. S is accepted if it coincides with the belief set of
kb′. The standard example is the Gelfond/Lifschitz reduc-
tion for logic programs. For bridge rules we will introduce
a similar reduction.

Definition 7 Let L = (KBL, BSL, ACCL) be a logic. L is
called monotonic iff

1. ACCL(kb) is a singleton set for eachkb ∈ KBL, and
2. kb ⊆ kb′, ACCL(kb) = {S}, and ACCL(kb′) = {S′}

impliesS ⊆ S′.

Remark: an MCS can be nonmonotonic even if all involved
logics are monotonic: its bridge rules can be nonmonotonic.

Definition 8 Let L = (KBL, BSL, ACCL) be a logic. L is
called reducible iff

1. there isKB∗
L ⊆ KBL such that the restriction ofL to KB∗

L

is monotonic,
2. there is a reduction functionredL : KBL × BSL → KB∗

L

such that for eachk ∈ KBL andS, S′ ∈ BSL:
• redL(k, S) = k wheneverk ∈ KB∗

L,
• redL is antimonotone in the second argument, that is

redL(k, S) ⊆ redL(k, S′) wheneverS′ ⊆ S,
• S ∈ ACCL(k) iff ACCL(redL(k, S)) = {S}.

The conditions forredL say the following: (a)k should not
be further reduced if it is already in the target classKB∗

L,
(b) justifying the elements in a larger belief set cannot be
made easier than justifying a smaller set by using a larger
reduced knowledge base, and (c) acceptability of a belief set
can actually be checked by the reduction.

Definition 9 A contextC = (L, kb, br) is reducible iff

1. its logicL is reducible,
2. for all H ⊆ {head(r)|r ∈ br} and belief setsS:

redL(kb ∪H, S) = redL(kb, S) ∪H.

An MCS is reducible if all of its contexts are. Note that a
context is reducible whenever its logicL is monotonic. In
this caseKB∗ coincides withKB andredL is identity with
respect to the first argument.

We can now define grounded equilibria. We follow ideas
(and terminology) from logic programming:

Definition 10 Let M = (C1, . . . , Cn) be a reducible MCS.
M is called definite iff

1. none of the bridge rules in any context containsnot
2. for all i, S ∈ BSi: kbi = redi(kbi, S).



In a definite MCS bridge rules are monotonic, and knowl-
edge bases are already in reduced form. Inference is thus
monotonic and a unique minimal equilibrium exists. We
take this equilibrium to be the grounded equilibrium:

Definition 11 Let M = (C1, . . . , Cn) be a definite MCS.
S = (S1, . . . , Sn) is the grounded equilibrium ofM iff S is
the unique minimal equilibrium ofM .

A more operational characterization of the grounded equi-
librium of a definite MCSM = (C1, . . . , Cn) is provided
by the following proposition. For1 ≤ i ≤ n, let kb0

i = kbi

and define, for each successor ordinalα + 1,

kbα+1
i = kbα

i ∪ {head(r) | r ∈ bri is applicable inEα},

whereEα = (Eα
1 , . . . , Eα

n ) andACCi(kbα
i ) = {Eα

i }. Fur-
thermore, for each limit ordinalα, definekbα

i =
⋃

β≤α kb
β
i ,

and letkb∞i =
⋃

α>0 kbα
i . Then we have:

Proposition 1 LetM = (C1, . . . , Cn) be a definite MCS. A
belief stateS = (S1, . . . , Sn) is the grounded equilibrium
of M iff ACCi(kb∞i ) = {Si}, for 1 ≤ i ≤ n.

Remark: For many logics (in particular, those satisfying
compactness),kb∞i = kbω

i holds; that is, any bridge rule is
applied (if at all) after finitely many steps; this is also trivial
if bri is finite. However, there are logics conceivable which
require a transfinite number of steps.

The grounded equilibrium of a definite MCSM will be
denotedGE(M). Grounded equilibria for general MCSs
are defined based on a reduct which generalizes the Gel-
fond/Lifschitz reduct to the multi-context case:

Definition 12 Let M = (C1, . . . , Cn) be a reducible MCS,
S = (S1, . . . , Sn) a belief state ofM . TheS-reduct ofM is

MS = (CS
1 , . . . , CS

n )

where for eachCi = (Li, kbi, bri) we defineCS
i = (Li,

redi(kbi, Si), brS
i ). HerebrS

i results frombri by deleting

1. every rule with somenot (k:p) in the body such thatp ∈
Sk, and

2. all not literals from the bodies of remaining rules.

For each MCSM and each belief setS, we have thatMS is
definite. We can thus check whetherS is a grounded equi-
librium in the usual manner:

Definition 13 Let M = (C1, . . . , Cn) be a reducible MCS,
S = (S1, . . . , Sn) a belief state ofM . S is a grounded
equilibrium ofM iff S is the grounded equilibrium ofMS ,
that isS = GE(MS).

We have the following result:

Proposition 2 Every grounded equilibrium of a reducible
MCSM is a minimal equilibrium ofM .

Examples of reducible nonmonotonic systems are default
logic, NLPs, and LPs with cardinality constraints. For Re-
iter’s default logic the reduction functionred(∆, S) takes a
default theory∆ and eliminates all defaults with justification
p such that¬p ∈ S, and deletes all justifications from the
remaining defaults. The resulting justification-free default
theories are monotonic and satisfy the required conditions.

Example 4 Consider again MCSM = (C1, C2) of Exam-
ple 3. We saw earlier that among the two minimal equilibria
E1 = (Th({p}), Th({q})) and E2 = (Th(∅), Th({r}))
only the second one has no self-justified beliefs. It is easy to
verify thatGE(ME1) = (Th(∅), Th(∅)) 6= E1. ThusE1 is
not a grounded equilibrium, as intended. On the other hand,
GE(ME2) = (Th(∅), Th({r})) = E2, and thusE2 is the
single grounded extension ofM .

Both the multi-context systems by Giunchiglia & Serafini
(1994) and contextual default logic by Brewkaet al. (2007)
are special cases of MCSs: the former have monotonic con-
texts, the latter use default logic in all contexts.

Well-founded Semantics
We can define a well-founded semantics for a reducible
MCS M based on the operatorγM (S) = GE(MS), pro-
vided BSi for each logicLi in any of M ’s contexts has a
least elementS∗. We call MCSs satisfying this condition
normal. The following result is a consequence of the anti-
monotony ofredi:

Proposition 3 LetM = (C1, . . . , Cn) be a reducible MCS.
ThenγM is antimonotone.

We thus obtain a monotone operator by applyingγM twice.
Similar to what is done in logic programming we define the
well-founded semantics ofM as the least fixpoint of(γM )2.
This fixpoint exists according to the Knaster-Tarski theorem.

Definition 14 Let M = (C1, . . . , Cn) be a normal re-
ducible MCS. The well-founded semantics ofM , denoted
WFS(M), is the least fixpoint of(γM )2.

The fixpoint can be computed by iterating(γM )2 starting
with the least belief stateS? = (S?

1 , . . . , S?
n). The grounded

extensions ofM andWFS(M) are related as usual:

Proposition 4 Let M = (C1, . . . , Cn) be a normal re-
ducible multi-context system such thatWFS(M) = (W1,
. . . , Wn). LetS = (S1, . . . , Sn) be a grounded equilibrium
of M . ThenWi ⊆ Si for 1 ≤ i ≤ n.

The well-founded semantics can thus be viewed as an ap-
proximation of the belief state representing what is accepted
in all grounded equilibria. Note thatWFS(M) itself is not
necessarily an equilibrium.

WFS as defined here still suffers from a weakness dis-
cussed by (Brewka & Gottlob 1997) and (Brewka, Roelof-
sen, & Serafini 2007). AssumeγM (S?) = (T1, . . . , Tn)
and one of the belief setsTi is inconsistent and deductively
closed. Then none ofM ’s bridge rules referring to context
Ci through a body literalnot (i : p) (for arbitraryp) will be
used in the computation of(γM )2(S?). This may lead to
overly cautious reasoning. As discussed in the quoted pa-
pers, this problem can be dealt with by considering modified
operators, producing sets of formulas which are not deduc-
tively closed. Similar techniques can be used for MCSs.

Computational Complexity
In this section, we consider complexity aspects of MCSs.
We focus on the problem of deciding whether an MCS
M = (C1, . . . , Cn) has an equilibrium, and on brave (resp.,



cautious) reasoning from its equilibria, i.e., given an element
p, and someCi, is p ∈ Si for some (resp., each) equilibrium
S = (S1, . . . , Sn) of M . We assume familiarity with the ba-
sics of complexity (see (Papadimitriou 1994)), in particular
the polynomial hierarchy (Σp

0 = Πp
0 =∆p

0 = P , and, for all
k ≥ 0, Σp

k+1 = NPΣ
p

k , Πp
k+1 = co-Σp

k+1, and∆p
k+1 = PΣ

p

k ;
here (N)PC is (non)deterministic polynomial time with an
oracle forC, and co-C is the complement of classC).

Let us say that a logicL haspoly-size kernels, if there
is a mappingκ which assigns to everykb ∈ KB andS ∈
ACC(kb) a setκ(kb, S) ⊆ S of size (written as a string)
polynomial in the size ofkb, called thekernel ofS, such that
there is a one-to-one correspondencef between the belief
sets inACC(kb) and their kernels, i.e.,S 
 f(κ(kb, S)).
Standard propositional non-monotonic logics like DL, AEL,
NLP, etc. all have poly-size kernels.

If furthermore, given any knowledge basekb, an ele-
ment b, and a set of elementsK, deciding whether (i)
K = κ(kb, S) for someS ∈ ACC(kb) and (ii) b ∈ S is
in ∆p

k, then we say thatL haskernel reasoning in∆p
k.

Note that the standard propositional NMR formalisms DL
and AEL have kernel reasoning in∆p

2, and under suitable
restrictions even in∆p

1 = P, i.e., in polynomial time.
For convenience, we assume that any belief setS in any

logic L contains a distinguished elementtrue; so for b =
true, (i) and (ii) together are equivalent to (i), i.e., whether
K is a kernel for some acceptable belief set ofkb.

We concentrate onfinite MCS, where all knowledge bases
kbi and sets of bridge rulesbri are finite; theLi are from an
arbitrary but fixed set. The following result gives an upper
bound on deciding the existence of an equilibrium.

Theorem 1 Given a finite MCSM = (C1, . . . , Cn) where
all logics Li have poly-size kernels and kernel reasoning in
∆p

k, deciding whetherM has an equilibrium is inΣp
k+1.

In particular, for an MCS in which the components are
knowledge bases in an NMR formalism like propositional
DL, AEL, NLP, etc. deciding the existence of an equilib-
rium is in the worst case not more complex than deciding the
existence of an acceptable belief set in the component log-
ics. This property, however, is not automatically inherited by
all fragments of a logic, because the bridge rules might add
complexity (e.g., if all logics are propositional Horn logic
programs, but the bridge rules are unstratified).

Informally, Theorem 1 holds since we can guess kernels
κ1, . . . , κn of the belief setsS1, . . . , Sn in an equilibriumS
for M , together with the sets of headsH1, . . . , Hn of bridge
rules that are applicable inS, and check that eachκi is the
kernel of someSi ∈ ACC(kbi ∪ Hi), and thatHi is cor-
rect; by hypothesis, checking is in∆p

k. On the other hand,
we often getΣp

k+1-completeness viaΣp
k+1-completeness of

deciding belief set existence for the component logics; e.g.,
NP-completeness for NLPs, andΣp

2-completeness for DL
and AEL. The following result is easy to see.

Theorem 2 In the setting of Theorem 1, brave reasoning
from the equilibria of a finite MCSM is in Σp

k+1 and cau-
tious reasoning is inΠp

k+1 = co-Σp
k+1.

Again, completeness when using DL, AEL etc. in the com-
ponents is inherited from respective reasoning results.

Brave reasoning from the minimal equilibria can be more
complex than from all equilibria. Assuming that, in the set-
ting of Theorem 1, given kernelsκ andκ′ of acceptable be-
lief setsS andS′ of kb, deciding whetherS ⊆ S′ is in ∆p

k

brave reasoning is inΣp
k+2 while cautious reasoning stays

in Πp
k+1(as usual). Again, completeness forΣp

k+2 may be
inherited from the complexity of minimal belief sets.
Grounded equilibria In case of a definite MCSC, we can
takeHj as the kernel of the single acceptable belief set of
kbi ∪Hi. We then get the following result.
Theorem 3 Let M = (C1, . . . , Cn) be a (finite) definite
MCS where all logicsLi have kernel reasoning (using ker-
nelsκi(kb, S) = kb) in ∆p

k, k ≥ 1. Then, the kernelsκi

of the belief setsSi in GE(M) wrt. kbi ∪ Hi, 1 ≤ i ≤ n,
are computable in polynomial time with aΣp

k−1 oracle, and
brave/cautious reasoning is in∆p

k.
In particular, fork = 1 no oracle is needed (asΣp

0 = P).
Indeed, we can compute the knowledge baseskb0

i ,kb1
i ,. . . ,

which are the kernels of the belief setsE0
i , E1

i ,. . . with ker-
nel reasoning; each step requires at most polynomially many
inference tests for applicability, and the iteration stopsafter
polynomially many steps (sinceM is finite).

A general reducible MCSM may have multiple grounded
equilibria. Here, we can guess kernels of belief sets as
above, and exploit Theorem 3.
Theorem 4 Let M = (C1, . . . , Cn) be a (finite) reducible
MCS where each logicLi has kernel reasoning in∆p

k. and
wherered(kbi, Si) is computable, given a kernel ofSi ∈
ACC(kbi ∪ Hi), in polynomial time with aΣp

k−1 oracle.
Then (i) deciding whetherM has a grounded equilibrium
and brave reasoning fromM are inΣp

k+1, and cautious rea-
soning is in co-Σp

k (=Πp
k).

Well-founded semantics In the setting of Theorem 4,
computingγM (S) = GE(MS) is also feasible in polynomial
time with aΣp

k−1 oracle, and so is computing(γM (S))2 =

γM (γM (S)). Furthermore, the sequenceS?, (γM (S?))2,
(γM (S?))4, . . . , can increase only polynomially often, since
it reaches a fixpoint if no further bridge rule is applicable
andM is finite. We thus get the following result:

Theorem 5 LetM = (C1, . . . , Cn) be a (finite) normal re-
ducible MCS where all logicsLi have kernel reasoning in
∆p

k, and wherered(kbi, Si) is computable, given a kernel
for Si (w.r.t. an arbitrarykb) resp.S?

i , in polynomial time
with a Σp

k−1 oracle. Then, deciding whetherp is in a belief
set inWFS(M) is in ∆p

k as well.
In particular, if all component logics inM admit poly-

nomial kernel reasoning (like, e.g., NLPs), then reasoning
under WFS is polynomial.

We finally remark that if kernel reasoning and computing
red(kbi, Si) is feasible in polynomial space, then all results
hold with PSPACE in place of∆p

k resp.Σp
k.

Related Work
Our framework is related toHEX programs(Eiter et al.
2005), which generalize non-monotonic LPs by higher-order



predicates and, more importantly here, byexternal atomsof
the form#g[~Y ]( ~X) in rule bodies, where~Y and ~X are re-
spective lists of input and output terms. Intuitively, such
an atom provides a way for deciding the truth value of an
output tuple~X depending on the extension of named input
predicates~Y using an external functiong. It subsumes the
generalized quantifier atoms proposed in (Eiteret al. 2000).

For example, #reach[edge, start ](X) may single out in
the graph specified by a binary predicateedge all nodes
X reachable from a nodea given by start(a); then,
#reach[edge, start ](b) is true iff b is reachable froma.

The semantics of a propositional HEX programP is de-
fined in terms of answer sets, which are the interpretations
I (viewing #g[~y](~x) as propositional atom, where~y, ~x are
lists of propositional atoms) that are minimal models of the
reductfP I , which contains all rules fromP whose body
is true in I; here,#g[~y](~x) is true in I iff an associated
Boolean functionf#g, which depends onI and ~y, ~x, re-
turns 1; see (Eiteret al. 2005) for details.

HEX programs don’t simply subsume our MCSs. It might
seem that each(i : p) can be emulated by an external atom
#member i[ ](ap), where the atomap encodesp, which tells
whetherp belongs to an acceptable belief set ofkbi ∪ Hi,
whereHi are the heads of the applicable bridge rules inbri.
However, there are subtle yet salient differences:

1. A naive usage of such “brave reasoning” atoms is
flawed, since occurring atoms#member i[ ](ap) and
#member i[ ](aq) may use different belief setsSi of kbj∪
Hj to witnessp ∈ Si resp.q ∈ Si. However, in an equi-
librium, all such atoms have to usethe sameSi.

2. Answer sets of HEX Programs are minimal (w.r.t. set in-
clusion), while equilibria are not necessarily minimal.

However, if eachS ∈ACC(kbj ∪Hj) has a kernel
S ∩Kj for some (finite) setKj (which applies to many
standard propositional NMR formalisms), then we can over-
come the first problem by “guessing” and verifying the ker-
nel of the right belief set ofkbi ∪ Hi in the HEX-program.
Item 2 can be handled by blocking minimization.

In the extended paper, we describe how to encode such an
MCS M into a HEX programPM such that its answer sets
correspond to the equilibria ofM . We further show how
the grounded equilibria of a definite such MCS and a re-
ducible such MCS can be encoded elegantly into HEX pro-
gramsP d

M respectivelyP r
M . In particular, the encodings can

be applied for many standard NMR formalisms. In this way,
an implementation of an MCS with equilibria semantics can
be designed, by providing suitable external functions imple-
mented on top of existing reasoners for NMR formalisms.

Conclusion
Motivated by semantic web applications, there is increasing
interest in combining ontologies based on description logics
with nonmonotonic formalisms, cf. (Motik & Rosati 2007;
Bonatti, Lutz, & Wolter 2006; Eiteret al. 2004). Sometimes
this is achieved by embedding the combined formalisms into
a single, more general formalism, e.g. MKNF in the case of
(Motik & Rosati 2007).

Rather than focusing on two specific formalisms, our ap-
proach aims at providing a general framework for arbitrary
logics. We leave entirely open which logics to use (and how
many, for that matter), and we leave the logics “untouched”:
there is no unifying formalism to which we translate.

The multi-context systems developed in this paper sub-
stantially generalize earlier systems. They do not suffer from
the limitations of both monotonic and homogeneous sys-
tems. We believe they can provide a useful, general frame-
work for integrating reasoning formalisms of various kinds,
both monotonic and nonmonotonic.
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