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ABSTRACT

Network equilibrium models arise in applied contexts as varied

as urban transportation, energy distribution, spatially separated

economic markets, electrical networks, and water resource planning.

In this paper, we propose and study an equilibrium model for one of

these applications, namely for predicting traffic flow on a congested

transportation network. The model is quite similar to those that

arise in most contexts of network equilibria, though, and the methods

that we use are applicable in these other settings as well.

Our transportation model includes such features as (i) multiple

modes of transit, (ii) link interactions and their effect on congestion,

(iii) limited choices (or perceptions) of paths for flow between any

origin-destination pair, (iv) generalized cost or disutility for

travel, and (v) demand relationships for travel between origin-destina-

tion pairs that depend upon the travel time (cost) between all other

origin-destination pairs. Using Brouwer's fixed point theorem, we

establish existence of an equilibrium solution to the model. By imposing

monotonicity conditions on the delay and demand functions, we also

show that travel times (costs) are unique and, in certain instances,

that link flows are unique.



EQUILIBRIA ON A CONGESTED TRANSPORTATION NETWORK

1. Introduction

Network analysis draws its origins from several sources. Pro-

minent among these is the study of passive electrical networks, par-

ticularly the prediction of a network's utilization when it is loaded

with prescribed voltages and impedances. With given voltages applied

to an electrical network, what is the resulting current flow? More

recently, similar types of predictive questions are being posed in

social and economic contexts. In transportation, travelers' demands

for transportation services function, like voltages, as forces that

generate network flow which, in this instance, are trips to be

made between origin and destination points in the network. In this

setting, travel time, travel cost, and other disutility measures re-

place electrical resistance as the impedance to flow. In economics,

price differentials between spatially separated markets act like

voltages as forces for generating commodity flow; transportation costs

between the markets act as resistance to commodity movement. In each

of these applications, the equilibration of forces and impedances has

served as a model for predicting flow on the network. The nature of

the specific equilibrium model depends upon the behavioral assumption,

such as Ohm's Law, profit maximization, or cost minimization, that

relate the forces, impedances, and network flow.

The advent of robust theories for constrained optimization has pre-

cipitated an attractive and common approach for studying network equilibrium

problems, namely to view the equilibrium model as the Lagrange multiplier

conditions or, more generally, the Karush-Kuhn-Tucker optimality conditions

of well-conceived auxiliary optimization problems. For example, minimize



-2-

power loss instead of finding an equilibrium on an electrical network

directly. Making this association permits the powerful and flexible

solution techniques of constrained optimization to be used to compute

an equilibrium and, moreover, permits optimization theory to serve as

the methodology base to study questions such as existence and unique-

ness of equilibrium solutions. On the other hand, the equivalent opti-

mization approach limits the richness of equilibrium modeling by res-

tricting the problem assumptions to those for which the equilibrium

conditions can be interpreted as optimality conditions for an asso-

ciated optimization problem.

In this paper, we study a class of network equilibrium problems

with no known equivalent optimization problem. Although the approach

that we take might apply to a variety of different network equili-

brium applications, we restrict our discussion to transportation

planning. In the next section, we propose a general model for network

equilibrium of an urban transportation system. The model includes such

features as (i) multiple (and interacting) modes of transit, (ii) link

interactions and their effect on congestion, (iii) limited choices

(or perceptions) of paths for flow between any origin-destination pair,

(iv) generalized cost or disutility for travel on any path that depends

upon the flow pattern on the entire transportation network, and (v) de-

mand relationships for travel between origin-destination pairs that

depend upon the travel time (cost) between aZZll other origin-destination

pairs. With the exception of (iii), any one of these modeling features

invalidates the assumptions that are typically made when showing that

the transportation equilibrium problem can be converted to an equiva-

lent optimization model.

After stating this model and discussing some of its applications
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and specializations, we show that only very mild restrictions need be

imposed upon the problem data, restrictions that we would expect

to be met almost always in practice, to insure that an equilibrium

solution exists. We also establish conditions that will insure that

an equilibrium solution is unique. To establish these results, we

formulate the equilibrium model as an equivalent nonlinear comple-

mentarity problem. Then we use Brouwer's fixed-point theorem to es-

tablish existence and nonlinear complementarity results to establish

uniqueness.

2. Background

The genesis of transportation equilibrium modeling was a beha-

vioral assumption, known as Wardrop's user traffic equilibrium law, first

proposed in 1952 by the traffic engineer J. G. Wardrop [52], namely

"At equilibrium, for each origin-destination pair the travel

times on all the routes actually used are equal, and less than

the travel times on all non-used routes."

This principle has spawned a great deal of research by transportation

engineers, economists, and operations researchers aimed at enhancing

the scope and realism of Wardrop's model, at developing algorithms to

compute an equilibrium, and at applying the equilibrium model in prac-

tice to predict traffic flow patterns. Modeling efforts and methodo-

logical advancements have evolved to the point that one version of the

equilibrium model now forms part of the Urban Mass Transit Authority's

transportation planning system [51].

Since 1952, a large number of algorithms have been developed for

the traffic assignment problem. Most of the earlier techniques were
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heuristics and usually did not consider congestion effects or any

formal concept of an equilibrium ([39], [40], [53], [19]). The goal

of these approaches was to assign flow between different paths so

that the paths have almost equal travel time. The next generation

of heuristics, as embodied by the "capacity restrained" technique

([12], [28], [29], [48]), attempted to account for capacity of the sys-

tem. Later techniques ([301, [38], [39]) loaded the system incre-

mentally, attempting to approximate an equilibrium solution.

The mathematical programming approach to traffic equilibrium

originated in 1956 when Beckman, McGuire and Winsten [7] formulated

a version of the equilibrium problem as the optimality conditions of

an equivalent optimization problem. They assumed:

1) a single mode of transit (private vehicle traffic

has been the primary application since then);

2) that the demand function Di(ui) between every

origin-destination pair i depends only upon the

impedance or shortest travel time ui between

that origin-destination pair;

3) that the delay functions for the links are separable;

that is, the delay ta(va) for each link "a" depends

only upon the total volume of traffic flow v on

that link.

Since then several researchers have proposed algorithms for sol-

ving the equivalent optimization problem (Bruynooghe, Gibert and

Sakarovitch [11], Bertsekas [8], Bertsekas and Gafni [9], Dafermos [13-16],

1Samuelson had earlier proposed a similar transformation in the context

of spatially separated economics markets.
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Dembo and Klincewicz [18], Leventhal, Nemhauser and Trotter [36], Leblanc

[34,35], Nguyen [41-45], Golden [26], and Florian and Nguyen [23-25]).

There are a number of ways to enrich the modeling assumptions (1)-

(3). Modeling multi-modal (for example, private vehicle and a public

transit mode) and multi-class (for example, high vs. low income)

traffic equilibrium would be extensions with great practical relevance.

Incorporating demand functions for an O-D pair that depend upon impe-

dance between other O-D pairs would permit destination choice to be

modeled more realistically than in models based upon (1) - (3). For

example, the distribution of trips from a residential district to two

shopping centers depends, in part, upon the travel time to both centers.

Residential home selection might be modeled as an origin choice version

of this extension. Another extension would be to let delay on a link

depend on volume flow on other links. This latter extension permits

modeling of traffic equilibrium with two-way traffic in one link, traffic

equilibrium with right and left turn penalties, and the like.

Some attempts have been made to generalize the equivalent opti-

mization approach to traffic equilibrium to incorporate these modeling

extensions. Dafermos [13, 151 has considered multiple classes of users

and Florian [22] and Abdulaal and Leblanc [4] have considered the multi-

modal problem. In addition, the equivalent optimization problem has

been used to prove existence and uniqueness of an equilibrium for cer-

tain specializations of the general model (Dafermos [13, 15], Florian

and Nguyen [23] and Steenbrink [49]). Nevertheless, the optimization

based approach is limited since the assumptions required to insure an

equivalent convex optimization problem are generally too severe to be applicable
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in practice for modeling the type of extensions to assumptions (1)-

(3) suggested above. The approach adopted in this paper originates

with Aashtiani [1] who formulated an extended equilibrium model and

studied existence of a solution by viewing the model as a nonlinear

complementarity problem. In [2] he elaborates on this approach and

proposes a computational scheme for solving for an extended equilibrium.

Independently, Kuhn [27] devised a fixed point method, equipped with a

special pivoting scheme, to solve equilibrium problems with fixed de-

mands and with separable link delay functions. Asmuth [6] has proposed

an additive model similar to the one discussed in this paper that in-

cludes point-to-set delay functions and demand functions. He has also

studied existence and uniqueness, existence being a consequence of a

constructive fixed point algorithm. The proof of existence given in

this paper, which is adopted from Aashtiani and Magnanti [3], is shorter

than these earlier proofs and relies on the classical fixed point

theorem of Brouwer.

In related developments, Dafermos [14, 15], by assuming differen-

tiability and strong monotonicity of the link delay function, has

recently used the theory of variational equalities to establish the

existence of a traffic equilibrium and to devise an algorithm for

computing an equilibrium. Ahn [5] has used similiar methods to study

equilibrium for spatially separated markets arising in energy planning.

Recently, Braess and Koch [10] and Smith [47] have used a proof dif-

ferent than that given in this paper, but also based upon Brouwer's

fixed point theorem, to establish existence of an equilibrium for a

special version of the model that we study here; they assume that the

demand is fixed independent of the network congestion and that the

cost on any path is the sum of costs on arcs in that path. Braess and

Koch also impose a monotonicity assumption on the arc costs.



-7-

3. Traffic Equilibrium Model

The equilibrium model is defined on a transportation network

[N,A] with nodes N, directed arcs A, and with a given set I of

origin-destination (O-D) node pairs. Nodes represent centroids of popu-

lation, business districts, street intersections and the like, and

arcs model streets and arteries or might be introduced to model

connections (and wait time) between legs of a trip, between modes,

or between streets at an intersection. The model is formulated as:

(T (h) - ui)h = 0 for all p P and i I (3.1a)

T (h) - u. > 0 for all p P and i I (3.lb)

(3.1) h - D.(u) = 0 for all i I (3.1c)

p1

h > 0 (3.1d)

u > 0. (3.le)

In this formulation

I is the set of O-D pairs,

Pi is the set of "available" paths for flow for O-D pair i

(which might, but need not, be all paths joining the O-D

pair),

h is the flow on path p,

h is the vector of {h } with dimension n = I jPil equal

to the total number of O-D pairs and path combinations,

Ui is an accessibility variable, shortest travel time (or

generalized cost) for O-D pair i,

u is the vector of {u.} with dimension n2 = I ,



-8-

n2 1
Di(u) is the demand function for O-D pair i, Di : R+ + R+

T (h) is the delay time, or general disutility, function

for path p,

nl 1
T(h) : R + R

+ +

We also let P = u{Pi : i I} denote the set of all "available" paths

in the network and assume that the network is strongly connected, i.e.,

for any O-D pair iI there is at least one path joining the origin to the

destination; i.e., IPil > 1.

The first two equations in (3.1) model Wardrop's traffic equili-

brium law requiring that for any O-D pair i, the travel time (genera-

lized travel time) for all paths, p Pi, with positive flow h > 0,

is the same and equal to ui, which is less than or equal to the travel

time for any path with zero flow. Equation (3.1c) requires that the

total flow among different paths between any O-D pair i equal the total

demand, Di(u), which in turn depends upon the congestion in the network

through the shortest path variable u. Conditions (3.1d) and (3.1e)

state that both flow on paths and minimum travel times should be

nonnegative.

An important special case of the equilibrium problem (3.1) is an

additive model in which

(3.2) T (h) = ap ta(h) for all p Pi and i I
p ap a a£A

where

if link a is in path p

ap

otherwise
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and

t (h) is the delay function for arc a and O-D pair i,
a

i n1 1
t: R -R
a + +

That is, the delay time on path p is the sum of the delays of the arcs

in that path. More compactly, T (h) = A t (h) where A = (6 ) is the
p ap

arc-path incidence matrix for the network and t i(h) = (ti(h)) is the
a

vector of arc delay functions for O-D pair i.

Several features of the equilibrium model are worth noting. In a

large transportation network, users generally will not perceive, or

choose from, all possible paths joining every origin-destination pair.

If we identify the paths Pi available for flow between O-D pair i as

the available set of routes from which the user chooses, the equilibrium

conditions model this type of limited route choice. 2 In addition, since

the path disutility functions T (h) are arbitrary and depend upon the

full vector h of path flows, the model can account for path interactions,

as at intersections, and the generalized costs T (h) can, in principle,

incorporate a variety of attributes that are relevant to route selection

such as travel time, travel costs, and route attractiveness. To the

best of our knowledge, no previous existence proof of traffic equili-

brium incorporates both of these modeling features.

The equilibrium model (2.1) is more general than first appearance

might indicate. A judicious choice of network structure permits the

formulation to model a wide range of equilibrium applications including

multi-modal transit, multiple classes of users, and destination or

origin choice. To model multi-modal situations, we might conceptualize

2Several authors (e.g. Asmuth [6], Dafermos [14, 16], and Smith [47])

formulate the traffic equilibrium problem in terms of arc flows. The

path flow formulation with limited path choice appears to be more

general. If Ai is the union of the arcs continued on the paths in
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an extended network with a distinct component for each mode of transit.

(Dafermos [13] and Sheffi [46] adopt this approach as well.) The com-

ponent networks might be identical copies of the underlying physical

transportation network, as when autos and buses share a common street

network. Since the delay T (h) for paths on the automobile component

network depend upon the full vector h of path flows, the delay function

can account for congestion added by buses sharing common links. Note,

though, that the networks for each mode need not be the same. Con-

sequently, bus routes might be fixed and subway links might be dis-

tinct from those of other modes.

The model also provides flexibility in modeling demand. Suppose,

for instance, that O-D pairs i and j in the extended network intro-

duced above correspond to the same physical origin and destination

points, but different modes of transit. If we introduce a source node

s and terminal node t connected, respectively, to the origin and desti-

nation points of O-D pairs i and j, then a demand function Dst(u) would

model total trips between the origin and destination points as a function

of network congestion. The equilibrium model would distribute these

trips between the two modes to equalize the disutility T (h) on all

flow carrying paths by both modes. As an alternative, the modeler could

prescribe the nature of modal split by introducing demand functions such

as the well-known logit model:

8u i + A i

D.(u) =d e Dj(u) = d - D (u)
O8ui + A i 6u.+ A. j 
e + e 3

which would distribute the total number of trips d between the two

in Pi' then the arc formulation implies that any path with arcs in Ai and

joining O-D pair i belongs to Pi. In formulation (3.1), Pi is an arbitrary

collection of paths joining O-D pair i, thereby permitting more flexibility

in modeling user's perception of "available" paths.
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modes i and j depending upon delay times u. and u. by the two modes

and the given negative constant 6 and nonnegative constants Ai and A.

As Dial [20] has noted, a generalized version of the logit model

permits destination choice and modal split to be made simultaneously.

If i = pqm denotes an origin destination pair p-q distinguished

by transit mode m, the model is of the form

8u
r e pqm

D (u) = d 
pqm p 8u pqm

El i rq,e

where d is the total number of trips generated at origin p to be sent
P

to the destinations q', and rq, is an index of attraction for desti-

nation q'.

4. Equivalent Non-linear Complementarity Problem

Let F(x) = (Fl(x), . . ., F (x)) be a vector valued function from

an n-dimensional space Rn into itself. The well-known nonlinear comple-

mentarity problem of mathematical programming is to find a vector x

that satisfies the following system:

x F(x) = 0

(4.1) F(x) 0

(x > 0 .

This problem has wide ranging applications. Karamardian [31, 32]

illustrates several examples. For instance, the primal-dual optimality

conditions of linear and quadratic programming and the Kuhn-Tucker con-

ditions for certain other nonlinear programming problems can be cast

in this form.
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In this section we show that the traffic equilibrium problem (3.1)

can be formulated as a complementarity problem. By definition,

equations (3.1a), (3.lb), and (3.1d) are complementary in nature. To

show that the remaining equations can be expressed in a complementarity

form requires some mild assumptions that we would expect to be met

always in practice.

First some simplification in the formulation helps to clarify

our discussion. Let x = (h,u) R where n = n1 + n2 and further-

more, let

f (x) = T (h) - ui for all p Pi and i I

and

gi(x) = i hp Di(u) for all i I

Also, let

F(x) = (f (x) for all p Pi and i I, gi(x) for all i e I) e Rn

Then F is a vector-valued function from an n-dimensional space Rn into

itself. Now consider the following nonlinear complementarity system:

f (x) h = 0 for all p P and i I
P P 1

fp(x) 2 0 for all p Pi and i I

(4.2) gi(x) u = 0 for all i I

gi(X) 0 for all i I

x 0

which is a specialization of (4.1).

Since any solution x = (h,u) to the traffic equilibrium problem

satisfies gi(x) = 0 for all i I, the solution x solves the nonlinear
1
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complementarity problem (4.2) as well, independent of the nature of the

delay functions T (h) and the demand functions D (u). The following
p 1

result establishes a partial converse.

PROPOSITION 4.1: Suppose, for aZZll p P, that T : R + i is a positive
p +

2 1is a on-
function. Also, suppose, for aZZll i I, that D i : R is a non-

negative function. Then the traffic equiZibrium system (3.1) is equi-

vaZent to the nonlinear compZementarity system (4.2).

PROOF: In light of our comment preceding the proposition, it is

sufficient to show that any solution to (4.2) is a solution to (3.1).

Suppose to the contrary that there is an x = (h,u) satisfying (4.2),

but that gi(x) = h - D.(u) > 0 for some i I. Then gi(x)u = 0

implies that u = 0. Also, since Di is non-negative h > Di(u) > 0

which implies that h > 0 for some p P. But, for this particular p,

equation f (x)h = 0 implies that:

f (x) = T (h) - u = 0
p p 1

or

T (h) = u .
p 1

But since u = 0, T (h) = 0 which contradicts the assumption T (h) > 0. D

When the traffic equilibrium problem is additive T (h) = 6 t (h),
P a£A ap

T (h) is positive whenever the arc delay functions are positive, or

more generally, whenever the arc delay functions are nonnegative and at

least one is positive on an arc a in path p.
3

3Notice that we have suppressed explicit dependence of the arc delay

functions t(h) on the origin-destination pair i since the generality

of the equilibrium problem (3.1) permits us, at least conceptually, to

duplicate the network, as indicated in the previous section, so that

each arc carries the flow for a single O-D pair.
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n -

PROPOSITION 4.2: Suppose, for all a A, that ta : R+ R is a

n2 1
positive function. Also, suppose, for aZZll i I, that Di : R+ R

is a nonnegative function. Then the additive traffic equilibriwm

system (3.1) and (3.2) is equivalent to the nonlinear complementarity

system (4.2).

Neither of the previous two propositions is valid if either the

assumption that each demand function Di. (u) is nonnegative or the as-

sumption that each delay function T (h) is positive is eliminated.
P

See Aashtiani [2] for examples.

5. Existence

Rather extensive theory (see, for example, Karamardian [31] and

Kojima [33]) provides necessary conditions that assure the existence

of a solution to the nonlinear complementarity problem. Unfortunately,

most of the conditions are too strong to be applied directly to the

traffic equilibrium problem. To illustrate this situation and at the

same time introduce concepts that will be useful in section 6

when we discuss uniqueness of solutions, we introduce a prototype of

this theory by considering results due to Karamardian. First, we

require some definitions.

DEFINITION 5.1: Let F : D - R , D c R . The function F is monotone

on D if, for every pair x D and y D,

(x - y)(F(x) - F(y)) > 0 .
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F is strictZly monotone on D if, for every pair x D, y D with x y,

(x - y) (F(x) - F(y)) > 0

F is said to be strongly monotone on D if there is a scalar k > 0

such that, for every pair x D, y D,

(x - y)(F(x) - F(y)) > kx - y12

where 1 I denotes the usual Euclidean norm.

THEOREM 5.1: (Karamardian [31]) If F : R+ + R is continuous and

strongly monotone on R+, then the nonlinear compZementarity system

(4.1) has a unique soZution.

THEOREM 5.2: (Karamardian [31]) If F : R is strictly monotone

on then the nonlinear compZementarity system (4.1) has at most

one solution.

Notice that for traffic equilibrium problems, these theorems

require that F(x) = ( T (h) - u. for all p P. and i I,

aEA

h - D. (u) for all i E I) and necessarily T (h) be strictly or

pcpi p 1 p

strongly monotone in terms of path flows. In most instances, this

condition is not applicable; usually, the delay functions T depend

upon arc flows each of which depends upon the sum of the flows on dif-

ferent paths. In these situations, whenever x = (h,u) and y = (h',u)

correspond to two path flows h and h' that give rise to identical arc

flows, T (h) = T (h') and I h = h' for all i I. Consequently,

P P PEPi pePi 

F(x) = F(y) and (x - y) F(x) - F(y)] = 0 so that neither strict nor

strong monotonicity applies.
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Generally, however, for transportation applications the delay

functions T (h) are monotone, and frequently even strictly monotone,

in terms of link volwnes. Later we use this property to show the

uniqueness of the solution in terms of link flows. In Theorem 5.3 to

follow, though, we show that no monotonicity assumption is required

for the existence of the solution.

To establish this result we use a well-known [50] transformation

that permits us to convert the nonlinear complementarity problem and,

in particular, the nonlinear complementarity version (4.2) of the

traffic equilibrium problem into a Brouwer fixed point problem. Let

us define Rn R by defining its component functions mi for

i = 1,2,. . .,n as:

i(x) = [x.
-

Fi(x) ]

+
where [y] denotes max {0O,y}. Then x is a fixed point to 9, i.e.,

x = (x) if, and only if, x solves the nonlinear complementarity problem

x > 0, F(x) 0, and xF(x) = 0.

This equivalence shows that we can, in principle, study any non-

linear complementarity problem by invoking fixed point theory. Note

that we cannot use Brouwer's fixed point theorem directly, though, be-

cause the mapping (x) defined on R need not map any compact set into

itself. Consequently, we will restrict the domain of ~ to some large

cube C. To apply the theorem, we must be assured that p maps C into

itself, which we accomplish by redefining (x) for any x C if it lies

outside of C by projecting (x) onto C. By Brouwer's fixed point theorem

the modified map ' has a fixed point. We must show that it has no
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false fixed points, though; that is, no point x contained on the boun-

dary of C with the property that (x) C but the projection '(x) of

¢(x) on C satisfies '(x) = x . The essence of the following equili-

brium proof is that ' as derived from the complementarity version (4.2)

of the traffic equilibrium problem admits no false fixed points.

THEOREM 5.3: Suppose (N,A) is a strongly connected network. Suppose

nl 1
that T : R - R is a non-negative continuous function for all p P.

P +

AZso suppose that for all i I, D. : R R is a continuous function

that is bounded from above. Then the nonlinear complementarity system

(4.2) has a solution.

Proof: Let F. (h) = h denote the flow between O-D pair i and
1 peP

let e and e denote vectors of ones with P and II components. We must

show that the following complementarity problem has a solution:

h [T (h) - u.] = 0
P P 1

u [F(h) - D (u)] = 0

T (h) - ui 0 for all i I and all p P

F.(h) - D.(u) 0

Ui > 0, h > 0

Let K1 > 0 satisfy K1 > max max D. (u) and

i u0

let K2 > K1 satisfy K2 > max max T (h)

pe 0-<h<Kle 

K1 exists because of the hypothesis that each Di (u) is bounded and K2

exists because each T (h) is continuous.
D

Define the continuous mapping of the cube {0<h<K e, 0<u<K e} into
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itself by

p (h,u) = min{Kl,[h + u. - T (h)] } for all p P. and all i I,
P 1 p 1 p 

and

i(h,u) = min{K 2 [u. + D(u) - F(h)] } for all i I
2' 1 1 1

By Brouwer's fixed point theorem this mapping has a fixed point (h,u);

that is, h = ~p(h,u) and u = .i(h,u) for all i I and all p P. We

show that this fixed point solves the complementarity problem by showing

that for all p P and i I

h = [h + ui . T(h)

First note that u < K2 for all i I, for if some ui = K2 then

for any p P h + u - T (h) > h by definition of K2-which implies

from h = P (h,u) that h = K 1 . But then the definition of K1 implies
p P

A ^ ^ A A A

that D (u) < F (h) so that [ui + D.(u) - F(h)] < u.; therefore u. must

equal 0 in order that ui = Oi(h,u),contradicting ui = K2

Next note that if h = K1 for some i I and p Pi, then

Di (u) < Fi. (h) by definition of K1 which implies as above that ui = 0.

By nonnegativity of T , [h + u. - T (h)] h with a strict inequality

if T (h) > 0 . Consequently, in order that h = K1 > 0 equal (h,u),

T (h) must equal 0 and thus h = [h + u. - T (h)]
p p p 1 p

We have now established the expressions (*) which imply by con-

sidering the cases h > 0 or h = 0 and u > 0 or ui = 0 that (h,u)
p problem (4.2).1 1

solves the complementarity problem (4.2). .]
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As a consequence of Theorem 5.3 and Proposition 4.1 we have the

following result.

THEOREM 5.4: (Existence) Suppose (N,A) is a strongly connected network.

n1 1
Suppose that T : R+ * R is a positive continuous function for aZZll

n2 1
p P. AZso suppose that for aZZll i I, D i : R + R is a nonnegativeS +

continuous function that is bounded from above. Then the traffic-

equilibrium system (3.1) has a solution.

An important version of this theorem is its specialization for addi-

tive traffic equilibrium.

THEOREM 5.5: (Existence) Suppose (N,A) is a strongly connected network.

nl 1
Suppose that ta : R+ -Rf is a positive continuous function for aZZll

n2 I
a A. AZso suppose that for aZZ i I, D : R2 -+ R+ is a nonnegative

continuous function that is bounded from above. Then the additive traf-

fic equilibrium system (3.1) and (3.2) has a soZution.

PROOF: Since every ta is positive and continuous, so is T (h) = S t (h)
p aA apa

and, consequently, Theorem 5.4 applies. 0

Asmuth [6] has suggested what appears to be a stronger version of

Theorem 5.5 by not requiring that the demand functions D. (u) be bounded.
1

To see the relevance of this result, suppose that D i(u) denotes the

number of trips to be made between a particular origin-destination pair

by automobiles. One possibility for modeling this situation is a

Cobb-Douglas product form demand model given by:

(u.)
D.(u) = A

(u)

where A is a given constant and 2 0 is a "direct elasticity" and
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B > 0 is a "cross elasticity". In this model, u. denot-s the travel

time between the O-D pair by auto and u denotes the travel time by

an alternate mode such as bus. Note that D.(u) is not bounded unless

we require u > s for some, possibly small, number e > 0.

The next result shows that Theorem 5.4 can be modified easily to

include settings of this nature.

THEOREM 5.6: (Existence) Suppose (N,A) is a strongly connected network.

Suppose that for aZZ p P, T : R+n RI is a continuous function and

n p +

for all h R+ that T (h) > for some e > 0. AZso suppose that for

n2 1
all i c I, D : R+ Ris a nonnegative continuous function that is

bounded from above on the set u R u. e for aZ i}. Then the

traffic equilibrium system (3.1) has a solution.

PROOF: Let be a vector of ones with III components and define

T'(h) = T (h) - > 0
P P

and

D!(u) = D(u + e)
1 1

These functions satisfy the hypothesis of Theorem 5.4 and so they are

guaranteed to have a complementarity (or equilibrium) solution (h',u').

But then (h ,u) = (h ' + e) is a complementarity (equilibrium) solution

for T and D..
p 1

6. Uniqueness

In situations in which the traffic equilibrium problem can be for-

mulated as an equivalent convex optimization problem, the Kuhn-Tucker

vector associated with the flow constraints h = D (u) can be iden-

tified with the vector u of shortest travel times (generalized costs).
tified with the vector u of shortest travel times (generalized costs)
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Since the gradients of these constraints as i varies are linearly

independent, the theory of convex optimization implies that in equili-

brium the shortest travel times are unique even if the flow vector h

is not unique. This situation reflects practice as well. Generally,

flow patterns in urban transportation networks vary, sometimes con-

siderably, from day to day though travel times remain essentially

constant.

In this section, we show that these observations apply to the

additive version (3.1) and (3.2) of the general traffic equilibrium

model as well. We first recall conditions due to Asmuth [6] that in-

sure that link flows and shortest travel times are both unique. We

then show that imposing weaker conditions will still imply that shortest

travel times are unique.

To facilitate our discussion in this section, we represent the

traffic equilibrium problem in a matrix form. Let v denote the total

flow on arc a, that is, v = E 6 · h , and let v with dimension
a isl psP. ap p

AI denote the vector of arc flows. Since we are assuming an additive

model, T (h) = At(h) = 6 t (h) for every path p P. In fact, we
P a£A ap a

will assume that the arc delay term t (h) can be expressed as a function

of link flows v and write t (v).
a

Also, let t(v) be the vector of arc delay functions and D(u)

be the vector of demand functions. Recall that A = (6 ) is the arc-
ap

path incidence matrix with dimension AI x nl. Let r = (Y pi) be the

path O-D pair incidence matrix with dimension n1 x n2, i.e., ypi = 1

when path p joins O-D pair i and ypi = 0 otherwise.

Then the traffic-equilibrium problem can be written as:
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(AT t(Ah) - u) · h = 0

AT(6.1) t(Ah) - r-u > 0
(6.1)

rT.h - D(u) = 0

h 0, u >0. 

T n m
Now let x = (h,u) and let F(x): R+ - R be defined as in section 4

as F(x) = (A t (Ah) - u,r Th - D(u)). Then (4.1) is the nonlinear

complementarity version (4.2) of (6.1).

Whenever F(x) is strictly monotone, the solution to the general

nonlinear complementarity problem (4.1) is unique (see Theorem 5.2)

Asmuth [6] has extended this result to establish the following uniqueness

result, which we state without proof.

THEOREM 6.1: (Uniqueness) For a strongly connected network (N,A)

supposed that t, the vector of the volume deZay functions, and -D,

the vector of the negative of the demand functions, are strictly mono-

tone. Then the arc volumes v and the accessibility vector u for the

additive traffic equilibrium problem (3.Z) and (3.2) are unique, and

the set of equilibrium path flows is convex.

Observe the distinction between the hypothesis of this theorem

and the assumption that F(x) is strictly monotone. The theorem requires

that the vector t of volume delay functions be strictly monotone in

terms of arc volumes v whereas the latter assumption requires strict

monotonocity in terms of path flows h. As we have noted earlier, the path

flows need not be unique since two collections of path flows might corres-

pond to the same arc flows.
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Note that to insure the uniqueness of (v,u), Theorem 6.1 requires

t that both of the functions t and -D are strictly monotone. Our next

result shows that the strict monotonicity of -D can be relaxed and,

moreover, that uniqueness of u is maintained if either t or -D is

strictly monotone.

THEOREM 6.2: For a complete network (,A) suppose that t and -D in the

additive traffic equilibrium problems (3.1) and (3.2) are both monotone

functions. If either of t or -D is strictly monotone, then u is

unique. Also, if t is strictly monotone, then (v,u) is unique.

1 11 2 22 1 2
PROOF: Suppose that x = (h ,u ) and x = (h ,u ), x % x , are two

1 2 (x 1)

solutions to the equilibrium problem. Nonnegativity of x , x , F(x ,

and F(x 
2 ) and the complementarity conditions x F(x

1 ) = 0 and

x F(x2 ) = 0 imply that

(x1 - x2 ) [F(x 1) - F(x 
2 )] 0

or, substituting for F and (h,u) for x

(h1 h2)T(ATt (Ah) - ru1 _ ATt (h2 ) + Fu2 )

+ (u1 u)T(rTh - D(u) - Th - D(u )) < 0

or,

1 2T 1 2 1 2T)) < 2
(6.2) (Ah Ah 2)T(t(Ahl) - t(Ah2)) + (u - u )(-D(u + D(u )) < 0

But both t and -D are monotone functions, thus each term in (6.2) is zero;

that is,
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(6.3) (Ah - Ah2 (t(Ah
1)
- t(Ah2)) = 0

and

(6.4) - (u - u )(D(ul)- D(u
2 )

) = 0

1 2
If -D is strictly monotone, then equation (6.4) implies that u = u ,

or u is unique.

Now, suppose that t is strictly monotone. Then (6.3) implies that

1 1 2 2
v = Ah = Ah = v , or that the arc volume vector v is unique. But

uniqueness of the arc volume vector implies that the travel time,

t (v), on each arc is unique, which obviously implies that u is

unique. U

Whenever t is a function only of the total volume in the arc, as
a

when all the traffic from different origins have the same effect on the

travel time of each arc, and there is no interaction between opposing

lanes of two-way traffic or right or left turn penalties, then the

strictly monotone condition on t can be relaxed for the uniqueness

results.

COROLLARY 6.1: (Special case) For a strongly connected network (N,A)

suppose that each ta of the additive traffic equilibrium problems (3.1)

and (3.2) is a function onZy of va, and that it is monotone. AZso,

suppose that -D is monotone. Then u is unique.

PROOF: By definition t, the vector of the volume delay function, is

monotone because each of its components is monotone. Thus equation

(6.3) in the proof of Theorem 6.2 is valid. But since each component

of t is monotone, (6.3) can be separated into a single term for each

arc:
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(v
1

v ) (v 
1
) - t (v2)) = 0

a a a a a a

This equation implies that t (v ) = t (v ), or that the travel time on
aa a a

each arc is unique and, consequently, that u, the minimum path travel

time, is unique.
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