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Market-driven agents (MDAs) are negotiation agents that make adjustable amounts of concession by 
considering factors such as competition, deadlines, and trading options. While previous work demonstrates the 
properties of MDAs by experiments, this paper provides mathematical analyses to show that (1) for a given 
market situation, an MDA makes minimally sufficient concession, and (2) the strategies adopted by MDAs are in 
equilibrium. The results show that MDAs are stable (stability is an essential evaluation criterion for negotiation 
agents) and they avoid making excessive or inadequate concession in a market situation.  
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1. INTRODUCTION  

Although there are many extant negotiation agents designed for e-commerce ([1,2], 
just to name a few because of space limitation), strategies adopted by these agents do not 
take the dynamics of the market into consideration. This paper presents a market-driven 
model [3] for designing negotiation agents (section 2), and proves that for a given market 
situation, a market-driven agent (MDA) does not over-compromise or under-compromise 
(section 3) and the strategies adopted by MDAs are stable (section 4). In dynamic markets 
where products/services become available, and traders enter and leave a market, the 
condition for deliberation changes as new opportunities and threats are constantly being 
introduced. Additionally, negotiation is also bounded by time, since deadline puts 
negotiators under pressure [4]. Previous empirical results [5] show that in general, MDAs 
[3,5,6] outperform fixed strategy negotiation agents [1] in many situations. In [4], a more 
flexible negotiation model defines a range of strategies and tactics for generating 
(counter-)proposals based on time, resource and behaviors of negotiators. The major 
difference between this work and [4] is that other essential factors such as competition, 
trading alternatives and differences among negotiators’ proposal are also considered. In 
multilateral negotiations, it is intuitive to think that a negotiator’s bargaining power is 
affected by the number of competitors and trading alternatives. Good options give a 
negotiator more “power” because the negotiating party needs not pursue the negotiation 
with any sense of desperation [7, p157], and negotiations may break down because the 
parties cannot resolve their differences [8, p94]. However, this work does not compete 
with [1], [4] or the current literature, but rather complements them by modeling the 
behaviors of negotiation agents in changing market situations. In designing MDAs [5,6], 
factors such as competition, trading alternatives, differences among negotiators and 
deadline are taken into account when an agent determines the amount of concession at 
each negotiation round (section 2).  
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2. A MARKET-DRIVEN MODEL FOR DESIGNING NEGOTIATION AGENTS 
 
In making concession, an MDA assesses the probability p of successfully completing a 
deal in different market situations. One way to assess p is to consider the value of k – the 
spread (difference) between an agent’s bid/offer and that of others [3]. Let va→j

i be the 
utility of an agent and wj→a

i be the best utility among all its trading partners in the current 
trading cycle. The (best) spread in the current cycle i is ki=va→j

i–wj→a
i. A market-driven 

agent makes concession by determining the utility of its next bid/offer va→j
i+1 using the 

sum of the spread in the next cycle ki+1 and wj→a
i.  Hence, va→j

i+1= ki+1+wj→a
i.  An agent 

strives to attain the highest possible utility while maintaining a reasonable level of p in 
the next trading cycle. It is more probable to complete a deal when ki+1 is small, and vice 
versa.  ki+1 is determined by assessing the current market situation, taking into account 
factors such as opportunity, competition and deadline:  

ki+1= [O(na
i,<wj→a

i>,va→j
i) C(ma

i,na
i) T(t, τ, ε)]ki          (1) 

Trading opportunity: O(na
i,<wj→a

i>,va→j
i) determines the amount of concession based 

on trading alternatives (number of trading partners) and differences in offers/bids [3,6]. 
Suppose agent a engages j in round i. a’s last proposal generates a payoff of va→j

i for 
itself, and j’s last counter-proposal generates a payoff of wj→a

i for a. If a accepts j’s 
counter-proposal, it will obtain wj→a

i  with certainty. If a insists on its last proposal, and i) 
if j accepts it, a will obtain va→j

i and ii) if j does not accept it, a may be subjected to a 
conflict utility ca. ca

 is the worst possible utility for a (i.e. an agent’s payoff in the absent 
of agreement [9]), hence, wj→a

i ≥ca
 . If j does not accept a’s last proposal, a may ultimately 

have to settle with lower utilities (the lowest possible being the conflict utility), if there 
are changes in the market situation in subsequent cycles. For instance, a may face more 
competitions in subsequent cycles, and may have to ultimately accept a utility that is 
lower than wj→a

i (possibly as low as ca). If the subjective probability of a obtaining ca
 is 

pa↔j
c,i (conflict probability) and the probability that a achieves va→j

i is 1- pa↔j
c,i, then, 

according to Zeuthen’s analysis [9], if a insists on holding its last proposal, a will obtain 
a payoff of (1-pa↔j

c,i)va→j
i + pa↔j

c,ica. Hence, a will find that it is advantageous to insist on 
its last proposal only if (1-pa↔j

c,i)va→j
i + pa↔j

c,ica≥wj→a
i. Hence, 

, ( ) ( )a j a j j a a j a
c i i i ip v w v c↔ → → →≤ − − . Consequently, the maximum value of pa↔j

c,i is the 

highest probability of a conflict that a may encounter in round i, given as [3,6]:  
)()(,

a
i

ja
i

aj
i

ja
ic

ja cvwvp −−= →→→↔                 (2) 
pa↔j

c,i is a ratio of difference between two utilities. While va→j
i-wj→a

i measures the cost of 
accepting the trading agent’s last offer (the spread k or difference between the (counter-
)proposals of a and j), va→j

i-ca measures the cost of provoking a conflict. Hence, the 
probability that a will obtain a utility va→j

i, with at least one of its na
i trading partners is   

1

( , , ) 1
( )

a
in a j j a

a j a a j i i
i i i a j a

j i

v wO n w v
v c

→ →
→ →

→
=

−< > = −
−∏              (3) 

With ample trading options, O(na
i,<wj→a

i>,va→j
i) approaches 1, an MDA has more 

bargaining power, and hence, makes smaller compromises. Since there are a very large 
number of trading partners, the likelihood that some other agent’s proposals is potentially 
closer to the MDA’s proposal is higher (proven in [3]). As O(na

i,<wj→a
i>,va→j

i) reduces to 
0, an MDA’s bargaining power decreases. It makes larger compromises. Even with a very 
large number of trading options, it would be difficult for an MDA to reach a consensus if 
there are large differences between itself and other negotiating parties (proven in [3]). 

Competition: C(ma
i, na

i) determines the probability that an agent a is ranked as the 
most preferred trading partner by at least one other agent in round i. If a has ma

i-1 
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competitors, and one trading partner, the probability that a is not the most preferred 
trading partner is (ma

i-1)/ma
i. If a has ma

i-1 competitors, and na
i trading partners, the 

probability that a is not the most preferred partner of all its trading partners is 

( 1) /
a

ina a
i im m − 

. Hence, in round i, the probability that a is considered the most 

preferred trading partner by at least one agent is:  

( , ) 1 ( 1) /
a

ina a a a
i i i iC m n m m = − −     (4) 

If there is a very large number of trading partners na
i, then the chances of being 

considered the most preferred trading partner by some parties is higher. When the number 
of competitors ma

i increases significantly, the likelihood of being considered the most 
preferred trading partner becomes much lower.  These claims were proven in [3]. 
   Deadline: T(t,τ,λ) is a time-dependent function given as:  

    T(t,τ,λ)=1-(t/τ)λ      (5) 
where t is current trading time, τ is the deadline, and λ is a nonnegative temporal 
sensitivity factor. At the start of negotiation (t=0), an MDA offers its initial price since 
T(t,τ,λ)=1-(0/τ)λ=1; when its deadline is reached, the MDA offers its reserve (final) price 
since T(t,τ,λ)=1-(τ/τ)λ=0. Although agents can select from an infinitely many strategies 
with respect to remaining trading time (one for each value of λ, where λ ≥ 0), they can be 
classified as follows [3]: 

1) Linear: λ=1 and T (t, τ, ε)=1-(t/τ). An MDA makes a constant rate of concession. 
2) Conservative: ki+1=[1-(t/τ)λ]ki where λ>1, an MDA makes smaller concession in 

early rounds and larger concessions in later rounds. 
3) Conciliatory: ki+1=[1-(t/τ)λ]ki where λ<1, an MDA makes larger concessions in the 

early trading rounds and smaller concessions at the later stage.  
4) The extreme and special cases when λ = 0 (always giving in) and λ = ∝  (never give 
in) will not be considered because they represent the situations when no negotiation is 
needed and non-negotiable trading respectively. 

In [10] MDAs are designed with a time-dependent function T(t,τ,ε)=1-(t/τ)1/ε that models 
its degree of sensitivity to approaching deadlines with respect to the MDA’s eagerness ε. ε 
represents the user’s desire to complete the deal. Given 2 agents a1 and a2 with the same 
deadline τ1=τ2, but different eagerness ε1 and ε2 with ε1 > ε2 then at time t, 
T(t,τ1,ε1)<T(t,τ2,ε2); a1 having higher eagerness makes more concessions than a2. 
Consequently, a1 adopts a strategy that is more likely to complete a deal faster. This 
corresponds with the intuition that negotiators that are more eager to complete a deal are 
more likely to concede faster. In [10], MDAs are designed with only conservative (with 
0<ε<1)  and linear strategies (with ε=1).  
 
3. MINIMALLY SUFFICIENT CONCESSION 
 
Given the current market situation, an MDA strives to attain the highest possible utility 
while maintaining a reasonable probability p of reaching a consensus. However, both 
increasing an MDA’s utility and increasing p are incompatible objectives. One way to 
deal with incompatible objectives is to determine the most important objective, and 
express all other objectives as constraints. For MDAs, maximizing utility is the most 
important objective, but they are also designed to maintain a minimum p. This section 
shows that with respect to opportunity and competition (propositions 1 and 2), the 
amount of concession made by an MDA is minimally sufficient [11].  
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Definition 1: A sufficient concession is one that increases a market-driven agent’s 
probability of reaching a consensus. 
Definition 2: A concession ∆k is minimally sufficient if it achieves the highest possible 
utility for a market-driven agent while maintaining a minimum probability pmin of 
reaching a consensus. 
 
Proposition 1: With respect to trade opportunity, the amount of concession ∆kopp made by 
a market-driven agent is minimally sufficient. 
 
Proof: The proof proceeds by induction on the number of trading partners n. 
Base case:  When n=1. Let ∆kopp be the amount of concession made by an MDA. Since 

, ( ) ( )a j a j j a a j a
c i i i ip v w v c↔ → → →≤ − −  and p=1-pa↔j

c,i, it follows that p is the minimum 
probability of reaching a consensus when 

, ( ) ( ) ( )a j a j j a a j a a j a
c i i i i i ip v w v c k v c↔ → → → →= − − = − . When n=1, with respect to trade 

opportunity, ki+1=O(1,<w1→a
i>,va→1

i)ki and ∆kopp= ki-ki+1 = 1-O(1,<w1→a
i>,va→1

i) = (va→1
i-

w1→a
i)/(va→1

i-ca) = ki/( va→1
i-ca). 

Inadequate concession: Let ∆ku be any amount of concession such that ∆ku<∆kopp and pu 
be the corresponding probability of reaching a consensus if the MDA concedes with ∆ku. 
Although ∆ku generates a higher utility for the MDA because the corresponding spread 
ku>ki, it follows that ku/( va→1

i-ca)>pa↔1
c,i= ki/( va→1

i-ca),  and pu<p=pmin, which contradicts 
definition 2.  
Excessive concession: Let ∆kov be any amount of concession such that ∆kov>∆kopp and pov 
be the corresponding probability of reaching a consensus if the MDA concedes with ∆kov. 
Since the corresponding spread kov<ki, it follows that pov>p=pmin. However, ∆kov is 
sufficient (definition 1) but not minimally sufficient because it generates a lower utility 
for the MDA.  Hence, ∆kopp is minimally sufficient. 
 
Induction case:  When n>1, assume as an induction hypothesis that an MDA makes 
minimally sufficient concession when n<N. With respect to competition, when n=N, it 
follows that ki+1=O(N,<wj→a

i>,va→j
i)ki and ∆kopp=ki-ki+1 =1-O(N,<wj→a

i>,va→j
i)  

 

( ) ( ) ( ) ( )
1 2 1 2 1 1

1
1

... ... ...
( )

a j j a a a a N a a a r a r a r a NN
i i i i i i i i i i i

N r N ra j a a r aa j a a j a a j aj i ii i i

v w k k k k k k k k k
v c v cv c v c v c

→ → → → → → → → − → → + →

− −→ →→ → →=

− × × × × × × × ×= = = × ×
− −− − −

∏ .  

Let r be any one of the N trading partners of the MDA. Let ∆kr be the amount of 

concession that the MDA makes to r. Let ( ) ( )
a r a r r a
i i i

r a r a a r a
i i

k v wk
v c v c

→ → →

→ →

−∆ = =
− −

. By the same 

argument given above (the base case), ∆kr is also minimally sufficient. 
Let {1, 2, …, r-1, r+1,…, N} be the set of all other trading partners of the MDA other 
than r and 

( ) ( )
1 2 1 1

1 1

... ...a a a r a r a N
i i i i i

N r N ra j a a j a
i i

k k k k kk
v c v c

→ → → − → + →

− − −→ →

× × × × ×∆ = ×
− −

 such that ∆kopp=∆kN-1×∆kr. By 

induction hypothesis, ∆kN-1 is minimally sufficient. Since ∆kN-1 and ∆kr. both are 
minimally sufficient, it follows that ∆kopp is also minimally sufficient ♦  
 
Proposition 2: With respect to competition in a given market size with m numbers of 
competitors and n numbers of trading partners, the amount of concession ∆kcom made by a 
market-driven agent is minimally sufficient. 
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Proof: Since market-driven agents are utility maximizing agents, a market-driven agent 
B1 is not likely to reach a consensus with another market-driven agent Si if B1’s proposal 
is not ranked as the best proposal by Si. Suppose B1 has n trading partners and m 
competitors. Let E1, E2, …, En-1, En be the events that B1’s  proposal is not ranked the best 
proposal by exactly 1, 2, …, n-1, n other trading partners respectively. The worst case 
scenario is En, when B1’s proposal is not ranked the best proposal by all of its n trading 
partners, in which case, it is most unlikely to reach a consensus with any Si∈ S. Let Pc be 
the probability of conflict with respect to competition. Pc is the largest possible when B1’s 
proposal is not ranked as the best proposal by all Si∈ S. Let p be the probability of 
reaching a consensus. Since p=1-Pc, with respect to competition, p is the smallest 
possible when En occurs. ∆kcom= ki- ki+1 =1-C(ma

i, na
i)= ( 1) /

a
ina a

i im m − 
 is determined 

based on the assumption that En occurs. 
Inadequate-concession: By making a concession ∆ku<∆kcom, it will be even less likely that 
B1’s  proposal is ranked the best proposal by some other agent. Consequently, the 
corresponding probability pu<p= pmin violates definition 2.  
Excessive-concession: Let ∆kov be any amount of concession such that ∆kov>∆kcom and the 
corresponding probability of completing the deal be pov. Although pov>p=pmin, ∆kov 
generates a lower utility for the MDA since the corresponding spread kov<k. Thus, ∆kov is 
sufficient but not minimally sufficient. Hence, ∆kcom is minimally sufficient  ♦  
 
4. SEQUENTIAL EQUILIBRIUM 
 

The amount of concession that an MDA makes with respect to its deadline is 
( )1 /1 ( , , ) /D Lk T t t ετ ε τ∆ = − = . Since ∆kDL is not determined by the number of 

trading partners, for the purpose of analyzing the time-dependent strategies of MDAs,  a 
multi-lateral negotiation is treated as many threads of one-to-one negotiation. This 
section shows that (i) when an MDA adopts a conservative strategy, it requires more 
trading rounds to reach a consensus with its trading partner (lemma 3.1) than using either 
the conciliatory or linear strategy, (ii)  the conservative strategy is the optimal strategy for 
an MDA regardless of the strategy adopted by its trading partner (lemma 3.2), and (iii) the 
strategies of MDAs are in equilibrium (proposition 3). 

 
Lemma 3.1: A market-driven agent b adopting a strategy with λb

1>1 requires more 
negotiation rounds to reach an agreement than when b adopts a strategy with λb

2≤1 
regardless of the strategy λs adopted by its trading partner s.  
 
Proof: Let T1 (respectively, T2) be the number of rounds that b adopting a strategy with 
λb

1 >1 (respectively, λb
2≤1) completes a deal with s. Let k1,t (respectively, k2,t) be the 

spread between b adopting λb
1  (respectively, λb

2) and s in round t. Since market-driven 
strategies are designed for both buyer and seller agents, it can be assumed without loss of 
generality that b makes a concession first, hence, at round t it follows that: 

,0
,

,0

[ (1, , ) (2, , ) ( , , )]

[ (1, , ) (2, , ) ( , , )]

b b s s s s
a a

a t b b s s b b
a a a

T T T t k
k

T T T t k

τ λ τ λ τ λ

τ λ τ λ τ λ

 × × ×=
× × ×

…

…
 

where a=1 if b adopts λb
1, otherwise b adopts λb

2. Consequently, ka,t  can be re-written as: 

t is odd     
 
t is even   
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,0
0

,

,0
0

2 1 21 1

2 1 2 21 1

b s
a

b s
a

I

ab s
i

a t
I

ab s
i

i i k

k
i i k

λ λ

λ λ

τ τ

τ τ

=

=

     +        − × − ×                =
     + +       − × − ×                

∏

∏

                

where a=1 if b adopts λb
1, otherwise b adopts λb

2. Since T1 (respectively, T2) is the 
number of rounds for b adopting λb

1 (respectively, λb
2) to reach an agreement with s, it 

follows that t→ T1 iff k1,t→0 and t→ T2 iff k2,t→0. Since the initial spreads for both 

strategies λb
1 and λb

2 is k1,0=k2,0, and for all i, 
2

12 1 2 11 1

bb

b b

i i
λλ

τ τ

  + +     − > −           

, it follows 

that:                                           For all t>0, k1,t >k2,t (6)      
 
Consequently, at round t, if k1,t→0, then t→ T1 and k2,t →0. But, k2,t→0 does not imply 
k1,t→0. Hence, it follows that T1 >T2, and b adopting a strategy with λb

1 requires more 
negotiation rounds to reach an agreement with s than when it adopts a strategy with λb

2 ♦  
  
Lemma 3.2: The conservative strategy (λb

1>1) is the optimal strategy for a market-driven 
agent b regardless of the strategy that its trading partner s adopts.  
 
Proof: Let T1 (respectively, T2) be the number of rounds that b adopting λb

1 >1 
(respectively, λb

2≤1) reaches an agreement with s. Without loss of generality, assume that 
b makes concession first. From lemma 3.1, it follows that T1 >T2, hence, at T2, there are 
two possible cases: 

1) T2=2I+1: For offer 2T
sl  sent by s in round T2: 

1

2

2

2

0 1,2
1

0 2,2
1

2( )

2( )

s

s

I
s b s

T i s
i

I
s b s

T i s
i

il l k

il l k

λ

λ

τ

τ

→

=

→

=

 = −  
 

 = −  
 

∑

∑

  

 From (6) in lemma 3.1, for t>0, k1,t >k2,t, hence, it follows that  
21,Tk >

22,Tk  and 

2
2

2
1 T

bs
T

bs ll →→ < . Since at T2, b adopting λb
2 reaches an agreement with s, 

2
2

2
2 T

sb
T

bs ll →→ = . Since T1>T2, s and b adopting λb
1 will continue to make concession 

from t>T2 until t<T1. Hence, it follows that 2
1

1
1 T

bs
T

bs ll →→ < . At T1 when s and b 

adopting λb
1 reach an agreement, 1 1

1 1

b s s b
T Tl l→ →= . Consequently, it follows that 

2
2

2
2

2
1

1
1

1
1 T

sb
T

bs
T

bs
T

bs
T

sb lllll →→→→→ =<<= . Hence, 1 2

1 2
( ) ( )b s b s

b T b Tv l v l→ →> , 

where vb is a function that generates the utilities of the proposals 1

2

b s
Tl →  and 2

2

b s
Tl → .  

2) T2=2I+2:   For offer 2T
sl  sent by s in round T2  

, t=2I+1     
 
, t=2I+2    

if b adopts λb
1     

 
if b adopts λb

2    
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∑

∑
+

=

→

+

=

→

−=

−=

1

1
2,20

1

1
2,10

)2)((

)2)((

2
2

2
1

I

i
si

s
T

bs

I

i
si

s
T

bs

s

s

ikll

ikll

λ

λ

τ

τ  

The proof that 1 2

1 2
( ) ( )b s b s

b T b Tv l v l→ →> for case (2) is analogous to case (1) and is 

omitted due to space limitation. Since 1 2

1 2
( ) ( )b s b s

b T b Tv l v l→ →>  for cases (1) and (2), the 
conservative strategy is the optimal strategy for b regardless of the strategy that s chooses 
♦  
 
Sequential equilibrium: In analyzing the mutual strategic behaviors of market-driven 
agents, negotiation is viewed as a game Γ of incomplete information. In Γ, an MDA has 
imperfect information about the deadline and strategy of its trading partner. Since MDAs 
are imperfectly informed, the idea of sequential equilibrium [12, p95] is used to 
demonstrate that their strategies are in equilibrium [12, p41]. The notion of sequential 
equilibrium requires the specifications of: a strategy profile π and a belief system µ. Let π 
= (Sb, Ss) such that Sb, and Ss are the strategies of buyer b and seller s. µ  is a function that 
assigns a probability µ(h)∈  [0,1] to each decision node h in Γ such that 1)( =∑

∈ Ih
hu for all 

information sets I. For instance, at t=1 in Fig. 1, h2, h3, and h4 form the information set I1 
of s, and µ(h2)+µ(h3)+µ(h4)=1. µ  represents an MDA’s belief about the history of 
negotiation. 
 
Definition 3: A sequential equilibrium of Γ is a pair (π,µ) that satisfies the following: 
(i) Sequential rationality: At each information set I of each agent ai, the strategy of ai is 
the best response to other agents’ strategies (ie, optimal), given ai’s beliefs in I.  
(ii) Consistency: At each information set I, ai updates its beliefs based on strategy profile 
π using Bayes rules.     
 
By Bayes rules, at I, the probability of reaching a decision node hi according to π  is  

( , )
( , )
i

h I

P h
P h

π
π

∈
∑

 where P(hi,π) and P(h,π) denote the probabilities of reaching hi and h 

respectively according to π. For instance, at I1, if b chooses B1, B2, and B3 with 
probabilities p2, p3, and p4 respectively, then s must assign probabilities 2

2 3 4

p
p p p+ +

,  

3

2 3 4

p
p p p+ +

 and 4

2 3 4

p
p p p+ +

 of reaching h2, h3, and h4 respectively. 

 
Proposition 3: There exists a unique sequential equilibrium of Γ. 
 
Proof: In Γ, buyer b and seller s send proposals alternately. Assume without loss of 
generality that b sends its proposal first. At t=0, buyer b starts the negotiation by 
choosing its optimal strategy B1 (lemma 3.2), and the game proceeds to t=1. At t=1, s is 
unaware of the strategy that b adopts, hence, at information set I1, s does not know 
whether play reaches h2, h3, or h4. However, regardless of s’s belief about the history of 
negotiation, i.e. whether h2, h3, or h4 is reached, s will choose S1 because by lemma 3.2, S1 
is the optimal strategy for s at I1 regardless of the strategy that b chooses at t=0. At t=2, 
even though b does know which strategy s adopts, b knows that I2 is reached with 

if b adopts λb
1     

 
if b adopts λb

2    
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probability of 1, because at t=0, b chooses B1. From lemma 3.2, B1 is also the optimal 
strategy for b at I2. Iterating the arguments at t=0, t=1 and t=2, at every information set 
that is b’s turn to move, the optimal strategy for b is B1, and at every information set that 
is s’s turn to move, the optimal strategy for s is S1. Consequently, the strategy profile 
π=(B1,S1) satisfies the requirement for sequential rationality. Furthermore, both b and s 
adhere to (B1,S1)  regardless of their beliefs about the negotiation histories. Hence, (B1,S1) 
is a sequential equilibrium of Γ . In addition, the sequential equilibrium at (B1,S1) is also 
unique because B1 and S1 are the optimal strategies of b and s at every of their 
information sets, and there do not exist any other equilibrium where either b or s deviates 
from its optimal strategy ♦  
 
 
5. DISCUSSION AND CONCLUSION 
     
   Propositions 1 and 2 further elaborate and support the claim previously made in [3] that 
MDAs are designed to avoid making excessive concessions in favorable markets or to 
make inadequate compromises in unfavorable markets. Consequently, with respect to 
market opportunity and competition, an MDA does not have the incentive of making any 
other amounts of concession other than ∆kopp and ∆kcom. Proposition 3 shows that the 
time-dependent strategies of MDAs are in equilibrium. In [10], (τ,ε) forms the time-
dependent strategy of an MDA. Hence, MDAs with different ε adopts different 
(conservative) strategies in making concession. From a negotiator’s perspective, one 
resists time pressure by adjusting one’s level of aspiration to what is believed to be 
optimal within the available time [13]. In [10], the amount of concession ∆kDL made by 
an MDA with respect to deadline is based on ε and regardless of the strategy adopted by 
its trading partner. Consequently, the strategies of MDAs are in equilibrium because with 
respect to opportunity, competition and deadline, every MDA does not find any incentive 
to deviate from making ∆kopp, ∆kcom and ∆kDL respectively. Theoretical results from this 
work show that MDAs are stable (and are designed to behave in the desired manner). In 
addition to showing the desirable property of stability, which is one of the essential 
evaluation criteria for automated negotiation systems [11, p21], this work also 
supplements and complements the empirical results obtained from previous work on 
MDAs [6,10]. Both theoretical results from this work, as well as empirical results 
previously obtained from [6,10] collectively show that MDAs are stable, and achieve 
relatively high utility and success rates. While this work (in its present stage) assumes 
that all negotiating parties are MDAs, future work will explore analyses of negotiation 
between MDAs and agents adopting other strategies. 
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Fig. 1. A Negotiation Game with Incomplete Information 
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